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Scanning gate microscopy of nonretracing electron-hole trajectories
in a normal-superconductor junction
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We theoretically study scanning gate microscopy (SGM) of electron and hole trajectories in a quantum point
contact (QPC) embedded in a normal-superconductor (NS) junction. At zero voltage bias, the electrons and
holes transported through the QPC form angular lobes and are subject to self-interference, which marks the
SGM conductance maps with interference fringes analogously as in normal systems. We predict that for an
NS junction at nonzero bias, a beating pattern is to occur in the conductance probed with the use of the SGM
technique owing to a mismatch of the Fermi wave vectors of electrons and holes. Moreover, the SGM technique
exposes a pronounced disturbance in the angular conductance pattern, as the retroreflected hole does not retrace
the electron path due to wave vector difference.
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I. INTRODUCTION

Electronic transport through a normal-superconductor
(NS) interface is governed by the Andreev reflection [1]. It
results in conversion of the electron approaching the super-
conductor into a retroreflected hole and creation of a Cooper
pair in the superconductor, provided the electron energy is
within the superconducting gap. This elementary process is
nowadays a foundation for the functioning of hybrid struc-
tures that combine the rich spin physics of semiconductors
with the electron pairing provided by the superconductor.
Those devices are used for the realization of topological
superconductivity [2–4], controllable superconducting [5–7]
and Andreev qubits [8], superconducting diodes [9], Andreev
molecules [10], Cooper pair splitters [11], and others.

As experiments advance in the creation of devices with
complex geometry, such as patterned two-dimensional elec-
tron gases (2DEGs) connected to single [12] and multiple
superconducting electrodes [13–15], understanding the elec-
tronic transport in these devices is of fundamental interest.
So far, transport measurements have focused mainly on spec-
troscopic techniques that lack the ability to determine the
spatial properties of quasiparticle propagation. In this work,
we propose and theoretically investigate the scanning gate
microscopy (SGM) technique as a tool allowing for the visual-
ization of electron and retroreflected hole paths in a quantum
point contact (QPC) embedded in an NS junction.

SGM is a widely used method to visualize electron flow
in semiconducting structures. It uses a charged atomic force
microscope tip that scans above the sample when simultane-
ously conductance of the system is monitored. In particular,
the map of the conductance change can be used to identify
the paths of the flowing electrons. This method has been
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successfully used to visualize the electron flow from a QPC
[16], to attribute the conductance quantization to the occupa-
tion of subsequent transverse modes of a QPC [17,18], and to
demonstrate the coherent electron self-interference [19–22].
Scanning gate microscopy was also used to image bending of
electron trajectories due to an external magnetic field [23–25]
and was theoretically considered in the context of probing
the formation of angular lobes and self-interference in 2DEGs
[26–29] and monoatomic-layered materials [30–33].

In this work, we theoretically investigate the application
of the SGM technique in a superconducting structure: an NS
junction that embeds a QPC. In such a system, the hallmark
of Andreev reflection is the amplification of conductance
[34,35], which was recently demonstrated in 2DEG QPCs
[12]. Here, we show that in this system the SGM technique not
only reveals the flow in angular lobes of the electrons escap-
ing the QPC, their self-interference, but also interference of
retroreflected holes. Most importantly, this technique unveils
the modification of the transport properties of the structure
due to the difference in the Fermi velocity of electrons and
holes at nonzero bias when the Andreev limit (� � μ) is
not fulfilled. The latter leads to a pronounced change in the
conductance oscillation pattern as the hole does not retrace
the electron path. Nonperfect retracing trajectories have been
studied so far in the context of electron-hole trajectories in
billiards [36,37] and Chladni figures [38]. Despite significant
progress in studies of superconducting heterostructures, SGM
imaging in these systems remains vastly unexplored, with the
exception of the experimental demonstration of its use for
the visualization of bent electron and hole orbits [25] and the
theoretical prediction of probing the supercurrent distribution
in Josephson junctions [39] in the external magnetic field.

II. THEORY

The considered system [Fig. 1] consists of a QPC embed-
ded in the normal region of the NS junction. We consider the
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FIG. 1. The scheme of the considered system. The QPC (dark
gray) is embedded in a NS junction. The normal region, behind the
QPC, is scanned by charged SGM tip (dark green) which deflects
the electron and hole trajectories in the 2DEG beneath. The self-
interference of electrons and holes (blue and red colors show the real
part of the electron wave function) leads to oscillations of Andreev
enhanced conductance. When the energy of quasiparticles is above
the Fermi level the electron and hole have different wave vectors
which affects the oscillations and causes the hole not to retrace the
electron path (shown with arrows).

zero-magnetic field case, hence we use a spinless Hamiltonian
written in the electron-hole basis

H = (h̄2k2/2m∗ + VQPC(x, y)

+ VSGM(x, y, xtip, ytip ) − μ)τz + �(x)τx, (1)

acting on the wave-function � = (�e, �h)T . τx and τz are the
x and z Pauli matrices, and μ = 10 meV is the chemical po-
tential. VQPC(x, y) is the QPC potential modeled after Ref. [40]
as

VQPC(x, y)/(−eVg) = 1

π
[arctan((w + x − x1)/d )

+ arctan((w − x + x1)/d )]

− g(s + y,w + x − x1)

− g(s + y,w − x + x1)

− g(s − y,w + x − x1)

− g(s − y,w − x + x1), (2)

where

g(u, v) = 1

2π
arctan(uv/dR), (3)

and R = √
u2 + v2 + d2. w is the width of the QPC gates, s is

their separation, and d is the distance between the gates and
the 2DEG [see Fig. 2]. We take w = 100 nm, s = 75 nm, and
d = 50 nm, compatible with the experimentally implemented
QPCs [19,20,41,42], and place the QPC at x1 = 200 nm.

To model the SGM potential, we use a potential
distribution [43]

VSGM(x, y) = Vtip

1 + (x−xtip )2+(y−ytip )2

d2
sgm

, (4)

where we set Vtip = 0.05 eV and dsgm = 50 nm. The position
of the SGM tip is determined by the pair of coordinates

FIG. 2. The outline of the system considered in the numerical
model. Colors denote the potential distribution in the (normal) scat-
tering region. The superconducting contact is implemented on the
right-hand side of the scattering region (blue).

(xtip, ytip). We assume that the scattering region is connected to
the biased normal lead just before the QPC (see gray N region
in Fig. 1), which serves as the source of incoming electrons,
and to a grounded superconducting lead, which provides the
Andreev reflection.

The zero-temperature conductance at bias Vb = −E/|e| is
calculated according to the Landauer-Buttiker formula [44]

G(E ) = 2e2

h
· (N (E ) − Ree(E ) + Rhe(E )). (5)

N is the number of electronic modes in the normal lead,
Ree(E ) electron-to-electron reflection coefficient, and Rhe(E )
electron-to-hole reflection coefficient [45]. The coefficients
Ree(E ) and Rhe(E ) are obtained from the scattering matrix of
the system calculated at the energy E ,

Rα,β (E ) = Tr([Sα,β (E )]†Sα,β (E )), (6)

where Sα,β (E ) is the scattering matrix block corresponding to
the particles of type β injected in the normal lead and scattered
back as particle type α into the same lead. To account for the
large size of the device in the direction parallel to the QPC
gates, we apply open boundary conditions at the edges of our
system in the y direction. For concreteness, we assume InSb
material parameters m∗ = 0.014m and the superconducting
gap of � = 2 meV corresponding to superconductors such as
Nb, NbTiN [46–49]. We set the system size to W = 4000 nm,
L = 4000 nm. We discretize the Hamiltonian Eq. (1) on a
square mesh with the lattice constant a = 10 nm and solve
the transport problem using the scattering matrix approach
implemented in the Kwant package [50]. The data for the
plots were obtained using the Adaptive package [51] and the
code used for the simulations is available in an open repository
[52].
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FIG. 3. (a) The map of the change of the conductance introduced
by the SGM tip at zero bias voltage with a single lobe flow visible,
and periodic fringes due to electron and hole self interference. The
inset shows conductance versus the QPC gate voltage with the red
point denoting the Vg value chosen for the calculation of the map.
(b) Conductance (black), electron-electron (green) and electron-hole
(red) transmission coefficients obtained for ytip = 0. (c) The Fourier
transform of the conductance from (b). (d) Conductance versus the
position of the QPC with the SGM tip set in constant distance from
the superconductor interface.

III. RESULTS

The electron incident from the normal lead propagates
through the QPC, whose potential is controlled by the Vg

voltage; then Andreev reflects at the superconducting contact;
and finally, the resulting hole is scattered back to the original

FIG. 4. (a) The map of the change of the conductance introduced
by the SGM tip at nonzero voltage (Vb = −0.75�/|e|) with a dis-
turbed fringes pattern due to the nonretracing hole trajectories. The
inset shows conductance versus the QPC gate voltage with the red
point denoting the Vg value chosen for the calculation of the map.
(b) Conductance (black), electron-electron (green), and electron-hole
(red) transmission coefficients obtained for ytip = 0. The inset shows
the Fourier transform of the conductance cross section with two
prominent frequencies for electrons and holes.

normal lead. The inset of Fig. 3(a) shows a typical con-
ductance curve versus gate voltage [53], where conductance
is amplified by the Andreev reflection and quantized with
plateaus in multiples of 4e2/h. For the following calculations,
we choose the value Vg so that the resulting conductance is
2e2/h—at the first step—when a single lobe in the SGM map
is expected [21].

In the map of Fig. 3(a) we show the change of the con-
ductance (difference between the conductance obtained in the
presence of the tip and the conductance obtained in the ab-
sence of the tip) when the system is scanned by the SGM tip.
On the map, pronounced radial fringes due to self-interference
of the quasiparticles are present.
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The conductance cross section for the SGM y coordinate
set in the middle of the QPC constriction (ytip = 0) is shown
in Fig. 3(b) with the black curve. When the tip is moved
away from the QPC constriction, the conductance rapidly
increases as the electron flow through the QPC is unblocked
and then exhibits periodic oscillations. The oscillation fringes
are separated by half of the Fermi wavelength due to inter-
ference between the waves reflected by the QPC itself and
those reflected back by the tip [21]. In Fig. 3(c) we show
the Fourier transform of the conductance. We observe that the
oscillations occur with a single period that corresponds to the
Fermi wave vector of electrons and holes ke/h = √

2m∗μ/h̄
[54] denoted by the black vertical line in the inset with
ωe/h = 1/(λe/h × 109) and λe/h = π/ke/h. In a normal system,
such oscillations are a signature of constructive and destruc-
tive interference of the electronic wave that occurs between
the QPC constriction and the SGM tip. In fact, by changing
the distance between the QPC and the SGM tip, we observe
conductance oscillations [Fig. 3(d)] that confirm that a similar
process also takes place here. We have also checked the con-
ductance oscillation when the superconducting interface was
moved away from the QPC and SGM tip and observed their
negligible amplitude (not shown). This allows us to conclude
that the main path of the interference is between the QPC and
the SGM tip.

In Fig. 3(b) we show the transmission coefficients of the
electron-electron (green curve) and electron-hole (red curve)
transport process. The values of the Ree coefficient are high
and result from the wide lead considered at the left bound-
ary (which results in the number of current-carrying modes
N = 78), but at the same time most of the modes are reflected
from the nearly closed QPC, which conducts only one mode,
resulting in N − Ree � 1. Rhe has a considerable magnitude
which means that the injected electron, after passing the QPC
and scattering at the SGM tip potential, is converted into a

hole at the superconducting interface that is traced back to
the normal electrode. Note that in this case the interference of
electrons and holes is indistinguishable, as they both have the
same wave vector.

Let us now move to the nonzero voltage bias case.
We consider Vb = −0.75�/|e| such that the electron and
hole attain considerably different wave vectors, but the bias
voltage is still not high enough to induce smearing in the
conductance fringes due to increased scattering [55]. We again
fix Vg, so the conductance without the tip is in the middle
of the first conductance step [see the inset of Fig. 4(a)]. The
corresponding �G map is shown in Fig. 4(a), where we ob-
serve a significant modification in the conductance pattern as
compared to the case of Fig. 3(a), with three main ingredients:
(i) change of the pattern of oscillation fringes; (ii) resonant
features disturbing the previously clear single-lobe flow; (iii)
general amplification of the conductance by the tip. As we
will show in the following, they all are a signature of unequal
electron and hole wave vectors.

The conductance cross section is shown in Fig. 4(b) with
the black curve. We observe that the oscillations are disturbed
by a beating pattern and correspondingly in the Fourier trans-
form [the inset of Fig. 4(b)] we find two leading frequencies
corresponding to different values of the electron and hole
wave vector (ke and kh) obtained as ke/h = √

2m∗(μ ± E )/h̄
with + for the electron and − for the hole (see the schematic
dispersion relation in Fig. 1). This allows for distinguishing
the electron and hole contributions to the conductance oscilla-
tions.

Inspecting the electron and hole contributions to the con-
ductance shown with green and red curves in Fig. 4(b),
respectively, we observe a significant reduction of the Ree

coefficient compared to the zero-energy case of Fig. 3(b).
This means that at the first conductance step the probability
of the electron that has passed the QPC to go back to the

FIG. 5. (a), (c), (e), (g) Electron and (b), (d), (f), (h) hole probability currents obtained at (a), (b), (e), (f) zero energy and at (c), (d), (g),
(h) nonzero energy. The upper row shows the results without the SGM tip, and the lower panel presents the results with the SGM tip included.
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source electrode is negligible. This phenomenon results in a
small value of Rhe coefficient. This means that the almost unity
conductance is obtained mainly because of the lack of electron
reflection to the left lead and not because of the Andreev
reflected hole scattered back there.

This initially puzzling result becomes clear when one in-
spects the probability current maps shown in Fig. 5. First,
when considering the zero-energy case we see that the elec-
tron (a) and the hole (b) currents are mostly the same, as
the electron injected from the QPC is Andreev reflected and
the resulting hole is back focused into the QPC constriction.
Upon introduction of the SGM tip (marked as a gray circle in
the bottom row of Fig. 5) we see a deflection of the electron
trajectory, but the hole does trace the electron path.

The situation is strikingly different in the nonzero energy
case. First, in the absence of the tip, we clearly observe
the creation of resonant features that perturb the electron
[Fig. 5(c)] and hole [Fig. 5(d)] flow. The electron approaches
the superconductor interface with the wave vector ke at an
angle ϕe defined with respect to normal to the interface. After
the Andreev reflection, the hole leaving the interface has the
wave vector kh �= ke. The momentum component along the
interface is preserved and, hence, for nonzero E the normal
components of ke and kh are different. As a result, the hole
returns from the interface following a trajectory determined by
ϕh �= ϕe and therefore does not retrace the electron path [36]
(see the arrows in Fig. 1). As a result the Andreev reflected
hole does not fully focus on QPC constriction, which results
in a low value of the Rhe coefficient. In Fig. 5(d) we also
observe streams of hole current that point from the QPC to
the sink electrodes located at the top and bottom of the system.
The introduction of the SGM tip at those locations results in
an amplification of the conductance, as the hole reflected by
the tip to the QPC is now able to amplify the conductance,
leading to an increase of the conductance by the tip shown in
Fig. 4(a). Finally, upon introduction of the tip in Figs. 5(g)
and 5(h), we clearly observe the effect of different incident
and reflection angles, which deflects the hole current from the
initial trajectory of the incident electron and, in turn, causes
disturbance of the conductance pattern as seen in the map of
Fig. 4(a).

A. Second conductance step

In recent experiments on QPCs embedded in NS junctions
it was possible to observe conductance quantization up to the
second step [12]. Here we present the change of the con-
ductance (the difference between the conductance obtained in
the presence of the SGM tip and the conductance obtained
without the presence of the SGM tip) when the system is
scanned with the SGM tip, choosing the value of Vg such
that the conductance without the tip is inbetween the first
and second conductance plateaus [see the insets of Figs. 6(a)
and 6(b)].

In Fig. 6(a), the conductance change is calculated for the
zero voltage bias case. In the map, a circular fringe pattern
is obtained similar to the one in Fig. 3(a) before but now
with a visible two-lobe flow from the QPC (a clear sepa-
ration of the conductance fringes into two is seen between
xtip ∈ [500, 1000] nm). For the nonzero voltage bias case with

FIG. 6. SGM conductance maps obtained for (a) E = 0, (b) E =
0.75�. The insets show QPC conductance versus gate voltage with
the voltage used for the SGM map indicated with red dots.

Vb = −0.75�/|e| [Fig. 6(b)], we observe a pronounced dis-
turbance of the conductance fringes and the appearance of the
resonant features. The results obtained for the QPC tuned to
the second conductance step are qualitatively similar to those
presented in Figs. 3(a) and 4(a), but it should be noted that
those obtained at the first conductance step show much more
pronounced features of nonretracing electron-hole trajectories
due to the much simpler internal structure of the radial fringes
resulting from the flow from the QPC in a single angular lobe.

Figure 7 shows the probability current maps where Vg

is set the same as in the conductance maps of Fig. 6. For
the zero-energy case, in Figs. 7(a) and 7(b), we see that the
electrons are injected from QPC and the holes are retracing
back the same path, although the spread of the electron flow
is larger as compared to the case of Figs. 5(a) and 5(b) due to
activation of the second quantization mode in the constriction.
The introduction of the SGM tip, marked in the gray circle
in Figs. 7(e) and 7(f), deflects the paths of the electrons and
holes. In the maps of Figs. 7(c), 7(d), 7(g), and 7(h) we
observe the same effects of the hole not retracing the electron
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FIG. 7. Probability currents of electrons (a), (c), (e), (g) and holes (b), (d), (f), (h) at second conductance slope obtained for zero energy
(a), (b), (e), (f) and nonzero energy (c). (d), (g), (h). The upper row presents the results without the SGM tip, and the lower row presents the
results with the SGM tip included.

trajectories as in Fig. 5 which leads to the disturbance of the
SGM radial fringes found in Fig. 6.

IV. CONCLUSION

In summary, we theoretically studied the possibility of lo-
cal probing of electron and hole transport in a QPC embedded
in an NS junction. We proposed to use the SGM technique
to observe electron and hole self-interference. We pointed
out that this technique is able to unveil features of the elec-
tronic transport at nonzero bias voltage, when due to different
electron and hole wave vectors the self-interference conduc-

tance oscillations exhibit beating and the Andreev-reflected
hole does not retrace the electron path, creating pronounced
resonance patterns in the SGM probed conductance. The dis-
cussed effect occurs both at the first and also at the higher
conductance step.
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