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Unconventional transport properties in systems with triply degenerate quadratic band crossings
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A quadratic band crossing (QBC) is a crossing of two bands with quadratic dispersion, which has been
intensively investigated due to its appearance in Bernal-stacked bilayer graphene. Here, we study an extension
of QBCs, the triply degenerate quadratic band crossing (TQBC), which is a three-band crossing node containing
two quadratic dispersing bands and a flat band. We focus on two types of TQBCs. The first type contains a
symmetry-protected QBC and a free-electron band, the prototype of which is the AA-stacked bilayer square-
octagon lattice. In a magnetic field, such a TQBC exhibits an anomalous Landau level structure, leading to a
distinctive quantum Hall effect, which displays an infinite ladder of Hall plateaus when the chemical potential
approaches zero. The other type of TQBC can be viewed as a pseudospin-1 extension of the bilayer-graphene
QBC. Under perturbations, this type of TQBCs may split into linear pseudospin-1 Dirac-Weyl fermions. When
tunneling through a potential barrier, the transmission probability of the first type decays exponentially with the
barrier width for any incident angle, similar to the free-electron case, while the second type hosts an all-angle
perfect reflection when the energy of the incident particles is equal to half the barrier height.
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I. INTRODUCTION

The band crossings between conduction and valence bands
in the electronic band structure of crystalline materials may
exhibit some exotic physics, which has stimulated an enor-
mous interest in recent years. The most well-known band
crossings are Dirac and Weyl fermions that have been exten-
sively studied at theoretical [1–10] and experimental [11–16]
levels. One remarkable example is graphene [17–20], a single
layer of carbon atoms arranged on a honeycomb lattice. In
graphene, the unique configuration of carbon lattice generates
a linear band crossing at each corner of the hexagonal Bril-
louin zone (BZ), and the band crossing can be viewed as a
massless Dirac fermion with pseudospin-1/2 and described
by a 2×2 Dirac Hamiltonian H = h̄vF k · σ, where vF is the
Fermi velocity and σ = (σx, σy, σz ) is a vector of the Pauli
matrices [21,22].

Dirac-Weyl (DW) fermions with pseudospin-1 have also
been explored in some two-dimensional (2D) lattices, such as
the star lattice, which may be realized in the polymeric iron
(III) acetate [23,24], and Lieb lattice [25–27] and T3 lattice
[28], which can be realized in optical lattices. Such a triply
degenerate linear band crossing can be described by a 3×3
DW Hamiltonian H ′ = h̄vF k · S, where S = (Sx, Sy, Sz ) is a
vector of the spin-1 matrices satisfying the angular momen-
tum algebra [Si, S j] = iεi jkSk . In comparison with graphene,
systems with higher pseudospins may possess some distinc-
tive features. For instance, in graphene, Klein tunneling occurs

*wangly@szu.edu.cn
†yaodaox@mail.sysu.edu.cn

when the massless Dirac fermions are normally incident to
a potential barrier, independent of the barrier width [29–32].
In a magnetic field, the unique zero-energy Landau level of
graphene leads to an anomalous quantum Hall effect with a
half-integer Hall conductivity [33–35]. The pseudospin-1 DW
fermion, by contrast, has no anomalous quantum Hall effect,
since its zero-energy Landau level is nontopological [36,37],
but presents an all-angle Klein tunneling when the energy of
the incident electrons is half the barrier height [38,39]. In
addition, systems with pseudospin-1 DW fermions also show
particle localization, originating from its flat band [26].

Besides the linear band crossings, quadratic band crossings
(QBCs) have also been investigated [40–45]. In fact, in 2D, the
QBC is robust if the system hosts time-reversal symmetry and
C4 or C6 rotational symmetry [42,46]. A symmetry-protected
QBC carries a winding number of 2, and may split into
two Dirac points each with winding number 1 when the
rotational symmetry is broken down to C2, or three satel-
lite Dirac points each with winding number 1 and a central
Dirac point with winding number −1 when leaving a three-
fold rotational symmetry unbroken [46–49]. That is, the total
winding number is preserved. Materials hosting QBCs have
also been proposed, such as the FeAs-based materials [50]
and Bernal-stacked bilayer graphene [51–55], the latter pre-
senting a QBC at each corner of its hexagonal BZ, which
can be viewed as a massive chiral fermion. Compared with
the single-layer graphene, the bilayer produces a nonzero
integer quantum Hall effect owing to the double degeneracy
of its zero-energy Landau level, which has been experimen-
tally confirmed [53]. In addition, the transmission probability
of bilayer-graphene electrons through potential barriers has
also been extensively calculated [30,56,57], which decays
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exponentially with the barrier width for normally incident
electrons.

Recently, a triply degenerate QBC (TQBC) is discovered
in AA-stacked bilayer octagraphene [58], each layer of which
is a square-octagon lattice. In this paper, we study the band
structure of this system, focusing on the TQBC. We find that
the TQBC is an accidental touching between a QBC and a
free-electron band, which requires fine tuning to occur. We
call the band crossing type-I TQBC. The QBC part includes
a singular flat band (SFB) [59], and is protected by time-
reversal and C4 symmetries [60]. Different from the case in
pseudospin-1 DW fermions [61–64], the QBC and the free-
electron band are decoupled in the TQBC. As a consequence,
the barrier tunneling for the TQBC can be broken down
into two independent tunneling processes, i.e., tunnelings of
QBCs and 2D free electrons. And so is the quantum Hall
conductivity.

In a magnetic field, the SFB of the QBC part exhibits an
anomalous Landau level structure and produces an infinite
ladder of Hall plateaus in the Hall conductivity. We note that
such a QBC with an SFB and its anomalous Landau level
structure can appear in kagome lattices [65]. Various mate-
rials with kagome-lattice structure hosting SFBs have been
reported [66–69]. In particular, several candidate materials
hosting almost perfect SFBs have also been proposed, such
as the cyclic graphyne and cyclic graphdiyne [70]. We expect
that the distinctive quantum Hall effect originating from the
SFB of type-I TQBCs may be probed experimentally in the
kagome-lattice materials mentioned above. Besides, similar
to the free electrons, the transmission probability of the type-I
TQBC through a potential barrier decays exponentially with
the barrier width.

We also study another type of TQBCs, which is called
type-II TQBCs. The effective model is obtained by extending
the effective model for the QBC of the Bernal-stacked bilayer
graphene on pseudospins. A type-II TQBC may split into
several linear pseudospin-1 DW fermions under perturbations,
and presents a similar Hall conductivity as the pseudospin-1
DW fermion system in both the gapless and gapped cases [37].
Remarkably, when tunneling through a sufficiently wide bar-
rier, type-II TQBCs exhibit zero transparency for any incident
angle when the energy of incident particles is equal to half the
barrier height.

II. MODELS

A. Bilayer square-octagon lattice

The unit cell of the square-octagon lattice contains four
sites that form a square as shown in Fig. 1(a). From another
point of view, eight sites in the lattice form an octagon, which
is analogous to the hexagon in honeycomb lattice. A single
layer of carbon atoms arranged on a square-octagon lattice
is known as the octagraphene [71,72], and high supercon-
ducting transition temperatures have been predicted in both
the single-layer [73] and multilayer [58] systems. Here, we
consider a tight-binding (TB) model in the AA-stacked bilayer
square-octagon lattice. The intralayer hoppings t1, t2, and t3
shown in Fig. 1(a), and the interlayer nearest-neighbor (NN)
hopping t⊥, are considered. Therefore, the TB Hamiltonian

FIG. 1. (a) The square-octagon lattice. Band structures of the
AA-stacked bilayer square-octagon lattice along the kx axis are
shown for (b) t2 = t1 and t⊥ = 0.2t1, (c) t2 = 1.1t1 and t⊥ = 0.2t1,
and (d) t2 = 1.2t1 and t⊥ = 0.2t1. The inset of (b) shows the band
structure along �M, and a TQBC can be seen in the red circle in (d).

reads

HT B = −
∑
i j,σ

ti jc
†
iσ c jσ + H.c., (1)

where c†
iσ (ciσ ) creates (annihilates) an electron with spin σ

at site i, ti j = t1 for intracell NN hopping, ti j = t2 for inter-
cell NN hopping, ti j = t3 for intracell next-nearest-neighbor
(NNN) hopping, and ti j = t⊥ for interlayer NN hopping. The
band structures of HT B can be obtained by diagonalizing the
Bloch Hamiltonian in momentum space,

Hbi(k) =
(

Hsi(k) t⊥I4×4

t∗
⊥I4×4 Hsi(k)

)
, (2)

where I4×4 is the 4×4 identity matrix, Hsi(k) is the Bloch
Hamiltonian of a single-layer square-octagon lattice and ob-
tained by taking Fourier transform of TB Hamiltonian (1) with
vanishing t⊥.

In Ref. [58], Li et al. studied electronic structures of
single-layer and multilayer octagraphene by the density-
functional theory (DFT) calculations, and proposed tight-
binding models to simulate the DFT-calculated results for
the single-layer and multilayer. By energy-band fitting, they
obtained hopping amplitudes t1 = 2.685 ± 0.021 eV, t2 =
3.001 ± 0.016 eV, t3 = 0.558 ± 0.016 eV, and t⊥ = 0.184 ±
0.011 eV for the bilayer-octagraphene model. They also
pointed out that a TQBC (type-I) emerges in band structures
of the bilayer when t1 + t⊥ = t2 + t3. Similar DFT-calculated
results and a tight-binding model that contains only NN
hoppings (t1 = −2.5 eV, t2 = −2.9 eV) for the single-layer
octagraphene have also been presented in Ref. [72]. In this
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paper, we set the NN hopping t1 as the energy unit, and
for clarity, we choose a larger interlayer hopping t⊥ than
the one in the bilayer model of Ref. [58], as shown in
Fig. 1.

Firstly, for simplicity, we neglect the NNN hopping t3.
For a single layer, two pseudospin-1 DW fermions appear,
one at the BZ center �(0, 0) and one at the corner M(π , π )
when t2 = t1. Consider a nonzero t⊥ for the bilayer lattice.
Then two pseudospin-1 DW fermions emerge at � point and
another two at M point when t2 = t1, and the two fermions
at the same momentum host an energy difference �E = 2t⊥,
as shown in Fig. 1(b). When t2 is increased and is away from
t1 with t⊥ fixed, each pseudospin-1 DW fermion is gapped
in the way that the triply degenerate point decomposes into
a symmetry-protected QBC and a nondegenerate band [see
Fig. 1(c)], with the gap between them increasing with t2.
When t2 is increased to t1 + t⊥, two TQBCs emerge, one at
� point [shown in Fig. 1(d)] and the other at M point. Further
increasing t2 opens a gap between the original QBC and the
nondegenerate band. Therefore, the TQBC is essentially an
accidental touching between a QBC and a free-electron band,
with the two subsystems uncorrelated.

With finite t3, for the single-layer lattice, a pseudospin-1
DW fermion is located at � point or at M point when t2 = t1 +
t3 or t2 = t1 − t3, respectively. For the bilayer lattice, there are
still two TQBCs located at � and M when t2 + t3 = t1 + t⊥,
as was found in Ref. [58]. The reason is that the pseudospin-1
DW fermion may decompose into a QBC and a nondegenerate
band in different ways: A gap can open either between the
flat band and the upper band or between the flat band and the
lower band, depending on the sign of t2 − t1 [23].

The TQBC in the bilayer square-octagon lattice is named
type-I TQBC, and can be described by an effective Hamilto-
nian

HI (k) = − h̄2

4m

⎛
⎜⎜⎝

k2
x + k2

y (kx − iky)2 0

(kx + iky)2 k2
x + k2

y 0

0 0 −2
(
k2

x + k2
y

)
⎞
⎟⎟⎠,

(3)

which can be derived by k · p method from the TB model.
For simplicity, we have assumed the same effective mass
for the upper and lower dispersive bands. Clearly, the model
HI describes two decoupled subsystems, a QBC and a 2D
free-electron band. In the QBC, the flat band is singular ow-
ing to the discontinuity of its wave function at the crossing
point k = 0. Recently, such a singularity of the QBC struc-
ture has been directly probed via measuring the non-Abelian
transformation produced by transport directly through the
band crossing. The measurement was performed on ultracold
atoms in an optical honeycomb lattice and the topologi-
cal winding number 2 of the QBC has also been directly
identified [74]. We note that the left upper 2×2 Hamilto-
nian in Eq. (3), i.e., H2×2 ∝ d0I2×2 + dxσx + dyσy with d0 =
k2

x + k2
y , dx = k2

x − k2
y and dy = 2kxky, is equivalent to the

two-band effective Hamiltonian in Ref. [60] via an unitary
transformation.

B. Spin-1 extension of bilayer graphene

The QBC in Bernal-stacked bilayer graphene can be de-

scribed by an effective Hamiltonian HQ(k) = − h̄2

2m0
[(k2

x −
k2

y )σx + 2kxkyσy], where m0 ≈ 3.04688×10−13 eV/(m/s)2 is
the effective mass of dispersive quasiparticles [35,51]. Sub-
stituting the spin-1 matrices S for the Pauli matrices σ, we get
the Hamiltonian for type-II TQBCs,

HII (k) = − h̄2

2
√

2m

⎛
⎜⎜⎝

mz (kx − iky)2 0

(kx + iky)2 0 (kx − iky)2

0 (kx + iky)2 −mz

⎞
⎟⎟⎠.

(4)

Here we have taken into account a mass term mzSz, which can
gap the TQBC, resulting in Chern numbers +2, 0, and −2 for
the upper, middle, and lower band, respectively. In this model,
the eigenvector of the flat band is written as

v f b(k) = 1√
2k4 + m2

z

⎛
⎜⎜⎝

−(kx − iky)2

mz

(kx + iky)2

⎞
⎟⎟⎠ (5)

with k =
√

k2
x + k2

y . The flat band is singular for mz = 0 and
is nonsingular for mz �= 0 [75].

III. SPLITTING OF THE TQBC UNDER PERTURBATIONS

As mentioned in the Introduction, the symmetry-protected
QBC may split into two or four Dirac points when the rota-
tional symmetry is broken down to C2 or C3, respectively, but
the total winding number is conserved. Take for example the
bilayer graphene, the interlayer coupling γ3 leads to a trigonal
warping in its band structure, splitting the QBC three satel-
lite Dirac points each with winding number 1 and a central
Dirac point with winding number −1. Therefore, the total
winding number is 3 − 1 = 2, the same as that of the QBC
[47,49]. In the effective model of the bilayer graphene, the
splitting of QBC into four Dirac points can be reproduced by
considering a perturbation [51] h̄v3(kxσx − kyσy), where the
velocity v3 ∝ γ3, while the splitting into two Dirac points each
with winding number 1 can be reproduced by a perturbation
h̄v3(kxσx + kyσy).

For type-I TQBCs on the square-octagon lattice, when
a perturbation breaks the C4 symmetry down to C2, we
obtain similar results as for QBCs: two Dirac points with
winding number 1 emerge. Additionally, the free-electron
band touches the middle band, forming an accidental nodal
loop. For type-II TQBCs, a perturbation HF = h̄v(kxSx −
kySy) splits the TQBC into three satellite pseudospin-1 DW
fermions located at (−k0, 0) and (k0/2,±√

3k0/2), and a
central pseudospin-1 DW fermion located at (0, 0) (see
Fig. 2), where k0 = 2mv/h̄, which resembles the case of bi-
layer graphene. The type-II TQBC may also split into two
pseudospin-1 DW fermions, one located at (−k0, 0) and the
other at (0, 0) under the perturbation HT = h̄v(kxSx + kySy),
also resembling bilayer graphene.

The pseudospin winding number nw for a node can be
defined as the number of rotations (nw is positive for the
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FIG. 2. The pseudospin textures of the upper band of a type-
II TQBC under perturbations (a) HF and (b) HT . The red lines
are equienergy contours at E = 0.075 and the blue lines at with
E = 0.25. We have set h̄ = 2m = v = 1.

counterclockwise rotation) that a pseudospin vector under-
goes when the eigenvector rotates one time around the node
counterclockwise in the k-parameter space [48,64]. nw is easy
to extract from the pseudospin textures of an effective model.
As shown in Fig. 2, the arrows, the mapping vector of pseu-
dospins, are defined as (〈ukλ|Sx|ukλ〉, 〈ukλ|Sy|ukλ〉) where ukλ

is the periodic part of the Bloch wave function of the band
λ. For a type-II TQBC with the perturbation HF , we get the
winding number 1 for each satellite node and −1 for the
central node. On the other hand, under the perturbation HT ,
both two nodes carry the winding number 1. As we can see
in Figs. 2(a) and 2(b), the winding number is 2 along each
blue contour. We conclude that the total winding number is
conserved for both two perturbations.

It is well known that the Berry phase has a 2nπ uncertainty
since a gauge transformation can be made to the Bloch wave
functions,

|ukλ〉 → einζ (k)|ukλ〉 (6)

with ζ (k) = arg(kx + iky). In Ref. [47], the 2nπ uncertainty is
removed by a weak spin-orbit interaction, yielding the Berry
phase π for each satellite Dirac point and −π for the central
Dirac point. However, for model HII , we directly calculate the
Berry phase with respect to the band λ via γλ = ∮

CAλλ(k) ·
dk, where Aλλ(k) is the Berry connection. Eventually, under
gauge transformation (6), we obtain the Berry phase 2nπ with
respect to the upper band of the type-II TQBC. While when
considering the perturbation HF , the integral gives the Berry
phase 2π for contours surrounding each of the three satel-
lite pseudospin-1 DW fermions and 2(n − 3)π for a contour
around the central node. And under the perturbation HT , the
Berry phase is 2π for the satellite pseudospin-1 DW fermion
and 2(n − 1)π for the central fermion. In other words, for
both the two perturbations, when taking gauge transformation
(6) for the Bloch wave function of Hamiltonian (4), the 2nπ

uncertainty of Berry phase arises only on the central node. A
similar scenario can also be seen in graphene [48].

IV. LANDAU LEVEL STRUCTURE AND
UNCONVENTIONAL QUANTUM HALL EFFECT

A. Landau level structure

We calculate the Landau levels (LLs) for the two types
of TQBCs. Taking a vector potential A(r) = (−By, 0, 0) that

generates a homogeneous magnetic field B along z direction.
In a magnetic field, the canonical momentum should be re-
placed as P → � = P + eA(r) where P = h̄k. We introduce
ladder operators â = lB√

2h̄
(
x − i
y) and â† = lB√

2h̄
(
x +

i
y) with the magnetic length lB = √
h̄/e|B|, which satisfy

the commutation relation [â, â†] = 1.
We solve the eigenvalue equation HBψλ,n = Eλ,nψλ,n,

where HB is the Hamiltonian of the TQBC (type-I or II) in the
presence of a magnetic field expressed in terms of the ladder
operators, Eλ,n is the eigenvalue of the LLs, and ψλ,n is the
eigenvector. The band index λ = −1, 0, 1 indicates different
groups of LLs; in particular, λ = 0 corresponds to the LLs
originating from the flat band. The detailed calculations of
LLs of the two types of TQBCs are given in Supplemental
Material [76]. For type-I TQBCs, we obtain the LLs⎧⎪⎪⎨
⎪⎪⎩

EI
−1,n = h̄ωc

2

(
1
2 − n − √

n(n − 1) + 1
)
, n = 0, 1, 2, . . .

EI
0,n = h̄ωc

2

(
1
2 − n + √

n(n − 1) + 1
)
, n = 2, 3, 4, . . .

EI
1,n = h̄ωc

(
n + 1

2

)
, n = 0, 1, 2, . . .

,

(7)
and for type-II TQBCs with mz = 0,⎧⎪⎪⎨

⎪⎪⎩
EII

−1,n = −h̄ωc

√
n2 + n + 1, n = 0, 1, 2, . . .

EII
0,n = 0, n = −2,−1, 2, 3, . . .

EII
1,n = h̄ωc

√
n2 + n + 1, n = 0, 1, 2, . . .

, (8)

where ωc = eB/m. As can be seen from Eqs. (7) and (8),
for type-I TQBCs, the degeneracy of the flat band is lifted,
displaying a series of anomalous nonzero-energy LLs; by
contrast, for type-II TQBCs, the SFB in the gapless case has
no anomalous LL structure. This is guaranteed by the peculiar
structure of the eigenvector of the flat band Eq. (5) (with
mz = 0), in which one component is always zero [65]. Note
that the n = 0 and n = 1 levels are inexistent in the λ = 0
groups for both the two systems [77].

For HII with mz �= 0, the wave function can be written
as ψ II

λ,n = (l1|n − 2〉, l2|n〉, l3|n + 2〉)T . For n = {−1,−2},
we obtain l1 = l2 = 0 and l3 = 1 with EII

n=−2 = EII
n=−1 =

h̄2mz/(2
√

2m) = δh̄ωc, where δ = h̄mz/(2
√

2eB) is dimen-
sionless. For n = {0, 1}, one have l1 = 0, with the energies
being EII

n=0,1 = 1
2 h̄ωc(δ ±

√
2(n + 1)(n + 2) + δ2). The LLs

for n � 2 are solved from the Hamiltonian

H (n) = −h̄ωc

⎛
⎜⎜⎝

δ 1√
2
Mn 0

1√
2
Mn 0 1√

2
Mn+2

0 1√
2
Mn+2 −δ

⎞
⎟⎟⎠, (9)

where Mn = √
n(n − 1). Significantly, a constant mz gives the

levels EII
−1, EII

−2 independent of the magnetic field B, while, in
order to get a scalable Hall conductivity [see Fig. 4(b) below]
we consider the mz ∝ B, so in Fig. 3(b) (blue lines) the LLs
have linear relation with the magnetic field B. The blue levels
also elucidate that in the gapped state of the type-II TQBC,
the isolated flat band (IFB) has an anomalous Landau level
structure. We highlight the n = 2 levels in λ = 0 groups by
red lines for both types of TQBCs, as shown in Figs. 3(a) and
3(b), to indicate that LLs of these flat bands get closer and
closer to zero energy with increasing n.
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FIG. 3. The Landau levels as a function of the magnetic field B
for type-I (a) and type-II (b) TQBCs, where ω0 = eB0/m with any
specified magnetic field B0. The red lines indicate the n = 2 levels
in λ = 0 groups. In (b), the black lines correspond to δ = 0 and the
blue lines correspond to δ = 0.5.

An IFB is nonsingular and its response to the magnetic
field can be explained by considering a semiclassical B-linear
quantum correction μλ(k)B in the modified band structure
[78], where μλ(k) is the orbital magnetic moment of the λth
magnetic band in the z direction. For a zero-energy IFB, one
have

μλ(k) = − e

h̄
Im〈∂kx uλ(k)|H (k)|∂ky uλ(k)〉, (10)

with |uλ(k)〉 being the eigenvector of the IFB. In fact, the
semiclassical correction corresponds to the interband cou-
plings between the IFB and other bands [79]. The modified
band dispersion of the zero-energy IFB is estimated as

Eλ,B(k) = μλ(k)B = −eB

h̄
Im

∑
λ′ �=λ

ελ′ (k)χλ′λ
kxky

(k), (11)

in which

χλ′λ
kxky

(k) = 〈∂kx uλ(k)|uλ′ (k)〉〈uλ′ (k)|∂ky uλ(k)〉 (12)

is the fidelity tensor, ελ′ (k) is the energy of the λ′th band at
zero magnetic field, and 〈uλ′ (k)|∂iuλ(k)〉 = Aλ′λ

i (k) indicates
the cross-gap Berry connection between the λ′th and λth
bands (λ′ �= λ).

FIG. 4. The Hall conductivities measured in units of −e2/h as
a function of the chemical potential μ for type-I (a) and type-II
(b) TQBCs. In (b), the black and blue lines correspond to δ = 0 and
δ = 0.5, respectively.

For the IFB in gapped type-II TQBCs, the calculation gives
the modified band structure

E0,B(k) = −h̄ωc
2
√

2k2mz

2k4 + m2
z

. (13)

We note that Emax
0,B (k) = E0,B(k = 0) = 0 and Emin

0,B (k) =
E0,B(k = mz/

4
√

2) = −h̄ωc. These minimum and maximum
values of E0,B(k) correspond to the lower and upper bounds
for LLs of the IFB, respectively. However, this result is
valid only when the band gap Egap between the IFB and its
neighboring band at zero magnetic field is large enough, i.e.,
Egap � max|E0,B(k)|.

B. Unconventional quantum Hall effect

Next, we calculate the Hall conductivities for the two types
of TQBCs. The Hall conductivity at zero temperature is found
via the Kubo formula [77,80],

σxy = ig

2π h̄l2
B

∑
LL′s

fλn − fλ′n′

(Eλn − Eλ′n′ )2
〈ψ |Jx|ψ ′〉〈ψ ′|Jy|ψ〉, (14)

where g is the degeneracy factor, Jx(y) = e∂H/∂Px(y), |ψ〉 ≡
|λn〉 is the current operator, |ψ ′〉 ≡ |λ′n′〉 are the LL eigen-
states, fλn is the Fermi distribution function and the index LL′s
implies that the summation takes place over all initial and final
Landau states. We neglect the spin degree of freedom and the
valley degeneracy, so that g = 1 in Eq. (14).

For type-I TQBCs, the flat band generates a series of LLs
near E = 0. Therefore, when tuning chemical potential μ

from positive toward 0, the Hall conductivity first decreases
to zero and then exhibits an infinite ladder of plateaus. As the
chemical potential is further moved across 0, the conductiv-
ity suddenly changes to e2/h and then decreases, as shown
in Fig. 4(a). The similar phenomenon can also be observed
in type-II TQBCs when mz �= 0, whose Hall conductivity is
calculated numerically due to the fact that Eq. (9) can not be
solved analytically. As shown by the blue lines in Fig. 4(b),
when increasing chemical potential μ from negative toward
0, an infinite ladder emerges in the Hall conductivity. Tuning
μ further into a positive, the conductivity suddenly changes
to −2e2/h owing to the degeneracy of n = −1 and n = −2
levels. For type-II TQBCs with mz = 0, the zero-energy LL
is nontopological and has no contribution to the Hall con-
ductivity. Therefore, the Hall conductivity is located at the
zero-plateau when the chemical potential is near 0, as shown
in Fig. 4(b) by the black lines. Actually, type-II TQBCs shows
a similar behavior of Hall conductivity as pseudospin-1 DW
fermions in both the gapless and gapped cases [37].

V. BARRIER TUNNELING OF QUASIPARTICLES
NEAR TQBCs

In contrast to the tunneling of Dirac fermions in graphene
where Klein tunneling occurs only at normal incidence, the
barrier transmission of pseudospin-1 DW fermions exhibits
an all-angle perfect tunneling when the energy of incident
electrons is equal to half the barrier height [38]. Here, we
address the problem of barrier tunneling of quasiparticles in
the vicinity of TQBCs. The scattering region is shown in
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FIG. 5. Sketch of the scattering region with an electrostatic bar-
rier of width D and height V0. The barrier is infinite in the y direction.

Fig. 5, where an electrostatic barrier with height V0 is at
interval [0, D] in the x direction and extends infinitely in the y
direction.

A. Barrier tunneling of quasiparticles near type-I TQBCs

As discussed above, a type-I TQBC consists of two de-
coupled subsystems, a symmetry-protected QBC and a 2D
free-electron band. For the sake of simplicity, here we assume
the energy of incident particles in both the two subsystems
to be E = h̄2k2/2m, with incident wavevector k(kx, ky). The
wave function of model HI is written in the form ψ I (x, y) =
[ϕL(x), ϕM (x), ϕR(x)]T eikyy. First, we consider the case of E <

V0. In region (i) (see Fig. 5), the wave function is composed
of incoming and outgoing plane waves,

ψ I
1 (x, y) =

⎛
⎜⎜⎝

aeikxx + be−ikxx

aeikxx+2iθ + be−ikxx−2iθ

a′eikxx + b′e−ikxx

⎞
⎟⎟⎠eikyy. (15)

Inside the barrier where 0 � x � D, the wave function includes
only evanescent waves,

ψ I
2 (x, y) =

⎛
⎜⎜⎝

ceκxx + de−κxx

cξeκxx + d
ξ

e−κxx

c′eκxx + d ′e−κxx

⎞
⎟⎟⎠eikyy. (16)

In region (iii) where x > D, the reflected waves vanish, so the
wave function is written as

ψ I
3 (x, y) =

⎛
⎜⎜⎝

teikxx

teikxx+2iθ

t ′eikxx

⎞
⎟⎟⎠eikyy. (17)

In Eqs. (15)−(17), θ = arctan (ky/kx ) is the incident angle,

h̄kx = √
2mE cos θ , κx =

√
2m(V0 − E )/h̄2 + k2

y , ξ = (κx −
ky)2/(κ2

x − k2
y ), and t and t ′ are the transmission coefficients

for the QBC subsystem and 2D free electrons, respectively.
Integrating the eigenvalue equation HIψ

I = Eψ I over the
small interval x ∈ [−ε, ε] along the x direction and letting ε

eventually go to zero yields

[ϕL(x) + ϕM (x)]|ε−ε = 0, (18a)

∂x[ϕL(x) + ϕM (x)]|ε−ε = 2kyϕL(x)|ε−ε, (18b)

ϕR(x)|ε−ε = 0, (18c)

∂xϕR(x)|ε−ε = 0 (18d)

FIG. 6. Transmission probabilities T through a 50-nm-wide bar-
rier, with energy E = 15 meV and barrier height V0 = 50 meV. (a) T
as a function of the incident angle for the QBC subsystem (solid) and
2D free electrons (dashed). The red lines are for m = m0/1000 and
the blue lines are for m = m0/100. (b) T as a function of the width D
of the barrier for normally incident particles. In this case, type-I and
type-II TQBCs have equal T under the same parameters. The red line
is for m = m0 and the green line is for m = m0/10.

where f (x)|ε−ε = f (ε) − f (−ε). At the barrier boundaries
x = 0 and x = D, both components of the wave function and
their derivatives should satisfy the continuity conditions. As
we can see in the wave function of model HI , both the spinor
components ϕL and ϕM are irrelevant to ϕR. As a consequence,
particles in the free-electron band cannot go into the QBC
subsystem via the Klein tunneling, and vice versa.

Substituting the components of the wave function given
in Eqs. (15)−(17) and their derivatives into Eq. (18), we
can get eight linear equations, while only the four of them,
corresponding to Eqs. (18a) and (18b), determine the tunnel-
ing of QBCs, and the other four equations, corresponding to
Eqs. (18c) and (18d), give the transmission coefficient of the
2D free electrons. Finally, the transmission coefficient for the
QBC subsystem is

t =
⎡
⎣�+

2
+

[
κ2

x k2 − (
κ2

x − k2
y

)2]
cos θ + κ2

x k2
y sec θ

4iκxk
(
κ2

x − k2
y

) �−

⎤
⎦

−1

,

(19)
where �+ = eκxD + e−κxD and �− = eκxD − e−κxD. For 2D
free electrons, the transmission coefficient t ′ reads

t ′ = 4ikxκx

(κx + ikx )2e−κxD − (κx − ikx )2eκxD
. (20)

The transmission probabilities T = |t |2 as a function of the
incident angle for the QBC subsystem and 2D free electrons
are shown in Fig. 6(a). The two subsystems show similar
tunneling properties, that is, the transmission probabilities
decay exponentially with the barrier width for any incident
angle, and are inversely proportional to the effective mass
of quasiparticles. We plot the transmission probability for

115412-6



UNCONVENTIONAL TRANSPORT PROPERTIES IN … PHYSICAL REVIEW B 109, 115412 (2024)

m = m0/1000 and m = m0/100 in Fig. 6(a). In particular,
for normally incident particles, i.e., ky = 0, the transmission
coefficients in Eqs. (19) and (20) coincide.

In the QBC subsystem, the flat band with Ek = 0 prompts
us to study a special case corresponding to E = V0. Firstly, we
consider the normally incident particles, the wave function in
the barrier is

ψ I
2 (x) =

∑
q

αq

(
eiqx

−eiqx

)
+

∑
κ

βκ

(
eκx

−eκx

)
+

(
Lx + C

L′x + C′

)
,

(21)

Applying the continuity conditions (18), that gives the trans-
mission probability

T = 4

4 + k2
x D2

. (22)

At E = V0 and finite momentum ky, the wave function (21)
should be replaced with

ψ I
2 (x) =

∑
q

αq

(
eiqx

−eiqx+2iθq

)
+

∑
κ

βκ

(
eκx

−ξκeκx

)

+
(

Lekyx

L′e−kyx

)
, (23)

where θq = arctan (ky/q) and ξκ = (κ − ky)2/(κ2 − k2
y ).

Through a tedious but straightforward calculation, we even-
tually get the transmission probability T = 0.

B. Barrier tunneling of quasiparticles near type-II TQBCs

Now we investigate the tunneling of quasiparticles near
type-II TQBCs. In the constant potential Vi, the wave func-
tion, in the form of ψ II (x, y) = [ϕA(x), ϕH (x), ϕB(x)]T eikyy,
includes not only propagating waves but also evanescent
waves,

ψ II
i (x) = aie

ikixx

⎛
⎜⎜⎝

e−2iθi

√
2si

e2iθi

⎞
⎟⎟⎠ + bie

−ikixx

⎛
⎜⎜⎝

e2iθi

√
2si

e−2iθi

⎞
⎟⎟⎠

− cie
κixx

⎛
⎜⎜⎝

ξ−1
i

−√
2si

ξi

⎞
⎟⎟⎠ − die

−κixx

⎛
⎜⎜⎝

ξi

−√
2si

ξ−1
i

⎞
⎟⎟⎠, (24)

where i takes on the values 1, 2, and 3 corresponding to the
three scattering regions (i), (ii), and (iii), respectively; si =
sgn(Vi − E ), θi = arctan (ky/kix ), h̄kix = √

2m|E − Vi| cos θi,

κix =
√

k2
ix + 2k2

y , and ξi = (
√

1 + sin2 θi − sin θi )2. Obvi-
ously, we should set d1 = 0 for x < 0 and b3 = c3 = 0 for
x > 0 due to the finiteness of the wave function. The con-
tinuity conditions are obtained by integrating the eigenvalue
equation HIIψ

II = Eψ II in the same way as Eq. (18),

[ϕA(x) + ϕB(x)]|ε−ε = 0, (25a)

∂x[ϕA(x) + ϕB(x)]|ε−ε = 2ky[ϕA(x) − ϕB(x)]|ε−ε, (25b)

ϕH (x)|ε−ε = 0, (25c)

∂xϕH (x)|ε−ε = 0. (25d)

FIG. 7. Transmission probabilities T (a) and reflection proba-
bilities R (b) through a 50-nm-wide barrier as a function of the
incident angle for bilayer graphene (dashed) and type-II TQBC
(solid), the blue lines are for V0 = 50 meV and the red lines are
for V0 = 100 meV. The energies are E = 15 meV (a) and E = V0/2
(b), respectively. In (b), the reflection probabilities of type-II TQBC
under different parameters are equal and represented by the green
line.

Similarly, components of the wave function of model HII

and their derivatives have to satisfy Eq. (25) by matching up
coefficients ai, bi, ci, and di.

In the continuity conditions (25), we also get eight linear
equations, which determine the tunneling of quasiparticles
near type-II TQBC. While the expression of the transmission
coefficient for this case is too complicated, we present only
the numerical results. Besides, since model HII is an extension
of the effective model of QBCs in bilayer graphene, we also
plot the transmission probability for bilayer graphene under
the same parameters, as shown in Fig. 7. For E < V0/2, the
tunneling of type-II TQBC is highly anisotropic with respect
to the incident angle, see Fig. 7(a), and displays transmission
probability approaching unity at some angles, which is similar
to the case of bilayer graphene.

However, we find that the tunneling of type-II TQBC
shows a dramatic difference compared with the case of bi-
layer graphene when E = V0/2—the former hosts an all-angle
perfect reflection, while the latter shows again pronounced
transmission resonances at some incident angles. For clarity,
we plot the reflection probability R = 1 − T as a function of
the incident angle, as shown in Fig. 7(b). The reflection prob-
ability for type-II TQBC, the green line, always approaches
unity for all incident angles. With the same parameters, the
reflection probability for bilayer graphene, the dashed lines,
drops to zero at some angles. In fact, in order to investigate the
special case of E = V0/2, we performed a series of numerical
calculations at different barrier heights and widths (the barrier
heights are within the range of 20 meV to 200 meV, and the
widths 20 nm to 200 nm). Take the case of V0 = 20 meV as
an example, one finds that there is no significant transmis-
sion amplitude that can be observed experimentally for any
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incident angle when the barrier width D > Dc ≈ 25 nm, and
for a higher barrier, the critical width Dc decreases. In the
calculations we take m = m0.

We also calculate the transmission of normally incident
particles for type-II TQBC, and get the same transmission
coefficient as the QBC subsystem in type-I TQBC, as well
as 2D free electrons and bilayer graphene [30], which can be
obtained via Eq. (20) with ky = 0. Their transmission prob-
ability as a function of width D of the barrier are shown in
Fig. 6(b). Significantly, for type-I TQBC, the wave functions
of both the QBC subsystem and 2D free electrons include only
evanescent waves inside the barrier, but for type-II TQBC and
bilayer graphene, there are plenty of electronic states inside
the barrier.

Finally, we consider the case of E = V0. For normally
incident particles, we have the wave function in the barrier

ψ II
2 (x) =

⎛
⎜⎜⎝

Lx + C

ηx + η′

L′x + C′

⎞
⎟⎟⎠ +

∑
q

αq

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠eiqx

−
∑
κ

βκ

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠eκx. (26)

In the continuity conditions (25), the wave function ψ II
2 pro-

duces the same transmission probability as Eq. (22), which
decays with the barrier width. That is different from the case
of pseudospin-1 DW fermions, in which the flat band con-
tributes the transmission probability of approaches unity when
E = V0 and ky = 0 [38]. At E = V0 and ky �= 0, the wave
function in the barrier is written as

ψ II
2 (x) =

⎛
⎜⎜⎝

Lekyx

0

L′e−kyx

⎞
⎟⎟⎠ +

∑
q

αq

⎛
⎜⎜⎝

eiqx−2iθq

0

−eiqx+2iθq

⎞
⎟⎟⎠

−
∑
κ

βκ

⎛
⎜⎜⎝

ξ−1
κ

eκx

0

−ξκeκx

⎞
⎟⎟⎠, (27)

where θq and ξκ have been defined in Eq. (23). Because of
the vanishing ϕH component, we directly get the transmission
probability T = 0.

VI. SUMMARY

We have studied the transport properties of two types of
TQBCs. The LLs and Hall conductivity in magnetic fields
are calculated, and the tunneling of the nodal quasiparticles
through electrostatic barriers is investigated. The first system,
type-I TQBC, is composed of a symmetry-protected QBC and
a free-electron band, and can be realized in the AA-stacked
bilayer square-octagon lattice. In a magnetic field, the SFB
displays an anomalous LL structure that produces an infinite
ladder of Hall plateaus in the Hall conductivity when the
chemical potential is tuned toward zero. Under perturbations,
the QBC subsystem in type-I TQBC can split into two Dirac
points when the C4 symmetry of the square-octagon lattice
is broken down to C2, and the free-electron band touches the
middle band on an accidental nodal loop. Compared with the
Klein tunneling in bilayer graphene, the transmission prob-
ability of QBCs here decays exponentially with the barrier
width for any incident angle, owing to the lack of propagating
waves inside the barrier.

The other model, type-II TQBC, is a pseudospin-1 general-
ization of the effective model of the QBC in bilayer graphene.
In the presence of a magnetic field, in the gapped case, the
IFB also exhibits an anomalous LL structure, which induces
an infinite ladder in its Hall conductivity when tuning the
chemical potential μ toward zero. But in the gapless case, the
zero-energy LL of type-II TQBC is nontopological and has no
contribution to the Hall conductivity, so that a zero plateau is
present when μ is near zero. Under perturbations, the second
type of TQBCs may split into several linear pseudospin-1 DW
fermions in a similar way as the splitting of QBCs [47], and
the total winding number is conserved. Through an electro-
static barrier with V0 > 2E , the Klein tunneling in type-II
TQBC shows pronounced transmission resonances at some
incident angles, while when the energy of incident particles
approaches half of the barrier height, the tunneling hosts an
all-angle perfect reflection for a sufficiently wide barrier.
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