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System-bath entanglement of noninteracting fermionic impurities:
Equilibrium, transient, and steady-state regimes
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We investigate the behavior of entanglement between a single fermionic level and a fermionic bath in three
distinct thermodynamic regimes. First, in thermal equilibrium, we analyze the dependence of entanglement on
the considered statistical ensemble: for the grand canonical state, it is generated only for a sufficiently strong
system-bath coupling, whereas it is present for arbitrarily weak couplings for the canonical state with a fixed
particle number. The threshold coupling strength at which entanglement appears is shown to strongly depend on
the bath bandwidth. Second, we consider the relaxation to equilibrium. In this case a transient entanglement
in a certain time interval can be observed even in the weak-coupling regime, when the reduced dynamics
and thermodynamics of the system can be well described by an effectively classical and Markovian master
equation for the state populations. At strong-coupling strengths, entanglement is preserved for long times and
converges to its equilibrium value. Finally, in voltage-driven junctions, a steady-state entanglement is generated
for arbitrarily weak system-bath couplings at a certain threshold voltage. It is enhanced in the strong-coupling
regime, and it is reduced by either the particle-hole or the tunnel coupling asymmetry.
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I. INTRODUCTION

The notion of entanglement refers to genuine quantum
correlations between two or more physical objects that cannot
be explained by any classical model [1]. In addition to its
fundamental importance and applicability as one of the basic
resources in quantum technology, entanglement has attracted
attention in the field of condensed-matter physics because it
provides important information on the behavior of quantum
many-body systems [2–4]. In the context of open quantum
systems, consisting of a system attached to one or more
thermal baths, most studies focused on the issue of how en-
tanglement between two constituents of the system is affected
by the interaction with the bath. Among others, these inves-
tigations dealt with the relation between entanglement decay
and (non-)Markovianity of the system [5–9], as well as entan-
glement generation through system-bath interaction in both
transient [10–14] and steady-state [15–22] regimes. Much less
of the studies were concerned with the entanglement between
the system and the bath. This is understandable because the
dimension of the Hilbert space of the bath increases exponen-
tially with its size. As a consequence, characterization of the
system-bath entanglement—which requires knowledge of the
total system-bath state—is usually very difficult.

Previous studies of entanglement between the system
and the bath can be divided into two groups. The first fo-
cused on static properties of entanglement in the ground or
thermal state of the total system-bath Hamiltonian. Among
others, such entanglement has been used to shed light on the
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paradigmatic model of strongly correlated physics, namely,
the Kondo model [23]. In particular, it has been applied to
investigate the finite-temperature behavior of the Kondo ef-
fect [24–26], spatial extent of the Kondo cloud [24,27–29],
competition between screening channels in the multichannel
Kondo effect [26,30,31], or the quantum critical behavior in
the two-impurity Kondo model [31–33]. Furthermore, certain
studies demonstrated the connection between entanglement
and observable quantities, such as electric conductance [34] or
thermometric sensitivity [35]. Entanglement was investigated
also for the spin-boson model [36–39], but, to our knowledge,
only in the zero-temperature case. These studies revealed, e.g.,
a nonanalytic behavior of the entanglement entropy at the
quantum phase-transition point [38].

The second group of studies analyzed the dynamic proper-
ties of the system-bath entanglement for a system initialized
out-of-equilibrium with respect to the bath. In particular, they
mainly focused on the case of pure dephasing (i.e., dynamics
which does not change the state populations in a specified
basis). For such a situation, Roszak [40] provided analytic
criteria for the presence of entanglement in a generic open
quantum system. More specifically, entanglement has been
found to be not necessary for decoherence [41,42], but crucial
for the emergence of classical objectivity within the frame-
work of quantum Darwinism [43–45]. Beyond the paradigm
of pure dephasing, Eisert and Plenio [46] investigated en-
tanglement in the quantum Brownian motion model (i.e.,
Caldeira-Leggett model [47]). It was shown that entanglement
is always immediately generated for a pure initial state of the
system; on the other hand, for any system-bath coupling there
exists an initial mixed state of the system and the temperature
of the bath for which entanglement is absent at all times.
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FIG. 1. Schematic presentation of thermodynamic regimes con-
sidered in the paper: (a) equilibrium state of the impurity and
the bath, (b) transient relaxation of the impurity to equilibrium,
(c) steady-state transport between two reservoirs with different
chemical potentials.

Furthermore, a few studies investigated possible con-
nections between the system-bath entanglement and the
strong-coupling thermodynamic effects. First, Refs. [48–51]
observed a so-called violation of Clausius inequality �SB =
−βQ [where SB = −Tr(ρB ln ρB) is the von Neumann entropy
of the bath and Q is the heat extracted from the bath], and
related it to the system-bath entanglement. This assertion was
later questioned by Hilt and Lutz [52], who showed that
the relation �SB = −βQ can be violated also for separable
states. As further discussed in Ref. [53], this violation is rather
common in nonequilibrium settings and is not even restricted
to the strong-coupling regime. Recently, Ref. [54] observed
a proportionality between the system-bath entanglement and
interaction energy for a bath consisting of a single qubit,
reaching the conclusion that the imbalance between the en-
ergy changes of the system and the bath is responsible for the
generation of entanglement.

In this paper we study the system-bath entanglement in
one of the paradigmatic models of open quantum systems,
namely, the noninteracting resonant level. It consists of a sin-
gle fermionic level coupled to a noninteracting fermionic bath
through bilinear tunneling Hamiltonian. We focus on three
distinct thermodynamic regimes, schematically presented in
Fig. 1: (a) global thermal state of the system and the bath,
(b) transient relaxation of the system initialized in an out-of-
equilibrium state, and (c) steady-state transport between two
reservoirs driven by the applied voltage. Our motivation is,
on the one hand, system-specific, aiming to investigate spe-
cific features of fermionic entanglement. On the other hand,
as we show, our study leads to more general insights into
the relation between entanglement and (non-)Markovianity,
strong-coupling thermodynamic effects, and nonequilibrium
driving. The goals of our paper are described in more detail
below.

Thermal equilibrium. As previously mentioned, much at-
tention has been devoted to the thermal entanglement in the

Kondo model of a spin coupled to a fermionic bath via
the exchange interaction. This model further corresponds to
the low-energy regime of the Anderson model, namely, a
Coulomb-interacting fermionic impurity tunnel-coupled to a
fermionic bath [55,56]. It is then natural to ask which fea-
tures of entanglement in the Kondo and Anderson models can
be directly related to strong correlations, and which can be
already observed in the noninteracting case of a vanishing
Coulomb coupling. Surprisingly, this topic has so far only
been scarcely studied in the literature. To the best of our
knowledge, the role of interelectron interaction strength has
been investigated only in Ref. [25], with the analysis of the
noninteracting case restricted to the zero-temperature regime.
At the same time, a detailed analysis of the conditions of the
generation of equilibrium entanglement has been performed
for an analogous noninteracting bosonic model of a single
quantum harmonic oscillator coupled to a harmonic bath
(the Caldeira-Leggett model [47]), which revealed a sudden
death of entanglement above a certain threshold temperature
(dependent on the coupling strength to the bath) [52]. Our
study aims to fill this gap by analyzing the dependence of
system-bath entanglement on different system parameters, as
well as the dependence on the considered thermodynamic
ensemble.

Transient dynamics. The interaction of an open quantum
system with the bath leads to the generation of system-
bath correlations. At first glance, one might expect that such
correlations are negligible in the validity regime of the Born-
Markov approximation (used to derive the Markovian master
equation for the reduced dynamics of the system), which
assumes that at all times the global state of the system S and
the bath B can be approximated as a product state ρSB(t ) ≈
ρS (t ) ⊗ ρ

eq
B , where ρ

eq
B is the thermal equilibrium state of the

bath. Indeed, certain types of system-bath correlations can
be directly related to the non-Markovianity of the reduced
dynamics [57–60]. However, it has been shown that effective
Markovianity of dynamics does not necessarily imply the ab-
sence of correlations defined in information-theoretic terms,
such as the quantum mutual information (at least at short
timescales) [61–65]. Rather, as shown for collisional models,
only a part of the system-bath correlations is relevant for the
reduced dynamics [66]. Furthermore, different microscopic
models can generate the same reduced dynamics but different
system-bath correlations [67], further demonstrating the lack
of an obvious link between them.

The question then arises whether the character of the re-
duced dynamics is related to the behavior of genuine quantum
correlations, such as entanglement. It has sometimes been
argued that the validity of Born-Markov approximation pre-
cludes the presence of entanglement [68,69]; however, as
discussed in the previous paragraph, such a relation is not
necessarily obvious for correlations defined in information-
theoretic terms. Indeed, for the case of pure dephasing,
Refs. [70,71] found no obvious link between the system-
bath correlations and non-Markovianity: entanglement may
appear also during Markovian dephasing, although often
on timescales longer than the decoherence time. Similarly,
Ref. [72] found no connection between the presence or ab-
sence of entanglement and the possibility of describing the
dephasing using a classical noise. In this study, our aim is to
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explore this issue in the context of relaxation dynamics of a
fermionic impurity.

We are also interested in the relation between entangle-
ment and thermodynamics. First, we are motivated by the
observation that for a properly thermalizing bath (which is
determined, e.g., by the density of states in the bath) the state
of the system relaxes over time to equilibrium corresponding
to the global Gibbs state of the total system-bath Hamiltonian
[73]. We want to investigate whether and when this is also true
for the system-bath entanglement. Second, we want to verify
the alleged link between the transient entanglement and the
interaction energy [54].

Steady state. Finally, while entanglement within nonequi-
librium steady states of many-body systems has already
received a certain attention [74–78], to the best of our
knowledge no study has focused specifically on entanglement
between a small impurity and the bath. Instead, previous in-
vestigations of fermionic [79,80] and bosonic [81] impurities
considered quantum mutual information, which does not dis-
tinguish between classical and quantum correlations. These
works demonstrated an increase of the steady-state value of
system-bath correlations with the applied voltage or temper-
ature bias. As the nonequilibrium driving of open quantum
systems may lead to generation of steady-state intrasystem
entanglement, we aim to explore whether this conclusion can
be generalized to the system-bath entanglement [15–22].

Structure of the paper. This article is organized as follows:
In Sec. II we present the definition of entanglement applica-
ble to fermionic systems and methods used to quantify the
system-bath entanglement. In Sec. III we discuss the model
and the methods used to describe its dynamics. Sections IV–
VI present the results for the equilibrium, transient relaxation,
and voltage-driven cases, respectively. Finally, Sec. VII brings
the conclusions following from our results. Appendixes A–C
contain the definition of partial transposition, the description
of the Householder tridiagonalization algorithm, and the ana-
lytic theory of system-bath mutual information.

II. FERMIONIC ENTANGLEMENT

A. Entanglement definition

Let us first discuss how we define the system-bath en-
tanglement for fermionic systems and how its presence can
be detected. A standard definition of entanglement used in
quantum information theory states that the bipartite system
SB is deemed entangled when it is not separable, i.e., when its
density matrix ρSB cannot be written as a classical mixture of
tensor product states [82],

ρSB =
∑

ν

pνρ
ν
S ⊗ ρν

B, (1)

where pν are positive-valued probabilities summing up to
1 and ρν

S , ρν
B are positive semidefinite matrices with trace

1. For fermionic systems, however, the proper definition of
entanglement is a more subtle issue due to the parity superse-
lection rule, which prohibits coherent superpositions of states
with even and odd particle parity [83,84]. This rule provides
constraints on the physically allowed states, observables, and
operations [85]. As thoroughly discussed by Bañuls et al. [86],
applying the parity superselection rule in different ways, one

obtains a hierarchy of definitions of entanglement, which may
be either weaker [87,88] or stronger [89–92] than the standard
one. In this paper, we use the most stringent notion, previously
applied in Refs. [89–93]:

Definition 1 (Observable-based definition of fermionic en-
tanglement). Let us first define the locally projected state

πSB =
∑

α,γ=e,o

(
P S

α ⊗ PB
γ

)
ρSB

(
P S

α ⊗ PB
γ

)
, (2)

where PX
e (PX

o ) is the local projection of the subsystem X ∈
{S, B} on the even (odd) particle-parity sector. Then, the state
ρSB is considered entangled when πSB cannot be decomposed
into a classical mixture of tensor product states [the right-hand
side of Eq. (1)].

This corresponds to entanglement with respect to the S0π

universality class from Ref. [86]. The physical meaning of
this definition becomes clear when noting that the state πSB

reproduces all the correlations of local observables OS and OB

that act on the system and the bath,

∀ OSOB: Tr[OSOBρSB] = Tr[OSOBπAB], (3)

as the observables obey the parity superselection rule. There-
fore, the state ρSB is deemed separable when it cannot be
distinguished from a classical mixture of tensor product states
via correlations of local measurements (e.g., through a viola-
tion of Bell’s inequality).

B. Entanglement witnessing

Let us now present how the presence of entanglement
with respect to Definition 1 can be detected. As discussed
in Ref. [91], this is generally a nontrivial task. However, as
shown by Bañuls et al. [86], the entanglement witnessing
becomes simple for states which can be represented as a tensor
product of two identical copies of the system-bath density
matrix: ρ̂SB = ρSB ⊗ ρSB. Then the total state of both copies
ρ̂SB is entangled if and only if the partially transposed density
matrix of a single copy ρ

TB
SB is negatively defined (i.e., it has

some negative eigenvalues). Here TB denotes the partial trans-
position of the bath state; for its definition, see Refs. [94,95]
and Appendix A. Entanglement can then be witnessed by the
positivity of the entanglement negativity [96,97],

N =
∑
λi<0

|λi| =
∑

i

|λi| − λi

2
, (4)

where λi are the eigenvalues of ρ
TB
SB. As one may observe,

the entanglement negativity by construction exhibits a nonan-
alytic behavior, being equal to zero for separable states and
taking positive values for the entangled states. We further
note that, in fermionic systems, positivity of the entanglement
negativity is a necessary and sufficient condition of entan-
glement [86], while in a generic case it is only a sufficient
condition [94,95].

The scenario described above corresponds to a situation in
which we have two identical copies of a fermionic system.
As a physically relevant example, one may consider a spinful
system being a thermal state of a spin-degenerate quadratic
Hamiltonian Ĥ = ∑

i j

∑
σ∈{↑,↓} Ai jc

†
iσ c jσ , or evolving under

such a Hamiltonian. Then the total density matrix can be
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represented as a tensor product of two identical density ma-
trices corresponding to subspaces of spin ↑ and ↓ levels:
ρ̂SB = ρ

↑
SB ⊗ ρ

↓
SB with ρ

↑
SB = ρ

↓
SB. In the following discussion

we always assume the presence of two identical copies of ρSB,
without assuming any specific physical realization.

We further note that we apply a standard definition of
negativity used in the field of quantum information [96,97]
rather than the “fermionic negativity” defined in Ref. [98] and
later used in several studies [76–78,99–101]. This is because,
as shown in Ref. [102], the latter quantity witnesses entangle-
ment with respect to the S2π equivalence class from Ref. [86],
which is a much weaker notion than Definition 1. In particular,
for (1 + N)-mode fermionic Gaussian states, entanglement
with respect to the S2π equivalence class is equivalent to the
presence of correlations [86,103], and thus the “fermionic
negativity” is positive for every correlated state. In contrast,
entanglement with respect to Definition 1 appears only when
the correlations reach a certain finite threshold [86].

III. MODEL AND METHODS

A. Noninteracting resonant level model

Let us now present the details of the considered model and
the methods we use to characterize the system-bath entangle-
ment. The paper focuses on the noninteracting resonant-level
model consisting of a single fermionic energy level tunnel-
coupled to a fermionic bath with the inverse temperature
β = 1/(kBT ) and the chemical potential μ. Generalization to
the case of multiple baths will be considered in Sec. VI. It is
described by the Hamiltonian

Ĥ = ε0c†
0c0 +

K∑
k=1

εkc†
kck +

K∑
k=1

(tkc†
0ck + H.c.), (5)

where the index k = 0 corresponds to the system, while k ∈
{1, . . . , K} to the energy levels of the bath. Here εk is the level
energy, c†

k and ck are the creation and annihilation operators, tk
is the tunnel coupling between the levels 0 and k, and K is the
number of energy levels in the bath. The Hamiltonian is taken
to be spinless. A possible role played by spin was discussed
in Sec. II B in the context of entanglement witnessing.

To fix the parameters of the Hamiltonian, we now use
the following convention: In the theory of open quantum
systems, the bath is characterized by means of its spectral
density �(ω) = ∑

k 2πδ(εk − ω)|tk|2 [104]. In the continuous
limit of infinitesimal level spacing this can be rewritten as
�(εk ) = 2π |tk|2ξ (εk ), where ξ (ω) is the density of states in
the bath. We now focus on a boxcar-shaped spectral density
defined as

�(ω) =
{

� for ω ∈ [−W/2,W/2]

0 otherwise,
(6)

where W is the bandwidth. Accordingly, we later consider
a discretized version of this model in which we uniformly
distribute the energy levels of the bath εk throughout the
interval [−W/2,W/2], and parametrize the tunnel couplings
as � = 2πt2

k (K − 1)/W , where we take tk to be positive real
numbers.

B. Correlation matrix approach

To evaluate the entanglement between the system and the
macroscopic bath, it is necessary to know the total system-
bath state ρSB. This may seem infeasible, since the dimension
of the Hilbert space increases exponentially with the number
of levels in the bath K . However, this problem can be circum-
vented for noninteracting systems described by the quadratic
Hamiltonian, such as Eq. (5). Indeed, then (for the grand
canonical thermal state, or evolution starting from such a
state) the total state is Gaussian, which means that it is fully
described by the (1 + K ) × (1 + K ) correlation matrix Ckl =
Tr(ρSBc†

kcl ) [105]. Its evolution follows the equation [106]

C(t ) = eiHtC(0)e−iHt , (7)

where H is the single-particle Hamiltonian defined as

Hkk = εk for k = 0, . . . , K

H0k = Hk0 = tk for k = 1, . . . , K,

Hkl = 0 otherwise. (8)

Here and from hereon we take h̄ = 1. The initial correlation
matrix C(0) reads

C(0) = [p0, f (ε1), . . . , f (εK )], (9)

where p0 is the initial occupancy of the system and
f (ε) = 1/{1 + exp[β(ε − μ)]} is the Fermi distribution.

C. Calculation of the entanglement negativity

To calculate the entanglement negativity one still needs
the density matrix rather than the correlation matrix. This is
because (in contrast with bosonic systems), even when ρSB

is a Gaussian state, the partially transposed state ρ
TB
SB is not a

Gaussian operator [107]. The density matrix can be obtained
from the correlation matrix as [105]

ρSB = exp
(−∑

kl Bkl c
†
kcl

)
Tr exp

(−∑
kl Bkl c

†
kcl

) , (10)

where B = ln[(1 − C)C−1]. The creation and annihilation op-
erators can be expressed in a matrix form, e.g., by means of the
Jordan-Wigner transform. Unfortunately, as mentioned above,
the calculation of the full density matrix is unfeasible for large
baths, as its size grows exponentially with K . To deal with
this obstacle, we use the following approach: First, we put
the correlation matrix C into the tridiagonal form by means
of the Householder transformation [108] (see Ref. [109] and
Appendix B for details of the algorithm used). As such a
transformation is realized by a unitary operation acting on
the bath only, it does not change the entanglement negativ-
ity. Then, we calculate the “partial” entanglement negativity
NM between the system and the part of the bath consisting
of the first few fermionic modes i = 1, . . . , M. Due to the
monotonicity property [96,97], this quantity provides a lower
bound for the total negativity: N � NM . Later, we mostly
apply the cutoff M = 6, which we found to be sufficient to
provide a good estimate of the total negativity N in most of
the considered parameter regimes; this will be illustrated on a
specific example in Fig. 2.
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FIG. 2. Entanglement negativity NM as a function of the cou-
pling strength � for different values of the cutoff M. Results for
ε0 = μ = 0, W = 50�, and K = 400.

IV. EQUILIBRIUM ENTANGLEMENT

Let us now present the results. In this section we investigate
entanglement in the global equilibrium state of the system and
the bath, focusing on two distinct thermodynamic scenarios
where the joint system-bath state is described by either the
grand canonical ensemble with a fluctuating particle number
(Sec. IV A), or the canonical ensemble with a fixed parti-
cle number (Sec. IV B). As will be demonstrated, although
both ensembles provide the same reduces state of the system
(in the thermodynamic limit), they lead to both quantita-
tively and qualitatively different behavior of the system-bath
entanglement.

A. Grand canonical ensemble

In the first step, we analyze entanglement between the
system and the bath for the grand canonical state of the total
Hamiltonian:

ρSB = e−β(Ĥ−μN̂ )

Tr[e−β(Ĥ−μN̂ )]
, (11)

where N̂ is the particle number operator. As the grand canon-
ical Gibbs state of a quadratic Hamiltonian is Gaussian, we
apply the correlation-matrix approach. We determine the cor-
relation matrix in the following way: First, the single-particle
Hamiltonian H defined by Eq. (8) is diagonalized as

H = PHDP†, (12)

where HD is a diagonal matrix. Then the correlation matrix of
the global Gibbs state Ceq can be calculated as

Ceq = PCeq,DP†, (13)

where Ceq,D is the equilibrium correlation matrix expressed
in the basis diagonalizing H. Explicitly, it is expressed as
Ceq,D = diag[ f (HD

00), . . . , f (HD
KK )], where, to recall, f (ε) is

the Fermi distribution. The entanglement negativity can then
be calculated using the method presented in Sec. III C.

We now analyze the entanglement behavior for different
system parameters. Let us clarify the unit convention that
we use. In most cases, the entanglement will be plotted as a
function of the nondimensional ratio �/(kBT ). This may be

FIG. 3. Entanglement negativity N6 for different numbers of
bath levels K . Other parameters are as in Fig. 2.

interpreted either as a function of the coupling strength � for
a constant temperature, or as a function of the inverse temper-
ature 1/T for a constant �. Since both parameters are tunable
in experiments [110,111], both interpretations are physically
meaningful. The rest of the parameters will be expressed in
units of � or kBT , such that the results do not change when
both � and kBT are multiplied by the same factor.

In the first step, we investigate the behavior of partial
negativities NM for different values of the cutoff M to de-
termine whether they provide a good estimate of the total
negativity N . The results are presented in Fig. 2. As may
be noted, for all partial negativities, entanglement is absent
for weak-coupling strengths but appears for a finite value
of � of the order of magnitude of the thermal energy kBT .
This is because, for mixed states, entanglement appears only
when system-bath correlations (which gradually build up
when the coupling strength increases) reach a certain fi-
nite threshold [112,113]; this contrasts with the behavior of
pure states, where every correlated state is entangled. The
threshold value of �/(kBT ), at which entanglement appears,
decreases with increasing cutoff M. However, the partial neg-
ativities N4 and N6 are already very close to each other.
This suggests that N6 provides a good estimate of the total
negativity N . From hereon, we mostly apply this value of the
cutoff.

In Fig. 3 we analyze the dependence of entanglement on
the number of bath levels K (and thus on the density of
states in the bath). Apart from the fundamental importance
for real finite systems, this is an important technical param-
eter. In numerical simulations we can only deal with finite
baths; therefore, it is necessary to establish whether they
can adequately simulate the thermodynamic limit. As can be
observed, for small K = {10, 20, 30} entanglement increases
with the bath size. However, for larger baths the entanglement
negativity becomes nearly size-independent; indeed, the re-
sults for K = 30 and K = 50 are already very close to each
other. On this basis, we can conclude that a sufficiently large
finite bath can adequately simulate the thermodynamic limit.
Specifically, to reproduce the thermodynamic limit, the inter-
level spacing in the bath �ε = W/K must be approximately
smaller than �.

In Fig. 4 we further investigate the dependence of entan-
glement on the chemical potential μ, and thus on the degree
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FIG. 4. Entanglement negativity N6 for different values of the
chemical potential μ. Other parameters as in Fig. 2.

of breaking of the particle-hole symmetry. As shown, for
all values of μ, entanglement appears at the same threshold
value of �/(kBT ). However, its magnitude increases with the
absolute value of the chemical potential. This may be related
to an increase in the purity of the bath levels that are resonant
with the system.

Finally, we analyze how entanglement depends on the bath
bandwidth W . To keep the density of states in the bath con-
stant, we take the number of bath levels K to be proportional
to the bandwidth. The results are presented in Fig. 5. Since
the bandwidth is usually not tunable, one may interpret the
figure as plotted as a function of the inverse temperature 1/T
for constant � and W . As shown, for smaller bandwidths
the entanglement negativity is also smaller and appears at
higher values of �/(kBT ). Interestingly, one can observe a
pronounced difference between the entanglement behavior for
bandwidths larger than the coupling strength by an order of
magnitude (W = 20� and W = 50�). This result suggests
that entanglement may be strongly affected by details of the
spectral density of the bath �(ω), even for energies ω far
from resonance with the system energy ε0. To illustrate this
further, in Fig. 6 we plot (on a log-log scale) the threshold
temperature Tth, below which the entanglement is present,
as a function of W/�. It is evaluated for different cutoffs
M. As one can first note, for large bandwidths one needs
to use large cutoffs to make the calculations reliable. As

FIG. 5. Entanglement negativity N6 for different values of the
bandwidth W , with K = 8W/�. Other parameters as in Fig. 2.

FIG. 6. Threshold temperature Tth, below which the entangle-
ment is present, as a function of the bandwidth W , evaluated
with different cutoffs M. Parameters as in Fig. 2, unless denoted
otherwise.

a consequence, our simulations are limited to W � 200�.
Second, the threshold temperature increases monotonically as
the bandwidth increases. In particular, in the bandwidth range
considered, the threshold temperature evaluated for the cutoff
M = 10 obeys approximately a power law Tth ∝ �(W/�)2/3.
This might suggest that in the infinite bandwidth limit the
entanglement appears for any finite temperature and coupling
strength �. However, as our calculations are limited to finite
bandwidths, and naive extrapolations of a finite-size scaling
are sometimes misleading, it is not possible to state it with
certainty.

This result might be surprising, as intuitively the strongly
off-resonant levels of the bath should be very weakly cor-
related with the system. A possible explanation of this
phenomenon may be provided by considering the thermal
entanglement in a toy model of two coupled fermionic levels.
It is described by the Hamiltonian

Ĥ = ε1c†
1c1 + ε2c†

2c2 + T (c†
1c2 + c†

2c1), (14)

where ε1 and ε2 are the level energies, and T is the tunnel cou-
pling. Using the Jordan-Wigner transform, it can be expressed
in a matrix form as

Ĥ =

⎛
⎜⎜⎜⎝

ε1 + ε2 0 0 0

0 ε1 T 0

0 T ε2 0

0 0 0 0

⎞
⎟⎟⎟⎠. (15)

For such a model, a density matrix of the thermal state
ρ = Z−1 exp[−β(Ĥ − μN̂ )], and thus the entanglement nega-
tivity, can be evaluated explicitly. Let us now take ε1 = μ = 0
and ε2 = ε; the parameter ε describes then the detuning of the
energy levels. In Fig. 7 we present the phase diagram of the
thermal entanglement as a function of the level detuning and
the tunnel coupling. As may be noted, for a larger detuning
ε, the entanglement appears at lower threshold values of the
tunnel coupling T . In the limit of ε → ∞, the entanglement
is present for any finite T . Thus, off-resonant fermionic levels
are more liable to be entangled than the resonant ones. A
similar occurrence has been previously observed for qubits in
an inhomogeneous magnetic field [114,115].
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Sep

Entangled

FIG. 7. Entanglement phase diagram for two fermionic levels as
a function of the level detuning ε and the tunnel coupling T . “Sep”
denotes the separable phase.

This results is still not intuitive, as the off-resonant lev-
els should be more weakly correlated than the resonant
ones. Indeed, as shown in Fig. 8, while the level detuning
decreases the threshold tunnel coupling, it also quantita-
tively suppresses the entanglement for large T . To provide
a qualitative explanation of this phenomenon, let us con-
sider a perturbative form of the density matrix ρ for the
case of a large detuning ε and a small tunnel coupling T .
To this end, we treat a diagonal part of the Hamiltonian
(15) as an unperturbed Hamiltonian, and the off-diagonal
part as a small perturbation. The density matrix can then be
approximated as

ρ ≈ Z−1
4∑

i=1

∣∣ψ (1)
i

〉〈
ψ

(1)
i

∣∣e−βE (1)
i , (16)

where |ψ (1)
i 〉 are eigenstates of Eq. (14) with energies E (1)

i
obtained within first-order perturbation theory. In the limit of

FIG. 8. Entanglement negativity in a two-level system as a func-
tion of the tunnel coupling T for different level detunings ε.

ε � kBT � T this yields

ρ ≈ 1

2

⎛
⎜⎜⎜⎜⎝

e−βε 0 0 0

0 1 −T /ε 0

0 −T /ε T 2/ε2 + e−βε 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (17)

The partially transposed density matrix takes then the form

ρTB ≈ 1

2

⎛
⎜⎜⎜⎜⎝

e−βε 0 0 −T /ε

0 1 0 0

0 0 T 2/ε2 + e−βε 0

−T /ε 0 0 1

⎞
⎟⎟⎟⎟⎠. (18)

The matrix ρTB is nonpositively defined, and thus the system is
entangled, for T � εe−βε/2. One can numerically check that
this approximation works well for ε � 3kBT .

This analytic result leads us to a qualitative explanation of
the reduced tunnel coupling threshold for a large detuning.
While increasing the detuning suppresses the correlation be-
tween levels 1 and 2, it also increases the purity of the state
of level 2 by reducing its occupancy. Thus, even though cor-
relations between levels are weaker, they are more likely to be
genuinely quantum because of the increased purity. Further-
more, while the off-diagonal elements of the density matrix
(related to the interlevel coherence) decay only algebraically
with the detuning as T /ε, the occupancy of the level 2 de-
creases exponentially as e−βε . Thus, the effect of the increased
purity is stronger than that of the reduced correlation, which
promotes the presence of entanglement.

Based on this, we may try to provide an explanation for the
observed bandwidth dependence: For a large bandwidth, the
system is coupled to a large number of strongly detuned levels
in the bath. Although the system is only weakly correlated
with them, they might still significantly contribute to entangle-
ment, since their states are highly pure (with occupancy close
to either zero or one), as illustrated by the two-level model.

We finally note that our result may be important for numer-
ical simulations of the system-bath entanglement in strongly
correlated impurities, which recently gained notable attention
[24–35]. In simulations, the bandwidth is often treated as
a technical parameter that should be kept larger than other
energy scales of the system to avoid its influence on the system
behavior. While this approach is often valid when considering
the system observables, our results suggest that one must be
more careful in the case of information-theoretic correlations,
such as the system-bath entanglement. Then, the effect of the
bandwidth can still be important, even when it significantly
exceeds other energy scales.

B. Canonical ensemble

In the previous section, the equilibrium state of the system
and the bath was described within the grand canonical ensem-
ble, with fluctuating energy and particle number. However,
within the framework of statistical physics, alternative choices
can be considered, such as the canonical ensemble with a fixed
particle number. Indeed, the latter choice may appear to be
more physically justified for certain physical setups, such as
impurities interacting with a trapped cloud of ultracold atoms
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FIG. 9. Entanglement negativity N as a function of the coupling
strength � at the particle-hole symmetric point ε0 = μ = 0 for the
canonical (Can) and the grand canonical (GC) ensembles for the
number of bath levels K = 7 and K = 9, and the bandwidth W = 5�.
Results are compared with the partial negativities N3 and N4 calcu-
lated for the grand canonical ensemble with K = 400.

[116], where the number of particles in the experimental setup
is fixed. As follows from the principle of ensemble equiva-
lence, in the thermodynamic limit both ensembles predict the
same reduced state of the system. However, as shown in our
previous paper [117], the transient properties of microscopic
system-bath correlations may depend on the choice of the en-
semble. Here we show that this is also true for the equilibrium
entanglement.

Since the canonical state with a fixed particle number is
not a Gaussian state, one needs to operate on the level of
full density matrices rather than use the correlation matrix
approach. The density matrix for the canonical state with the
particle number N is calculated as

ρSB = Z−1
∑

i

δNi,N e−βEi |ψi〉〈ψi|, (19)

where |ψi〉 is the eigenstate of the total Hamiltonian Ĥ with
energy Ei and particle number Ni, while Z = ∑

i δNi,N e−βEi

is the partition function. Due to the need to calculate the full
density matrix, we choose a small number of bath levels K =
7 or K = 9. We also take a relatively small bandwidth W =
5�. This is a sort of compromise: While for small bandwidths
the model does not reproduce the properties of typical wide-
band baths considered in the literature, for large bandwidths
the energy levels are no longer sufficiently dense to simulate
the continuous spectral density.

The entanglement negativity calculated for different en-
sembles is presented in Fig. 9. First, as in the previous section,
for the grand canonical ensemble entanglement appears for a
finite value of the coupling strength � of the order of kBT . As
shown by comparison with the partial negativities N3 and N4

calculated using the correlation matrix approach for K = 400,
the threshold value is not affected by the small size of the bath.
Indeed, for a sufficiently small � � 4kBT the results coincide,
suggesting that the considered small baths with K = 7 or
K = 9 levels already reproduce the properties of entanglement
in the thermodynamic limit. For larger � � 4kBT the entan-
glement negativity depends on K more strongly, decreasing
with the number of levels and approaching the value of partial

negativities N3 and N4 calculated for a large bath K = 400;
the latter quantities coincide, which suggests that they ap-
propriately approximate the total entanglement negativity for
large baths.

In contrast, the canonical ensemble entanglement is present
for arbitrarily weak finite coupling strengths � (given the
finite temperature T ). This can be explained as follows:
Let us first define the many-particle Fock states |φy〉 =
(c†

K )yK · · · (c†
0)y0 |∅〉, where y = (y0, . . . , yK ) is the vector of

level occupancies and |∅〉 is the vacuum state. As one can
note, the Fock states are characterized with a definite num-
ber of particles in each level. Then, according to the theory
presented in Ref. [118], for a fixed particle number entan-
glement is present whenever there exist nonzero off-diagonal
elements of the density matrix expressed in the Fock basis
(ρSB)yz = 〈φy|ρSB|φz〉, with |φy〉 and |φz〉 corresponding to
different occupancies of the system S (i.e., y0 �= z0). Such
off-diagonal elements are obviously present in the thermal
state of the Hamiltonian (5), which is not diagonal in the
Fock basis; this is due to the presence of the tunneling term∑K

k=1(tkc†
0σ ckσ + H.c.), which coherently exchanges particles

between the system and the bath. Furthermore, the entangle-
ment negativity for the canonical state significantly exceeds
the one calculated for the grand canonical ensemble, al-
though both converge to the asymptotic value 1/2 in the
limit �/(kBT ) → ∞. This demonstrates that the system-bath
entanglement depends on the statistical ensemble describing
the global equilibrium state.

V. TRANSIENT DYNAMICS

In this section we analyze the entanglement generated dur-
ing the transient relaxation of a fermionic impurity initialized
out-of-equilibrium with respect to the bath. First, in Sec. V A
we present an analytic theory applicable to weakly coupled
impurities. In Sec. V B we present the numerical results es-
tablishing a range of applicability of this theory, as well as
providing insight into the transient entanglement behavior in
the strong-coupling regime.

A. Analytic theory

1. Derivation

Here we present an analytic theory enabling to calculate the
entanglement negativity in the regime of weak system-bath
coupling � � kBT . The method used is based on reconver-
sion of multimode into two-mode correlations via a suitable
unitary operation acting of the bath. This approach was first
proposed by Botero and Reznik for bosonic Gaussian states
[119], and later thoroughly investigated in Refs. [120,121].

Our theory is based on the following reasoning. The energy
level of the system is effectively (resonantly) coupled only to
those energy levels in the bath, whose energies εk are close to
the energy of the system ε0, that is, the interlevel separation
|εk − ε0| is of the order of the level broadening �. When the
coupling strength to the bath is weak compared with tem-
perature (� � kBT ), the occupancies of these levels may be
approximated by the Fermi distribution at ε0: f (εk ) ≈ f (ε0).
One may thus consider an initial state of the bath where all lev-
els of the bath have an initial occupancy f = f (ε0). One must
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be aware that—as illustrated by the bandwidth dependence
of entanglement in the equilibrium case (Sec. IV A)—this
reasoning may be actually not always valid due to the coupling
to highly pure off-resonant levels in the bath. Nevertheless,
as shown by the numerical results in Sec. V B, our theory is
valid for bandwidths small enough such that the mentioned
effect is not yet important, but still large enough to observe
an asymptotic thermalization of the system via the relaxation
process.

The initial correlation matrix C(0), corresponding to the
assumption of equal initial occupancy of the bath levels, may
be expressed as

C(0) = diag[p0, f , . . . , f ], (20)

where pt = C00(t ) = 〈c†
0c0〉(t ) denotes a time-dependent oc-

cupancy of the system, and thus p0 is the initial occupancy.
The expression above can be rewritten as

C(0) = f1 + (p0 − f )�0, (21)

where 1 is (K + 1) × (K + 1) identity matrix, and �0 =
diag(1, 0, . . . , 0) with K elements 0. The time-evolved cor-
relation matrix takes the form

C(t ) = f1 + (p0 − f )�t , (22)

where �t = eiHt�0e−iHt .
One may now note that �0 corresponds to the correlation

matrix of a single-particle pure state: (�0)kl = 〈�0|c†
kcl |�0〉,

where

|�0〉 = c†
0|∅〉. (23)

To recall, |∅〉 denotes here a vacuum state. Correspondingly,
�t is the correlation matrix of the time-evolved state |�t 〉 =
e−iĤt |�0〉. It is then known that any pure system-bath state can
be transformed via a unitary matrix acting only on the bath to
a Schmidt form

|�̃t 〉 = (αc†
0 + γ c̃†

1)|∅〉, (24)

where c̃†
1 = ∑K

k=1 akc†
k is a certain superposition of the cre-

ation operators in the original basis, while α and γ are
non-negative real numbers. A corresponding transformed cor-
relation matrix (�̃t )kl = 〈�̃(t )|c̃†

k c̃l |�̃(t )〉 takes the form

�̃t =
(

α2 αγ

αγ γ 2

)
⊕ diag(0, . . . , 0), (25)

where ⊕ denotes a direct sum of matrices, i.e., A ⊕ B =
diag(A, B). The correlation matrix C(t ) is then transformed
to a form

C̃(t ) = f1 + (p0 − f )�̃t . (26)

Parameters α and γ can be found by using the identities
pt = f + (p0 − f )α2, C̃11(t ) = f + (p0 − f )γ 2, and p0 +
f = pt + C̃11(t ); the latter identity is a consequence of the
particle-number conservation (or, in other words, the conser-
vation of the trace of the correlation matrix). One thus finds

C̃(t ) =
(

pt δ

δ f − �t

)
⊕ diag( f , . . . , f ), (27)

where �t = pt − p0 and δ = |√(p0 − pt )( f − pt )|.

As one may note, after the transformation the system-bath
correlation corresponds to a correlation between the system
and a single mode of the transformed bath. Thus, we may
focus on the reduced correlation matrix of the modes 0 and
1, denoted as ρ̃(0,1). Using Eq. (10) it can be represented as

ρ̃(0,1) =

⎛
⎜⎜⎜⎝

b1 0 0 0

0 b2 δ 0

0 δ b3 0

0 0 0 b4

⎞
⎟⎟⎟⎠, (28)

with b1 = pt ( f − �t ) − δ2, b2 = pt (1 − f + �t ) + δ2, b3 =
(1 − pt )( f − �t ) + δ2, and b4 = (1 − pt )(1 − f + �t ) − δ2.
The partially transposed density matrix takes then the form

ρ̃
TB
(0,1) =

⎛
⎜⎜⎜⎝

b1 0 0 δ

0 b2 0 0

0 0 b3 0

δ 0 0 b4

⎞
⎟⎟⎟⎠. (29)

Finally, using Eq. (4), the entanglement negativity can be
calculated as

N = max (0,−λ1), (30)

where

λ1 = 1

2
[1 − f − p0 − 2 f p0 + 4pt ( f + p0 − pt )

−
√

(p0 + f − 1)2 + 4|(p0 − pt )( f − pt )|] (31)

is the only eigenvalue of ρ̃
TB
(0,1) which can take negative values.

Quite notably, our method allows the characterization of
the system-bath entanglement using only the system ob-
servables and intensive thermodynamic parameters of the
bath (specifically, the temperature and chemical potential that
determine the Fermi distribution). This is generally not pos-
sible for microscopic system-bath correlations. We note that
this approach can be used for the study of other types of
system-bath correlations (provided that they are invariant to
local unitary operations). In particular, in Appendix C we
present an analytic description of the system-bath mutual
information, which was studied numerically in our previous
work [61].

2. Analysis of the result

Let us now analyze the behavior of the entanglement nega-
tivity. We focus on the case when the occupancy of the system
undergoes a Markovian relaxation process described by the
master equation [122]

ṗt = �( f − pt ), (32)

whose solution is

pt = f + (p0 − f )e−�t . (33)

We note that Markovianity of the dynamics is not a require-
ment of the validity of Eq. (30)—it is still valid when the
dynamics is non-Markovian, e.g., due to a finite bandwidth W .
We further note that by taking the simultaneous limits W/� →
∞ and kBT/W → ∞ with (ε0 − μ)/(kBT ) = const (such that
the bandwidth is infinite, but occupancy of each bath level is
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FIG. 10. A scheme of the entanglement evolution during Marko-
vian relaxation. The entanglement negativity appears at the time tA,
reaches a maximum value Nmax in the moment tmax = �−1 ln 2, and
vanishes at the time tV .

still equal to f ), we reach the so-called singular-coupling limit
[123,124], where both the Markovian description and our
analytic theory of entanglement are exact. Thus, our approach
enables us to study the system-bath entanglement in a fully
Markovian regime.

First of all, the theory shows that, in a certain range of
initial conditions p0 and f (which will be described later),
the system-bath entanglement is generated within some in-
terval and exhibits a nonmonotonic behavior schematically
presented in Fig. 10. As Eq. (30) is not directly dependent on
the coupling strength � (which determines only the timescales
of the entanglement evolution), this is true for an arbitrarily
weak finite �. This conclusion is later confirmed by numer-
ical simulations. We consider this to be a remarkable result
because, in equilibrium, entanglement appears only above a
certain threshold �/(kBT ). This further illustrates that the
applicability of Born approximation (which assumes a fac-
torized system-bath state) for derivation of Markovian master
equation cannot be naively used to infer a lack of signifi-
cant system-bath correlations in the weak-coupling regime.
Physically, this may be explained as follows: The presence of
entanglement in our model is related to the unitary character
of the microscopic global system-bath dynamics underly-
ing the reduced description. It involves the generation of
quantum coherences in the eigenbasis of the free Hamil-
tonian HS + HE , corresponding to off-diagonal elements of
the correlation matrix. However, the reduced dynamics of
the system is effectively classical, as such coherences are
washed out by applying a partial trace over the state of
the bath [67].

Going into details of the entanglement behavior, we see
that at the beginning of the evolution no system-bath en-
tanglement is present until the entanglement arrival time tA.
This is because—analogously to the equilibrium case—the
entanglement appears only when system-bath correlations
(which gradually build up at the beginning of the evolu-
tion) reach a certain finite threshold [112,113]. After the
time tA the entanglement negativity increases, until it reaches
a maximum value Nmax at the time tmax. This time cor-
responds to the moment when the difference between the
system occupancy pt and the equilibrium population f de-
creases to half of its initial value: ptmax − f = (p0 − f )/2.

FIG. 11. Entanglement negativity as a function of time for differ-
ent initial system occupancies p0. Results for μ = ε0 + kBT .

Thus, independent on the initial parameters, it takes a
universal value

tmax = �−1 ln 2, (34)

which is a relaxation half time. Finally, the entanglement
vanishes at the vanishing time tV . This can be explained by
the phenomenon of post-thermalization (also referred to as the
asymptotic factorization [125]) analyzed in our previous paper
[61] (see also Appendix C): At long times the system-bath
correlations gradually decrease due to reconversion into the
correlations within the bath. When the correlations decrease
below a certain finite threshold, the state becomes separable,
which is sometimes called “an entanglement sudden death”
[112,113]. We further note that (for the considered Markovian
relaxation) the entanglement arrival and vanishing times are
not independent but related via the equation

e−�tA = 1 − e−�tV . (35)

Furthermore, in general the entanglement negativity obeys a
symmetry relation

N (t1) = N (t2) for e−�t1 = 1 − e−�t2 . (36)

A quantitative analysis of the entanglement negativity
shows that its behavior strongly depends on the initial occu-
pancy p0. This is presented in Fig. 11. The results are plotted
for f = e/(1 + e), which corresponds to μ = ε0 + kBT . We
first note that, for an initial pure state p0 = 0 (black solid
line), the entanglement is created immediately (tA = 0) and
goes asymptotically to zero only for the infinite time tV → ∞;
the analogous results are obtained for p = 1 (not shown).
We note that an immediate generation of the system-bath
entanglement, for a system initialized in a pure state, was
previously shown for the bosonic case [46]; however, the
infinite vanishing time is a peculiar feature of the considered
model, as it is not observed for bosons [52].

For initial mixed states with p0 = 0.15 (red dashed line)
or p0 = 0.25 (violet large dashed line), the entanglement is
smaller than for a pure state. The entanglement arrival and
vanishing times tA and tV usually need to be determined nu-
merically. However, approximate analytical expressions may
be derived by considering the regime of a high initial purity
(p ≈ 0 or p0 ≈ 1). This is done by expanding λ1 as the power
series of t and p0 or 1 − p0, and then finding tA by solving
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FIG. 12. The entanglement phase diagram showing the ranges of
initial parameters f and p0 for which the system develops a transient
system-bath entanglement (the orange regions denoted “E”) or not
(the blue region denoted “Sep”).

λ1 = 0 for the lowest orders of the expansion. For p0 ≈ 0 one
finds

tA ≈ �−1 p0(1 − f )

f
, (37)

tV ≈ −�−1 ln

[
p0(1 − f )

f

]
, (38)

while for p0 ≈ 1

tA ≈ �−1 (1 − p0) f

1 − f
, (39)

tV ≈ −�−1 ln

[
(1 − p0) f

1 − f

]
. (40)

As these expressions show, for a high initial purity entan-
glement appears almost immediately and vanishes for times
orders of magnitude longer than the relaxation time.

Finally, for a highly mixed state (here p0 = 0.4) entangle-
ment does not appear at all (blue dots). This is graphically
presented in the entanglement phase diagram (Fig. 12), where
the range of initial conditions, for which the entanglement
is not generated, corresponds to a lemon-shaped region in
the middle of the graph. Interestingly, we note that (in a
certain range of p0) the entanglement appears even for f =
1/2, which corresponds to a maximally mixed state of the
bath. Previously, entanglement with maximally mixed baths
has been shown to be impossible for qubits undergoing pure
dephasing [42], while it is possible for higher dimensions of
the Hilbert space of the system [40] or a nonpurely dephasing
evolution [42,126].

B. Numerical results

1. Entanglement negativity NM for different cutoffs M

Let us now present the numerical results obtained using the
methods described in Secs. III B and III C. First, we compare
the evolution of partial negativities NM for different cutoffs
M. We consider the case of a weak (� = 0.01kBT ) and a
strong (� = 0.5kBT ) system-bath coupling. The results are

FIG. 13. Evolution of the entanglement negativities NM for
different cutoffs M with � = 0.01kBT (a) and � = 0.5kBT (b). Pa-
rameters: p0 = 0.1, ε0 = 0, μ = kBT , W = 50�, and K = 400.

presented in Fig. 13. We note that for a weak coupling the
curves approximately coincide. This is because, as shown by
the analytic theory, in the weak-coupling regime the entan-
glement is concentrated in correlations between a system and
a single mode of the transformed bath state. For a strong
coupling, the calculated negativities approximately coincide
at short times but start to deviate for long times. In particular,
N1 vanishes at a certain moment, whereas partial negatives
NM do not disappear for M > 1. As shown later, this is be-
cause the entanglement converges to a finite value predicted
by the equilibrium theory from Sec. IV A. Analogously to the
equilibrium entanglement, the asymptotic long-time value of
NM depends on M. However, N4 and N6 are very close to each
other, which suggests that (for the parameters considered) N6

is a good approximation of the total negativity N .

2. Finite size effects – Poincaré recurrences

The derivation of the master equation assumes the infinite
bath limit K → ∞ [104], while using the correlation matrix
approach we simulate baths with finite sizes. Let us now con-
sider the effect of a finite bath size. In Fig. 14 we present the
evolution of the entanglement negativity for different numbers
of bath levels K , while keeping a fixed bandwidth; we thus
change the separation of energy levels in the bath. As one may
note, we consider much longer timescales than previously
presented. For short times, entanglement is approximately
independent of the bath size. This differs, e.g., from the pure
dephasing of a qubit attached to a harmonic-oscillator bath,
where entanglement decreases with the bath size and vanishes
for infinite baths [127]. For longer times we observe sudden
revivals of entanglement at times proportional to the bath size.
Such sudden death and rebirth dynamics of entanglement is
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FIG. 14. Entanglement negativity N6 as a function of time for
different numbers of bath levels K . Results for � = 0.01kBT and
other parameters as in Fig. 13.

characteristic for mixed states undergoing a unitary evolu-
tion [128]. In our model, the observed revivals are related to
Poincaré recurrences—periodic returns of a finite system un-
dergoing a unitary dynamics to a proximity of its initial state
[62]. Indeed, the entanglement revival time corresponds to the
Poincaré recurrence time tP = 2π/�ε = 2πK/W , where �ε

is the distance between the bath levels.

3. Finite �

Let us now analyze in detail the role of the coupling
strength �. The results are presented in Fig. 15. As one can
observe, for a weak � = 0.1kBT the calculated negativity
agrees well with the predictions of the Markovian theory.
Indeed, to the lowest order of �, the entanglement magnitude
does not depend on the coupling strength to the bath. This
is consistent with the fact that, within the analytic theory, �

determines only the timescales of entanglement evolution, but
not its magnitude. For a stronger coupling � = 0.2kBT the
analytic theory underestimates the entanglement; however, the
qualitative behavior of its evolution is still similar. Finally, as
already shown in Fig. 13, for a very strong coupling (� =
0.5kBT ), entanglement does not vanish at long times but rather
saturates at some finite value. As further shown in Fig. 16, this

FIG. 15. Entanglement negativity N6 as a function of time for
different values of the coupling strength �, compared with the an-
alytic formula for the Markovian dynamics. Other parameters as in
Fig. 13.

FIG. 16. The equilibrium entanglement negativity N6 (denoted
“eq,” lines) compared with the entanglement generated during the
transient evolution for t = 10�−1 (points). The considered band-
widths denoted in the graph. Other parameters as in Fig. 13.

long-time asymptotic value of entanglement (here calculated
for t = 10�−1) perfectly agrees with the equilibrium en-
tanglement calculated for the same parameters. This is a
remarkable result, as the long-time convergence to equilib-
rium is not a trivial issue for open quantum systems strongly
coupled to the bath, even if one considers just a reduced state
of a system [73]. Indeed, as we later show, this no longer holds
true in the presence of strongly non-Markovian effects that
suppress thermalization.

Our approach enables us to investigate also the alleged link
between entanglement and strong-coupling thermodynamic
effects reported in Ref. [54]. This study considered a setup
in which both the system and the bath consisted of a single
qubit. It was observed that during the transient evolution the
entanglement negativity is approximately proportional to the
heat asymmetry defined as

QSB = �ES + �EB, (41)

where �Eα = Eα (t ) − Eα (0) (α ∈ {S, B}) is the energy
change of the system or the bath, and Eα (t ) is the energy at
the time t . This quantity is related to system-bath interaction
energy, and thus vanishes in the weak-coupling Markovian
regime when �ES = −�EB [124,129]. The observed propor-
tionality of the entanglement negativity and QSB led the author
of Ref. [54] to the conclusion that the presence of heat asym-
metry is responsible for the generation of the system-bath
entanglement.

Here we analyze the heat asymmetry in our model. The
energy of the system is calculated as ES (t ) = ε0 pt , while the
bath energy as EB(t ) = ∑K

k=1 εkCkk (t ). The results for dif-
ferent coupling strengths � are presented in Fig. 17. As one
can observe, the heat asymmetry, after initial transient oscilla-
tions, saturates at some finite value. Therefore, its evolution is
qualitatively very different from the nonmonotonic behavior
of the entanglement negativity. Furthermore, the value of the
heat asymmetry exhibits a strong (supralinear) dependence on
the coupling strength, while the entanglement negativity ex-
hibits no such strong dependence. In particular, entanglement
may also be generated in the limit of �/(kBT ) → 0 (for which
the analytic theory is exact), when there is no heat asymmetry.
Thus, the relation between the entanglement negativity and
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FIG. 17. The heat asymmetry QSB as a function of time for differ-
ent values of the coupling strength �. Other parameters as in Fig. 13.

the heat asymmetry observed in Ref. [54] appears to be a
specific feature of the considered model rather than a generic
rule.

4. Finite bandwidth

Let us now consider the influence of the finite bandwidth
W . To keep the distance between bath levels fixed, the bath
size K is taken to be proportional to W . The evolution of
entanglement negativity for a weak (� = 0.01kBT ) and a rela-
tively strong (� = 0.2kBT ) coupling strength, compared with
the analytic theory for the Markovian case, is presented in
Fig. 18. As one can observe, for a weak coupling the Marko-
vian approach overestimates the entanglement negativity at
short times for small bandwidths (here W = 25�), as well as

FIG. 18. Entanglement negativity as a function of time for dif-
ferent bandwidths W with (a) � = 0.01kBT and (b) � = 0.2kBT ,
compared with the analytic formula for the Markovian dynamics.
Results for K = 8W/� and other parameters as in Fig. 13.

FIG. 19. Difference of the system occupancy pt between the
exact (pex

t ) and the Markovian (pM
t ) dynamics for � = 0.01kBT and

different bandwidths W . Parameters as in Fig. 18.

underestimates the entanglement arrival time tA. However, for
a large bandwidth W = 100� the difference becomes negligi-
ble. The observed behavior is the result of the deviation of the
system occupancy pt from the predictions of the Markovian
master equation (see Fig. 19). It is notable mainly at times
shorter than the relaxation time �−1. Its magnitude is inversely
proportional to the bandwidth, as the master equation be-
comes exact in the infinite-bandwidth limit.

In Fig. 18(b) we present the case of a stronger coupling
� = 0.2kBT . In this case, the analytic theory underestimates
the entanglement negativity, which—analogously the equilib-
rium case—increases with the bandwidth. The same behavior
is observed for the entanglement vanishing time tV . For a
very large bandwidth � = 100� the entanglement does not
vanish at all, but rather saturates at some finite value, which
is consistent with the equilibrium predictions (cf. Fig. 6). We
expect that such behavior is also present for smaller �, albeit
beyond the range of bandwidths that we can simulate.

5. Role of bound states

In Sec. V B 3 it was shown that for long times the en-
tanglement negativity approaches the value predicted by the
global Gibbs state. However, this only holds when the dy-
namics is thermalizing, i.e., when the system approaches the
equilibrium state independent of the initial conditions. Ther-
malization can be suppressed, e.g., by the presence of bound
states, i.e., eigenstates of the single-particle Hamiltonian H
strongly localized in the system [130–133]. As shown in our
previous work [61], this can suppress the decay of the system-
bath mutual information, which quantifies both quantum and
classical correlations. Here we demonstrate that this is true
also for entanglement.

In the analyzed model, the bound state is generated when
the energy level of the system ε0 is placed close to the band
edge ω = W/2, where the spectral density of the bath �(ω)
drops from � to zero [133]. We parametrize the distance from
the band edge as δ = W/2 − ε0. The entanglement behavior
for different values of δ is presented in Fig. 20(a). As one
may observe, for a sufficiently high value of displacement
(δ = 1.5�) entanglement undergoes the “sudden death” at
time tV ≈ 3�−1. For a lower displacement value (δ = �) en-
tanglement is preserved for longer times, but ultimately still
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FIG. 20. (a) Entanglement negativity N6 as a function of time
for different distances of the system energy ε0 from the band edge,
with p0 = 0.1. (b) Evolution of the system occupancy pt for different
initial occupancies p0, with δ = 0. Results for ε0 = W/2 − δ, μ =
ε0 + kBT , W = 50�, and K = 400.

vanishes. Finally, when the system energy is very close to the
band edge (δ � 0.8�), entanglement is preserved also in the
long-time limit.

We underline that, in contrast with the strong-coupling
case (� = 0.5kBT ) presented in Fig. 15, the preservation of
entanglement at long times is here not a result of the con-
vergence to the equilibrium value predicted by the global
Gibbs state. In fact, for the parameters considered here there
is no equilibrium entanglement. Instead, the preservation of
entanglement is a consequence of the suppression of ther-
malization, namely, the fact that the long-time occupancy
of the system does not converge to equilibrium, but rather
depends on the initial state [see Fig. 20(b)]. Indeed, the
entanglement negativity can be described by the analytic
weak-coupling theory [Eq. (30)], with pt given by the actual
occupancy rather than predictions of the Markovian master
equation. This result shows that, while non-Markovian ef-
fects are not essential for the generation of the system-bath
entanglement, they may lead to its long time preservation.
We note that an analogous suppression of the entanglement
decay by non-Markovian effects was previously explored in
Refs. [7,8] in the context of entanglement within an open
quantum system.

VI. VOLTAGE-DRIVEN JUNCTION

A. Model

Finally, let us consider the case where the energy level of
the system is connected to two fermionic baths α ∈ {L, R}
with the same temperature β, but different chemical potentials
μL and μR. The open system is described by a generalized

FIG. 21. Entanglement negativity N6 as a function of time for
different (a) initial states of the system and (b) applied voltages.
Results for p0 = 0.5, � = 0.01kBT , a = 0, ε0 = μ̄ = 0, V = 2kBT ,
W = 50�, and K = 300, unless denoted otherwise in the graph.

version of the Hamiltonian (5),

Ĥ = ε0c†
0c0 +

∑
α∈{L,R}

K∑
k=1

εαkc†
αkcαk

+
∑

α∈{L,R}

K∑
k=1

(tαkc†
0cαk + H.c.). (42)

As in the case of a single bath, the energy levels εαk are
uniformly distributed throughout the interval [−W/2,W/2]
and the tunnel couplings are parametrized as �α = 2πt2

αk (K −
1)/W . The chemical potentials are parametrized as μL = μ̄ +
V/2 and μR = μ̄ − V/2, where μ̄ and V are the average chem-
ical potential and V is the voltage bias, respectively. Similarly,
the coupling strengths are parametrized as �L = (1 + a)� and
�R = (1 − a)�, where a is the asymmetry coefficient. The
initial correlation matrix is defined as

C(0) = diag[p0, fL(εL1), . . . , fL(εLK ),

fR(εR1), . . . , fR(εRK )], (43)

where p0 is the initial occupancy of the system and fα (ε) =
{1 + exp[β(ε − μα )]}−1 is the Fermi distribution of the
bath α.

B. Transient dynamics

In the first step, we analyze a transient dynamics of the
voltage-driven junction. In Fig. 21(a) we show the behavior
of entanglement for a moderately high voltage V = 2kBT
and a weak-coupling strength � = 0.01kBT , with different
initial occupancies of the system p0. As can be observed, the

115408-14



SYSTEM-BATH ENTANGLEMENT OF NONINTERACTING … PHYSICAL REVIEW B 109, 115408 (2024)

FIG. 22. Entanglement negativity N6 as a function of time for
small bandwidth W = 2� and different initial states of the sys-
tem. Results for � = 0.01kBT , a = 0, ε0 = μ̄ = 0, V = 1.8kBT ,
and K = 200.

short-time dynamics of entanglement depends on the purity
of the initial state: for high purity [p0 close to zero] en-
tanglement is nearly immediately generated and reaches a
maximum value for times comparable to the relaxation time
�−1. In contrast, for low purities [p0 close to 1/2] entan-
glement is generated after a longer time. Nevertheless, for
all initial states the entanglement negativity reaches the same
finite asymptotic value at long times. This occurs also for
a weak-coupling strength � = 0.01kBT , for which entangle-
ment is not present at equilibrium. This demonstrates that
nonequilibrium driving may lead to long-time preservation
of the system-bath entanglement even for a weak coupling
to the bath. Indeed, such a conclusion can already be drawn
from the results presented in Ref. [79], where the authors
observed the mutual information between the system and the
baths exceeding the value ln dimHS = ln 2 (where dimHS is
the dimension of the Hilbert space of the system), which is
a maximum value of the mutual information for separable
states [134,135].

As further shown in Fig. 21(b), both the short time dynam-
ics of entanglement and its asymptotic value strongly depend
on the voltage. For high voltages V � 5kBT , entanglement
is created almost immediately and reaches larger asymptotic
values. In particular, for a very high voltage V = 15kBT the
asymptotic entanglement negativity is close to the maximum
value 1/2. For lower voltages (here V = 2kBT ) entanglement
is formed after a longer time and saturates at lower values.
Finally, for a very small voltage V = kBT entanglement is not
created at all. This voltage dependence will be the main focus
of the later analysis of the steady-state entanglement.

We note that the convergence to a steady state independent
of the initial state is observed only when the bandwidth is suf-
ficiently large (W � 3�). For a smaller bandwidth, as in the
single-bath case considered in Sec. V B 5, this no longer holds
due to the presence of the bound states. This is illustrated
in Fig. 22. As shown, for a small bandwidth W = 2� the
entanglement negativity depends on the initial state also for
long times, and exhibits oscillations that apparently survive
for arbitrarily long times. Such “eternal oscillations” are char-
acteristic for the bound states [131–133,136]. Furthermore,
for the initial fully mixed state (p0 = 0.5) one can observe

periodic deaths and revivals of entanglement. Such a behavior
is typical for the entanglement dynamics in non-Markovian
systems [5,6]. Interestingly, one can observe that at certain
moments entanglement reaches the same value, independent
of the initial state, but later again diverges; however, this is
true only when the energy level of the system is placed in the
center of the band (ε0 = 0), and thus is a result of the model
symmetry,

C. Steady state—analytic theory

1. Derivation

As in the case of transient dynamics (see Sec. V A 1), the
steady-state entanglement in the weak-coupling regime (� �
kBT ) can be described using an analytic theory. Analogously
to the previous case, it is applicable when the bandwidth
is neither too small (such that the system reaches a steady
state independent of the initial conditions) nor too large (such
that coupling to highly pure off-resonant levels is not yet
important). Based on the same arguments, we take the level
occupancies of both reservoirs to be energy-independent and
equal to fL = fL(ε0) and fR = fR(ε0). To denote the levels
in the bath, we now reexpress the indexes as Lk = k and
Rk = K + k. We then consider the evolution of the correlation
matrix from the initial uncorrelated state to the steady state.
As the steady-state entanglement is independent of the initial
state of a system, without loss of generality we fix the initial
occupancy as p0 = fR. The initial correlation matrix C(0) may
then be expressed as

C(0) = diag[ fR, fL, . . . , fL, fR, . . . , fR]. (44)

The expression above can be rewritten as

C(0) = fR1 + ( fL − fR)�0, (45)

where 1 is a (2K + 1) × (2K + 1) identity matrix, and the
matrix �0 = diag(0, 1, . . . , 1, 0, . . . , 0) contains K elements
1 at positions 1, . . . , K .

We now use the same approach as in Sec. V A 1 by noting
that �0 corresponds to the correlation matrix of a pure state

|�0〉 = c†
K · · · c†

1|∅〉. (46)

Following the same steps as before, the transformed correla-
tion matrix takes the form

C̃(t ) = fR1 + ( fL − fR)�̃t , (47)

where �̃t is expressed as

�̃t =
(

α2 αγ

αγ γ 2

)
⊕ diag(1, . . . , 1, 0, . . . , 0), (48)

with K − 1 elements 1. The parameters α and γ can be found
using the identities C̃00(t ) = fR + ( fL − fR)α2 and C̃11(t ) =
fR + ( fL − fR)γ 2. We further focus on long times, when
C̃00(t ) is equal to the stationary occupancy of the system
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PTASZYŃSKI AND ESPOSITO PHYSICAL REVIEW B 109, 115408 (2024)

pst, and we require C̃11(t ) + pst = fL + fR due to the particle
number conservation. One thus finds a long-time asymptotic
form of the correlation matrix (which corresponds to the
steady state)

C̃st =
(

pst δ

δ C̃st
11

)
⊕ diag( fL, . . . , fL, fR, . . . , fR), (49)

where C̃st
11 = fL + fR − pst and δ = |√( fL − pst )( fR − pst )|.

The partially transposed matrix of modes 0 and 1 is then given
by Eq. (29) with δ as above, b1 = pstC̃st

11 − δ2, b2 = pst(1 −
C̃st

11) + δ2, b3 = (1 − pst )C̃st
11 + δ2, and b4 = (1 − pst )(1 −

C̃st
11) − δ2. Finally, the entanglement negativity reads

N = max (0,−λ1), (50)

where

λ1 = 1

2
[1 − fL − fR + 2 fL fR

−
√

1 − 2( fL + fR) + � f 2 + 4pst( fL + fR − pst )],

(51)

with � f = fL − fR.
Let us now rewrite the expression above in terms of the

system parameters. For the Markovian dynamics, pst is given
by a solution of the master equation [122]

�L( fL − pst ) + �R( fR − pst ) = 0, (52)

which yields

pst = �L fL + �R fR

�L + �R
. (53)

Using a parametrization of tunneling rates and chemical po-
tentials defined in Sec. VI A, the eigenvalue λ1 takes the form

λ1 = 1

2
[
cosh (βμ̄) + cosh

(
βV
2

)]
{

cosh (βμ̄) −
√

cosh2 (βμ̄) + 1

2
[(1 − a2) cosh (βV ) + a2 − 3]

}
. (54)

2. Analysis of the results

We now analyze consequences of Eqs. (50) and (54). First,
as implied by Fig. 21(b), the entanglement appears above a
certain threshold voltage Vth. It can be found by solving λ1 =
0. From Eq. (54), this is equivalent to solving the equation

(1 − a2) cosh (βVth ) + a2 − 3 = 0, (55)

which is independent of the average chemical potential μ̄.
Thus, μ̄ determines only the magnitude of the system-bath
entanglement, but not its presence. The solution reads

Vth = kBT arccosh

(
3 − a2

1 − a2

)
. (56)

Equivalently, for a given voltage V , the entanglement is
present for

|a| <

√
cosh (βV ) − 3

cosh (βV ) − 1
. (57)

Parameter regions in which the entanglement is present or
absent are presented graphically in the entanglement phase
diagram (Fig. 23). As one can note, the threshold voltage
increases with the asymmetry coefficient a. In particular, it
vanishes in the limit |a| → 1, when the system is effectively
coupled to a single bath. In fact, this regime is equivalent to
the equilibrium case, where no entanglement is present in the
weak-coupling regime. However, for large voltages V � 5kBT
the entanglement is present up to very large degrees of asym-
metry, i.e., for

|a| � 1 − 2e−βV , (58)

where the right-hand side of inequality is very close to one.
Let us now consider how entanglement is quantitatively

affected by either the finite average chemical potential μ̄,

which breaks the particle-hole symmetry [Fig. 24(a)], or by
the tunnel coupling asymmetry a [Fig. 24(b)]. First, as already
noted, the average chemical potential affects the magnitude of
the entanglement negativity for |μ̄| comparable to V , but not
the threshold voltage at which it appears. This somewhat re-
sembles a similar previous result obtained for the equilibrium
strong-coupling regime [Fig. 4]. However, the trend is re-
versed compared with that observed for the equilibrium case:
The magnitude of entanglement decreases with the absolute
value μ̄. A possible explanation may be that by increasing
|μ̄| one suppresses the particle flow between the baths, which
is the source of the steady-state entanglement [as the particle
current is proportional to �( fL − fR), which is maximized at

Entangled

Separable

FIG. 23. The entanglement phase diagram showing parameter
regions in which the system-bath state is entangled or separable.
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FIG. 24. Entanglement negativity N as a function of voltage
V for different (a) average chemical potentials μ̄ and (b) tunnel
coupling asymmetries a.

μ̄ = 0]. However, we note that breaking of the particle-hole
symmetry no longer plays a role in the high-voltage regime,
where fL → 1 and fR → 0 (independently of μ̄). Thus, for
a high voltage, the entanglement negativity converges to the
asymptotic value N = 1/2.

In contrast, the asymmetry of tunnel couplings affects both
the threshold voltage and the asymptotic value of the entangle-
ment negativity in the high-voltage regime. Indeed, the latter
value can be found analytically as

lim
V →∞

N =
√

1 − a2

2
. (59)

FIG. 25. Entanglement negativity N6 as a function of voltage V
at a fixed time t = 10�−1 for different coupling strengths �. Results
for p0 = 0.5, a = 0, ε0 = μ̄ = 0, W = 50�, and K = 300.

FIG. 26. Entanglement negativity N6 as a function of voltage V
at a fixed time t = 10�−1 for different bandwidths W with (a) � =
0.01kBT and (b) � = 0.3kBT . Other parameters as in Fig. 25.

D. Steady state—numerical results

Let us now analyze the numerical results to establish a
range of validity of the Markovian theory, as well as go be-
yond this regime. To this end, we analyze the partial negativity
N6 at a fixed time t = 10�−1, which is much longer than
the relaxation time. In Fig. 25, we present the voltage depen-
dence of the steady-state entanglement for different coupling
strengths �, focusing on the highly symmetric case with μ̄ =
ε0 = 0 and a = 0. As can be observed, for a weak-coupling
strength � = 0.1kBT , the entanglement negativity agrees well
with the Markovian theory. For an intermediate coupling � =
0.16kBT , the threshold voltage is shifted to a much lower
value. Finally, in the strong-coupling regime (� = 0.3kBT )
entanglement is also present in equilibrium (V = 0).

FIG. 27. The threshold voltage Vth, at which the entanglement ap-
pears, as a function of the ratio W/�, for different coupling strengths
�, evaluated for M = 8. Other parameters as in Fig. 25.
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FIG. 28. The threshold voltage Vth, at which the entanglement
appears, as a function of the ratio W/(kBT ), for different coupling
strengths �, evaluated for M = 8. Other parameters as in Fig. 25.

In Fig. 26, as in the equilibrium case, we analyze the
dependence of entanglement on the bandwidth, focusing on a
range of bandwidths when the system reaches a steady state
independent of the initial conditions (cf. Sec. VI B). For a
weak coupling � = 0.01kBT , the entanglement almost does
not depend on the bandwidth in the whole range of W that we
can simulate, and it agrees with the predictions of the analytic
theory. For a stronger coupling (� = 0.3kBT ), by increasing
the bandwidth we decrease the threshold voltage Vth at which
the entanglement appears, such that above a certain bandwidth
entanglement is also present at equilibrium. The dependence
of the threshold voltage on the bandwidth is further presented
in Fig. 27. As shown, it monotonically decreases with the
bandwidth. Furthermore, the critical bandwidth W , at which
the threshold voltage goes to 0, decreases as we increase the
coupling strength.

We note that we related the bandwidth dependence of en-
tanglement to coupling to highly pure off-resonant levels in
the bath. The high purity is the result of the thermal occupancy
of the levels going to zero or one, which is determined (via
the Fermi distribution) by the ratio of εk − μ to the thermal
energy kBT . Therefore, it might be relevant to plot the de-
pendence of the threshold voltage as a function of the ratio
W/(kBT ) rather than W/�. This is done in Fig. 28. Here one
can still observe that the critical ratio W/(kBT ), at which the
threshold voltage goes to zero, increases as � decreases. This
raises the question of what happens in the joint limit � → 0
and W → ∞, which is often used to define a weak-coupling
Markovian regime [104]. Is the entanglement present only
above a certain finite threshold voltage? Is it present at any
finite voltage? Or is it present even at equilibrium? We cannot
answer this question conclusively using our simulations.

VII. CONCLUSIONS

In this paper we investigates the behavior of entangle-
ment between a single fermionic energy level and a fermionic
bath in different thermodynamic regimes. We first consider
entanglement in the global equilibrium state of the system
and the bath. For the grand canonical state (with fluctuat-
ing energy and particle number) entanglement appears for a
finite coupling strength of the order of kBT . Quite notably,

this threshold coupling strength can be decreased by increas-
ing the bath bandwidth. Interestingly, this implies that the
presence of entanglement may be affected by the spectral
density of the bath at energies strongly off-resonant with the
system. We relate this effect to the correlation with highly
pure levels in the bath (with thermal occupancy close to
zero or one), which, even though quantitatively weak, tends
to be genuinely quantum rather than classical. There are
even hints that entanglement may be present for any finite
coupling strength in the infinite-bandwidth limit. However,
we cannot confirm this conclusively using our simulations.
The magnitude of entanglement (but not its presence) further
depends on the degree of particle-hole symmetry breaking
(i.e., relative position of the system energy and the chemical
potential).

Furthermore, our study reveals the dependence of entan-
glement on the considered statistical ensemble, which does
not affect the reduced state of the system (according to the
principle of ensemble equivalence). In contrast with the case
discussed above, for the canonical ensemble with a fixed
particle number, entanglement appears for arbitrarily weak
system-bath couplings. As follows from the theory presented
in Ref. [118], this is a result of coexistence of quantum coher-
ence in the Fock basis and charge conservation.

We then investigated the behavior of entanglement during
relaxation of the impurity initialized in an out-of-equilibrium
state and attached to a single bath. First of all, we derived an
analytic theory describing entanglement in the weak system-
bath coupling regime (for sufficiently small bandwidths). Its
validity is further confirmed by numerical simulations, which
also enables us to go beyond the weak-coupling regime. Our
results show that a transient system-bath entanglement can be
generated even in the regime where the system dynamic can
be well described by an effectively classical Markovian mas-
ter equation for the system occupancy. This shows that, for
fermionic systems, the validity of Born-Markov approxima-
tion, and the possibility of an effectively classical description
of the reduced dynamics, do not preclude the existence of
system-bath entanglement.

While in the weak-coupling case the entanglement tends
to ultimately vanish (as the system-bath state tends to asymp-
totically factorize [125]), for a stronger coupling it tends to
saturate at a finite value, consistent with the value for the
global thermal state of the total system-bath Hamiltonian.
This conclusion holds provided that transient dynamics leads
to thermalization of the system. This may be suppressed, e.g.,
by strongly non-Markovian effects related to the presence
of the bound states. In such a case, entanglement may be
generated and preserved at long times even when there is
no thermal entanglement for the same system parameters.
Furthermore, in contrast with Ref. [54], we found no direct
link between entanglement and the system-bath interaction
energy. Indeed, entanglement can be observed even in the
weak-coupling regime, where the interaction energy vanishes.
This contradicts the conclusion of Ref. [54] that the interac-
tion energy is responsible for the entanglement generation.

Finally, we covered the case of a voltage-driven junction
consisting of an impurity attached to two reservoirs with dif-
ferent chemical potentials. Using a derived analytic theory,
we showed that the system-bath entanglement is generated
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for an arbitrarily weak coupling to the reservoirs at a certain
threshold voltage, which increases with the asymmetry of
the tunnel couplings. The entanglement magnitude is reduced
also by the deviation from the particle-hole symmetry, which
does not affect the threshold voltage. For a stronger coupling,
analogously to the equilibrium case, the threshold voltage is
further reduced by increasing the bath bandwidth.

Overall, our results suggest that the system-bath entan-
glement is quite ubiquitous in fermionic systems, as it can
appear even under relatively mild conditions (such as a weak
system-bath coupling for a large bandwidth in the equilibrium
case, or moderate voltages in the nonequilibrium steady state).
In particular, it can be present even when many aspects of
the system behavior are effectively classical, e.g., during the
Markovian relaxation process. Therefore, one must be careful
when associating the presence of entanglement with nontrivial
quantum phenomena, such as strong electronic correlations or
strong-coupling thermodynamic effects.

Let us now consider potential future research directions
motivated by our results. First, while our study focused on
entanglement with the whole bath, it might be interesting
to investigate the spatial extension of entanglement (mo-
tivated by previous research on the Kondo cloud [24,27–
29]). In particular, we expect that the grand canonical and
canonical ensembles should predict the same entanglement
with a neighboring region of the impurity (as the reduced
state of this region is the same for both ensembles), while
deviation should appear at larger distances. Second, an obvi-
ous research direction is to explore the role of interelectron
interactions (e.g., the Kondo effect) in generating and pre-
serving the system-bath entanglement out of equilibrium (in
both transient and steady-state regimes), or interplay between
interactions and the bath bandwidth. This may be done by
the numerical renormalization-group approach proposed in
Ref. [25], which can hopefully be generalized to the nonequi-
librium case [137,138]. Finally, it might be interesting to
study multilevel systems. This will allow one to explore the
role of initial intrasystem coherence, or level degeneracy and
quantum interference, previously studied in the context of
system-bath mutual information [80].
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APPENDIX A: PARTIAL TRANSPOSITION

To define the partial transposition, let us consider a generic
bipartite quantum system AB with the basis states of A and B
denoted as |i〉, | j〉 and |k〉, |l〉, respectively. Then the density
matrix of the bipartite system ρAB, with subsystems having
the Hilbert space dimensions dimA = P and dimB = R, can
be written as a P × P block matrix:

ρAB =

⎛
⎜⎝

γ11 γ12 . . .
...

. . .

γP1 γPP

⎞
⎟⎠, (A1)

where blocks γi j are square matrices of size R × R defined as
(γi j )kl = Tr[ρAB(|i〉〈 j| ⊗ |k〉〈l|)]. Then, the partial transpose

of the state of the subsystem B is defined as [94,95]

ρ
TB
AB =

⎛
⎜⎝

γ T
11 γ T

12 . . .
...

. . .

γ T
P1 γ T

PP

⎞
⎟⎠. (A2)

APPENDIX B: HOUSEHOLDER TRIDIAGONALIZATION

Here we discuss how one can tridiagonalize the Hermitian
correlation matrix C by means of the Householder transforma-
tion [108]. To this goal, we apply a simple algorithm presented
in Ref. [109]; we rewrite it here for the sake of completeness
of the paper.

Let us first write the correlation matrix in the block-
diagonal form:

C =
(
C00 b†

b CB

)
, (B1)

where CB is the reduced correlation matrix of the bath (corre-
sponding to modes i = 1, . . . , K) and b is the column vector

b = (C01, . . . , C0K )†. (B2)

We then define the column vectors of size K :

s = (b†b, 0, . . . , 0)T , (B3)

v = b − s√
(b − s)†(b − s)

, (B4)

and the parameters

αr = 1

2
(2s†s − b†s − s†b), (B5)

αi = −Im(b†s), (B6)

α = 2αr

α2
r + α2

i

(αr + iαi). (B7)

The correlation matrix can then be unitarily transformed to a
form

C̃ =
(
C00 s†

s C̃B

)
, (B8)

where

C̃B = Q†CBQ, (B9)

Q = 1K − αvv†, (B10)

and 1K is the identity matrix of size K . In this form, all
off-diagonal elements C̃0i = C̃∗

i0 apart from C̃01 = C̃10 = b†b
vanish, which is a first step of tridiagonalization. Complete
tridiagonalization can be performed iteratively applying the
same procedure to the matrix C̃B, etc.

APPENDIX C: SYSTEM-BATH MUTUAL INFORMATION

While our paper focuses on the entanglement negativity,
which measures genuine quantum correlations, let us here
apply our analytic theory from Sec. VI C 1 for the study of
system-bath mutual information, previously investigated nu-
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FIG. 29. System-bath mutual information as a function of
time for different initial system occupancies p0. Results for
μ = ε0 + kBT .

merically in Ref. [61]. This quantity is defined as

ISB = SS + SB − SSB, (C1)

where Sα = −Tr(ρα ln ρα ) (α ∈ {S, B, SB}) is the von Neu-
mann entropy. The mutual information measures the total
system-bath correlations (both classical and quantum). For the
model analyzed, it can be evaluated using the density matrix
given by Eq. (28) as

ISB = h(pt ) + h( f − pt + p0) − h(p0) − h( f ), (C2)

where h(x) = −x ln x − (1 − x) ln(1 − x) is the binary
entropy.

We further focus on the case when the system occupancy
follows a Markovian relaxation dynamics given by Eq. (33).
The evolution of the system-bath mutual information for dif-
ferent initial conditions is presented in Fig. 29. As one can
observe, its behavior is nonmonotonic: the mutual information

is first generated, reaches a maximum value, and later asymp-
totically decays to zero. The same behavior was demonstrated
numerically in Ref. [61], where the long-time decay of mutual
information has been explained as a result of its reconversion
into the correlations within the bath. An analogous dynamics
of ISB has been also observed for noninteracting bosonic sys-
tems [62–64].

As the behavior of the system-bath mutual information has
been thoroughly investigated numerically, it does not need to
be analyzed in detail. However, the analytic theory provides
a certain qualitative insight that goes beyond the numerics.
First, analogously to the entanglement negativity, the mutual
information has a universal maximum at tmax = �−1 ln 2 and
obeys a symmetry relation

ISB(t1) = ISB(t2) for e−�t1 = 1 − e−�t2 . (C3)

Furthermore, the analytic theory enables us to analyze the
long-time asymptotic behavior of ISB. Expanding Eq. (C2) to
the lowest order of pt − f = (p0 − f )e−�t one finds

ISB = ln
p0(1 − f )

(1 − p0) f
e−�t + O(e−2�t ). (C4)

Thus, for long times the system-bath mutual information
undergoes an exponential decay with a relaxation rate �.
However, this expansion is not applicable for an initial pure
state (p0 = 0 or p0 = 1), when the pre-exponential factor
diverges. In this case, the mutual information at long times
follows an exponential decay slowed down by a linearly in-
creasing prefactor:

ISB ≈ �te−�t for t � �−1. (C5)

Indeed, as shown in Fig. 29, the decay of mutual information
is slower for an initial pure state than for initial mixed states.
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