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Topological invariants are a significant ingredient in the study of topological phases of matter that intertwines
the supposedly contradicting concepts of bulk and boundary. The nature of the invariants differs depending on
the dimensionality of the boundary at which the topologically nontrivial states manifest themselves. The primary
motivation of this work is to study two distinct scenarios of topological phases, differing in the dimensionality of
their boundary states, and study the associated bulk topological invariants that characterize them. In this regard,
we study the band-engineered Kane-Mele model which originally is a prototypical example of a system that
hosts quantum spin Hall effect on a honeycomb lattice. Under a smooth band deformation caused by varying
one of the nearest-neighbor hopping amplitudes (say t1) as compared to the other two (say t), we observe that
the system transits from its first-order topological insulating state (or quantum spin Hall state) to a second-order
topological insulating (SOTI) state via a gap-closing transition. This transition occurs when the system crosses
a particular threshold of the deformation parameter t1/t (namely, t1/t = 2), known as the semi-Dirac limit in
literature. We show the presence of edge and corner modes as a signature of first- and second-order topology,
respectively. Further, we observe the evolution of the Wannier charge center (WCC), a bulk property as a function
of the deformation parameter t1/t . It is seen that the behavior of the WCC is entirely different in the quantum spin
Hall (QSH) phase as compared to the second-order topological state. We also find that, while the Z2 invariant
successfully characterizes the QSH state, it cannot characterize higher-order topology (second order here). The
model being mirror invariant, we also calculate mirror winding number to show that it is rendered trivial in the
SOTI phase as well, while being nontrivial in the QSH phase. Finally, we observe that the spin resolved bulk
polarization correctly establishes the appearance of second-order topological corner modes and thus categorizes
this phase as an obstructed atomic insulator.
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I. INTRODUCTION

Topological insulators (TI) have been a subject of extensive
research in the past decade. TIs are novel materials that show
the intriguing feature of hosting a gapped bulk, but gapless
edge and surface states. These topological states are robust
and protected against minor perturbations that do not disturb
the symmetries inherent in the system. Traditional TIs show
the essence of nontrivial topology on a (d − 1)-dimensional
surface for a bulk that is d dimensional [1–5]. A major aspect
of topological materials lies in the bulk boundary correspon-
dence, where a topological invariant, evaluated purely from
the bulk eigenstates, predicts the behavior at the boundaries of
the system. Currently, there have been multiple extensions to
the field of topological materials. These include Floquet topo-
logical insulators which exhibit topological phases exclusive
to a periodically driven system and not shown by their static
counterpart [6–9]. Furthermore, non-Hermitian (NH) TIs are
gaining growing attention recently [10–14]. Non-Hermiticity
enhances the richness of topological phases of matter and
cannot be bound within the conventional 10-fold classification
of symmetry-protected topological states. NH systems also
feature topological manifestations unusual to their Hermitian
counterparts which include the presence of exceptional points
and skin effect. Another important extension to the field of

topological insulators, that is being actively explored, are
higher-order topological insulators (HOTI) [9,15–33]. Unlike
conventional TI, an nth-order HOTI exhibits the presence of
nontrivial topological states on a surface or edge of dimension
d − n for a bulk that is d dimensional. This gives rise to corner
modes in two dimensions (2D) and corner or hinge modes
in three-dimensional (3D) HOTI systems. The conventional
definition of bulk boundary correspondence fails here. Rather,
HOTI shows a refined bulk boundary correspondence. Higher-
order topological insulators can be majorly called a “subclass”
of topological crystalline insulators where rotation or mirror
symmetries protect the topological phases. Research in this
field found a massive boost with the advent of the electric
multipole insulators in the study of Benalcazar et al. [34] as
well as chiral and helical higher-order topological states in the
study of Schindler et al. [35]. In the latter work, prospective
material candidates such as SnTe and surface modified BiTe
and BiSe have been theoretically claimed to host a higher-
order phase. However, despite HOTI being a well-studied
phenomenon in recent times, it is still ambiguous how the
topological conducting edge and surface states of a 2D and
3D system can be gapped out to show higher-order topology.
Here, we study one such possibility where band deformation
under strain of a quantum spin Hall insulator induces a transi-
tion from a TI to an HOTI phase of matter.
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Our primary aim is to study two topological phases of
different order, one evolving into the other and track the
behavior of the corresponding bulk topological invariants that
characterize them. In this regard, the Kane-Mele model, which
is a prototypical example of the quantum spin Hall insulator, is
considered [36]. The proposal of the Kane-Mele model owes
its origin to the seminal work by Haldane who showed that
an external magnetic field and hence Landau levels are not
indispensable for the observation of quantum Hall effect [37].
Haldane introduced a complex second-neighbor hopping to
a honeycomb lattice which causes the Dirac nodes at the K
and K′ points in the Brillouin zone (BZ) of bare graphene to
gap out, thus giving rise to conducting edge states. This com-
plex second-neighbor hopping. however, breaks time-reversal
symmetry (TRS) and bestows the occupied energy subspace
with a nonzero Chern number, thus yielding a nonzero con-
ductance similar to the original quantum Hall effect. Since the
Haldane model breaks TRS, it was now imperative to study
how topology behaves if TRS is restored. With this aim, Kane
and Mele proposed a spinful model with an equal and opposite
Haldane flux for the spin-up and -down particles. The spinful
bands acquire opposite Chern number, thus causing the net
Chern number of the occupied energy subspace to vanish. This
is in accordance with TRS. It is, however, observed that the
difference of Chern number for the two spin sectors acts as an
effective topological invariant implying that the system shows
a finite spin Hall conductance although the conductance in the
charge sector vanishes. Such systems fall under the class of
Z2 topological insulators and show the presence of helical
edge states. Moreover, it was observed by Kane and Mele that
an inversion-symmetry-breaking Rashba spin-orbit coupling
term, that destroys the conservation of the z component of
spin, causes little qualitative difference to the original results
owing to leaving the TRS intact. Experimental evidence of
the QSH state has been suggested to be found in HgTe/CdTe
quantum well [38], low buckled germanene [39], Cl-doped
ZnSe [40], Pt wires [41], etc.

Owing to the intriguing topological aspects of graphene, it
has been the subject of intense study under various perturba-
tions, one of them being strain. Several works have studied
different aspects of strained graphene as well as the Haldane
model, to show how the topological attributes of the system
change. In the work by Murakami et al. [42], the jump in
polarization as a function of a symmetry-breaking mass term
is studied. This jump corresponds to the existence of a Weyl
node at vanishing mass, at which the polarization is no longer
defined. Second-order topology in a strained Haldane model
has also been studied by Wang et al. [43]. Here the topological
properties are observed as a function of change in both the
nearest- and the next-nearest-neighbor hopping amplitudes.
Corner modes are obtained as the deformation parameter ex-
ceeds a certain critical value. Another study by Liu et al. [44]
explores the boundary states in pristine graphene sample un-
der uniaxial strain and a correspondence with the SSH model
is established. A very significant work in this direction has
also been done by Ezawa et al. [45], where Wannier-type
higher-order topological insulators have been discussed. The
emergence of corner states is observed in a strained honey-
comb lattice in 2D and diamond lattice in 3D. The topological
origin of these second-order states is further explained via the

FIG. 1. A schematic representation of the honeycomb lattice
on which the Kane-Mele model is studied. δ̂1, δ̂2, and δ̂3 repre-
sent nearest-neighbor vectors. a0 represents the nearest-neighbor
distance.

bulk polarization calculated in accordance with the modern
theory of polarization. In this work, we similarly deform the
bands of the Kane-Mele model defined on a honeycomb lattice
by modifying one of the nearest-neighbor hopping amplitudes
(say t1), while keeping the other two (say t) fixed (Fig. 1).
It is seen that the quantum spin Hall state with distinct edge
modes is destroyed beyond the critical point t1/t = 2, and the
system converts itself into a second-order topological insula-
tor, which is an HOTI with topological states manifested at
the (d − 2)-dimensional boundary. The bulk band structure
shows a shift in the band extrema points as a function of the
deformation parameter ξ = t1/t . At t1 = t (ξ = 1) the bulk
band structure hosts the band minima at the K and K′ points
in the Brillouin zone (BZ). The band minima of the energy
spectra shift towards each other along the �-K-M-K′-� line
(Fig. 2) before finally merging at the M point of the BZ when
t1 = 2t (ξ = 2). It should be mentioned here that the limit

FIG. 2. The Brillouin zone corresponding to the honeycomb lat-
tice is shown here. �, K, M, and K′ represent high-symmetry points
of the honeycomb lattice. The band structures are studied along the
�-K-M-K′-� line, which is shown by arrows.
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t1 / t = 2 is largely known as the semi-Dirac limit, where the
bulk energy spectrum shows a linear dispersion along one
component of momentum and a quadratic dispersion along
the direction perpendicular to the former. Evidence of such
inhomogeneous dispersion has been expected to be found in
monolayer phosphorene subjected to pressure or doping [46],
deformed graphene [47], etc. It is seen that the behavior of the
bulk topological invariants corresponding to the two different
topological regimes (that is, ξ < 2 and ξ > 2) are completely
different owing to their dissimilar order. In this regard, we
mention another work by Ren et al. [48], where an in-plane
Zeeman field applied to the Kane-Mele model destroys the
QSH phase and transforms the system into a higher-order
topological insulator. However, the TRS is broken in this
system and the vital essence of the Kane-Mele model is lost.
On the contrary, in our work we keep the TRS of the system
undisturbed while inducing a second-order topological phase
solely by means of band engineering. While extensive work
has been done on several models featuring an HOTI phase,
we focus on the transition of the system and the corresponding
bulk topological invariants as it smoothly changes its topolog-
ical order as a function of band deformation. We also provide a
clear perspective pertaining to the occurrence of this transition
which is crucial to the study of topological phases of matter.

The paper is organized as follows. In Sec. II we define the
tight-binding Hamiltonian for the strained Kane-Mele model
and show the effect of band deformation on the bulk band
structure. The energy spectra of a ribbonlike configuration are
also studied which shows the existence of helical edge modes
in the regime ξ < 2. Further deformation destroys the QSH
phase and the helical edge modes vanish. However, beyond
this critical point, a real-space probability distribution shows
the existence of zero-energy corner modes in the system lo-
calized at two corners of a suitably formed supercell that obey
the crystal symmetries of the Hamiltonian. In Sec. III we
study the evolution of the Wannier charge center along one
direction with respect to momentum along the other (since
our system is two dimensional). It is seen that the nature of
this evolution is completely dissimilar for the two different
regimes. Correspondingly, the Z2 invariant which is finite in
the region ξ < 2 vanishes beyond it. Pertaining to the pres-
ence of mirror symmetry Mx in the system, we also calculate
the mirror winding number which corresponds to the Berry
phase picked up by the ground state of a mirror-symmetry
resolved effective Hamiltonian over a complete cycle in its
parameter space. We observe that the mirror winding number
shows a similar trend as the WCC. However, the spin resolved
bulk polarization which indicates the position of the center

of charge in a unit cell becomes quantized in the second-
order topological phase. This indicates an obstructed atomic
insulator where the center of charge suffers a mismatch from
the original lattice sites [49]. This leads to an excess charge
accumulation at the corners of a rhombic supercell which
manifests as second-order topology. Finally, we conclude with
a brief summary of our results in Sec. IV.

II. THE HAMILTONIAN

The Kane-Mele model defined on a honeycomb lattice is
shown in Fig. 1. The vectors connecting the nearest neighbors

(NN) are given by �δ1 = a0(0, 1), �δ2 = a0(−
√

3
2 ,− 1

2 ), �δ3 =
a0(

√
3

2 ,− 1
2 ), where a0 is the nearest-neighbor distance. The

lattice vectors are given by �a1 = �δ1 − �δ2 and �a2 = �δ1 − �δ3.
The hexagonal lattice has two sublattices denoted by A and
B. In our model, the NN hopping along the direction δ̂1 is
assumed to be t1, while it is given by t in the directions
δ̂2 and δ̂3. We tune the band structure as a function of the
deformation parameter ξ = t1

t and observe the behavior of
the boundary states. The tight-binding Hamiltonian for the
real-space Kane-Mele model is given as

H =
∑
〈i, j〉

ti jc
†
i c j + iλso

∑
〈〈i, j〉〉

νi jc
†
i σzc j

+ iλR

∑
〈i, j〉

c†
i (σ × d̂ij)zc j +

∑
i

λvc†
i ci, (1)

where ci (c†
i ) represent annihilation (creation) operators at

lattice site i. Here ti j is the NN hopping amplitude which is
equal to t1 when the hopping occurs along the direction �δ1 and
is equal to t along �δ2 and �δ3. The second term is a spin-orbit
coupling (SOC) term where λso corresponds to the intrinsic
SOC amplitude which is a key ingredient in the formation of
the QSH phase. νi j = 1 (−1) if the electron takes a left (right)
turn while moving from site j to site i. The third term corre-
sponds to Rashba SOC with λR as the coupling strength. The
conservation of the z component of spin that is σz is violated in
presence of λR. d̂ij corresponds to the nearest-neighbor vector
connecting site j to site i. Finally, the fourth term denotes
the onsite sublattice potential where λv assumes a positive
amplitude (say ms) for sublattice A and negative (say −ms)
for sublattice B. It is known that the QSH phase survives in
the original Kane-Mele as long as λv < 3

√
3λso [36]. Fourier

transformation of the real-space Hamiltonian gives us the
tight-binding Hamiltonian in the momentum space,

H (k) =

⎛
⎜⎜⎝

γ (k) + ms η(k) 0 ρ(k)
η∗(k) −γ (k) − ms −ρ(−k) 0

0 −ρ∗(−k) −γ (k) + ms η(k)
ρ∗(k) 0 η∗(k) γ (k) − ms

⎞
⎟⎟⎠, (2)

where

η(k) = t1e−ikya0 + 2te
ikya0

2 cos

√
3kxa0

2
, (3a)

γ (k) = 2λso

[
2 sin

√
3kxa0

2
cos

3kya0

2
− sin

√
3kxa0

]
,

(3b)
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FIG. 3. The bulk band structure of the band-deformed Kane Mele
model is shown for different values of the deformation parameter
ξ (= t1

t ). It is seen that the band extrema shift towards each other as
a function of ξ , to finally meet at the M point of the BZ for ξ = 2.
As ξ is increased further, the gap reopens, indicating a topological
phase transition. The values of λso are fixed at 0.06t while λR and λv

are kept 0. This leads to a twofold degeneracy of the bulk bands.

ρ(k) = iλR

[
e−ikya0 + e

ikya0
2 2 cos

(√
3kxa0

2
+ π

3

)]
. (3c)

The bulk band structure calculated using Eq. (2) shows
band extrema at the K=( −2π

3
√

3a0
, 2π

3a0
) and K′=( 2π

3
√

3a0
, 2π

3a0
)

points for ξ = t1
t = 1, as seen in Fig. 3. In this case the am-

plitude of the Rashba SOC and the onsite sublattice potential
are kept zero resulting in the spin-↑ and spin-↓ bands to be
degenerate. It is seen that as the band is slowly deformed, the
extrema slowly shift towards each other, finally converging at
the M point of the BZ for ξ = 2. The gap-closing transition
at ξ = 2 destroys the QSH phase and renders the system triv-
ial from the perspective of first-order topology. For nonzero
values of the onsite potential λv and λso, the degeneracy of
the bands is lifted as seen in Fig. 4. However, the general
behavior of the spectral properties with respect to the defor-
mation parameter remains the same. It is to be noted that in
the absence of spin-orbit coupling (λso and λR) and an onsite
potential (λv), the band degeneracy occurs at the point in the
BZ given by

kx = ± 2√
3a0

cos−1

(
t1
2t

)
, (4a)

ky = 2π

3a0
(4b)

for 1 < t1 < 2. In the presence of spin-orbit coupling, the
degeneracy at these points are lifted and a topological gap
opens up.

FIG. 4. The twofold degeneracy of the bulk band structure is
lifted as soon as nonzero values of λR and λv are introduced in the
model. The behavior of the bands with respect to the deformation
parameter ξ , however, remains the same as shown in Fig. 3. Here,
values of the parameters are given by λso = 0.06t , λR = 0.05t , and
λv = 0.1t .

Next, in order to study the behavior of the edge modes
pertaining to the QSH phase, we plot the energy band structure
of a zigzag-ribbon-like configuration with periodic bound-
ary condition (PBC) along the direction â1 − â2 and open
boundary condition (OBC) along the direction â1. The pres-
ence of PBC along the x direction (which is the same as
the direction â1 − â2) enables us to Fourier transform the
Hamiltonian along the x direction and thus plot the dispersion
of this finite ribbon as a function of kx. Distinct edge modes
are seen traversing the band gap as a function of kx, in the
region 1 < ξ < 2, as shown in Fig. 5. Evidently, these are
conducting eigenstates confined to the edges of the system. At
ξ = 2, the closure of the bulk band gap causes the first-order
topological phase to disappear and the conducting edge states
get trivialized beyond this critical point.

To investigate the topology of the phase beyond the criti-
cal point (ξ = 2), we carefully construct a rhombic supercell
taking into the account that the system possesses a mirror
symmetry Mx. A schematic representation of this supercell is
shown in Fig. 6. The real-space energy eigenspectra are eval-
uated which show the presence of four distinct zero-energy
modes. In presence of a nonzero onsite potential λv , the in-gap
modes shift from zero energy as shown in Fig. 7. The real-
space probability distribution of the zero-energy states shows
that they are confined at the two mirror-invariant corners of
the rhombic supercell (Fig. 8).

III. TOPOLOGICAL INVARIANTS

The QSH phase seen in the regime ξ < 2 is a Z2 topolog-
ical phase which has a zero Hall conductivity but a nonzero
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FIG. 5. The band structure of a finite zigzag-ribbon-like config-
uration for the deformed Kane-Mele model is shown. In (a) and
(b) distinct helical edge states are seen traversing the band gap as
long as ξ < 2. (c), (d) Show the scenario for ξ = 2 and beyond.
We observe that beyond the critical value of deformation, the edge
states do not traverse the band gap and hence carry no topological
significance anymore. This indicates at a destruction of the QSH
phase beyond the critical point.

spin Hall conductivity. If the z component of spin, that is
σz, is conserved (for the case where λR = 0), the spin Hall
conductivity is also quantized. The Z2 invariant in such a case

FIG. 6. A rhombic supercell constructed using the honeycomb
lattice that is used in the calculations of the second-order topological
phase. The x and y axes represent real-space position coordinates of
the lattice sites in units of nm. The nearest-neighbor distance has
been taken to be equal to 0.142 nm.

FIG. 7. The real-space energy eigenspectra are plotted for two
different values of the Semenoff mass λv . The value of the defor-
mation parameter is fixed at ξ = 2.2. Furthermore, the values of λso

and λR are fixed at 0.06t and 0.05t , respectively. (a) The presence
of energy eigenstates, separated from the bulk and pinned at zero
energy, is seen in the spectrum. These states are fourfold degenerate
as long as the Semenoff mass λv is kept 0. (b) For λv = 0.1t , the
inversion symmetry in the system is broken and the states shift from
zero energy. The insets in (a) and (b) zoom in the vicinity of the
region E = 0 and resolve the four states near zero energy.

is given by [50,51]

ν = (C↑ − C↓)/2, (5)

where C↑ (C↓) refers to the spin-↑ (spin-↓) Chern numbers.
However, in presence of a Rashba SOC, the z component
of spin that is σz is not conserved and hence this form of
the Z2 invariant is no longer valid. However, a quantized Z2

invariant pertaining to a quantum spin Hall phase still persists.
In our work we study the hybrid Wannier charge centers as a
function of the deformation parameter ξ to follow the fate of
the QSH phase in the presence of σz nonconserving terms.
In this context, Wannier charge center refers to the center
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FIG. 8. Real-space probability density of one of the four degen-
erate zero-energy corner states is shown. The above plot is obtained
for λso = 0.06t , λR = 0.05t , λv = 0, and ξ = 2.2. It is seen that the
probability densities appear at the vertices. The details of the axes
and the lattice spacing are the same as mentioned in Fig. 6.

of charge in a unit cell. Mathematically, they represent the
expectation value of position operator for a basis represented
by Wannier functions which are a set of orthogonal functions
indexed by a lattice position, say R, and maximally localized
about that point with respect to all relevant spatial dimensions.
The Wannier functions are represented as [52]

|R, n〉 = V

(2π )D

∫
dDk e−ik.R|ψnk〉, (6)

where |ψnk〉 represents the Bloch wave function and D corre-
sponds to the dimensionality of the k space. V is the real-space
primitive cell volume. Hybrid Wannier functions, on the other
hand, refer to wave functions which are localized along one
spatial dimension (say x) while being delocalized along the
other dimensions (say y and z) and can be written as

|Rx, ky, kz, n〉 = 1

2π

∫ π

−π

dkxe−iRxkx |ψnk〉. (7)

Expectation value of the position operator (say X̂) with respect
to the hybrid Wannier function gives us the hybrid Wannier
charge center. Mathematically, this is represented as

x̄n(ky, kz ) = 〈Rx, ky, kz, n|X̂|Rx, ky, kz, n〉. (8)

The hybrid WCC being proportional to the Berry phase
captures the topological details of the system efficiently and
is given as [53,54]

x̄n(ky, kz ) = φn(ky, kz )

2π
= 1

2π

∫ 2π

0
An(kx, ky, kz )dkx (9)

Here An(kx, ky, kz ) = −i〈unk|∇k|unk〉 is known as the Berry
connection, where n is the band index and |unk〉 corresponds
to the periodic part of the Bloch wave function. Here, we
perform hybrid Wannier transformation along the direction b̂1

and study its evolution as a function of the momentum in the

direction b̂2 that is kb̂2
(since the model we study is 2D and lies

on the x-y plane) where �b1 and �b2 represent reciprocal lattice
vectors of the honeycomb lattice and are given by

�b1 =
(

2π

a
,

2π√
3a

)
, (10a)

�b2 =
(

−2π

a
,

2π√
3a

)
. (10b)

Here, a = √
3a0 represents the smallest distance between

similar sublattices. kb̂1
and kb̂2

correspondingly denote the
momentum in the direction b̂1 and b̂2, respectively. There-
fore, a general vector in the momentum space can be written
as �k = kb̂1

b̂1 + kb̂2
b̂2. Correspondingly, we now calculate the

Wannier charge center in the direction â1 as a function of the
momentum variable in the direction b̂2 that is kb̂2

. Mathemati-
cally, this can be written as r̄n

â1
= 〈Râ1 , kb̂2

, n|R̂â1 |Râ1 , kb̂2
, n〉,

where R̂â1 represents the position operator in the direction
â1. In terms of the components of the Berry connection, the
Wannier charge center can be written as

r̄n
â1

(
kb̂2

) = φn
(
kb̂2

)
2π

= 1

2π

∮
An

b̂1

(
kb̂1

, kb̂2

)
dkb̂1

. (11)

Here An
b̂1

(kb̂1
, kb̂2

) = −i〈unk| ∂
∂kb̂1

|unk〉. The Z2 invariant is

now defined as the number of individual hybrid WCC crossed
by a line traversing half the BZ, modulo 2 [55]. If the line cuts
through odd (even) number of hybrid WCC while traversing
half the BZ, the Z2 invariant is nontrivial (trivial). We observe
in Fig. 9 that the Z2 invariant remains nontrivial as long as
ξ < 2. Beyond this point, the evolution of the hybrid WCC is
changed and the system no longer remains in the QSH phase,
as shown in Fig. 10.

Next we focus on the crystalline symmetries of the de-
formed Kane-Mele Hamiltonian. The deformed Kane-Mele
model possesses a mirror symmetry Mx given by σx ⊗ I,
where σx and I act on the spin and the sublattice degrees of
freedom, respectively. Here I corresponds to identity and σx

corresponds to the x component of the Pauli matrices. The
mirror symmetry decouples the Hamiltonian into two sub-
spaces given by the positive and negative mirror eigenvalues.
We set kx = 0 and decouple the Hamiltonian H (0, ky ) into
two parts denoted by H± corresponding to the positive and
the negative values of the mirror-symmetry operator Mx. The
action of the mirror-symmetry operator on the Hamiltonian is
given as follows:

MxH (kx, ky)M−1
x = H (−kx, ky). (12)

Thus, on setting kx = 0, the mirror operator Mx can be used
to decouple the original Hamiltonian into H± which is given
as

H±(ky) = T ±
x (ky)σx + T ±

y (ky)σy, (13)

where

T ±
x (ky) = ±2λRsin

3a0ky

2
+ 4t cos

3a0ky

2
+ 2t1, (14a)

T ±
y (ky) = ±2λR

[
cos

3a0ky

2
+ 1

]
− 4t sin

3a0ky

2
. (14b)
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FIG. 9. Evolution of the Wannier charge center along the direc-
tion â1 as a function of kb̂2

is shown for different values of the
deformation parameter ξ in the QSH phase. Clearly, each WCC
undergoes a winding as the value of kb̂2

is evolved. The dotted line
traversing half the BZ is an indicator of the Z2 invariant pertaining
to the phase of the system. The number of intersections of the dotted
line with the WCC curve denotes the Z2 invariant of the phase. All
the calculations have been done for λso = 0.06t , λR = 0.05t , and
λv = 0.1t . The horizontal axis has been scaled in units of |�b2|. A
mesh grid of size 200 has been used to discretize the kb̂2

axis.

On studying the evolution of Tx and Ty over a complete path
in the BZ (� → M → �), we see that the winding number is
1 (that is the origin of the Tx-Ty plane is enclosed) only when
the deformation parameter ξ remains less than 2. The origin
lies outside the enclosed area as soon as the QSH phase is de-
stroyed and the second-order topological phase is reached, as
shown in Figs. 11(a)–11(c). This implies that the Berry phase
acquired by the ground state of either the positive or nega-
tive subspace of the mirror resolved Hamiltonian is another
alternate bulk property that correctly captures the QSH phase.
However, it is trivial in the second-order topological regime.
This has been shown in Fig. 11(d), where φm represents the
Berry phase acquired by the ground state of the effective 1D
mirror resolved Hamiltonian H+(ky) over a complete 1D path
in the BZ, and is given by

φm = −i
∫

�→M→�

dky〈uky |∇ky |uky〉. (15)

FIG. 10. Evolution of the Wannier charge center along â1 direc-
tion as a function of kb̂2

is shown for different values of ξ in the SOTI
phase. The two WCC undergo no winding here as a function of kb̂2

.
Furthermore, the number of intersections of the dotted line traversing
half the BZ with the two WCC is even. This indicates a trivial
Z2 invariant. All the calculations have been done for λso = 0.06t ,
λR = 0.05t , and λv = 0.1t . The horizontal axis has been scaled in
units of |�b2|.

|uky〉 corresponds to the periodic part of the ground-state
Bloch wave function |ψky〉 of the mirror resolved Hamiltonian
H+(ky). The negative mirror subspace given by H−(ky) shows
a similar behavior. Thus, it is implied that both the evolution
of the WCC and the 1D polarization corresponding to the
effective Hamiltonian H±(ky) are incapable of capturing any
essence of the second-order topological phase (that is the
regime beyond ξ > 2) whereas they accurately characterize
the first-order QSH phase.

To characterize the second-order topological states of the
Kane-Mele model beyond ξ > 2, we resort to spin resolved
bulk polarization. Keeping the value of λR = 0, so that the z
component of spin is conserved, we calculate bulk polariza-
tion for the two different spin sectors which is given by [20]

ps
α = r̄α = 〈

ws
n

∣∣rα

∣∣ws
n

〉 = i

S

∫
BZ

dd k
〈
us

nk

∣∣ ∂

∂krα

∣∣us
nk

〉
, (16)

where |ws
n〉 = |0, n〉s is the Wannier function corresponding

to the nth band and ps
α refers to the value of bulk polariza-

tion in the direction α for the spin component s (↑,↓). S
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FIG. 11. The winding (or the absence of it) of the origin in the
Tx-Ty plane of the positive mirror subspace is shown for several
values of the deformation parameter ξ . (a) For ξ = 1 it seen that the
origin lies within the area enclosed by the curve. (b) ξ = 2 clearly
represents a phase transition (critical or gap-closing) point. (c) For
ξ > 2, the origin is no longer wound. Due to the chiral symmetry
of the mirror resolved Hamiltonian H±, this winding directly corre-
sponds to the Berry phase acquired by the corresponding eigenstate
over a complete BZ. This winding number is plotted in (d) for a range
of the deformation parameter ξ . It is seen that the 1D polarization
or the Berry phase is incapable of characterizing the second-order
topological phase. The values of the parameters have been kept fixed
at λso = 0.06t , λR = 0.05t , and λv = 0.

corresponds to the total area of the honeycomb BZ and is
taken as 8π2 / 3

√
3a2

0. As shown in Fig. 12 we observe that
the bulk polarization ps

y has a quantized value of a0
2 for the

spin-↑ and a value of − a0
2 for the spin-↓ component for the

regime ξ > 2. For 1 < ξ < 2, that is, in the QSH phase ps
y

bears no quantized value. Furthermore, it is seen that the value
of ps

x is uniformly zero both above and below the critical
point ξ = 2. Thus, we establish that the second-order topo-
logical phase of the band-deformed Kane-Mele model is an
obstructed atomic insulator phase where the center of charge
in a unit cell is displaced from the actual lattice point in real
space and lies between two consecutive sites. Such systems,
where the center of charge is dislocated, exhibit the presence
of localized boundary states when the system termination cuts
through the charge center [56]. In our case, this phenomenon
occurs at the corners of the rhombic supercell. This displace-
ment of the center of charge thus results in fractional charge
accumulation and hence exhibition of second-order topology
in the form of localized corner modes.

A recent key experiment in the direction of our work has
been done by Bampoulis et al. [39], where it has been shown
that electric field induces a closing of the quantum spin Hall
gap in germanene, thus destroying the topological phase. This
is similar to the strain induced gap closure in the Kane-Mele
model that we show in our paper. Germanene could be an
ideal platform for the realization of our theoretical results,

FIG. 12. The bulk polarization ps
y has been plotted over a range

of ξ . For the spin-↑ eigenstate, the bulk polarization acquires a
quantized value of a0

2 beyond ξ > 2, that is, in the SOTI phase.
For the spin-↓ phase, the bulk polarization acquires a value of − a0

2 .
The quantized value of bulk polarization indicates the formation
of an obstructed atomic insulator where the center of charge does
not coincide with the real lattice points. This gives rise to the for-
mation of the SOTI phase. The values of the parameters are given
by λso = 0.06t , λR = 0, and λv → 0. A mesh grid of dimension
Nx × Ny = 200 × 200 has been used to discretize the BZ.

owing to the presence of a strong spin-orbit coupling, which
is quite weak in graphene. Furthermore, in the work by Real
et al. [57], the semi-Dirac dispersion was observed in a po-
lariton honeycomb lattice. Optical lattices and metamaterials,
which allow highly precise control over the system parame-
ters, could also be excellent platforms for an extensive study
on topology.

IV. CONCLUSION

We study a prototypical quantum spin Hall system that
shows two topological phases of different orders, brought
about by band deformation. The system under study is the
celebrated Kane-Mele model on a honeycomb lattice which
exhibits the presence of helical edge modes as a signature
of the quantum spin Hall phase. We smoothly deform the
band structure of the Kane-Mele model by varying one of
the nearest-neighbor hopping amplitudes (say t1) of the hon-
eycomb lattice while keeping the other two (say t) fixed. It
is observed that the system retains the QSH phase as long
as t1

t < 2. We plot the band structure of a zigzag-ribbon-
like configuration to explicitly show the helical edge states
which disappear after the system is deformed beyond t1

t = 2.
However, beyond this critical point is crossed, the system tran-
scends into a second-order topological phase hosting robust
second-order modes at the two corners of a suitably formed
rhombic supercell. We study bulk properties like evolution of
the hybrid WCC, mirror winding number, and spin resolved
bulk polarization to characterize and study the evolution of
the different topological phases. The evolution of the hybrid
WCC shows a stark contrast in the first- and second-order
topological phases. The nature of the evolution establishes
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that the Z2 invariant is nontrivial in the QSH phase, while
being trivial in the HOTI phase. The mirror winding number
shows a similar behavior where it is nontrivial only in the
QSH phase. Finally, to decipher the origin of the second-order
topological phase we calculate spin resolved bulk polarization
which depicts the center of charge in a unit cell. We observe
that for ξ > 2, the value of |ps

y| is quantized for both the
spin sectors at a0

2 , while it is not quantized for ξ < 2. ps
x, on

the other hand, is uniformly zero everywhere. This quantiza-
tion of the value of ps

y indicates a displacement of center of
charge with respect to the real-space lattice site and causes
the appearance of fractional charge excess at the corners of
the rhombic supercell. The bulk polarization ps

y for the spin-↑
sector is a0

2 while it is − a0
2 for the spin-↓ sector. Herein lies the

appearance of a second-order topological phase beyond ξ > 2
which is an obstructed atomic insulator.
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