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Phononic hybrid-order topology in semihydrogenated graphene
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In recent years, first-order and second-order topological phonons have been discovered in crystalline mate-
rials, which has aroused great interest. In the present work, through symmetry analysis and bulk polarization
calculation, we demonstrate that semihydrogenated graphene (i.e., graphone) is an ideal platform intrinsically
possessing hybrid-order (first-order and second-order) phonon topology. Based on the acoustic sum rule cor-
rection of the phonon tight-binding Hamiltonian, we show that the first-order optical and acoustic topological
phonon edge states as well as second-order topological phonon corner states can coexist in graphone. Interest-
ingly, the twofold degeneracy of topological acoustic phonon edge modes in graphene is eliminated due to spatial
inversion breaking in graphone. In addition, there are three topological corner states within the wide gap of the
phonon spectrum of the zigzag-edged nanodisk. Our results not only show hybrid-order topological phonon
properties in graphone but also pave the way for a more complete understanding of topological phonons in other
crystalline materials.

DOI: 10.1103/PhysRevB.109.115422

I. INTRODUCTION

The concept of topology has developed rapidly since the
concept was introduced to the field of condensed matter
physics. With the continuous advancement of topological
theory, the study of topological phenomena is not limited
to electronic systems [1–3]. The exploration of topological
states has progressively extended to include photonic systems
[4,5], as well as embracing phononic [6–13] and acoustic
systems [14–19]. The signatures of topological phonons have
been confirmed through experimental observation [20,21].
Crystalline materials contain various types of topological op-
tical phonons, such as Dirac phonons [22–26], Weyl phonons
[27–31], and nodal phonons [32–36]. Additionally, the topol-
ogy of the acoustic triply degenerate point has been discussed
[37,38], and topological acoustic phonon edge modes have
been predicted in graphene [39]. In contrast to the phononic
first-order topology, where the edge states appear at (d − n)-
dimensional boundaries (n = 1, d > 1) of the d-dimensional
system, two-dimensional crystalline materials with phononic
second-order topology [40–45] host topological states local-
ized at zero-dimensional corners (n = 2, d = 2).

In graphene, the twofold-degenerate topological acoustic
phonon edge modes become nondegenerate by isotope dop-
ing [39], and the phononic second-order topological states
in the z direction have been found through nitrogen dop-
ing [43]. Therefore, two-dimensional crystalline material
based on graphene can be a promising candidate with rich
topological phonon states. We intend to employ a more
feasible approach than carbon isotope doping to break the
space inversion symmetry of graphene, thereby exploring
topological acoustic phonon edge modes in crystalline ma-
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terials with intrinsic space inversion symmetry breaking.
Moreover, we desire to obtain phononic second-order topo-
logical states in the crystalline material without the constraint
that the lattice vibrations need to be decoupled in the z
direction. Semihydrogenated graphene (i.e., graphone) has
been reported in theoretical calculations and experimental
synthesis [46–50], respectively, with spatial inversion sym-
metry breaking. In nanoelectronics and spintronics, graphone
demonstrates significant applications [47], but deep explo-
ration of the phononic topology of graphone is rarely reported.

In this work, through symmetry analysis and bulk polariza-
tion calculation, we discover that graphone exhibits phononic
hybrid-order topology containing first- and second-order
topological phonon states. By constructing the phonon tight-
binding Hamiltonian for graphone nanoribbons, we reveal
that the phononic first-order topology consists of topologi-
cal optical and acoustic phonon edge states. The topological
acoustic phonon edge states are localized at the boundaries
of the zigzag graphone nanoribbons. Interestingly, unlike the
twofold-degenerate topological acoustic phonon modes in
graphene [39], the breaking of spatial inversion symmetry
in graphone, induced by semihydrogenation, eliminates the
degeneracy of the two topological acoustic phonon modes.
Topological optical phonon edge states are also found in
the graphone nanoribbons. In addition, we construct the
tight-binding Hamiltonian for graphone nanodisks and find
that the topological phonon corner and edge states exist in
the armchair-edged graphone nanodisk. The phonon corner
and edge states show robustness to defects in the nanodisk.
Notably, the wide gap in the range of 40–70 THz of the
zigzag-edged nanodisk phonon spectrum exclusively harbors
three corner states. The results mentioned above are based on
the phonon tight-binding Hamiltonian satisfying the acoustic
sum rule (ASR) [39]. Our further analysis indicates that the
ASR correction has a non-negligible impact on the topological
state within the gap. Our results show that there is phononic
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hybrid-order topology in graphone, making it an ideal plat-
form for studying topological phonons.

II. COMPUTATION DETAILS

The first-principles calculations were performed by us-
ing the Vienna Ab initio Simulation Package (VASP) [51,52]
based on density functional theory (DFT) [53,54], and a �-
centered Monkhorst-Pack [55] k-point grid was adopted for
sampling in Brillouin zone. We used the generalized gradi-
ent approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [56]. The convergence
criteria were set to 1×10−5 eV for energy and 1×10−3 eV/

Å for force. The plane-wave energy cutoff was set to 520 eV,
and a magnetic moment of about 1 µB per unhydrogenated
C atom. The force constants of bulk structures were calcu-
lated using the finite displacement method combined with the
PHONOPY software package [57]. A supercell of 7 × 7 × 1
was used to calculate bulk force constants. The parameters
from the bulk force constants were employed to construct
the tight-binding Hamiltonian. A vacuum layer of 20 Å was
applied along the z direction to eliminate spurious interaction
between neighboring layers in our calculations.

III. STRUCTURE AND PHONON SPECTRUM

The structure of graphone is shown in Fig. 1(a); the white
and gray balls represent H and C atoms, respectively. The
upper part of Fig. 1(a) shows a top view of the structure,
while the lower part shows a side view. The green rhombic
area represents the unit cell, containing two C atoms and one
H atom, where one of the C atoms adsorbs one H atom. The
optimized lattice constant for graphone is 2.55 Å. As half of
the C atoms have adsorbed H atoms, the x and y coordinates
of these C atoms and the corresponding H atoms are identical,
while the z coordinates differ. The C atoms in graphone form
the buckled structure due to their deviation from the perfectly
planar structure of graphene. In graphone, half of the C atoms
exhibit sp2 hybridization, while the remaining half display sp3

hybridization.
In terms of symmetry, graphone belongs to space group

P3m1 (no. 156), whereas the space group for pristine
graphene is P6/mmm (no. 191). The symmetry of graphone
is reduced from the C6 rotation symmetry present in graphene
to C3. The spatial inversion symmetry of graphone is intrin-
sically broken. The Wyckoff positions are a set of points in
the lattice that remain invariant under symmetry operations
of the lattice space group. A Wyckoff position is typically
denoted by a combination of a number and a lowercase letter.
The number represents the multiplicity of each Wyckoff po-
sition, indicating how many atoms each Wyckoff position can
accommodate. The letter denotes the Wyckoff letter, typically
starting from the letter “a” and arranged in order of increasing
multiplicity in alphabetical order. In Fig. 1(a) we mark three
Wyckoff positions (1a, 1b, 1c) using various symbols, where
the 1a, 1b, and 1c are represented by a red circle, a purple
hexagonal star, and a yellow triangle, respectively.

The global band gap means that there are no phonon states
in the entire Brillouin zone (BZ) within the frequency range
corresponding to the band gap. However, the local band gap
only does not exist phonon states within the band-gap fre-

FIG. 1. The lattice structure of graphone and corresponding
phonon spectra under strains. (a) Structure of graphone. The top view
is presented in the upper part, while the side view is in the lower
part. White and gray balls represent H and C atoms, respectively.
The green rhombus represents the unit cell. Three Wyckoff positions
are marked by a red circle (1a), a purple hexagram star (1b), and
a yellow triangle (1c), respectively. (b) The phonon spectrum of
graphone under 1% strain. The little group representation at � and
K in the Brillouin zone (BZ) is denoted by Γn and Kn. In the inset
of (b), the regular hexagon represents the first BZ, where the high-
symmetry points and basis vectors are marked by pink circles and
red arrows, respectively. The light-blue area and the light-purple area
represent gap 1 and gap 2, respectively. (c) Gap 1 of the graphone
phonon spectrum under tensile strains of 2%–5%. The light-blue area
indicates that gap 1 is local, while the light-red area signifies gap 1 is
global. (d) Same as (b) but without strain.

quency range at some k points in the BZ, and there may be
phonon states at other k points. In Fig. 1(d) the phonon spec-
trum of graphone features band gaps that can be categorized
into two types based on whether they are global band gaps. We
focus on the topology of the global band gaps. The graphone
phonon spectrum exhibits two global band gaps, each referred
to as gap 1 and gap 2. Gap 1 spans a frequency range of 35.5–
36.4 THz, while gap 2 encompasses a frequency range of
40.9–69.8 THz. Constrained by the experimental conditions
of material synthesis, the strain may be present in synthesized
two-dimensional materials. Figure 1(b) illustrates the phonon
spectrum of graphone under 1% tensile strain, and Fig. 1(c)
showcases gap 1 under applied tensile strains of 2%–5%. It
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is crucial to note that the strains we apply do not transform
the symmetry of the structures. In Figs. 1(b)–1(d), both the
light-red and light-blue areas represent gap 1. The light-red
shading signifies the presence of a global band gap, while the
light-blue area indicates a local band gap. Interestingly, under
strains ranging from 1% to 4%, gap 1 is not global. In Sec. IV
we demonstrate that gap 1 is topologically trivial while the
gap 2 is topologically nontrivial. To better concentrate on the
topologically protected gap, we shift our focus to the graphone
under 1% tensile strain and gap 2.

In Fig. 1(b), revealing gap 2 in the phonon spectrum be-
tween 40 and 70 THz, the phonon spectrum of graphone is
divided into two parts by gap 2. In the long-wavelength limit,
the acoustic phonon modes of two-dimensional materials can
be categorized into LA (longitudinal acoustic) mode, TA
(transverse acoustic) mode, and ZA (out-of-plane) mode. The
LA, TA, and ZA modes of graphone are labeled in Fig. 1(b).
The Γn (n = 1, 3) and Kn (n = 1, 2, 3) in Fig. 1(b) represent
little group representations at � and K points, respectively.
The blue, green, and orange dots represent the three represen-
tations K1, K2, and K3, respectively. In the inset of Fig. 1(b),
the green hexagonal area represents the first BZ of graphone,
the pink dots denote high-symmetry points within the BZ,
and the red arrows �b1 and �b2 indicate the basis vectors in
momentum space.

IV. TOPOLOGICAL PROPERTIES

The diverse degrees of freedom within the electronic
system, including charge, spin, and valley, facilitate the ma-
nipulation of electrons by applying an external field [58,59].
Phonons, as a kind of elementary excitation, are the main
thermal carriers, extensively participating in various physical
processes and interacting with other carriers [60–62], playing
a critical role in thermoelectrics [63]. In contrast to electronic
systems, phononic transport is not constrained by the Fermi
level, and theoretically, all phononic modes contribute to the
thermal transport processes. Nevertheless, in the manipulation
degrees of freedom, phonons have fewer degrees of freedom
than electrons. Consequently, manipulating phonons is not
as straightforward as manipulating electrons. Although many
efforts have been made in previous works on phonon transport
[64–67], the manipulation of phonons remains challenging in
most scenarios. The limited degrees of freedom in the phonon
pose challenges in the design and application of thermal
devices. Topological phonons as a novel phenomenon may
become a new way to manipulate phonons [68].

We use group theory and topological quantum chemistry
[69–73] methods to analyze the phononic second-order topol-
ogy. In analogy with electronic systems, phonon bands can
be categorized by referencing the concept of band gaps in
semiconductors. We designate phonon bands below the gap
as “occupied bands” and those above the gap as “unoccu-
pied bands.” It is noteworthy that the terms “occupied” and
“unoccupied” in this context do not describe the actual distri-
bution of phonons. The first row of Table I presents the little
group representations marked in Fig. 1(b), with the dimen-
sions indicated in the parentheses. The second row lists the
expectation values of corresponding representations under the
C3 rotational symmetry operator.

TABLE I. The expectation values of the C3 rotational symmetry
operator for the representations Γn (n = 1, 3) and Kn (n = 1, 2, 3).

Rep Γ1(1) Γ3(2) K1(1) K2(1) K3(1)

C3 1 −1 1 ei2π/3 e−i2π/3

The bulk polarization p is a topological invariant that repre-
sents the displacement of the average phonon Wannier states
from the center of the unit cell [15]. The bulk polarization
can characterize the second-order topology [74], and the bulk
polarization can be determined by extracting the expectation
values of the symmetry operations at high-symmetry points
within the Brillouin zone [75]. Under C3 rotational symmetry,
pi = p j , where pi and p j represent the polarizations along
the directions of �bi and �b j , respectively. The polarization can
be determined using the expectation values corresponding to
symmetry operators at high-symmetry points [75,76]. The
bulk polarization of the nth band can be obtained from the
following formula [15]:

(e)−iπ (pi ) =
∏

n∈occ

θn(K)

θn(�)
, (1)

where θn is the expectation value corresponding to the nth
band at the high-symmetry point (K or �) under the C3 ro-
tational symmetry operator. According to the values listed
in Table I, we can obtain the bulk polarization. In Fig. 1(d)
the bulk polarization values (p1, p2) for the occupied bands
below gaps 1 and 2 are specifically (0,0) and (−2/3, −2/3),
respectively. The zero bulk polarization suggests that gap 1 is
topologically trivial. In contrast, for gap 2 the fractional bulk
polarization indicates that gap 2 is nontrivial. Therefore, topo-
logical phonon edge states may appear at the boundaries. In
Sec. V, phononic topological edge states indeed emerge in the
one-dimensional graphone nanoribbons along the zigzag and
armchair boundaries within the frequency range of gap 2. Fur-
thermore, we have identified topological phonon corner states
and edge states in the phonon spectrum of zero-dimensional
nanodisks. Gap 1 is not topologically protected, which is not
global under 1%–4% biaxial tensile strains in Figs. 1(b) and
1(c). To explore the response of gap 1 to strain, biaxial tensile
strains are applied to graphone, and gap 1 under –2%–5%
strains is presented in Fig. S1 of the Supplemental Material
[77]. In the subsequent discussion we delve deeper into the
reasons for the fractional bulk polarization through a symme-
try analysis of graphone.

In the unit cell of graphone, the Wyckoff position 1b
(0.333, 0.666, z) is filled by a C atom. Simultaneously, the
Wyckoff position 1c (0.666, 0.333, z) is occupied by another
C atom and one H atom. An elementary band representation
(EBR) is a term used to describe a band representation that
cannot be expressed as the sum of other band representations.
A band representation can be expressed as a sum of EBR.
The EBR can be expressed as R@w, where R represents the
irreducible representation of the site symmetry group Gw, and
w is the corresponding Wyckoff position. We categorize bands
with close frequencies as a bandset, where bands within the
same bandset do not intersect with those from other band-
sets. The phonon spectrum in Fig. 1(b) can be divided into
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TABLE II. The graphone phonon bands representations at high-symmetry points and the corresponding site representations with the
Wyckoff positions. The first row lists Wyckoff positions with site symmetries inside the brackets. The second row gives the irreducible
representations of the site-symmetry groups (IRSSG). The third and fourth are the little group representations at � and K points corresponding
to the induced EBR, the dimensions of representations are in the brackets. The fifth row shows the notation of each bandset, the bands within
a bandset do not intersect with bands outside the bandset.

Wyckoff 1b(3m) 1b(3m) 1b(3m) 1b(3m) 1c(3m) 1c(3m)

IRSSG A1 E A1 E E A1

�(0, 0, 0) Γ1(1) Γ3(2) Γ1(1) Γ3(2) Γ3(2) Γ1(1)
K(1/3, 1/3, 0) K2(1) K1(1) ⊕ K3(1) K2(1) K1(1) ⊕ K3(1) K1(1) ⊕ K2(1) K3(1)

Bandset S1 S2 S3 S4 S5

five bandsets, denoted as S1 to S5, in ascending order of
frequency. Bandset S1 comprises only three acoustic phonon
modes, while bandset S4 is composed of the second-highest
and third-highest bands. Bandset S5 encompasses only the
highest band.

The mechanical band representation [78] of bandsets can
be expressed as the induced representations in corresponding
local site representation. The mechanical band representation
of S1 can be expressed as the sum of the induced represen-
tation of A1 and E at 1b, i.e., A1@1b⊕E@1b. The bandsets
S2–S5 can be directly expressed as the induced representa-
tions from corresponding site representations A1, E , E , and
A1, respectively. The band representations induced from the ir-
reducible representations of the Wyckoff positions’ symmetry
group are listed in Table II. The mechanical band representa-
tion of bandsets S1 to S5 can be denoted as A1@1b⊕E@1b,
A1@1b, E@1b, E@1c, A1@1c, respectively. The mechanical
band representation of S4 can be denoted as E@1c, where
the Wyckoff position 1c has a multiplicity of only 1, which
means it can accommodate only one atom. However, in gra-
phone there is more than one atom at the Wyckoff position
1c in Fig. 1(a). The mismatch between the Wannier centers
of phonons and the atomic positions in the bandset S4 (the
bulk polarization of S4 is −2/3) are what causes the non-
trivial gap 2 between bandsets S4 and S5. Correspondingly,
the mechanical band representation of bandset S3 is denoted
as E@1b; there is only one unhydrogenated C atom at the
Wyckoff position 1b in Fig. 1(a). Unlike the mismatch in S4,
there is no such mismatch in S3 (the bulk polarization of S3 is
zero), making gap 1 between bandsets S3 and S4 trivial.

The preceding analysis primarily focuses on the topologi-
cal optical phonon. Nevertheless, within the phonon transport,
the acoustic phonon plays a vital role as well as the op-
tical phonon. Hence, we also seek the exploration of the
topological acoustic phonon. In the phononic system, fre-
quencies of three acoustic phonon modes approach zero in
the long-wavelength limit, and an acoustic triply degenerate
point emerges at the � point. The topology of the acoustic
triply degenerate point in graphene has been discussed in
Ref. [38], and the corresponding topological acoustic phonon
edge modes have been found in the graphene zigzag nanorib-
bon. Breaking the inversion symmetry of graphene can split
the degenerate two acoustic phonon modes by isotope doping
[39]. Therefore, while semihydrogenation of graphene will
also break the inversion symmetry, the topological acoustic
phonon edge modes will not vanish.

V. OPTICAL AND ACOUSTIC PHONON EDGE
STATES IN NANORIBBONS

In the top views of the zigzag and armchair nanoribbons
in Figs. 2(a) and 2(b), the atoms in the middle part are not
displayed. The periodic boundary condition and the open
boundary condition are applied in the x and y direction, re-
spectively. We employ four distinct colors to delineate the
boundaries of zigzag and armchair nanoribbons. The upper
and lower boundaries of the armchair nanoribbon are denoted
by blue and orange, respectively, while the upper and lower
boundaries of the zigzag nanoribbon are represented by green
and pink, respectively. In Figs. 2(c) and 2(d), we additionally
color-code the topological phonon edge states in the phonon
spectrum; the edge states of each color are distributed at the
boundaries of the same color. We also calculate the phonon
spectrum of different widths of nanoribbons in the Supple-
mental Material [77].

In Fig. 2(c) we depict the corresponding phonon spec-
trum for the structure presented in Fig. 2(a). The blue and
orange dashed lines in the plot signify the two topological
optical phonon edge modes, distinctly visible in the inset of
Fig. 2(c) and positioned away from the bulk states. The two
topological phonon edge modes are respectively distributed
along the upper and lower boundaries of the armchair nanorib-
bon. It is noteworthy that the mirror symmetry along the y
direction of the armchair nanoribbon in Fig. 2(a) is broken,
meaning the upper and lower boundaries are distinct. If the
mirror symmetry of the armchair nanoribbon is preserved,
the two topological optical phonon modes will completely
degenerate, and both modes will be present on both upper
and lower boundaries. The topological optical phonon edge
mode in the graphone zigzag nanoribbon is marked by a
pink line in Fig. 2(d), and the optical phonon edge states
are distributed at the lower boundary of the graphone zigzag
nanoribbon.

The multiplicity of the Wyckoff position 1c is 1, but there
is one C and one H atom occupying the same Wyckoff
position 1c in graphone. When multiple atoms occupy the
Wyckoff position 1c at the boundaries of nanoribbons, the
mismatch between Wannier centers of phonons and atomic
positions occurs. This mismatch leads to the occurrence of
the topological phonon edge state. Consequently, the exposure
of the Wyckoff positions 1c at the boundary of the graphone
open boundary system gives rise to the appearance of the
topological optical phonon edge states. In Figs. 2(c) and
2(d), the phonon spectrum of armchair nanoribbons has two
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FIG. 2. Two types of graphone nanoribbons and corresponding
phonon spectra. (a), (b) Top views of the graphone armchair and
zigzag nanoribbons. The blue and orange areas respectively indicate
the upper and lower boundaries of the armchair nanoribbon, while
the green and pink areas represent the upper and lower boundaries
of the zigzag nanoribbon, respectively. (c), (d) The phonon spectra
respectively correspond to the structures in (a) and (b), with col-
ored lines representing topological edge states. (c) The blue and
orange dashed lines indicate topological optical phonon edge states
localized at the upper and lower boundaries of the armchair nanorib-
bon, respectively. (d) The pink line in a high-frequency interval
represents topological optical phonon edge states, localized at the
lower boundary of the zigzag nanoribbon. In the local band gap in a
low-frequency interval marked by the dark-magenta dashed-line box,
the pink and green lines represent topological acoustic phonon edge
states localized at the lower and upper boundaries, respectively. The
high-symmetry points in reciprocal space as � (0, 0, 0) and X (0.5,
0, 0).

topological optical phonon edge modes, while the phonon
spectrum of zigzag nanoribbons has only one topological op-
tical phonon mode. The corresponding enlarged view of the
topological optical phonon edge states in the zigzag nanorib-
bon is shown in the inset of Fig. 2(d). The discrepancy in
the number of topological optical phonon edge modes in the

phonon spectra of zigzag and armchair nanoribbons can be
attributed to the distinct occupation of atoms at the Wyckoff
positions 1c along corresponding boundaries of nanoribbons.
In the zigzag nanoribbon shown in Fig. 2(b), the topolog-
ical optical phonon edge states are only distributed at the
lower boundary, as the Wyckoff positions 1c are exposed
solely at the lower outermost boundary; the Wyckoff positions
1c coexist at the upper and lower outermost boundaries of
the armchair nanoribbon in Fig. 2(a). Therefore, the number
of topological optical phonon edge modes in the armchair
nanoribbon is twice that of the zigzag nanoribbon.

The topological acoustic phonon edge modes are dis-
tributed at the boundaries of the graphone zigzag nanoribbon.
In Figs. 2(b) and 2(d), we illustrate the top view and phonon
spectrum of the graphone zigzag nanoribbon. In the phonon
spectrum of the graphone zigzag nanoribbon, two topological
acoustic phonon edge modes are indeed observed in the local
band gap ranging from 11 to 16 THz, framed by the dark-
magenta dashed-line box in Fig. 2(d), marked by pink and
green lines in Fig. 2(d). The pink and green lines represent
the states localized at the lower and upper boundaries of the
graphone zigzag nanoribbon, respectively.

In graphene, there are the twofold-degenerate topological
acoustic phonon modes within the local band gap of the zigzag
nanoribbon spectrum, and energies of topological acoustic
phonon modes undergo a slight split following isotope doping
[39]. In graphone, semihydrogenation results in the hydro-
genation of one of the boundaries of the graphone zigzag
nanoribbon. The two topological acoustic phonon edge modes
are localized at the upper and lower boundaries, respectively,
as shown in Fig. 2(b). Whether isotope doping or semihy-
drogenation is applied to graphene, both cases induce the
breaking of spatial inversion symmetry, consequently elimi-
nating the twofold degeneracy of topological acoustic phonon
edge modes. The boundary at which the outermost carbon
atoms in the zigzag nanoribbon is hydrogenated is called
the hydrogenation boundary. In Fig. 2(b) the lower bound-
ary of the zigzag nanoribbon is the hydrogenated boundary.
However, the hydrogenated boundary of the graphone zigzag
nanoribbon exhibits notable differences from the boundaries
of the isotope-doped graphene zigzag nanoribbon. Therefore,
in comparison to the situation of isotope doping in graphene
[39], semihydrogenation induces significant alterations in the
group velocity and frequency of the topological acoustic
phonon edge mode at the hydrogenated boundary. The two
topological acoustic phonon edge modes in the graphone
zigzag nanoribbon correspond to the in-plane modes, while
the out-of-plane mode is topologically trivial.

The local densities of states are shown in Fig. 3 for both
graphone armchair and zigzag nanoribbons in Figs. 2(a) and
2(b), respectively. Figure 3 can be divided into upper and
lower parts by a dashed blue line in the middle. The densities
of states (DOS) are projected onto the armchair nanoribbon
in the upper part, Arm-Nan represents the graphone armchair
nanoribbon shown in Fig. 2(a), and the lower part contains
the projected DOS of the zigzag nanoribbon. Correspond-
ingly, Zig-Nan stands for the graphone zigzag nanoribbon
in Fig. 2(b). Figure 3 can also be divided into three regions
from left to right according to the different background colors.
The blue part on the left represents the projection of the
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FIG. 3. Local density of states of the armchair and zigzag
nanoribbons. Arm-Nan and Zig-Nan represent the graphone arm-
chair and zigzag nanoribbons, respectively. (a)–(c) The density of
states (DOS) projected onto the graphone armchair nanoribbon’s
bulk (purple), lower boundary (orange), and upper boundary (blue),
respectively, and in (b)–(c) DOS are only plotted corresponding to
the frequency range of the dashed box in (a). (d)–(f) The density of
states projected onto the graphone zigzag nanoribbon’s bulk (purple),
lower boundary (pink), and upper boundary (green), respectively, and
in (e)–(f) DOS are only plotted corresponding to the frequency range
of the dashed boxes in (d).

DOS at bulk, and the light-yellow area on the right represents
the projection of the DOS at the boundary. In Fig. 3(a) a
high-frequency interval of DOS is marked with a red-dashed-
line box, while the two red-dashed-line boxes in Fig. 3(d)
mark the high-frequency interval and low-frequency interval
of DOS, respectively. In Figs. 3(a)–3(c), the DOS is projected
onto the graphone armchair nanoribbon’s bulk (purple), lower
boundary (orange), and upper boundary (blue), respectively.
The DOS is projected onto the graphone zigzag nanoribbon’s
bulk (purple), lower boundary (pink), and upper boundary
(green), respectively, in Figs. 3(d)–3(f). In Figs. 3(b)–3(c)
and 3(e)–3(f) we do not plot the full DOS but only DOS in
the frequency range corresponding to the red-dashed-line box
in Figs. 3(a) and 3(b), respectively, because we are mainly
concerned with topological phonon edge states in frequency
ranges of dashed-line boxes.

By comparing the DOS in Figs. 3(b) and 3(c) with the
red-dashed-line box in Fig. 3(a), it can be noted that there
are indeed the topological phonon edge states distributed in
the high-frequency interval within the global band gap of the
graphone armchair nanoribbon. The topological phonon edge
states of the armchair nanoribbon are localized at both the

FIG. 4. Graphone perfect nanodisk and corresponding phonon
spectrum, along with the distribution of the topological states in real
space. (a) Top view of the graphone armchair-edged perfect nanodisk
(PND). The white and gray circles represent the H and C atoms,
respectively. The light-blue circular region on the right is an enlarged
view of the top of the triangular nanodisk. (b) Phonon spectrum
corresponding to the PND in (a). The inset in (b) includes part of
the states within the small green box; gray, purple, and red dots
represent bulk states, corner states, and edge states, respectively. (c),
(d) Spatial distribution of the topological states in the PND, purple
and red circles denote corner and edge states, respectively.

upper and lower boundaries. Correspondingly, in the compar-
ison of DOS in Figs. 3(e) and 3(f) with the red dashed box in
Fig. 3(d), it is evident that the topological phonon edge states
in the high-frequency and low-frequency intervals do exist at
the lower boundary of graphone zigzag nanoribbon.

VI. PHONON TOPOLOGICAL STATES IN NANODISK

Similar to the higher-order topology of electronic systems
[79–83], there is a higher-order bulk-boundary correspon-
dence in two-dimensional crystalline materials with phononic
second-order topology [40–45], i.e., there are topological
phonon corner states at zero-dimensional corners. The non-
trivial bulk polarization of gap 2 indicates the existence
of phononic second-order topology in graphone. To ex-
plore phononic high-order topology, we construct triangular
graphone nanodisks due to the C3 rotational symmetry of
graphone, focusing on the topology within the nanodisks. In
Fig. 4(a), the top view of the graphone triangular armchair-
edged nanodisk, gray and white circles represent C atoms and
H atoms, respectively, where the light-blue region on the right
is a magnified view corresponding to the dashed circular area
at the top of the triangular nanodisk structure.

We refer to the triangular nanodisk in Fig. 4(a) without
defects as the perfect nanodisk (PND). The PND consists of
2925 atoms, with a side length of 10.8 Å. To focus on non-
trivial phonon corner states, we present the nanodisk phonon

115422-6



PHONONIC HYBRID-ORDER TOPOLOGY IN … PHYSICAL REVIEW B 109, 115422 (2024)

FIG. 5. Structure and phonon spectrum of the graphone defective
nanodisk, along with the spatial distribution of topological states.
(a) The top view of the defective nanodisk (DND). The three large
circles inside the nanodisk correspond to the enlarged views that
show the regions marked by the three small dashed circles, and
the same color represents the corresponding relationship for each
pair of circles. (b) Phonon spectrum corresponding to the DND in
(a). The inset includes part states within the small green box in the
gap, with red, purple, and gray dots representing edge states, corner
states, and bulk states, respectively. (c), (d) Spatial distribution of the
topological states within the DND, purple and red circles represent
corner and edge states, respectively.

spectrum under 1% tensile strain in Fig. 4(b). Detailed phonon
spectra of the nanodisk under other strain conditions can be
found in the Supplemental Material [77]. Under the no-strain
condition, a band gap emerges in the phonon spectrum of the
nanodisk corresponding to the frequency range of gap 1 in the
phonon spectrum in Fig. 1(c), encompassing phonon corner
and edge states. The same situation occurs at 1% compressive
strain. However, under 2% compressive strain and 1%–5%
tensile strain conditions, in the nanodisk phonon spectrum,
corresponding to the frequency range of gap 1 in the phonon
spectrum of bulk graphone, either there is no gap or the gap is
too small to accommodate any states. In the –2% to 5% strain
conditions, there is a gap ranging from approximately 40 to
70 THz in the phonon spectrum of the nanodisk corresponding
to the frequency range of gap 2 in the phonon spectrum of
the bulk graphone, and the topological phonon corner or edge
states are consistently present within the gap. Consequently,
in the following content we discuss only the gap containing
topological states in the phonon spectrum of the nanodisk.

In Figs. 4(b), 5(b), and 6(b) we adjusted the vertical
axis scale to highlight the topologically nontrivial states. In
Fig. 4(b) the small green box contains the topological states
within the gap and several bulk states. The inset in Fig. 4(b)
is an enlarged view of part of the area in the small green
box in the gap, containing part bulk states and topological
states, where the purple, red, and gray dots represent the
corner, edge, and bulk states, respectively. The topologically

FIG. 6. The graphone zigzag-edged nanodisk and correspond-
ing phonon spectrum. (a) The structure of the graphone triangular
zigzag-edged nanodisk. The light-blue circular region on the left is
the enlarged view of the top of the triangular nanodisk. The inset
shows the spatial distribution of corner states denoted by purple
circles in the nanodisk. (b) The phonon spectrum corresponds to
the graphone nanodisk in (a). The inset represents an enlarged view
of the small green box within the gap, with gray and purple dots
representing bulk states and topological corner states, respectively.

nontrivial states of the PND are distributed in the gap of the
phonon spectrum, spanning a frequency range of approxi-
mately 69.05–69.66 THz. Figure 4(c) illustrates the spatial
distribution of the three topological phonon corner states
represented by purple circles within the PND. Additionally,
Fig. 4(d) presents the spatial distribution of the topological
edge states, represented by the red circles. The mismatch
between Wannier centers of phonons and atomic positions
in graphone leads to the occurrence of phonon corner and
edge states in the nanodisk, all of which are topologically
protected.

Despite the persistent existence of the topological states
under different strains in Fig. S2 of the Supplemental Material
[77], to further validate the robustness of the topological states
against defects, we construct the defective nanodisk (DND)
by introducing random defects at the boundaries of the PND,
the number of defects accounting for 10% of atoms at the
boundaries. Figure 5(a) displays the top view of the DND. To
clearly depict the corners of the DND, we employ three pairs
of circles, each pair consisting of a large one and a small one.
The same color represents the corresponding relationship for
each pair of circles. The three large circles are the magnified
views of the regions marked by the three small dashed circles.

Figure 5(b) illustrates the phonon spectrum of the DND;
the frequency distribution of the topological phonon edge and
corner states are between 65.80 and 69.50 THz, 69.90 THz
and 70.05 THz, respectively. Following the introduction of
defects, the frequencies of the topological states within the
gap of the DND phonon spectrum vary markedly compared
with the topological states of the PND in Fig. 4(b). The intro-
duction of defects at the PND boundaries will cause both the
disappearance of a portion of atoms at Wyckoff positions 1c
at the PND boundaries and the appearance of new boundaries
that contain atoms located at Wyckoff 1c positions. Subse-
quent to the introduction of defects, the disappearance of a
part of the original topological edge states in the PND and the
emergence of new edge states in the DND lead to significant
changes in the frequency range of edge states in the gap. In
the DND, topological phonon corner and edge states persist
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within the gap and do not disappear. The inset in Fig. 5(b)
provides a more detailed view of part of the area in the small
green box. The average corner states and edge states of the
DND are depicted in Figs. 5(c) and 5(d). Hence, when defects
are introduced at the boundaries of the PND, the topological
states demonstrate robustness and the capacity to withstand
the effects of defects.

The discussion above regarding phononic second-order
topology is established on the armchair-edged nanodisk.
Within the gap of the phonon spectrum of the armchair-edged
nanodisk, there are not only phonon corner states but also edge
states. However, the coexistence of topological phonon corner
and edge states in the same gap may hinder the application of
corner states. In order to investigate the case that the gap in
the phonon spectrum of the triangular nanodisk contains only
three corner states, we construct the zigzag-edged nanodisk.
The structure of the graphone triangular zigzag-edged nan-
odisk in Fig. 6(a) and the light-blue circle is the enlargement
of the top of the structure, and the inset is the spatial distri-
bution of topological corner states that are denoted by purple
circles. The frequencies of the three topological corner states
lie between the gap in the zigzag-edged nanodisk phonon
spectrum in Fig. 6(b). In this configuration, the outermost
boundaries consist of C atoms located at Wyckoff positions
1b, while only the three vertices of the triangular nanodisk
contain H and C atoms situated at Wyckoff positions 1c. Con-
sequently, in the inset of Fig. 6(b), the triangular zigzag-edged
nanodisk manifests only three topological phonon corner
states within the gap, with no presence of topological edge
states. Compared to the gap in the phonon spectrum of the
armchair-edged nanodisk that contains many edge and cor-
ner states in Fig. 4(b), the gap in the phonon spectrum of
the zigzag-edged nanodisk is concise, containing only three
topological corner states.

In the construction of the tight-binding Hamiltonian here,
we take into account the correction of Hamiltonian by the
acoustic sum rule (ASR) [39], ensuring that the frequencies of
acoustic phonon modes approach zero in the long-wavelength
limit. It is worth underscoring that the correction of ASR
not only significantly affects the acoustic phonon modes of
the open boundary system but also has a considerable ef-
fect on the topological optical phonon modes. We construct
tight-binding Hamiltonians of the graphone nanoribbon and
nanodisk, which do not satisfy ASR, and the corresponding
phonon spectra are shown in Fig. S3 of the Supplemental
Material [77]. For the graphone nanoribbons, ignoring the
correction of ASR would lead to the disappearance of topo-
logical optical and acoustic phonon edge states marked within
the local band gap or global band gap with colored lines in
Figs. 2(c) and 2(d). Compared with the case that the Hamilto-
nian satisfies ASR, the topological edge states or corner states
within the gap of the phonon spectrum of the nanodisk disap-
pear when the correction of ASR is neglected. Hence, when
constructing the phonon Hamiltonian of an open boundary
system, the correction of boundary atoms by ASR cannot be
overlooked. It is worth noting that the system we studied is a
freestanding graphone. In this case the phonon Hamiltonian
of the system satisfies ASR, where dangling bonds at the
boundaries have no interaction with the external environment.
If dangling bonds interact with the outside, such as the sample

on the substrate, the interaction between dangling bonds and
the substrate is worthy of further study and discussion.

VII. CONCLUSION

By symmetry analysis and bulk polarization calculation,
we predict that semihydrogenated graphene (i.e., graphone)
hosts phononic hybrid-order topology containing first-order
topological phonon edge states and second-order topological
phonon corner states. The graphone phonon spectrum under
no strain exhibits two global band gaps, gaps 1 and 2. We find
that the bulk polarization for gap 1 is zero, while the bulk po-
larization for gap 2 is –2/3. A zero value for bulk polarization
signifies gap 1 is trivial. The fractional bulk polarization indi-
cates that gap 2 is topologically nontrivial. By constructing the
phonon tight-binding Hamiltonians and diagonalizing them,
we obtain the corresponding phonon spectra for nanoribbons
and nanodisks. For the one-dimensional graphone nanorib-
bons, the topological optical phonon edge states are localized
at the boundaries of zigzag and armchair nanoribbons. The
topological acoustic phonon edge states are distributed at the
boundaries of the zigzag nanoribbon. The two topological
acoustic phonon edge modes are situated in a local band gap of
the zigzag nanoribbon phonon spectrum. Compared with the
twofold-degenerate topological acoustic phonon edge modes
in graphene, the two topological acoustic edge modes of
graphone are nondegenerate, since semihydrogenation breaks
the spatial inversion symmetry. For the zero-dimensional gra-
phone nanodisks, topological phonon corner states and edge
states emerge in the armchair-edged nanodisk, and we find
that the gap ranging from 40 to 70 THz in the zigzag-edged
nanodisk phonon spectrum only contains three topological
phonon corner states. Through symmetry analysis we discover
that the topological optical phonon states of nanoribbons
and topological corner states of nanodisk arise due to the
mismatch between the phonon Wannier centers and atomic
positions at Wyckoff positions 1c. Owing to topological pro-
tection, the phonon corner and edge states exhibit robustness
against defects in the nanodisk. The above results are based on
the acoustic sum rule correction of the phonon Hamiltonian.
Our further exploration shows that the correction of ASR is
indispensable for the phononic system. The correction of ASR
not only plays a crucial role for acoustic phonons, ensuring
that frequencies of acoustic phonons approach zero in the
long-wave limit, but also for topological optical phonons.
When the correction of the phonon Hamiltonian by ASR
is ignored, the topological states distributed in the gap of
the graphone open boundary system phonon spectrum may
vanish. The coexistence of the first-order topology of both op-
tical and acoustic phonons, along with phononic second-order
topology in graphone, illustrates that graphone is an ideal
candidate crystalline material for studying phononic topology.
Our results contribute to enhancing our comprehension of the
phononic hybrid-order topology in the crystalline material.
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