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Evolution of the confined states in graphene nanobubbles
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In this study, we use a full tight-binding model to explore the behavior of graphene nanobubbles between
the interface of twisted bilayer graphene (TBG-1.05◦), uncovering the simultaneous existence of confined states
and pseudo-Landau level (pLL) states under minor strain conditions. We find that the energy separation of the
confined states aligns with a linear N rule, while pLL states follow a typical

√
N rule. As the height of the bubble

and the local strain escalate, the low-energy segment of the local density of states transforms from confined states
to pLL states. Our findings establish that the effect of a perpendicular magnetic field can effectively distinguish
between confined and pLLs. Our results offer a crucial stepping stone towards the strain-engineering of electronic
states in graphene-based nanostructures.
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I. INTRODUCTION

Graphene, a single-layered structure of carbon atoms, has
sparked significant interest across diverse scientific fields,
from physics to biology, thanks to its unique electronic and
structural properties [1]. These properties underpin a range of
intriguing phenomena in condensed matter physics. Notably,
the application of a perpendicular magnetic field to a graphene
device results in the emergence of Landau levels (LLs) and the
quantum Hall effect (QHE), with a formation of topologically
protected zero-energy Landau level characteristic for mass-
less Dirac fermions [1–3]. This observation has initiated the
graphene boom. Among the latest exciting discoveries, recent
experiments have unveiled superconductivity and correlated
states in twisted bilayer graphene samples associated with the
flat band formation [4–6].

The importance of graphene in the scientific community
is substantial, paving the way for new research avenues such
as straintronics, spintronics, valleytronics, and twistronics.
The strain has emerged as a potent tool to manipulate the
electronic properties of two-dimensional (2D) materials, lead-
ing not only to innovative technological devices but also to
exotic fundamental phenomena. For instance, strain-induced
pseudomagnetic fields (PMFs) have been observed to generate
LL-like peaks in strained graphene samples [1,7,8].

In standard experimental samples, graphene nanobubbles
(GNBs) naturally occur due to a self-cleansing process that
traps hydrocarbons between the substrate’s top layer and the
2D material [9–12]. These bubbles, subject to high levels
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of strain, can induce PMFs reaching up to 300 T [8]. Ad-
vances in experimental techniques, such as functional atomic
force microscopy (AFM) and scanning tunneling microscopy
(STM), now allow for the artificial control of GNB shape and
size [13,14]. Moreover, recent studies have highlighted that
bubbles created from van der Waals materials can function
as tunable photoluminescence emitters when supported by
different substrates [12].

Investigating the electronic structure of graphene nanobub-
bles is crucial for understanding strain-induced PMFs and
their potential applications in topological materials, spintron-
ics, photonics, and superconductivity. As such, a fundamental
exploration of these nanostructures is vital for enhancing our
understanding of future electronic devices and the behavior of
samples under extremely high magnetic fields.

In this paper, we delve into a theoretical examination of
the electronic properties of GNBs in twisted bilayer graphene
(TBG), utilizing a full tight-binding (TB) model. By scrutiniz-
ing three distinct bubble shapes encountered in experimental
samples [9,11,15–19], we reveal that the bubble’s strain pro-
file gives rise to two types of states: strain-induced confined
states and pseudo-Landau level (pLL) states. This observation
remains consistent across different bubble shapes, underlin-
ing the need to comprehend the interplay between strain and
electronic properties in graphene nanobubbles.

II. PARABOLOID BUBBLE

In single-layer graphene experiments, prototypical bubbles
often form due to the entrapment of gas or liquid between
the graphene layer and the substrate. Typically, these bubbles
assume a paraboloidal shape, as illustrated in the inset of
Fig. 1(a) [11,20–22]. Recently, experimenters discovered the
existence of nanobubbles at the interface of tiny-angle twisted
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FIG. 1. (a) Evolution of the local density of states (LDOS) at a site situated at the distance 0.97R from the bubble center in relation to
the height of the bubble, illustrated alongside a lateral view of a single parabolic bubble. (b) Strain profiles for the bubble portrayed in (a) at
different heights, maintaining a fixed radius of 50 nm. (c) LDOS at the site situated at the distance 0.95R from the bubble center under an array
of perpendicular real magnetic fields for single parabolic bubbles of heights 5 and 7 nm, respectively. (d) Quasi-eigenstates corresponding to
the LDOS peaks depicted in (a).

bilayer graphene [10]. With the use of AFM or STM tips,
researchers are now capable of generating these bubbles in
graphene samples by applying various bias levels [9,13].

We decided to examine realistic bubbles with a radius of
50 nm and calculated their electronic properties for various
height values. In our model, we only adjusted the z coor-
dinates of the atoms by δz using a smooth bump function
expressed as

δz = H

(
1 − (x − x0)2 + (y − y0)2

R2

)
, (1)

Here H and R represent the height and radius of the bubble,
respectively, and (x0, y0) indicates the central position of the
bubble in the x-y plane.

The local strain can be determined using the distance of a
carbon atom to its three nearest neighbors as follows:

ε = d1 + d2 + d3

3d0
− 1, (2)

In this equation, d0 is the carbon-carbon distance without
deformation, while d1, d2, d3 are the distances between the
three nearest neighbors of a carbon atom. As demonstrated in
Fig. 1(b), the maximum strain is situated around the bubble
edge, independent of the height. A prominent feature of the
bubbles formed in graphene is the emergence of pLLs due to
the formation of strain-induced giant PMFs [8], these pLLs
appear at the bubble edges [9]. Therefore it is only natural
to look for these features in the bubbles that we are simu-
lating. To do so, we calculate (see numerical methods in the
Appendix A) the local density of states (LDOS) at a position

near the edge. As we look at the evolution of the features of the
LDOS with varying bubble height in Fig. 1(a), we see several
striking features. The first one is that, independently of the
bubble height (hence of the strain), a zero energy peak appears
in the spectrum. Moreover, this peak is enhanced when the
height increases. A typical feature of the Landau levels that
arise when graphene is under a real magnetic field is the
appearance of a zero energy state [7,23]. Therefore a first
approach to understand the origin of the satellite peaks would
be fitting the satellite peaks to the well-known equation for
the quantized Landau levels in the LDOS spectrum of strained
graphene [1,7–9,23]:

En = ±
√

2eh̄v2
f |N ||BS| + EDirac

N = . . . − 2,−1, 0, 1, 2 . . . (3)

With this in mind, and taking a closer look at the satellite
peaks, we find two different kinds of behaviors. (i) If the
bubble height is smaller than 5 nm the peaks are equally
spaced and broad [Figs. 1(c) and 2(a)]. Moreover, these peaks
shift towards the Fermi level and become slightly narrower.
(ii) When the height of the bubble is increased further, very
narrow peaks start emerging close to the Fermi level. Conse-
quently, these two peaks must have different physical origins.

Indeed, the generalized peaks appear akin to the previously
observed confined states manifested in graphene quantum dots
[24]. The electrostatic potential which has the form [25,26]

V = 2g1

(
d1 + d2 + d3

3d0
− 1

)
= 2g1ε. (4)
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FIG. 2. (a) Fitted LDOS peaks at site 0.95R for bubble heights of 5 and 7 nm, respectively. (b) The defined hopping function,

δ =
√

1
3

∑3
i=1 (ti − t0 )2 , where ti and t0 represent the site’s nearest neighbor hoppings with and without deformation, respectively, varies with

bubble height at site 0.97R. The blue dashed line corresponds to data fitted for bubble heights less than 5 nm, while the red line corresponds to
data fitted for bubble heights greater than 5 nm. (c) The distribution of the angle-dependent PMF in a single paraboloid bubble with a height
of 7 nm, the arrows denote the flow directions of the vector field. (d) A contour plot showing the deformation potential variation with bubble
heights ranging from 4 to 7 nm. The zoomed-in section illustrates the formation of the strain-induced finite quantum well at the bubble’s edge.

g1 ≈ 4 eV is the deformation potential for graphene depicted
in Fig. 2(d) manifests an annular shape near the boundary
of the bubble, indicative of a finite quantum well that local-
izes electrons. As illustrated in Fig. 2(d), the expansion of
the bubble height engenders a broader equipotential region.
Further augmentation of the height culminates in an enhanced
potential; nevertheless, the electrostatic potential is relatively
minute and can only localize either electrons or holes. Con-
sequently, the confinement primarily emanates from the PMF
inherent in the system [27]. The augmentation of the bubble
height results in the formation of a one-dimensional (1D),
annular finite quantum well, strengthening the PMF as de-
picted in Fig. 1(c), thereby deepening the potential induced
by the nonuniform PMF. Significantly, the PMF localizes
both electrons and holes, leading to the manifestation of con-
fined states exhibiting an energy equal-spacing phenomenon
[27]. This can be roughly approximated using the formula
�E ≈ π h̄v f /l , wherein v f denotes the Fermi velocity and
l represents the width of the finite quantum well [27]. The
fitting of the energies of confined states displayed in Fig. 2(a)
provides further corroboration that these states are equally
spaced within the energy spectrum [27].

We now center our attention on the other peaks that emerge
when the bubble height is larger. As we have said before,
these peaks are pLLs since they follow the quantized spec-
trum of the LDOS of strained graphene [1,7,28]. To further
corroborate our findings, we have studied the quasieigenstates
in real space for several peaks, which we show in Fig. 1(d).
The central peak in the LDOS (H-5 nm) and (H-7 nm) are due
to strain-induced pLLs [1,29] since both of them grow with

strain and show a clear angle-dependent distribution in real
space. This is in line with experimental results [9,12]. As we
can see, the confined states (top row of 1st and 3rd column of
Fig. 1(d)) are continuously distributed around the edge of the
bubble forming a ring, while the pLLs are localized at certain
positions (bottom row of Fig. 1(d)). Interestingly, they show
three-fold symmetry [9,12].

While STM techniques can be utilized to distinguish
the differences between states observed in various bubbles,
accurately measuring minor shifts in atomic positions can
pose a significant challenge [14]. Intriguingly, an additional
approach can be adopted, involving the application of a
perpendicular magnetic field on the GNB. This method pro-
duces distinctive effects on the confined states and the pLLs
[14,27,30].

The LDOS peaks of confined states undergo splitting at
low fields while splitting the pLLs requires the application of
a real magnetic field nearly equivalent to the strength of the
PMF [14]. This effect can be calculated by adjusting the tight-
binding parameters using Peierls substitution [31]. The results
are displayed in Fig. 1(c).

Observably, in the case of a 5 nm high bubble, where only
the central pLL has emerged, the other broad peaks attributed
to confined states divide into four smaller peaks under a 50 T
real magnetic field. These newly emerged peaks were fitted
and found to follow the standard

√
N single-layer graphene

Landau level equation. The exact value of the magnetic field
was 50 T, indicating that the splitting of confined states is due
to the intrinsic Landau energy level quantization of graphene
under a real magnetic field.
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Conversely, in the case of a 7 nm high bubble, where pLLs
are present, a magnetic field of at least 90 T must be applied to
cause peak splitting. This value is comparable to the strength
of the PMF [1,27,30].

Interestingly, consistent with the experimental findings by
Li et al. [14], we see the pLL−1 is the only peak that splits.
From a theoretical point of view this is due to the electron-hole
asymmetry since we consider the next-next-nearest-neighbor
hopping in our tight-binding model, which will result in their
Fermi velocity having slight differences [14]. The peak split-
ting transpires due to the emergence of two strain-induced
opposing valleys, K+ and K−. Upon the introduction of a
real magnetic field that is on par with the PMF, an over-
all effective magnetic field prompts the polarization of the
valley and breaks time-reversal symmetry. Consequently, the
pLL−1 peak bifurcates into two separate peaks, as exemplified
in Fig. 1(c) [14,26,27,30]. Another noteworthy characteristic
is the central zeroth peaks’ independence from the external
magnetic field, as depicted in Fig. 1(c). This independence
corroborates that all zeroth energy peaks are pLLs, regardless
of the bubble height. The underlying reason is the topological
protection offered to the zero-energy Landau level [1,28].
Therefore our study implies that the application of an external
perpendicular magnetic field offers a viable methodology to
differentiate between the strain-induced confined states and
pLLs within GNB.

To decipher the differences between confined and pLL
states, we examined the site situated at 0.97R from the bubble
center, representing the three nearest neighbors’ hoppings. We

defined a function δ =
√

1
3

∑3
i=1 (ti − t0)2 , which depicts its

variation with the bubble height. Here, t0 denotes the near-
est hopping without deformation, and ti corresponds to the
nearest hoppings within the bubble. Intriguingly, for a bubble
height less than 5 nm, the δ function changes parabolically
with the height. Conversely, for a bubble higher than 5 nm, δ

linearly increases with height.
As shown in Fig. 2(b), these two tendencies are represented

by a blue dashed line and a red dashed line, respectively. These
lines intersect at heights of 4.24 and 5.42 nm, reflecting the
dynamic evolution of confined and pLL states as the bubble
height changes. For heights less than 4.24 nm, the LDOS low-
energy part is dominated by confined states (n �= 0). As the
height increases from 4.24 to 5.42 nm, the two lines, almost
identical, signal the emergence of pLL states near the Fermi
level, where pLL states and confined states coexist. For larger
bubble heights, the LDOS low-energy part is dominated by the
pLLs, and δ grows linearly with bubble height. This growth
pattern explains why the PMF’s strength linearly increases
with the strain level. As we further investigated the physics
underlying these dual tendencies, we extracted data on the
nearest neighbor hoppings ti, observing their variation with
increasing bubble height. Notably, t3, the hopping between the
neighbor which is farthest from the bubble center significantly
increased, as illustrated in Fig. 2(d). Meanwhile, the hoppings
between the other two neighbors displayed a gradual
increase correlating with the bubble height. This pattern was
particularly pronounced: when the bubble height was less than
3nm, the hoppings of the two neighbors, t1 and t2, appeared
nearly identical. However, as the bubble height exceeded
4 nm, a distinct divergence between t1 and t2 emerged.

Concurrently, the disparity between t3 and t1, t2 remained
relatively small, and a finite quantum well was formed.

Our findings demonstrate a dynamic evolution of states in a
GNB relative to height (or strain). For a small height, the strain
profile-generated PMF is insufficient, and the confined states
prevail over the pLLs. A slight height increase brings about
the appearance of pLLs in the LDOS, resulting in the coex-
istence of both confined states and pLLs in the system. Once
the height is significantly large, the pLLs gain dominance over
the confined states. Notably, the LDOS characteristics owe
their existence to the bubble’s formation, unaffected by sub-
strate interaction, as illustrated by our calculations involving
a graphene substrate (see Appendix B).

Understanding local electron movement necessitates
knowing the valleys’ sign or the strain-induced PMF. This
can be determined by extracting the vector potential from
our tight-binding model and calculating its curl (see Ap-
pendix A). The strain-induced vector field in a paraboloid
bubble is shown by arrows in Fig. 2(c), and this field flows in
varying directions near the bubble edge. This flow indicates
that the LDOS peaks (H-7 nm) are a result of strain-induced
PMFs. This explains why the PMF is angle-dependent and
only manifests at the strained bubble edge. Collectively, our
findings reveal that the PMF identified in experimental results
is attributed to electron localization at the paraboloid bub-
ble’s edge and electrons behave differently in opposite valleys
[9,14,17,19].

An intriguing query pertains to the angle dependence of
the PMF along the graphene nanobubbles. As we gently de-
form the top layer of graphene using the bump function in
Eq. (1), if no scattering process occurs between the valleys,
the electrons would behave as if time-reversal symmetry is
locally broken. However, the effective total flux across the
entire sample remains zero. Therefore the valleys K+ and K−
should be equivalent [19].

III. GAUSSIAN BUBBLE

Gaussian bubbles, which can be induced by applying a
voltage to a paraboloid bubble using an AFM or STM tip
[9,13], exhibit fascinating features. To shape the bubble, we
employ a smooth Gaussian bump function [32]:

δz = H exp

[
− (x − x0)2 + (y − y0)2

2σ 2

]
. (5)

In this equation, H represents the height of the bubble, and
(x0, y0) denotes the position at the center of the top layer in
the x-y plane. The bubble’s radius is given as R = 3σ , while
δz signifies the deformation of the z coordinates.

As evidenced by the strain profile depicted in Fig. 3(b),
a PMF is expected to emerge around the middle of the bub-
ble. However, the precise timing of its appearance and its
distribution within the bubble, which maintains a fixed radius
of 50 nm, remain to be elucidated. To observe the evolution
of LDOS with varying bubble height, we selected the site
located 0.36 R away from the center of the bubble (within the
maximum strained region), as marked in Fig. 3(a).

In instances of mild strain, induced pLLs are the only
ones detected near the Fermi level. The confined states
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FIG. 3. (a) The site situated at the distance 0.36R from the bubble center LDOS evolution with bubble height (they are shifted equally
along the y axis for clarity purposes), the black arrows denote the shift tendency in the Gaussian bubble and the side view of a single Gaussian
bubble. (b) Strain profiles of the bubble in (a) with different heights, the radius is fixed for 50 nm. (c) The angle-dependent PMF distribution
in the single Gaussian bubble with height 7 nm. (d) Quasieigenstates of the LDOS peaks as shown in (a).

predominantly originate closed to van Hove singularities at
the high-energy part, as marked in Fig. 3(a). The central zeroth
Landau level grows with the bubble’s height, while both the
first Landau levels on the electron and hole side recede from
the Fermi level as the bubble height increases, leading to a
boost in the strength of the strain-induced PMF. PLLs appear
at a relatively lower strain (around 0.006) compared to the
paraboloid cases, a discrepancy we attribute to the variations
in the local atomic environment between different bubbles [1].

The δ function fitting outlined in the Appendix E facili-
tates comprehension of the dynamic evolution of the confined
states and pLLs as the bubble height changes. For bubble with
the height of 7 nm, the peaks situated near the Fermi level
are strain-induced pLLs. The corresponding spatial LDOS
for these peaks appears highly similar, indicating an angle-
dependent distribution of the PMF around the middle of the
Gaussian bubble in Fig. 3(d), while the confined states closed
to the van Hove singularities are continuously distributed
around the middle of the 5 nm Gaussian bubble.

Our results align with calculations from the vector po-
tential, as seen in Fig. 3(c), and offer explanations for
experimental data [9,13]. These findings guide experimental-
ists aiming to design PMFs of varying locations and strengths
by modulating the bubble height with AFM/STM tips [9,13].

IV. TRIANGULAR BUBBLE

The triangular bubble, a typical nanostructure in single-
layer graphene, often attracts considerable attention in studies
[8,15]. In our research, we modeled a triangular bubble in the

top layer, maintaining a consistent distance of 50 nm between
the center and the triangle’s three vertices. This is illustrated
in Fig. 4(a), and the method to modify the triangular bubble
shape can be found in the Appendix D.

The strain profile, as demonstrated in Fig. 4(b), reveals
an unstrained region at the bubble’s center. This implies that
a sufficient degree of strain could engender a strain-induced
PMF throughout the entire sample [8,19]. Given this deformed
structure, our hypothesis posits that the PMF distribution
would intensify at the triangular bubble’s midpoint as the
height of the bubble increases.

By modulating the bubble’s height and targeting a spe-
cific site—0.2R from the bubble center which located within
the region of maximum strain—we observed an intriguing
phenomenon: the coexistence of both confined states and
strain-induced pLLs. The dynamic evolution of these states
can be comprehended through the application of the δ function
(see Appendix E).

As demonstrated in Figs. 4(a) and 4(d), there is a strik-
ing similarity in spatial shape, suggesting an angle-dependent
distribution of the PMF. The central peaks of zeroth order,
which enlarge under strain, are identified as strain-induced
pLLs. In the region devoid of strain at the bubble’s center, no
such states can be detected. This absence of states resembles
the spatial distribution of the pLLs (n = −1, 0,+1) within
the 7 nm bubble. Upon observing the peaks originating from
confined states in the 4nm bubble, we detected some states
surrounding the unstrained center (n = +1). This could pro-
vide a means to distinguish between states induced by PMFs
and confined states using STM.
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FIG. 4. (a) Illustration of LDOS evolution at site 0.2R with varying bubble heights, complemented by a side view of a single triangular
bubble. (b) Strain profiles of the bubble depicted in (a) for differing heights, with a fixed distance of 50 nm maintained from the bubble
center to each vertex. (c) The angle-dependent PMF distribution in a singular triangular bubble with a height of 7 nm, the black dashed square
highlighting a zoom-in of one ridge below. (d) Quasi-eigenstates corresponding to the LDOS peaks shown in (a).

The LDOS fitted PMF (H-7 nm) at the site 0.2R from
the bubble center approximates 160T, with an energy spacing
following the E ∝ √

N relation. We extracted the vector po-
tential A and computed the curl of A, as depicted in Fig. 4(d).
Interestingly, the same PMF distribution can be observed in
experimental results from one-dimensional ripple structures
[14]. Our numerical simulations provide an explanation for
the phenomenon of PMF exhibiting different signs between
the ripple ridges.

V. CONCLUSIONS

In our investigation, we delved into the electronic prop-
erties of three distinct nanobubble shapes in twisted bilayer
graphene: paraboloid, Gaussian, and triangular. Employing
large-scale numerical simulations and adjusting the bubble
heights enabled us to study the strain effects and develop
atomic-resolution strain profiles, achieved by extracting the
three nearest-neighbor carbon-carbon distances for each atom.
Our findings revealed that strain-induced confined states and
pLLs coexist universally across all graphene nanobubbles.
Notably, under mild strain, the confined states emerge first
near the high-energy region, exhibiting a larger peak broad-
ening than the Landau levels and following a linear N spacing
rule rather than the conventional

√
N rule seen in graphene

pLLs. As strain intensifies, these confined states migrate to the
low-energy region, a shift explainable by the finite quantum
well effect induced by a nonuniform PMF. Further increase in
strain triggers the appearance of pLLs near the Fermi level,
which then expand towards the high-energy region as local
strain grows.

According to Figs. 2(b) and 8, and Table I we observed
that for confined states and pLLs in three different shapes
of graphene nanobubbles, the values of t1 and t2 are rela-
tively close. However, t3 shows a shows a significantly larger
deviation from t1 and t2. This observation indicates that the
interaction with the third nearest neighbor is more sensitive to
variations in bubble height, likely due to its increased distance
from the bubble’s center. In comparison, the hopping energies
for confined states are typically lower than those observed in
pLLs. This difference is especially pronounced in the third
nearest neighbor hopping t3. It implies that confined states are
more frequently found in regions of the nanobubbles where
the strain is relatively small. This pattern is critical for un-
derstanding the distribution and behavior of confined states

TABLE I. Nearest-neighbor hopping energy ti and the deviation
energy (ti − t0) corresponding to confined states and pLL states,
respectively.

Type Parabolic Gaussian Triangle

Confined States
t1 −2.961 (+0.24) −2.868 (+0.33) −2.928 (+0.27)
t2 −2.948 (+0.25) −2.836 (+0.36) −2.910 (+0.29)
t3 −2.265 (+0.94) −1.899 (+1.30) −2.097 (+1.10)

Pseudo Landau Levels States
t1 −2.488 (+0.71) −2.561 (+0.64) −2.397 (+0.80)
t2 −2.450 (+0.75) −2.500 (+0.70) −2.340 (+0.86)
t3 −0.634 (+2.57) −0.829 (+2.37) −0.233 (+2.97)
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within these strained graphene structures. For confined states,
the energy differences between t3 and t1, t2 are relatively
smaller. As a result, electrons maintain the ability to move,
leading to a relatively continuous distribution of confined
states in graphene nanobubbles. Conversely, when consid-
ering pLLs, these differences become significantly larger,
resulting in the localization of pLL states in certain regions.
Our study provides a comprehensive picture of the dynamic
coexistence of confined states and pLLs induced by strain,
with the observed strain-induced PMF distribution aligning
with previous STM results. We anticipate that the differences
between the confined states and Landau levels can be exper-
imentally observed using STM techniques and an external
magnetic field. Importantly, our findings not only guide ex-
perimentalists in designing spatially-dependent PMFs but also
fill a crucial gap in our understanding of strain-induced con-
fined states and PMF states in graphene bubble systems. This
research paves the way for future studies on strain-engineered
electronic properties in graphene-based systems and the po-
tential development of novel nanoscale devices.
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APPENDIX A: NUMERICAL METHODS

In our numerical simulations, the bubbles’ radius are fixed
to 50nm, and the hopping parameters Vppπ and Vppσ are de-
scribed by distance dependent function, since the graphene
nanobubble are shaped by smooth bump functions, the strain
can be changed continuously by increasing the bubbles’
height without creating or losing extra orbitals. The recur-
sive Green function method implemented codes allow us to
handle large-scale samples’ Local Density of States (LDOS)
up to millions of atoms precisely. Moreover, the quasieigen-
states which reveal the confined states and LLs states spatial
distribution can be got and are proved comparable with
scanning tunneling microscopy/spectroscopy (STM/S) in the
experiments. By extracting the vector potential from our
tight-binding model, we can explain the angle-dependent

pseudomagnetic field distribution in the graphene bubble sys-
tems, and those results are in good agreement with our spatial
LDOS simulation results and published experimental results.
The electronic properties of the bubble in twisted bilayer are
obtained by using a full tight-binding model based on pz

orbitals. The Hamiltonian of the system has the form [26,33–
35]

H =
∑

i

εi|i〉〈i| +
∑
〈i, j〉

ti j |i〉〈 j|, (A1)

where |i〉 is the pz orbital located at ri, εi is the on-site energy
of orbital i, and

∑
〈i, j〉 is the sum over indices i and j with

i �= j. The hopping integral ti j , interaction between sites i and
j, is

ti j = n2Vppσ (ri j ) + (1 − n2)Vppπ (ri j ). (A2)

Here ri j = |ri j | is the distance between two sites located at
ri and r j , n is the direction cosine of ri j along the direction ez

that perpendicular to the graphene layer. The Slater and Koster
parameters Vppσ and Vppπ are expressed as distance-dependent
functions:

Vppπ (ri j ) = −γ0e2.218(b0−ri j )Fc(ri j ),

Vppσ (ri j ) = γ1e2.218(h0−ri j )Fc(ri j ), (A3)

where b0 = 1.42 Å and h0 = 3.35 Å represent the nearest
carbon-carbon distance and interlayer distance in equilibrium,
respectively. The intralayer and interlayer hopping parameters
γ0 = 3.2 eV and γ1 = 0.48 eV are used in all calculations.
Fc(r) = (1 + e(r−0.265)/5)−1 is a smooth function. All the hop-
pings with ri j � 5.0 Å are considered in the calculations. To
get the Hamiltonian that describe the nanobubble systems in
twisted bilayer graphene, we firstly introduce twisted bilayer
graphene without deformation, then reshape the twisted struc-
tures by modifying the z coordinates according to smooth
bump functions. After deformation, we did not consider lattice
relaxation effect in our calculations, which can simulate the
bubbles with clamped edges observed in experiments [15].
Since the systems contain around 1.8 million of atoms, it is
impossible to get the eigenstates by diagonalization technique.
We employ the tight-binding propagation method to calculate
the quasieigenstates of the LDOS in graphene nanobubble
systems. This method is particularly efficient for handling
large systems, as it avoids the need for diagonalization [31].
The time evolution of the |�(t )〉 can be expressed as

|�(t )〉 =
[

J0(t̂ )T̂0(Ĥ ) + 2
∞∑

m=1

Jm(t̂ )T̂m(Ĥ )

]
|�(0)〉 (A4)

where the J0 and Jm(t̂ ) are the Bessel function of integer order
0 and m, T̂m(Ĥ ) is the Chebyshev polynomial of the first
kind, Ĥ stands for the scaled Hamiltonian, which make its
eigenvalues located inside [−1, 1] [31,32]. Firstly, we intro-
duce a random initial state |�(0)〉 = 	iαi|�i〉, which covers
a complete set of eigenstates of the system, then the state at
time t can be got by expanding the time evolution operator
in Chebyshev polynomials, the state at time t has the form
|�(t )〉 = e−iHt |�(0)〉. By performing the Fourier transforma-
tion of |�(t )〉, the quasieigenstates of the energy E has the
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following expression [31,32]:

|�(E )〉 = 1

2π

∫ ∞

−∞
e−iEt |�(t )〉dt

= 1

2π

∑
i

αi

∫ ∞

−∞
e−i(E−Ei )t |φi〉dt

=
∑

i

αiδ(E − Ei )|φi〉 (A5)

then the normalized quasieigenstates can be written as

˜|�(E )〉 = 1√∑
i |α|2δ(E − Ei ))

∑
i

αiδ(E − Ei )|φi〉. (A6)

Here Ei means the eigenvalues of the Hamiltonian, and the su-
perposition of the eigenstates has the same meaning of dI/dV
mapping that can be reproduced by the scanning tunneling
microscopy experimentally [26,31,36]. The local density of
states (LDOS) which describes a space-resolved electron den-
sities of states can be calculated by Green function [26,32].
The LDOS of site i is given by

Dldos
i (E ) = − lim

ε→0+
1

π
Im〈φi|G(E + iε)|φi〉). (A7)

Then the diagonal elements of the Green function G(E ) are

G0(E ) = 〈φ0|G(E )|φ0〉

= 1

E − a0 − b2
1

E−a2−b2
2...

.
(A8)

The coefficients an and bn in the equation above are defined
as [32,37]

H |�(tn)〉 = an|φ(tn)〉 + bn|φ(tn−1)〉 + bn−1|φ(tn+1)〉,
|φ(t0)〉 = |φ(0)〉, |φt−1〉 = 0.

(A9)

When considering the external perpendicular magnetic field,
the hopping terms can be modified according to Peierls sub-
stitution:

ti j → ti je
ie

∫ j
i A·dl = ti je

i(2π/�0 )
∫ j

i A·dl. (A10)

The line integral of the vector potential from site i to j is
∫ j

i A ·
dl and �0 = ch/e is the flux quantum [31,34].

Once we deform the structure, a strain-induced vector field
is formed, which is equivalent to adding a real magnetic field.
We can extract the vector potential A from our tight-binding
model and it has the form [1,38]

Ax =
√

3

2
(t1 − t2), Ay = 1

2
(2t3 − t1 − t2), (A11)

where ti=1,2,3 are the nearest neighbor hopping terms, once the
nonuniform strain is applied, t1 �= t2 �= t3. The vector potential
will create a nonuniform pseudomagnetic field which is pro-
portional to the curl of the vector potential and can be further
estimated by [25,39]

B = c

ev f
(∇×A), (A12)

Here, v f is the Fermi velocity, and c is numerical factor.

FIG. 5. (a) LDOS for site A and its three nearest neighbors,
located 0.97R away from the paraboloid bubble center. (b) LDOS
comparison for site A at 0.97R across magic-angle twisted bilayer
graphene (TBG-1.05◦), AA-stacked bilayer graphene (without twist
angle), and single-layer graphene paraboloid bubbles.

APPENDIX B: STRAIN-INDUCED SUBLATTICE
SYMMETRY BROKEN AND SUBSTRATE EFFECT

IN THE GRAPHENE NANOBUBBLES

As illustrated in Fig. 5, the main distinction between site
A and its three adjacent atoms is embodied in the central
zeroth peak of the LDOS spectrum. Precisely, site A’s LDOS
showcases this central zeroth peak, while it’s conspicuously
absent in its neighboring three atoms. In contrast, site B is
devoid of a central zeroth peak, but this peak is evident in its
three closest neighbors.

This unusual pattern can be traced back to the lattice sym-
metry disruption provoked by strain. As highlighted in the
strain profile in the main body of the text, the strain markedly
intensifies near the bubble’s edge. Our research discloses that
the symmetry-breaking effects triggered by paraboloid defor-
mation parallel those seen when triaxial strain is exerted on a
hexagonal graphene flake [40–42].

Turning to Fig. 5, the right panel, we opted for the same
site on the paraboloid bubble’s edge to study its LDOS under
three distinct scenarios: twisted bilayer graphene at the magic
angle, AA stacking bilayer, and single-layer graphene. The
LDOS at site 0.97R away from the bubble center responses
are virtually indistinguishable across these different graphene
nanobubble systems, suggesting that strain is the primary de-
terminant of the LDOS. Further, the interaction between the
graphene’s bottom layer and the atoms within the bubble is
deemed insignificant due to their considerable separation, thus
the substrate effect inside the graphene nanobubbles can be
ignored.

APPENDIX C: LDOS COLLECTED ALONG THE LINE
APPROACHING TO THE BUBBLE EDGE IN THE SINGLE

PARABOLOID BUBBLE

For the single paraboloid bubble, once the bubble radius
is fixed for 50 nm, all the LDOS states in the bubble, their
low-energy states near the Fermi level are determined by the
bubble height. As shown in Fig. 6, when the bubble height is
5 nm, those large broad peaks are confined states, when the
bubble height is 7 nm, those sharp peaks correspond to pLLs,
for the bubble with height 7 nm, those pLLs almost identical
near the bubble edge, which means the pseudomagnetic fields
near the bubble edge are almost uniform.
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FIG. 6. The points collected along the line at the single paraboloid bubble edge and their LDOS for the height of 5 and 7 nm, respectively.

APPENDIX D: TRIANGULAR BUBBLE CONSTRUCTION
METHOD IN TWISTED BILAYER GRAPHENE

The algorithm to construct a triangular bubble in twisted
bilayer graphene can be outlined as follows. For a given site S
in Fig. 7 (as marked by the star symbol), determine if it resides
within the small triangle

�
AOB through the equation:

�OS = a ∗ �OA + b ∗ �OB. (D1)

(1) If a � 0, b � 0, and a + b � 1, proceed to adjust the z
coordinates in accordance with the smooth bump function:

δz = H ∗ (cos(π ∗ (a + b)/2))1.5. (D2)

In this function, H represents the height of the triangular
bubble.

(2) The same algorithm should be applied to sites located
within the other two smaller triangles,

�
AOC and

�
BOC.

FIG. 7. Top view of a single triangular bubble in twisted bilayer
graphene at magic angle 1.05◦. The bubble height is 7 nm and
�OA, �OB, �OC are 50 nm, O is the triangular bubble center, A, B, C

are three different vertices, colorbar stands for the z coordinates of
the carbon atoms.

APPENDIX E: DEFINED δ CHANGED AS A FUNCTION
OF THE BUBBLE HEIGHT

Figures 8(a) and 8(b) present how the defined function

δ =
√

1
3

∑3
i=1 (ti − t0)2 varies with the height of the bubble,

where t0 signifies the nearest hopping without deformation,
and ti represents the nearest hoppings in the bubble. We dis-
covered that the function δ exhibits the same trend as in a

FIG. 8. (a) Variation of the δ function and hopping energies ti

at a site located 0.36R away from the center of a single Gaussian
bubble, concerning the bubble height. (b) Variation of the δ function
and hopping energies ti at a site located 0.2 R away from the center
of a single triangular bubble, as a function of the bubble height.
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single paraboloid bubble when the bubble height is increased.
For the Gaussian bubble depicted in Fig. 8(a), confined states
emerge around the van Hove singularity when the bubble
height is relatively small (less than 4.29 nm). As the bubble
height grows, these confined states shift towards the lower
energy section, a phenomenon that can also be interpreted
through finite quantum well theory. When the bubble height
further increases (from 4.29 to 5.52 nm), confined states and
Landau Levels (LLs) coexist at the lower energy section (as
demonstrated in Fig. 3(a) with a bubble height of 5 nm). Upon
further elevation of the bubble height, the LDOS low-energy
section is predominantly characterized by LLs (as shown in
Fig. 3(a) with a bubble height of 7 nm). Turning to Fig. 8(b),
when the triangular bubble height escalates from 4 to 5 nm, the

LLs-like peaks with a substantial broadening shift towards the
Fermi level (as shown in Fig. 4(a)). This behavior is consis-
tent with confined state behavior observed in paraboloid and
Gaussian bubbles. We attribute these peaks to strain-induced
confined states, and this phenomenon can also be explained by
the deformation forming a finite quantum well. As the bubble
height is further increased, pLLs materialize near the Fermi
level, indicating that the pLL states are more localized. When
the bubble height is amplified to 7 nm, the pLLs shift towards
the higher energy section, suggesting that the pseudomag-
netic field grows with the strain [23], The energy differences
between t3 and t1, t2 also for confined states are relatively
lower than pLL states also exist in Gaussian and triangular
bubbles.

[1] M. I. Katsnelson, The Physics of Graphene, 2nd ed. (Cambridge
University Press, UK, 2020).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[3] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature
(London) 438, 201 (2005).

[4] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[5] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras et al., Nature (London) 556, 80 (2018).

[6] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold,
A. H. MacDonald, and D. K. Efetov, Nature (London) 574, 653
(2019).

[7] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30
(2010).

[8] N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F.
Guinea, A. C. Neto, and M. F. Crommie, Science 329, 544
(2010).

[9] P. Jia, W. Chen, J. Qiao, M. Zhang, X. Zheng, Z. Xue, R.
Liang, C. Tian, L. He, Z. Di et al., Nat. Commun. 10, 3127
(2019).

[10] C. Yan, Y.-X. Zhao, Y.-W. Liu, and L. He, Nano Lett. 23, 8532
(2023).

[11] H. Ghorbanfekr-Kalashami, K. Vasu, R. R. Nair, F. M. Peeters,
and M. Neek-Amal, Nat. Commun. 8, 15844 (2017).

[12] M. Settnes, S. R. Power, M. Brandbyge, and A.-P. Jauho, Phys.
Rev. Lett. 117, 276801 (2016).

[13] A. Georgi, P. Nemes-Incze, R. Carrillo-Bastos, D. Faria, S.
Viola Kusminskiy, D. Zhai, M. Schneider, D. Subramaniam, T.
Mashoff, N. M. Freitag et al., Nano Lett. 17, 2240 (2017).

[14] S.-Y. Li, Y. Su, Y.-N. Ren, and L. He, Phys. Rev. Lett. 124,
106802 (2020).

[15] E. Khestanova, F. Guinea, L. Fumagalli, A. Geim, and I.
Grigorieva, Nat. Commun. 7, 12587 (2016).

[16] A. V. Tyurnina, D. A. Bandurin, E. Khestanova, V. G. Kravets,
M. Koperski, F. Guinea, A. N. Grigorenko, A. K. Geim, and
I. V. Grigorieva, ACS Photonics 6, 516 (2019).

[17] D.-H. Kang, H. Sun, M. Luo, K. Lu, M. Chen, Y. Kim, Y. Jung,
X. Gao, S. J. Parluhutan, J. Ge et al., Nat. Commun. 12, 5087
(2021).

[18] W. Yan, W.-Y. He, Z.-D. Chu, M. Liu, L. Meng, R.-F. Dou, Y.
Zhang, Z. Liu, J.-C. Nie, and L. He, Nat. Commun. 4, 2159
(2013).

[19] C.-C. Hsu, M. Teague, J.-Q. Wang, and N.-C. Yeh, Sci. Adv. 6,
eaat9488 (2020).

[20] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Nat.
Nanotechnol. 6, 543 (2011).

[21] R. Villarreal, P.-C. Lin, F. Faraji, N. Hassani, H. Bana, Z.
Zarkua, M. N. Nair, H.-C. Tsai, M. Auge, F. Junge et al., Nano
Lett. 21, 8103 (2021).

[22] N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L.
Dunn, Nano Lett. 13, 6216 (2013).

[23] M. Neek-Amal, L. Covaci, K. Shakouri, and F. M. Peeters,
Phys. Rev. B 88, 115428 (2013).

[24] J. Lee, D. Wong, J. V. Jr, J. F. Rodriguez-Nieva, S. Kahn, H.-
Z. Tsai, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, L. S.
Levitov, and M. F. Crommie, Nat. Phys. 12, 1032 (2016).

[25] M. Van Wijk, A. Schuring, M. Katsnelson, and A. Fasolino, 2D
Mater. 2, 034010 (2015).

[26] H. Shi, Z. Zhan, Z. Qi, K. Huang, E. v. Veen, J. Á. Silva-Guillén,
R. Zhang, P. Li, K. Xie, H. Ji et al., Nat. Commun. 11, 371
(2020).

[27] Y.-N. Ren, Y.-C. Zhuang, Q.-F. Sun, and L. He, Phys. Rev. Lett.
129, 076802 (2022).

[28] F. Guinea, M. I. Katsnelson, and M. A. H. Vozmediano, Phys.
Rev. B 77, 075422 (2008).

[29] T. Wehling, A. Balatsky, A. Tsvelik, M. Katsnelson, and A.
Lichtenstein, EPL (Europhysics Letters) 84, 17003 (2008).

[30] Y.-N. Ren, Q. Cheng, Q.-F. Sun, and L. He, Phys. Rev. Lett.
128, 206805 (2022).

[31] S. Yuan, H. De Raedt, and M. I. Katsnelson, Phys. Rev. B 82,
115448 (2010).

[32] Y. Li, Z. Zhan, X. Kuang, Y. Li, and S. Yuan, Comput. Phys.
Commun. 285, 108632 (2023).

[33] G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson, and S. Yuan, npj
Comput. Mater. 5, 122 (2019).

[34] Z. Wu, Z. Zhan, and S. Yuan, Sci. China Phys. Mech. Astron.
64, 267811 (2021).

115420-10

https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/nphys1420
https://doi.org/10.1126/science.1191700
https://doi.org/10.1038/s41467-019-11038-7
https://doi.org/10.1021/acs.nanolett.3c02286
https://doi.org/10.1038/ncomms15844
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1021/acs.nanolett.6b04870
https://doi.org/10.1103/PhysRevLett.124.106802
https://doi.org/10.1038/ncomms12587
https://doi.org/10.1021/acsphotonics.8b01497
https://doi.org/10.1038/s41467-021-25304-0
https://doi.org/10.1038/ncomms3159
https://doi.org/10.1126/sciadv.aat9488
https://doi.org/10.1038/nnano.2011.123
https://doi.org/10.1021/acs.nanolett.1c02470
https://doi.org/10.1021/nl4036324
https://doi.org/10.1103/PhysRevB.88.115428
https://doi.org/10.1038/nphys3805
https://doi.org/10.1088/2053-1583/2/3/034010
https://doi.org/10.1038/s41467-019-14207-w
https://doi.org/10.1103/PhysRevLett.129.076802
https://doi.org/10.1103/PhysRevB.77.075422
https://doi.org/10.1209/0295-5075/84/17003
https://doi.org/10.1103/PhysRevLett.128.206805
https://doi.org/10.1103/PhysRevB.82.115448
https://doi.org/10.1016/j.cpc.2022.108632
https://doi.org/10.1038/s41524-019-0258-0
https://doi.org/10.1007/s11433-020-1690-4


EVOLUTION OF THE CONFINED STATES IN GRAPHENE … PHYSICAL REVIEW B 109, 115420 (2024)

[35] Z. Wu, X. Kuang, Z. Zhan, and S. Yuan, Phys. Rev. B 104,
205104 (2021).

[36] Y.-W. Liu, Z. Zhan, Z. Wu, C. Yan, S. Yuan, and L. He, Phys.
Rev. Lett. 129, 056803 (2022).

[37] R. Haydock, V. Heine, and M. Kelly, J. Phys. C 5, 2845
(1972).

[38] M. Long, P. A. Pantaleón, Z. Zhan, F. Guinea, J. Á. Silva-
Guillén, and S. Yuan, npj Comput. Mater. 8, 73 (2022).

[39] M. A. Vozmediano, M. Katsnelson, and F. Guinea, Phys. Rep.
496, 109 (2010).
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