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Nonlocal transport measurements in hybrid quantum Hall–superconducting devices
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There has been a growing interest in hybrid quantum Hall–superconductor devices, driven by the prospect to
realize exotic ground states and excitations with non-Abelian exchange statistics. While the existing experiments
clearly demonstrate Andreev coupling between the edge states and the superconductors, the question remains
whether the quantum coherence could propagate between several superconducting contacts via chiral channels.
To answer this question, we have first extended the Landauer-Büttiker (LB) formalism to samples with one
superconducting contact and found a remarkable agreement within a series of measurements related to each other
via LB-type formulas. We have then switched to the case of multiple superconducting contacts, and found that
we can describe the measurements self-consistently if we neglect the superconducting phase coherence between
multiple contacts. We interpret this result as a negative answer to the question posed above: the phase correlations
between multiple superconducting contacts are not established via μm-long quantum Hall edge states. Looking
forward, our approach may find applications in the broader field of topological superconductivity and proximal
structures. Possible violations of the self-consistency tests presented here may be used as an indication that
superconducting phase coherence is induced in the quantum Hall edges.
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I. INTRODUCTION

There has been a longstanding interest to induce supercon-
ducting correlations into the quantum Hall edge states [1–25].
The recent experimental developments were enabled by
the nonlocal transport measurements, which allow one to
explore the properties of the hybrid quantum Hall (QH)–
superconductor interfaces [26–34], thus attracting significant
theoretical attention [35–40]. While QH samples with normal
contacts are conventionally described by the Landauer-
Büttiker (LB) formalism [41], the situation could be more
complicated in the case of hybrid superconducting devices, as
both electrons and reflected holes may have to be considered
coherently [42]. In principle, one can account for the su-
perconducting correlations between multiple superconductors
using the scattering matrix in the particle-hole Nambu space
obtained from Bogoliubov-de Gennes (BdG) equations [43].
However, the calculations of the nonlocal resistance in the
QH-superconductor structures are commonly simplified by
using the LB expressions and describing the superconducting
contact via two parameters: the probabilities of the normal and
Andreev reflections [3].

Here, we follow the latter approach and derive a simple
extension of the LB formalism suitable for the QH sam-
ples with multiple superconducting contacts, applicable in the
case when coherence between the contacts can be neglected.
Namely, we assume that the effect of the superconducting
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contacts is limited to setting the total electron occupation of
the QH channels flowing downstream, and we do not track
the Andreev-reflected holes separately from the normally re-
flected electrons. This approach is based on the expectation
that only the total current flowing downstream from the super-
conductor is relevant for the nonlocal small-bias differential
resistance, as we will discuss in the following. We therefore
characterize each superconducting contact by its generalized
reflection coefficient, which ranges from 1 to −1, where these
limits corresponds to a perfect normal or Andreev reflection
of the electrons arriving at the contact. We do not attempt to
evaluate this coefficient, which is determined by the micro-
scopic details of the proximitized graphene interface. Instead,
we extract it from the experiments for consistency checks.

We test our results on actual devices with multiple super-
conducting contacts or QH channels. By measuring several
nonlocal resistance configurations, we can verify the internal
consistency of our expressions. The good agreement with
the experiment indicates that the neglected coherence effects
are either small or should not exist in the present samples.
Finally, we discuss possible breakdown of our approach when
superconducting phase coherence between contacts becomes
important.

II. A SUPERCONDUCTOR CONTACTING QUANTUM
HALL EDGE STATES

In the absence of coherence between the superconducting
contacts, we can treat them as incoherent reservoirs and use
the standard LB formalism to calculate the current flowing
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into a lead connected to the superconductor. We start by
considering a multiterminal device with only one conducting
channel in each lead. (Later we generalize the results to the
case of multiple channels.) The standard expression for the
current going into lead α (α = 1, 2,. . .) is

Iα = e

h

∑
β

∫
Aα

ββ (E )nβ (E )dE . (1)

Here, Aα
βγ = δαβδαγ − s†

αβsαγ , where sαβ is the scattering ma-
trix from lead β to α, which describes the QH part of the
sample excluding the contacts. nβ (E ) is the distribution func-
tion of the channel leaving contact β at energy E . Note: we
use “arriving” and “leaving” when describing the direction of
particles with respect to the contacts. This way we intend to
avoid the confusion with “outgoing” and “incoming,” which
conventionally refer to the direction of electrons with respect
to the interior of the device.

In equilibrium, the channel occupation number nβ (E ) at
zero temperature is a step function with electrons filled to μβ ,
the chemical potential of the channel leaving lead β, and for a
small excitation near the Fermi level, Eq. (1) reduces to

δIα = e

h

∑
β

Aα
ββ (EF )δμβ. (2)

For normal metal contacts, the chemical potential of electrons
leaving them is in equilibrium, and we have μβ = eVβ , where
Vβ is the bias voltage applied to contact β.

For superconducting contacts, the situation is more com-
plicated due to the Andreev reflections: the occupation of
the channel leaving contact nβ is not solely determined by
Vβ but has contributions from the upstream contacts. As a
result, the distribution downstream of the superconducting
contact may be different from equilibrium. However, in our
simplified approach, we describe this occupation by an equi-
librium distribution function, which contains the same number
of electrons.

This crucial step is at the core of our approach. It clearly
does not change the results if the downstream contact is made
of a normal metal, which absorbs and equilibrates all the
arriving electrons, so that the current flowing into that con-
tact is correctly accounted for. Later on, we argue that this
procedure can also be used with some limitations in the case
where several superconducting contacts are present. Finally,
in the multichannel case, each channel emerging from a super-
conducting contact will be characterized by its own effective
chemical potential, depending on the contributions of the nor-
mal and Andreev reflections to that particular channel.

As an example, we first demonstrate the implementation
of Eq. (2) in a Hall bar geometry shown in Fig. 1(a). The
device has three normal contacts (1, 2, and 4) and one su-
perconducting contact (3). As discussed before, the chemical
potential of the edges states downstream of the normal con-
tacts (β = 1, 2, 4) is equal to the applied bias:

μβ=1,2,4 = eVβ. (3)

For superconducting contact 3, an electron arriving from the
upstream contact 2 can leave as a normally reflected electron
with a probability of Pe, or as an Andreev-reflected hole with
a probability of Ph. The electron can also be absorbed and

FIG. 1. Sketches of QH devices with one superconducting con-
tact and multiple normal contacts. (a) The device is in QH regime
with only one QH edge state propagating clockwise. The shaded
contact (3) is superconducting and others are normal. CAES along
the superconducting contact convert an upstream electron into a
downstream electron or hole. (b) Two QH edge states are present
(e.g., belonging to different Landau levels). The inner channels are
reflected back by the gates (blue dotted rectangles).

emitted by the subgap states of the nonideal superconductor,
so Pe + Ph does not have to be equal to 1. These probabilities
are determined by the microscopic properties of the super-
conductor and their properties are being actively explored. In
the following, these probabilities will be extracted from the
experiment.

The distribution flowing downstream from contact 3 has
three contributions: the normally reflected electrons and An-
dreev reflected holes originating from contact 2, and the
electrons originating from the subgap states of contact 3:

n3(E ) = Pe f0(E − μ2) + Ph f0[E − (2eV3 − μ2)]

+ (1 − Pe − Ph) f0(E − eV3), (4)

where f0(E − μ) is the Fermi occupation with a chemical
potential μ.

We approximate n3(E ) by an effective distribution f0(E −
μ3), where μ3 is chosen so that the two distribution
would contain the same number of electrons:

∫
f0(E −

μ3)dE = ∫
n3(E )dE . This yields μ3 = (1 − Pe + Ph)eV3 +

(Pe − Ph)μ2. As argued above, f0(E − μ3) correctly describes
the current flowing from contact 3 to contact 4.

We next introduce the generalized reflection coefficient,
P = Pe − Ph, defined as the difference between the normal
and Andreev reflection probabilities. The expression for the
chemical potential then simplifies to

μ3 = (1 − P)eV3 + Pμ2, (5)

where the first term describes the electrons originating from
contact 3, while the second term corresponds to the normal
and Andreev reflections of the electrons arriving from contact
2. We further rewrite this expression as

δμ3 = eδV3 + eP(δV2 − δV3). (6)
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The device is in the quantum Hall (QH) regime with an
edge state propagating clockwise. The scattering matrix of the
QH region gives

Aα
ββ = δα,β − δα−1,β . (7)

Here, we use circular indexing, i.e., index 0 refers to contact
4 and index 5 refers to contact 1.

Plugging Eqs. (7), (3), (6) into Eq. (2) gives⎛
⎜⎜⎜⎜⎝

δI1

δI2

δI3

δI4

⎞
⎟⎟⎟⎟⎠ = e2

h

⎛
⎜⎜⎜⎜⎝

1 0 0 −1

−1 1 0 0

0 −(1 − P) 1 − P 0

0 −P −(1 − P) 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δV1

δV2

δV3

δV4

⎞
⎟⎟⎟⎟⎠.

(8)

The sum of the elements of the conductance matrix in each
column and row is zero, confirming current conservation and
the absence of current flow in equilibrium. This result has
been previously presented in the Supplemental Material to our
experiment [30].

In experiments, one typically injects current excitation,
δI , from one contact to another while measuring the voltage
responses from which the differential resistances can be cal-
culated. We define the differential resistance between a pair of
contacts i and j while flowing δI from contact k to l as

Rlk,i j = δVi − δVj

δI
. (9)

As an example, we consider injecting current at contact
1 while grounding the superconducting contact. The bound-
ary condition is (δI1, δI2, δI3, δI4) = (δI, 0,−δI, 0). Solving
Eq. (8), we obtain the Hall resistance, RH , and the downstream
resistance, RD:

RH = R31,24 = h

e2
, (10)

RD = R31,43 = RH
P

1 − P
. (11)

RH does not depend on P and remains quantized. RD deviates
from zero and has a nonlinear dependence on P. The sign
of RD is the same as P, i.e., positive if the particles flowing

downstream are mostly electrons and negative if holes dom-
inate. The maximum of RD is infinity, corresponding to an
insulating interface. The minimum RD is equal to −RH/2,
agreeing with perfect Andreev conversion, which doubles the
interface conductance. Oscillations of RD around zero to-
gether with quantized RH while tuning P have been observed
in previous experiments [30,44]. Note that Eq. (11) provides
a convenient way of determining P in experiments, i.e.,

P = RD

RD + RH
. (12)

III. MULTIPLE EDGE STATES

When there are multiple Landau levels, we need to con-
sider the current contribution from each corresponding edge
state i separately. Eq. (2) becomes

δIα =
∑

i

δIαi (13)

δIαi = e

h

∑
β j

g jA
αi
β jβ jδμβ j, (14)

where the tensor Aαi
β jβ j is obtained via the scattering matrices,

Aαi
β jγ k = δαβδαγ δi jδik − s†

αi,β j sαi,γ k . (15)

Here, indices α and β refers to the leads, i, j refer to the Lan-
dau levels, and g j is the degeneracy of Landau level j. Note
that the chemical potentials μβ j of the different edge states
j leaving the same contact β are assumed to be generally
different from each other.

To illustrate the effect of a superconductor contacting mul-
tiple Landau levels, we consider a device shown in Fig. 1(b).
Contact 3 is a superconductor and others are normal metals.
For simplicity, we consider the lowest two Landau levels of
graphene, where outer channel corresponds to the first Landau
level with the degeneracy g1 = 2 and the inner one corre-
sponds to the second Landau level with g2 = 4. The electron
density in the gray regions is lower, allowing only the outer
edge to transmit. In this geometry, Eq. (14) gives

⎛
⎜⎜⎜⎜⎜⎜⎝

δI1

δI2

δI3

δI4

δI5

⎞
⎟⎟⎟⎟⎟⎟⎠

= e

h

⎛
⎜⎜⎜⎜⎜⎜⎝

g1δμ11 + g2δμ12 0 0 0 −(g1δμ51 + g2δμ52)

−g1δμ11 g1δμ21 0 0 0

−g2δμ12 −g1δμ21 g1δμ31 + g2δμ32 0 0

0 0 −g1δμ31 g1δμ41 0

0 0 −g2δμ32 −g1δμ41 g1δμ51 + g2δμ52

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16)

where δμα �=3,i = eδVα for the normal contacts. For the super-
conducting contact, the generalized reflection coefficient is a
2 × 2 matrix, P = (Pi j ), where Pi j is the difference between
the normal and Andreev reflection probabilities from Landau
level j to i. For convenience, we define the total generalized

reflection coefficient for an electron initially on Landau level
j as Pj = ∑

i Pi j . Considering various normal and Andreev
reflection processes, Eq. (6) becomes

δμ3i = eδV3 + Pi1(δμ21 − eδV3) + Pi2(δμ12 − eδV3). (17)
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FIG. 2. (a) Optical image of the device. The filling factor under the top gates (LTG and RTG) is ν = 2. The filling factor outside is tuned to
ν = 6 by a global Si gate (BG) underneath the substrate. Contact 3 is a superconductor (MoRe) and other contacts are normal metals (Cr/Au).
(b) R(13)2,53, R(23)1,53, R31,53, and R21,53 (from top to bottom) measured as a function of VRTG and VBG. VBG is tuned inside the range of ν = 6
plateau and VRTG is maintaining ν = 2 underneath. (c) R(23)1,53 + R(13)2,53/3 (top) and R(23)1,53 − 2R(13)2,53/3 (bottom) plotted vs. VRTG and VBG.
The two maps agree well with R31,53 and R21,53 in (b).

Plugging the expression of δμαi into Eq. (16) gives⎛
⎜⎜⎜⎜⎜⎜⎝

δI1

δI2

δI3

δI4

δI5

⎞
⎟⎟⎟⎟⎟⎟⎠

= e2

h

⎛
⎜⎜⎜⎜⎜⎜⎝

g1 + g2 0 0 0 −(g1 + g2)

−g1 g1 0 0 0

−g2(1 − P2) −g1(1 − P1) g1 + g2 − g1P1 − g2P2 0 0

−g2P12 −g1P11 −g1(1 − P11) + g2P12 g1 0

−g2P22 −g1P21 −g2(1 − P22) + g1P21 −g1 g1 + g2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

δV1

δV2

δV3

δV4

δV5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

We first look at the voltage response at contact (5) while
leaving contact (4) floating. In this case, all the particles com-
ing out of the superconducting contact (3) are collected by (5).
We are interested in measuring the downstream voltage V53 in
the following biasing configurations:

(1) R31,53: injecting current from (1) to grounded (3);
(2) R21,53: injecting current from (1) to grounded (2);
(3) R(13)2,53: injecting from (2) while grounding both (1)

and (3);
(4) R(23)1,53: injecting from (1) while grounding both (2)

and (3).
Note that in order to indicate multiple grounded con-

tacts, we group them in parentheses in the subscript. Solving
Eq. (18) with corresponding boundary conditions, we obtain

R(13)2,53 = h

6e2
P1 (19)

R(23)1,53 = h

6e2

2P2

3 − 2P2
(20)

R31,53 = h

6e2

P1 + 2P2

3 − (P1 + 2P2)
(21)

R21,53 = h

6e2

2(P2 − P1)

3 − (P1 + 2P2)
. (22)

To examine these relations, we fabricate a graphene device
[see Fig. 2(a)] to realize the configuration in Fig. 1(b). The
superconducting contact 3 is made of sputtered MoRe alloy
and the normal contacts are made of thermally evaporated
Cr/Au. The device is in the QH regime at an external magnetic
field of 2.5 T. We apply a positive voltage, VBG, to the Si gate
(BG) underneath the SiO2 insulator to tune the bulk of the
device to a filling factor ν = 6. Negative voltages VRTG and
VLTG are then applied to the local top gates (LTG and RTG) to
deplete the regions underneath to a filling factor ν = 2. The
temperature of the device is 40 mK.

R(13)2,53, R(23)1,53, R31,53, and R21,53 measured in this device
are plotted in Fig. 2(b) as a function of VRTG and VBG. The
detailed understanding of the observed signal dependencies on
the gate voltages is not required. However, qualitatively, BG
controls the Peh patterns of the first and second Landau levels,
while RTG controls the mixing of these two Landau levels
before they arrive at the SC contact. All the configurations
chosen here do not depend on the LTG. In the following, we
cross check the patterns presented in Fig. 2(b) in order to
check the validity of our analysis.

For all the four differential resistances, VBG strongly affects
the oscillation patterns. This is because VBG directly tunes the
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electron density nearby the superconductor and therefore af-
fects Peh. In contrast, VRTG locally controls the electron density
underneath the top gate and has no effect on the electron den-
sity near the superconductor. Naively, one would expect that
VRTG should not influence the oscillation patterns. However,
this is only true for R31,53 [third panel in Fig. 2(b)], where the
inner and outer edge states are in equilibrium before reaching
the superconductor. In the other biasing schemes, the two edge
states have different chemical potentials and their scattering,
influenced by VRTG, affects the results of the measurement.

Inter-Landau-level scattering mixes the various scattering
channels together and hinders the characterization of indi-
vidual Pi j . However, Eqs. (19)–(22) are still effective if we
include the effects of inter-Landau-level scattering into the
definition of the generalized reflection coefficients, effectively
making Pi j dependent on VRTG.

Note that R(13)2,53, R(23)1,53, R31,53, and R21,53 are all
much smaller than h/6e2, suggesting |P1,2| � 1, likely
due to the electron absorption by the superconduct-
ing vortices [44]. In this case, Eqs. (19)–(22) ap-
proximates to R(13)2,53 ≈ (h/6e2)P1, R(23)1,53 ≈ (h/6e2)2P2,
R31,53 ≈ (h/6e2)(P1 + 2P2)/3, and R21,53 ≈ (h/6e2)2(P2 −
P1)/3. Therefore, we have

R31,53 ≈ R(23)1,53 + R(13)2,53

3
(23)

R21,53 ≈ R(23)1,53 − 2R(13)2,53

3
. (24)

The quantities at the right-hand side of the above equations are
directly extracted from the two top panels of Fig. 2(b) and are
plotted in Fig. 2(c). They should be compared to the two bot-
tom panels of Fig. 2(c) representing R31,53 and R21,53 obtained
in the experiment. Indeed the two pairs of maps [Fig. 2(c) and
the bottom two in Fig. 2(b)] show an excellent agreement in
the full range of gate voltages.

IV. MULTIPLE SUPERCONDUCTING CONTACTS

Next, we consider the case of several superconducting
contacts. For simplicity, we consider only one QH edge state.
We describe all the scattering processes on the level of prob-
abilities, thereby neglecting any coherent effects involving
multiple contacts. However, within this approximation, the
successive reflections from multiple contacts are treated ac-
curately. An example of a step-by-step consideration for the
case of two successive superconducting contacts is presented
in the Appendix.

Here, we start with Eq. (5), which is generalized to multiple
superconducting contacts as

μα = (1 − Pα )eVα + Pαμα−1. (25)

This expression allows us to directly relate μα−1 and μα ,
the effective chemical potentials upstream and downstream of
contact α, without having to track the chains of reflections
from multiple contacts.

We next consider a device in which all contacts are super-
conducting. Eq. (7) is still valid, i.e.,

δIα = e

h
(δμα − δμα−1). (26)

Eliminating δμα−1 between the last two equations, we have

eδVα = δμα + Pα

1 − Pα

h

e
δIα. (27)

For a floating contact α, δIα = 0 results in eδVα = δμα . Note
that this is the property of a normal contact. A supercon-
ducting contact can thus be used as a good voltage probe
(infinite impedance) in the QH regime if it is contacting
a single edge state (or multiple mutually equilibrated edge
states). This means, once again, that the Hall resistance re-
mains quantized, RH = h/e2, even if it is measured between a
pair of superconducting contacts. Eq. (27) also suggests that a
superconducting contact α of Pα = 0 effectively behaves like
a normal contact. All the results obtained in the following are
then applicable to hybrid devices by simply setting Pα = 0 if
α is normal.

We first calculate the two-terminal differential resistances,
Rji,i j (i �= j). The boundary condition is δIi = δI , δI j = −δI ,
and δIα = 0 for α �= i, j. Since the floating contacts have
δμα = δμα−1(α �= i, j), we obtain from Eq. (25) for biased
contacts i, j:

eδVi = δμi − Piδμ j

1 − Pi
(28)

eδVj = δμ j − Pjδμi

1 − Pj
. (29)

In combination with Eq. (27), we solve

Rji,i j = RH
1 − PiPj

(1 − Pi )(1 − Pj )
. (30)

Interestingly, the two-terminal resistance continuously ap-
proaches zero as the Andreev conversion of both contacts
nears unity, i.e., Pi, Pj → −1. We emphasize that this is not
a Josephson effect [45,46], as the phases of the contacts are
assumed to be uncorrelated. Instead, the vanishing resistance
indicates that in this limit the dissipation is turned off. The ab-
sence of dissipation here has two microscopic reasons. First,
the absence of backscattering in the QH regime makes sure
that there is no equilibration between the carriers traveling in
opposite directions along the two different QH edges. Second,
the perfect Andreev conversion at the QH-S interfaces ensures
that there is no dissipation at these intersections.

Assuming i �= j + 1, the voltage of the contact at the
downstream of the grounded contact j is, eδVj+1 = δμ j+1 =
δμ j . Equation (27) gives e(δVj+1 − δVj ) = δI (h/e)Pj/(1 −
Pj ), from which we obtain the downstream resistance

Rji, j+1 j = RH
Pj

1 − Pj
, (31)

recovering the results of Eq. (11). Note that the downstream
resistances do not depend on which contact is injecting
current, providing a convenient way of characterizing the
generalized reflection coefficient P of each superconducting
contact separately.

To check the results of Eqs. (30) and (31), we studied a
sample with four superconducting contacts made of a bilayer
graphene [see inset of Fig. 3(a)]. We apply an external mag-
netic field of 2 T and study the QH state with ν = 4, where
RH = h/4e2. The electron density of the device is controlled
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FIG. 3. (a) R24,32 and R31,43 of a bilayer graphene device with four superconducting contacts (inset) plotted vs. VBG. The gate voltage spans
over the lowest Landau level (ν = 4) plateau. (b) R23,32 vs. RH + R24,32 + R31,43 as a function of VBG. The two differential resistances agree
well. The temperature of the device is 60 mK.

by the voltage, VBG, applied to the Si back gate (BG). Fig-
ure 3(a) plots two downstream resistances R24,32 and R31,43

measured as a function of VBG. The observed downstream re-
sistances are much smaller than RH , suggesting |P2|, |P3| � 1.
We then have

R24,32 ≈ RH P2, R31,43 ≈ RH P3 (32)

R23,32 ≈ RH (1 + P2 + P3) ≈ RH + R24,32 + R31,43. (33)

In Fig. 3(b), we plot R23,32 together with RH + R24,32 + R31,43

and indeed, they agree well with each other over the full range
of VBG.

V. OUTLOOK

The results presented in this paper show that our approach
captures the main features of the representative nonlocal resis-
tance measurements in hybrid superconductor-QH samples. In
the following, we discuss future experiments that could either
reveal the limitation of our approach or further probe the limits
of its validity.

At the core, our approach neglects the phases of su-
perconductors for a certain type of nonlocal resistance
measurements. This assumption allows us to treat the super-
conducting electrodes in a similar way to normal electrodes
and to combine their generalized reflection probability with
the scattering matrix of the normal QH region. In contrast to
generic hybrid superconducting structures [41], this assump-
tion is rather natural for QH systems with multiple electrodes.
Indeed, in the absence of backscattering, the information
about the phase of the superconductor is typically lost in
the downstream contacts. This is especially true when the
downstream contacts are normal (Fig. 1). However, even when
only superconducting contacts are present (Fig. 3), the phase
information would have to travel around the circumference of
the sample to return back to the origin. Specifically, the phases
of the particles flowing in and out of the superconducting
contacts are assumed to be not correlated, in the style of the
BTK approximation [47].

There are still several scenarios in which the supercon-
ducting phase coherence could matter due to the interference

effects. Most straightforwardly, such interference can occur
if the superconducting contact is placed along the edge of a
QH interferometer, so that following the Andreev or normal
reflection the particles would loop back to the same con-
tact [48]. We are currently exploring the coherence length of
the chiral Andreev edge states (CAES) propagating along the
QH edge states [44]. Placing a superconducting contact inside
a QH interferometer would be a natural step for testing the
phase coherence of the CAES. The effect of superconducting
vortices on the phase coherence of these states is particularly
intriguing [36,38,40].

Finally, for a QH structure with two superconducting elec-
trodes, the appearance of supercurrent clearly violates the
assumptions of this paper [49–51]. In samples with more
than two contacts, the supercurrent could be induced by
propagating the phase information either outside of chiral
channels [45], or around the circumference of the sample as
mentioned earlier.
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APPENDIX: CONSIDERATION OF SUCCESSIVE
ANDREEV CONVERSION

As an example, here we consider the extension of
Eq. (4) to the situation where a normal contact 1 is
followed by two superconducting contacts 2 and 3.
The electron distribution downstream of contact 2 is

given by Eq. (4): f (E ) = P2,e f0(E − eV1) + P2,h f0(E +
eV1 − 2eV2) + (1 − P2,e − P2,h) f0(E − eV2), with an
effective μ2 = (1 − P2,e + P2,h)eV2 + (P2,e − P2,h)eV1 =
(1 − P2)eV2 + P2eV1.

Upon reflections and partial absorption/emission by con-
tact 3, the distribution becomes:

f (E ) = P2,eP3,e f0(E − eV1) + P2,eP3,h f0(E + eV1 − 2eV3) + P2,hP3,e f0(E + eV1 − 2eV2)

+ P2,hP3,h f0(E − eV1 + 2eV2 − 2eV3) + P3,e(1 − P2,e − P2,h) f0(E − eV2)

+ P3,h(1 − P2,e − P2,h) f0(E + eV2 − 2eV3) + (1 − P3,e − P3,h) f0(E − eV3). (A1)

Here, the first four terms describe the normal and Andreev
reflections of the electron distribution coming from contact 1;
the next two terms describe electrons coming from contact 2
being reflected by contact 3; and the last term describes the
electrons originating in contact 3. Integrating over the energy
and simplifying the expression, the effective chemical poten-
tial of this distribution acquires a very natural form: μ3 =
(1 − P3)eV3 + P3(1 − P2)eV2 + P2P3eV1. We can interpret this
expression as a result of reflecting the upstream distribution by

successive contacts, e.g., the P2P3eV1 term corresponds to the
electrons coming from contact 1 being reflected by contacts 2
and 3.

Furthermore, we can rewrite this expression as μ3 = (1 −
P3)eV3 + P3μ2. Qualitatively, this means that for the purpose
of tracking the current, the electrons arriving at contact 3 with
an effective chemical potential μ2 are reflected to the electrons
leaving contact 3 with a probability P3.
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