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Berry curvature inside a PT -symmetry protected exceptional surface
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A three-dimensional non-Hermitian Hamiltonian with parity-time symmetry can exhibit a closed exceptional
surface (EP surface) in momentum space, which is a non-Hermitian deformation of the degeneracy line. Since
the degeneracy line lacks an internal space, the distributions of Berry curvature inside the EP surface become
particularly intriguing. This paper studies the distributions taking a toruslike EP surface as an example. In a
meridian cross section, the Berry connection exhibits a vortexlike field with only angular components, while the
Berry curvature is perpendicular to this cross section; in a equatorial cross section, the Berry curvature forms a
closed curve surrounding the central genus. Both Berry connection and curvature converge along the coplanar
axis and diverge at the surface. We find the Berry flux depends on the radius of the integration region and is
not quantized inside the EP torus. Approaching the surface, the Berry flux tends to infinity and the dynamical
phase oscillates violently. We point out that the streamlines of Berry curvature can be used to estimate the zero or
nonzero Berry flux. We generalize the above patterns to the case of EP surfaces with complex shapes and present
a proposal of realizing the EP surface in an electrical circuit. Our research outcomes enhance the comprehension
of EP surfaces and the topological characteristics of non-Hermitian systems with parity-time (PT ) symmetry.
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I. INTRODUCTION

The complex band structure and nonorthogonal eigen-
modes induced by non-Hermiticity exhibit numerous intrigu-
ing properties [1–10]. The non-Hermitian phase transition
occurs at the exceptional point (EP) where two or more eigen-
states coalesce. The EP is unique and causes many exotic
phenoma, such as polynomially increasing power [11–14]
and sensitive dynamics near the EPs [15–22]. Considerable
attention has been focused on the non-Hermitian topological
phase. In Hermitian systems, the appearance of edge states
[23] depends on the topological properties of the bulk sys-
tem, known as the bulk-boundary correspondence (BBC) [24].
In non-Hermitian systems, the BBC may be invalidated by
the non-Hermiticity associated with the non-Hermitian skin
effect [25–37]. Exotic edge modes localized on the single
boundary and the topological number from a non-Block bulk
predict the topological phase transitions of the corresponding
non-Hermitian systems [38–42]. Methods for characteriz-
ing the topology of non-Hermitian bands are investigated
[43–50]. A visualization of the topological properties is pro-
posed [51–53]. The origin and properties of non-Hermitian
edge modes are further studied [54,55] and the symme-
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try and classification of topological phases are reestablished
[56–65]. The non-Hermitian extension of Hermitian mod-
els exhibits alternative topological phases [66–74], including
the non-Hermitian Aubry-Andre-Harper models [75,76], the
Su-Schrieffer-Heeger models [77–82], and the non-Hermitian
disordered topological systems [83–87]. The Floquet topolog-
ical phase [88–90] and quantum walks [91–93] are extended
to non-Hermitian systems. The interplay between time-
periodic driving fields and the presence of gain, loss, or
nonreciprocal effects can lead to the emergence of topo-
logical phases exclusive to non-Hermitian Floquet systems
[94–98]. The deformation of the contour specific to a
topological invariant is demonstrated to accommodate the
non-Hermiticity of the underlying noninteracting Hamilto-
nian in question [99]. In addition, many studies have focused
on the novel topological nature induced by non-Hermiticity
[100–118].

The high dimensional EP structure is a noteworthy prob-
lem. Exceptional rings (EP rings) have been intensively
discussed theoretically and experimentally [119–125]. An EP
ring can be analogous to a vortex filament and the curl field
related to the vortex filament is equivalent to the Berry con-
nection [122]. In three-dimensional (3D) momentum space,
non-Hermitian Hamiltonians with combined parity and time
reversal symmetry spontaneously meet conditions for the ap-
pearance of exceptional surfaces (EP surfaces) [126,127].
The EP surface is stable as long as the protecting symmetry
is preserved [128]. The EP surface inherits the topological
properties of the degenerate line (DL); the nodal volume,
which represents bulk Fermi arcs in 3D space, indicates the
remarkable control of the density of states (DOS) [127].
The topological properties of the EP surface can also be

2469-9950/2024/109(11)/115406(14) 115406-1 Published by the American Physical Society

https://orcid.org/0000-0001-5315-9996
https://orcid.org/0000-0003-1898-6317
https://orcid.org/0000-0002-3315-4589
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.115406&domain=pdf&date_stamp=2024-03-05
https://doi.org/10.1103/PhysRevB.109.115406
https://creativecommons.org/licenses/by/4.0/


P. WANG, L. JIN, AND Z. SONG PHYSICAL REVIEW B 109, 115406 (2024)

characterized by Z2 topological invariants and a stable zero-
gap quasiparticle state is protected by symmetry and topology
[126]. In a high-dimensional parameter space, a hypersurface
where the system remains at an EP improves the robustness
and enhances the sensitivity of EPs and a non-Hermitian sen-
sor can be designed on the basis of the hypersurface [129].
A non-Hermitian Bardeen-Cooper-Schrieffer (BCS) Hamilto-
nian with a weak complex interaction possesses an EP surface
in the quasipartile Hamiltonian and non-Hermiticity induces
the breaking down of superfluidity and exhibition of reentrant
behavior [130]. The EP surface affects magnetic responses in
a Hubbard model; the sharp local density of states (LDOS) at
the Fermi energy for sublattices with weak correlations results
in the local magnetic susceptibility of strong sublattice depen-
dence [131]. Experimentally, the EP surface can be observed
on a magnon polariton platform and the EP surface can be
conveniently tuned to coalesce into an anisotropic exceptional
saddle point [132].

Motivated by recent theoretical advances in non-Hermitian
topological systems, we investigate the distribution of Berry
curvature inside the EP surface. The Berry curvature is gauge
invariant and related to the topological properties of EP sur-
faces. In this paper, we investigate a two-band non-Hermitian
system with parity-time (PT ) symmetry and a closed EP
surface in 3D momentum space. The general expression of
the Berry curvature defined under the biorthogonal basis re-
veals that the EP surface separates the zero and nonzero
Berry curvature. A Hamiltonian with a toruslike EP surface
is exemplified. The topological properties of the EP surface
are encoded in the distributions of the Berry curvature in the
meridian and equatorial cross sections. In the meridian cross
section, the Berry connection acts as a planar vortex field and
the direction of the Berry curvature is perpendicular to this
cross section; in the equatorial cross section, Berry curvatures
form closed curves. Both Berry connection and curvature
are convergent at the coplanar axis and divergent at the EP
surface. The surface integral of the Berry curvature yields a
nonquantized Berry flux. The numerical simulation implies
that the nonquantized Berry flux is consistent with the dynam-
ics phase accumulated in the adiabatic evolution and both of
them oscillate violently near the EP surface. The Berry flux
can be evaluated by the distribution of Berry curvature. The
Berry flux is nonzero if the Berry curvatures have the same
direction in the cross section of the meridians; otherwise, the
Berry flux is zero. These patterns can be generalized to the EP
surfaces with complicated geometries. Finally, rather than the
realization in coupled resonators [133], we point out that the
EP surface can be measured in an electrical circuit.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the 3D PT -symmetric non-Hermitian
two-band system. In Sec. III, we present the formal expression
of Berry connection and curvature. In Sec. IV, we introduce a
concrete model to exhibit the Berry curvature inside a torus-
like EP surface. The nonquantized Berry flux is elucidated
from the distribution of the Berry curvature. In Sec. V, the
adiabatic evolution is implemented. In Sec. VI, a topological
system that possesses more complicated EP surface is further
discussed. In Sec. VII, the proposal of realizing the EP surface
is given in the electrical circuits. In Sec. VIII, we summarize
the results.

II. NON-HERMITIAN TWO-BAND SYSTEM

We consider a non-Hermitian two-band Hamiltonian in the
momentum space k ={kx, ky, kz},

hk = B(k) · σ, (1)

where σ = {σx,σy,σz} is the Pauli matrix, the component
{Bx(k), By(k)} of the auxiliary field B(k) is the real and pe-
riodic function of k = {kx, ky, kz}, and the other component
Bz = iγ is a constant, which is introduced as the gain and
loss. hk possesses the PT symmetry [PT , hk] = 0, where
P = σx is the parity operator and T is the time-reversal op-
erator that T −1iT = −i. The eigenvalues of PT -symmetric
systems are either real numbers or complex conjugate pairs
respectively associated with PT -symmetry unbroken or bro-
ken eigenstates, respectively. Considering the specific form
of the band in Eq. (1), i.e., ±

√
B2

x + B2
y − γ 2 , the complex

conjugate pairs are reduced to purely imaginary numbers. The
eigenstate expressions involve parameters defined in terms
of energy; therefore, the real/imaginary eigenvalues make
the expressions more concise. In addition, hk is the pseudo-
anti-Hermitian σzhkσ

−1
z = −h†

k [134]. It is straightforward
to check that h†

kσz|φ〉 = −εσz|φ〉, where hk|φ〉 = ε|φ〉. This
implies that σz|φ〉 becomes the left eigenstate corresponding
to the right eigenstate |φ〉 when ε is purely imaginary. These
characteristics of hk simplify the calculations in the following
text and are reflected in Sec. III.

In the Hermitian case (γ = 0), the band degeneracy is
determined by the following equations:

Bx(k) = By(k) = 0. (2)

Bx(k) = 0 and By(k) = 0 each represent a surface in the 3D
momentum space. The intersection of two surfaces is the
degeneracy line (DL). The topological properties of the DL
are captured by the topological number Berry flux or winding
number. The former is the integral of the Berry connection
on a closed circle, while the latter is obtained by dividing the
Berry flux by π . The Berry flux is quantized to π (0) if the
closed circle is (not) linked with the DL [135,136]. In the pres-
ence of gain and loss for γ �= 0, the DL becomes an EP sur-
face. The EP surface is the zero-energy surface in the form of

γ 2 = B2
x (k) + B2

y (k). (3)

We consider the case in which Eq. (3) describes a closed
2D surface in the 3D momentum space at the selected
{Bx(k), By(k)}. In this situation, the energy is real outside the
closed EP surface and is purely imaginary inside the closed
EP surface. We regard the purely imaginary region as the
nodal volume wrapped by the EP surface. These data serve
as the 3D bulk Fermi arcs [127]. PT symmetry protects the
EP surface which inherits the Berry flux of the DL [126,127].
In this work, we focus on the Berry curvature distributions
inside and outside the EP surface.

III. BERRY CONNECTION AND BERRY CURVATURE

This section provides the general expressions of Berry
connections and curvatures inside and outside the EP surface.

We first calculate the eigenstates of the Bloch Hamilto-
nian under biorthogonal norm. The right eigenstates |φR

±〉 of
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the Bloch Hamiltonian satisfy hk|φR
±〉 = ε±|φR

±〉 and the left
eigenstates |φL

±〉 satisfy h†
k|φL

±〉 = ε∗
±|φL

±〉. They are normal-
ized under the biorthogonal norm 〈φL

α |φR
α 〉 = 1 (α = +/−).

The EP surface serves as a boundary separating the real
and complex energies. The Bloch Hamiltonian possesses
an entirely real spectrum outside the EP surface (i.e., the
PT -symmetry unbroken phase) and possesses an entirely
imaginary spectrum inside the EP surface (i.e., the PT -
symmetry broken phase). For the geometric features of the
lower band |φR

−〉 with energy −
√

B2
x + B2

y − γ 2 , in the unbro-
ken PT -symmetry region γ 2 < B2

x + B2
y , the right and left

eigenstates are in the form

|φR
−〉 = [ei(−α−β ), 1]T ↔ −ε, (4)

|φL
−〉 = [ei(α−β ),−1]T/	 ↔ −ε, (5)

respectively, where ε =
√

B2
x + B2

y − γ 2 , α and β are deter-
mined by tan α = γ /ε and tan β = By/Bx, respectively, and
	 = −2ieiα sin α. In the broken region γ 2 > B2

x + B2
y , the

right and left eigenstates are in the form

|φR
−〉 = [ηei( π

2 −β), 1]T ↔ −iε, (6)

|φL
−〉 = [−ηei( π

2 −β), 1]T/	 ↔ iε, (7)

respectively, where ε =
√

γ 2 − B2
x − B2

y , η = (γ −
ε)/

√
B2

x + B2
y , and 	 = 2ηε/

√
B2

x + B2
y .

The Berry connection is defined as �A = Re(i〈φL
−| �∇|φR

−〉)
and the Berry curvature is defined as �F = �∇ × �A, where
�∇ = ∂kx êx + ∂ky êy + ∂kz êz. Therefore, the formal expressions
of the Berry connection and Berry curvature differ between
the unbroken and broken PT -symmetric phases. The Berry
connection is complex in both the broken and unbroken re-
gions and the imaginary part amplifies the Dirac probability
of the adiabatic evolved state, whereas the real part is related
to the topological properties of the system [137]. Therefore,
we consider only the real part of the Berry connection in
the definition. The detailed calculations are provided in the
Appendix and the results are presented concisely as follows.

Inside the EP surface PT symmetry is broken. The com-
ponents of Berry connection A j and Berry curvature F j read

A j = (ε − γ )(Bx∂ jBy − By∂ jBx )

2ε
(
B2

x + B2
y

) , (8)

F j = γ (∂lBy∂iBx − ∂iBy∂lBx )

2ε3
, (9)

where ∂ j = ∂/∂k j ( j = x, y, z) and ε =
√

γ 2 − B2
x − B2

y . A j

and F j converge at the DL in the Hermitian case (i.e., Bx =
By = 0 or ε = 0) and are infinite at the singularity ε = 0 (i.e.,
the EP surface).

Outside the nodal volume the PT symmetry holds. The
Berry connection and Berry curvature become

A j = (γ Bx − εBy)∂ jBx + (εBx + γ By)∂ jBy

2ε
(
B2

x + B2
y

) , (10)

�F = 0. (11)

Equations (9) and (11) imply that the EP surface acts as
the boundary between zero and nonzero Berry curvature. To

extract more explicit information on the Berry connection
and curvature, we further simplify these formulas inside a
toruslike EP surface.

IV. TORUSLIKE EP SURFACE

We use a concrete model possessing an EP surface to study
the distributions of Berry connection and curvature in the
broken region, from which the inheritance of the Berry flux
is well interpreted. The auxiliary field B(k) = {Bx, By} of the
concrete Hamiltonian is in the form

Bx = f (kx, ky) − s cos kz,

By = s sin kz, (12)

where f (kx, ky ) = m − a cos kx − a cos ky and s = 1. The
physical realization of the concrete Hamiltonian is proposed
[127,138].

The general geometric property of the EP surface is de-
termined by the components {Bx(k), By(k)}. Equations (2),
(3), and (12) indicate there are two identical nodal volumes
located at the kz = 0 and kz = π planes; only the former is
studied for convenience. With fixed parameters {m, a}, Eq. (3)
implies that the maximum of By is By = γ (i.e., s sin kz = γ )
in the situation Bx = 0; therefore, the maximum of kz on the
EP surface is kz max = arcsin(γ /s) and the restriction γ < 1
is imposed. In fact, if γ = 1, the two EP surfaces touch at
kz max = arcsin γ . In addition, the EP surface possesses a mirror
symmetry with respect to the kz = 0 plane.

The system possesses a toruslike EP surface under the
appropriate parameters (see Appendix A 3). A schematic di-
agram of the toruslike EP surface is shown in Fig. 1(a). The
red coplanar circular axis is DL in the Hermitian case. Two
types of cross sections are studied in this paper, i.e., meridinal
(equatorial) cross sections in the form of closed disks (annu-
lus). The meridinal (equatorial) cross-sections represent the
intersection of the nodal volume and the vertical plane passing
through the origin (equatorial plane). For convenience, a cross
section denoted SV (SH ) as the intersection of the nodal vol-
ume and the kyOkz (kxOky) plane is chosen as a representative
meridian (equatorial). Schematic diagrams of SV and SH are
shown in Fig. 1(b) and Fig. 2, respectively. The distributions
of Berry curvature and Berry connection in the other cross
sections are similar to those in SV and SH . Therefore, the
distributions of Berry curvature and Berry connection inside
the nodal volume can be obtained once the distribution is
given in the two representative cross sections.

A. Distribution in the meridional cross section

This section discusses the distribution of Berry curvature
in the cross section SV of the concrete model in Eq. (12).

In the cross section SV , polar coordinates are used to de-
scribe the physical quantities. As shown in Fig. 1(b), the green
EP ring divides the plane into two parts: the Hamiltonian has
an entirely imaginary spectrum in the yellow region inside
the EP ring and an entirely real spectrum outside the EP
ring. The EP ring is subcircular with radius γ . The circular
dashed line is the energy contour L with radius r. The red
point O(0, ky0 , 0) is the center of the SV and is the degenerate
point (DP) in the Hermitian case (γ = 0). The arbitrary point
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(a) (b) (c) (d)

FIG. 1. (a) Torus EP surface (green) at γ = 0.05, a ≈ 3.2, and m ≈ 7.2. The dark disk is the representative cross section SV and the red
coplanar circular axis is the DL. (b) Schematic diagram of the cross section SV . (c) Berry connection and (d) Berry curvature in the cross
section SV .

P(0, ky, kz ) on the contour L can be rewritten as P(0, r, θ )
in the cylindrical coordinate system, where θ is the included
angle between position vector P and coordinate axis ky. The
three unit vectors {êθ , êr, êx} of the cylindrical coordinate
system are presented. Under the parameter settings given in
Appendix A 3, the Hamiltonian in the cross section SV is
reduced to

H =
(

iγ r eiθ

r e−iθ −iγ

)
. (13)

It is straightforward to check that the reduced Hamiltonian
H obeys the PT symmetry, i.e., T σxH (T σx )−1 = H . For
the case with complex matrices, a numerical result can be
obtained, exhibiting a deformed but similar distribution of
Berry curvature, as shown in Sec. VI.

The distributions of the Berry connection and Berry cur-
vature in SV are illustrated in Figs. 1(c) and 1(d). Inside the
EP ring, the expression of the Berry connection at the position
P(0, r, θ ) (r < γ ) in Eq. (8) is reduced to

�A ≈ ε − γ

2εr
�eθ (0 � r < γ ), (14)

where ε =
√

γ 2 − r2. The expression of the Berry connec-
tion in the above equation is equal to the expression directly
calculated from Eq. (13). Equation (14) indicates that the
radial component �er vanishes and the angular component �eθ is
nonzero, so �A is a planar vortex field. We show the direction
of �A by the arrows without considering its intensity according
to Eq. (14) and each arrow is tangent to the energy contour L.

FIG. 2. Streamlines of Berry curvature in the equatorial cross
section. Inset: top view of Berry curvature in SV cross section and
its adjacent cross section.

It is not difficult to check that

lim
r→0

√
γ 2 − r2 − γ

2
√

γ 2 − r2r
= 0, (15)

which indicates that �A converges at r = 0 (i.e., DP at γ = 0).
�A is divergent at ε = 0. Equation (9) can be reduced to

�F ≈ γ

2
√

γ 2 − r2
�ex, 0 � r < γ , (16)

inside the EP ring. The expression for the Berry curvature
in the above equation is equal to the expression directly cal-
culated from Eq. (13). Equation (16) indicates that only the
axial component �ex is nonzero. The Berry curvature has a
divergent value at r = γ (i.e., the EP ring) and a convergent
value at r = 0. In Fig. 1(d), we exhibit the direction of �F . As
we can see, all the arrows in SV point in the same direction,
which is the normal of SV . As an analogy, these arrows can
be regarded as magnetic field lines and the total magnetic flux
is the number of magnetic field lines that pass through SV .
In addition, in two adjacent meridional cross sections, these
arrows are connected end to end, as shown in the inset of
Fig. 2, where the green solid lines denote the top view of
meridional cross sections and the dashed red line is the DL in
the Hermitian case (γ = 0). The arrows in all the meridional
cross sections form a closed curve (see Fig. 2).

The Berry flux is related to the distribution of the Berry
curvature or Berry connection and can be used to capture the
topological nature of the EP surface,

B =
∮
L

�A · d�lk =
∫∫

S
�F · d �S, (17)

where S is the integral surface, which is the shaded region sur-
rounded by L presented in Fig. 1(b). By substituting Eq. (16)
into Eq. (17), we can obtain

B = π − γπ√
γ 2 − r2

. (18)

B is divergent on the EP surface (r = γ ). Therefore, the
geometric phase oscillates sharply when the integration path
approaches the EP surface. Due to the divergence of the
Berry connection and curvature on the exceptional point (EP)
surface, the line integral of the Berry connection will not be
equal to the surface integral of the Berry curvature when the
integration path is located in the unbroken region, that is, the
Stokes theorem does not hold. In addition, the Berry flux can
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be regarded as the total magnetic flux. In Fig. 1(d), the uniform
pointing of the arrows indicates that the same sign contributes
to the Berry flux and therefore a nonzero Berry flux.

B. Distribution in the equatorial cross section

This section investigates the distribution of the Berry cur-
vature in SH .

In the equatorial cross section SH , the Berry curvature in
Eq. (9) inside the EP ring is reduced to

Fx = sγ ∂yBx/(2ε3),

Fy = −sγ ∂xBx/(2ε3), (19)

Fz = 0.

Therefore, the orientation of the Berry curvature at an arbi-
trary point (kx, ky, 0) in SH is Fy/Fx = −(∂xBx )/(∂yBx ). In
addition Eq. (3) can be reduced to

Bx(kx, ky, 0) = γ ′ (20)

in SH where |γ ′| � |γ |. Equation (20) represents a closed
curve inside the equatorial cross section for a fixed γ ′. This
closed curve is the intersection between the kz = 0 plane and
the EP surface and is determined by replacing γ with γ ′
(|γ ′| < |γ |) in Eq. (3). If γ ′ = γ , the curve is the EP ring as
well as the periphery of SH . If γ ′ changes from −γ to γ , all the
curves determined by every γ ′ constitute the equatorial cross
section and no two curves have a crossing point. The tangent
of a curve at (kx, ky, 0) is dky/dkx = −(∂xBx )/(∂yBx ) as a
result of complete differentiation on both sides of Eq. (20).
Compared with the equation Fy/Fx = −(∂xBx )/(∂yBx ), we
conclude that the direction of Berry curvature at the point (kx,
ky, 0) is identical to the tangent of the curve passing through
this point,

Fy/Fx = dky/dkx. (21)

The above results hold true as long as By is a function of only
kz.

The streamlines of the Berry curvature in SH according to
Eq. (20) are shown in Fig. 2. A different closed black curve is
depicted by setting different γ ′. The red solid EP lines (γ ′ =
γ ) serve as the boundary separating nonzero and zero Berry
curvatures; the region between the two EP lines has nonzero
Berry curvature. The dashed red line (γ ′ = 0) represents the
DL for the Hermitian case. The black curves (0 < γ ′ < γ )
with arrows represent the orientation of the Berry curvature
and the background color indicates the intensity of the Berry
curvature. The intensity values are shown in the color bar.
The Berry curvature approached infinity near the EP lines.
The streamlines surrounding the hole flow counterclockwise.
All the streamlines of the Berry curvature are closed, which
coincides with the equation ∇ · �F = 0 , meaning that Berry
curvatures act as a field without sources. In addition, Eq. (21)
can be generalized to the other intersection between the kz =
kz′ plane and the EP surface. The distributions claim a clear
physical correspondence for the Berry curvature and EP sur-
face. The Berry curvature can be analogous to magnetic lines
generated by a solenoid and the EP surface can be connected
to this solenoid. The total magnetic flux is the number of
magnetic field lines passing through certain cross sections.

(a) (b)

FIG. 3. (a) Plot of arg(E+ − E−) for two isolated EPs. The two
red points represent two isolated EPs (i.e., two vortices). (b) Plots of
arg(E+ − E−) for the EP surface. The black line represents the EL
(i.e., a cross section of the EP surface).

This section examined the distribution of the Berry curva-
ture inside the EP surface using two types of cross sections as
examples and calculates the Berry flux. Before moving on
to the next section, there are three points that need to be
supplemented and explained as follows.

(i) The above results are obtained under the biorthogonal
basis sets. Under the Dirac basis sets, the directions of the
Berry connection and Berry curvature at any point inside the
EP surface are the same but the magnitudes are different and
the two kinds of Berry fluxes are different. Both the Berry
connection and Berry curvature under the Dirac basis sets
converge on the EP surface; therefore, the Stokes theorem
holds.

(ii) The winding number associated with the Berry con-
nection cannot be used to capture the topological nature of
the EP surface. Figure 1(c) shows the direction of �A denoted
by arrows. The winding numbers of the arrows along the
contour L outside and inside the EP ring are both nonzero.
However, this nonzero winding number is not related to the
nonzero Berry flux. The Berry flux in Eq. (17) can be rewrit-
ten as the loop integral of the Berry connection, i.e., B =∮
L �A · d�lk , and it is not equal to the expression of the winding

number for the Berry connection W = (2π )−1
∮
L(Ay∇Ax −

Ax∇Ay)/|A|2dk.
(iii) There is an open question that is the topological con-

nection between the isolated EPs and the EP surface in the
context of the topological number. The nontrivial topological
nature of an isolated EP depends on the scalar field defined
by the spectral phase arg(E+ − E−) [see Fig. 3(a)] [44,139].
The EP is regarded as a vortex of the scalar field where the
spectral phase cannot be effectively defined. The topologi-
cal nature of an EP can be characterized by the topological
number π or 1/2; the former is the spectral phase difference
accumulated when encircling the vortex, while the latter is the
winding number obtained through dividing this phase differ-
ence by 2π . Therefore, EPs can be analogous to π vortices,
which hang together with the topological defect in a nematic
[140–144] or defects in TIs [145–149]. The isolated EPs may
merge accompanied by the algebraic addition of topological
numbers [150]. The subject of this study is the EP surface,
which is a collection of infinite EPs. Figure 3(b) exhibits the
spectral phase of the EP surface. There is no obvious evidence
that the topological properties of the EP surface are related to
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FIG. 4. Schematics of the geometric phase eiγ (θ ). (a) Real part
and (b) imaginary part. The blue points are numerical results and
the red solid lines are analytical results according to Eq. (18). In-
set: fidelity for r = γ /2. The parameters are the same as those in
Fig. 1(a).

the spectral phase. Corresponding to the same spectral phase
in Fig. 3(b), Figs. 1(d) and 5(f) exhibit two distinct distribu-
tions of Berry curvature. The above analyses indicate that the
spectral phase cannot describe the topology of the EP surface
completely and the winding number corresponding to the EP
surface is also not equal to ±1/2. Therefore, the EP surface
cannot be simply understood as the merger of isolated EPs.
The topological connection between the EPs and EP surfaces
deserves further investigation.

V. ADIABATIC EVOLUTION

To verify the above results, we numerically simulate the
adiabatic evolution driven by the Hamiltonian in Eq. (13) and
compare the geometric phase obtained by numerical simula-
tion and the analytical results in Eq. (18). We consider the
adiabatic evolution on the circular contour L with a radius
r [see Fig. 1(b)]. H in Eq. (13) is a periodic function of
θ , H (θ ) = H (θ + 2π ). The lower band eigenstate |φR

−(0)〉
reverts to |φR

−(0)〉 if θ varies adiabatically from 0 to 2π and
the evolved state is the instantaneous lower band eigenstate
|φR

−(θ )〉. More explicitly, the adiabatic evolution of the initial
state |φR

−(0)〉 under the Hamiltonian H (θ ) can be expressed as

∣∣�k
λ (θ )

〉 = T exp

[
−i

∫ θ

0
H (θ )dθ

]
|φ(0)〉

= ei[α(θ )+γ (θ )]|φ(0)〉, (22)

where the dynamic phase α(θ ) and the adiabatic phase γ (θ )
have the form

α(θ ) = −
∫ θ

0
εk (θ )dθ, γ (θ ) =

∫ θ

0
A(θ )dθ. (23)

A(θ ) is presented in Eq. (14) and γ (θ ) is equivalent to
the Berry flux in Eq. (18). The imaginary part of A(θ )
in Eq. (A11) vanishes due to the invariability η = (γ −
ε)/

√
γ 2 − ε2 on the contour L and therefore does not con-

tribute to adiabatic evolution. However, α(θ ) is imaginary and
the Dirac probability increases exponentially. To eliminate the
exponential growth in probability induced by the imaginary
dynamic phase, we add a factor i before the Hamiltonian H

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Genus at parameters a = 2, b = 2.3, c = d =
2.8, and m = 0.3, (a) γ = 109/140, and (b) γ = 1.9.
(c),(d) Streamlines of Berry curvature in the equatorial cross
section for the configurations in (a) and (b), respectively. (e),(f)
Berry connection outside the EP ring and Berry curvature inside
the EP ring on a specific cross section; this specific cross section is
depicted in (b) and (d).

in the numerical simulation; consequently, α(θ ) becomes real
and γ (θ ) is unaffected.

Figure 4 numerically and analytically exhibits the geomet-
ric phase eiγ (θ ) on the contour L with r ranging from 0 to
γ (r = γ indicates that L is the EP ring). The numerical
results correspond with the analytical calculations in Eq. (18).
The oscillating frequency of the real and imaginary parts of
the geometric phase accelerates as the contour L approaches
the EP ring (i.e., r = γ ). As a sample, the inset numerically
presents the fidelity when r = γ /2, which is defined as

F (θ ) =
∣∣∣∣〈φR

−(θ )|T exp

[
−i

∫ t

0
H (θ )dθ

]
|φR

−(0)〉
∣∣∣∣. (24)

A fidelity of 1 indicates that the time evolution process is
adiabatic.

VI. EP SURFACE WITH COMPLICATED GEOMETRY

The distribution of the Berry curvature for the new geom-
etry is studied in this section. The EP surface has diverse
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geometries when the Hamiltonian in Eq. (12) is general-
ized to f (kx, ky) = m − [a cos kx + b cos ky + c cos(2kx ) +
d cos(2ky) + s cos kz] and s = 2. On the basis of the dis-
cussion of the physical realization [127,138], the generalized
Hamiltonian could be realized by adding long-range pertur-
bations in the x and y directions in a periodic metallic-mesh
3D photonic crystal with PT -symmetric non-Hermitian ele-
ments. In Sec. VII, we discuss in detail how to realize an EP
surface in the electrical circuit.

Although the geometry of the EP surface changes when
the parameters {m, a, b, c, d} vary, the EP still maintains the
following features. (i) It possesses a mirror symmetry with
respect to the kz = 0 plane. (ii) The Hamiltonian still has
two layers of EP surfaces; the two EP surfaces touch each
other when γ = s and we discuss only the lower-layer EP sur-
face near kz = 0. (iii) The meridional cross sections become
irregular circles rather than disks. (iv) The equatorial cross
section no longer has regular geometry, but the streamlines
of the Berry curvature in the equatorial cross section retain
the feature discussed in the previous section: they are closed
curves that can be depicted according to Eq. (20). To illus-
trate the distribution of the Berry curvature, the geometries of
the EP surface under two sets of parameters are studied and
the other cases share similar distributions. In the equatorial
cross section, Eq. (19) remains valid and Figs. 5(c) and 5(d)
depict the streamlines of the Berry curvature. The two similar
equatorial cross sections in Figs. 5(c) and 5(d) have five holes
and the two left or right holes are touching (separated) in (c)
[(d)]. We sort the streamlines by the number and orientation
of the holes they surround. Figure 5(c) exhibits three types of
streamlines surrounding one hole (the center hole, and the ori-
entation of streamlines are counterclockwise), two holes (the
two left or right holes, clockwise), and five holes (clockwise).
In Fig. 5(d), in addition to the three types of streamlines, there
is yet another type of streamline surrounding one hole that
flows clockwise. The appearance of the new type of streamline
is a consequence of the separation between the two left (or
right) holes in Fig. 5(d).

In the meridional cross section, the Berry curvature has
nonzero radial and angular components and may be not
perpendicular to the meridional cross section. Berry flux is
nonzero if all the arrows representing the Berry curvature
point in the same direction in the meridional cross section.
There are specific meridional cross sections that contain no
DPs or several DPs. A natural question to ask is what the Berry
curvature distribution is in these specific meridional cross sec-
tions. A specific meridional cross section containing no DPs is
illustrated in Fig. 5(b) and the top view of this cross section is
shown in Fig. 5(d) (i.e., the yellow rectangle). In Fig. 5(f), the
arrows indicate that the Berry curvature points in the positive x
direction on the left semicircle and in the negative x direction
on the right semicircle. The signs cancel out and the Berry
flux vanishes. In accordance with this distribution, inside the
yellow transparent rectangle in Fig. 5(d), these streamlines
flow up on the right side and down on the left and the total
flux is zero. In Fig. 5(e), the nonzero winding number of the
arrows indicating the Berry connection outside the EP ring
is consistent with the above conclusion in Sec. IV A, which
indicates that the winding number has no relation with the
Berry flux.

VII. EXPERIMENTAL SCHEME IN
ELECTRICAL CIRCUIT

The EP surface can be measured using an electrical circuit
which is a powerful platform for investigating topological
physics [151–154]. For the sake of convenience, this sec-
tion discusses the experimental scheme of EL in an electrical
circuit, i.e., the intersection line of the EP surface and the SV

cross section [see Fig. 1(b)]. There are two reasons for doing
this. First, the topological properties of the EL are consistent
with those of the EP surface. Second, the experimental setup
corresponding to the EL can be smoothly generalized to that
of the EP surface due to the design flexibility of the electrical
circuit.

We first show the tight-binding lattice model possessing
EL. In the SV cross section where kx = 0, the auxiliary field
B(k) = {Bx(k), By(k)} in Eq. (12) can be reduced to

Bx = f (ky) − s cos kz,

By = s sin kz, (25)

where f (ky) = m − a − a cos ky and s = 1. Substituting the
Fourier transformation

a†
ky,kz

= 1√
N

∑
j,l

eiky jeikzla†
j,l ,

b†
ky,kz

= 1√
N

∑
j,l

eikyheikzlb†
j,l (26)

into the core matrix
∑

ky,kz
B(ky, kz ) · σ , we get the lattice

model

H =
∑

r

(
(m − a)a†

rbr − a

2
(a†

rbr+ĵ + a†
rbr−ĵ ) − sa†

rbr+l̂

)

+ H.c. + iγ a†
rar − iγ b†

rbr, (27)

where r =xĵ + yl̂ is the position vector, ĵ , l̂ represents the
unit vectors, and the system size is N . A schematic diagram
of the lattice model is shown in Fig. 6(a). The hoppings −a/2,
m − a, and −s are represented by the blue, red, and black
lines, respectively. The on-site gains and losses are shown
in orange and green, respectively. We can extend this lattice
system in the x direction to obtain a model possessing an EP
surface.

The lattice system can be represented by an electrical cir-
cuit with N nodes. An N × N matrix J (ω, r), termed circuit
Laplacian or admittance matrix, can be used to represent the
Hamiltonian of a tight-binding model [151,152,155]. J (ω, r)
describes the voltage response V(ω, r) to an ac input current
I(ω, r) according to

V(ω, r) = J (ω, r)I(ω, r), (28)

where ω is the ac driving frequency and r represents the
nodes. The vector components of V and I correspond to the
nodes or sites in the circuit. The matrix elements of J (ω, r)
are determined on the admittance of circuit elements between
nodes or between nodes and the ground. Figure 6(b) shows
a schematic diagram of the circuit elements corresponding to
a unit cell. The lattice sites are represented by circuit nodes.
The variable hoppings, m − a, −a/2, and −s, can be realized
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C

C

CR

RL
L

(a)

(b)

i ii iii i

a/2
m
-a

s

FIG. 6. (a) Schematic diagram of the tight-binding lattice in
Eq. (27). The red, blue, and black lines correspond to the hoppings
m − a, −a/2, and s, respectively. The green and orange spheres
correspond to the gain and loss. A unit cell is marked in the shadow.
(b) The circuit elements of a unit cell. The red, blue, and black
capacitors, which are denoted with C1, C2, and C3, correspond to
the hoppings in (a). The orange (green) node is connected to the
ground by an inductance and a potentiometer RA (negative impedance
converter RB), which represents the gain (loss).

by tuning the capacitors C1, C2, and C3, respectively. The
on-site gain iγ or loss −iγ are realized using potentiometers
or a negative impedance converter to ground. The admittance
matrix has an alternative representation in momentum space,
denoted as J (ω, k). J (ω, k) can be obtained by performing
M linearly independent measurements in the electrical circuit
[152,155–158], where M describes the number of inequivalent
nodes in the network. Each measurement consists of a local
excitation of the circuit network and a global measurement
of the voltage response, from which all the components of
J (ω, k) can be extracted. Then EL can be obtained by diago-
nalizing the admittance matrix J (ω, k).

VIII. DISCUSSION

In summary, we have investigated the distribution of Berry
curvature inside the EP surface of PT -symmetric 3D non-
Hermitian two-band systems. The EP surface acts as the
separation between the zero and nonzero Berry curvatures.
Inside a toruslike EP surface, the distributions of Berry con-
nections and curvatures in the meridional and equatorial cross
sections are discussed. In the meridional cross section, the
Berry connection serves as a planar vortex field and diverges
at the DP and EP surface. The Berry curvature has only an ax-
ial component and diverges at the EP surface. In the equatorial
cross sections, the Berry curvature forms the closed curves
inside the EP surface. The distributions of Berry curvature
are analogous to the magnetic lines generated by the solenoid
and the EP surface can be analogous to the solenoids. On the

basis of the distribution of the Berry curvature, we obtain the
nonquantized Berry flux. The key to identifying the zero or
nonzero Berry flux in a meridional cross section is determin-
ing whether all the arrows indicating Berry curvatures point in
the same direction. The numerical adiabatic evolution corre-
sponds with the aforementioned analysis of the nonquantized
Berry flux. We also discuss the distribution of Berry curvature
in a general case in which the EP surface has more compli-
cated geometry. In the equatorial cross sections, the Berry
curvatures retain the form of closed curves. The streamlines
with arrows indicating the direction of the Berry curvature
are categorized by arrow orientations and the number of the
holes they surround. We discuss a scheme of realizing the
EP surface in an electrical circuit. Our findings deepen un-
derstanding of EP surfaces and the topological properties of
PT -symmetric non-Hermitian systems.
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APPENDIX A: BERRY CURVATURE IN AND
OUT OF THE NODAL VOLUME

We present detailed calculations of the component for
Berry connection �A and Berry curvature �F according to the
definitions A j = Re(i〈φL

−|∂ j |φR
−〉) and F j = ∂lAi − ∂iAl .

1. Outside the nodal volume (γ2 < B2
x + B2

y)

a. Berry connection

We substitute Eqs. (4) and (5) into A j = Re(i〈φL
−|∂ j |φR

−〉),
which results in

A j = − 1
2

(
∂ jα + ∂ jβ

)
. (A1)

Differentiating tan α = γ /ε, where ε =
√

B2
x + B2

y − γ 2,

1

cos2 α
dα = −γ ε−2(∂xε dkx + ∂yε dky + ∂zε dkz ), (A2)

and moving cos2 α to the right-hand side of “=,” we get

∂ jα = − (Bx∂ jBx + By∂ jBy)γ

ε
(
B2

x + B2
y

) . (A3)

A similar calculation performing for tan β = By/Bx yields

∂ jβ = Bx∂ jBy − By∂ jBx

B2
x + B2

y

. (A4)

Substituting Eq. (A3) and Eq. (A4) into Eq. (A1), we have

A j = (εBy + γ Bx )∂ jBx + (γ By − εBx )∂ jBy

2ε
(
B2

x + B2
y

) . (A5)

b. Berry curvature

Substituting Eq. (A1) into F j = ∂lAi − ∂iAl ,

F j = 1
2 [∂l (∂iβ ) − ∂i(∂lβ ) + ∂l (∂iα) − ∂i(∂lα)]. (A6)
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First, we prove ∂ j (∂lα) − ∂l (∂ jα) = 0. The partial derivative
of ∂ jα is

∂l
(
∂ jα

) = γ (3ε2 + γ 2)

ε3
(
B2

x + B2
y

)2

[
B2

x∂lBx∂ jBx + B2
y∂lBy∂ jBy

+ BxBy(∂lBx∂ jBy + ∂lBy∂ jBx )
]

− γ

ε
(
B2

x + B2
y

)d[∂lBx∂ jBx + Bx∂l (∂ jBx )

+ By∂l (∂ jBy) + ∂lBy∂ jBy]. (A7)

∂ j (∂lα) can be obtained by swapping j with l in Eq. (A7) and
∂l (∂ jα) has the same expression with ∂ j (∂lα), which means

∂l (∂ jα) − ∂ j (∂lα) = 0. (A8)

Second, we prove that ∂l (∂ jβ ) − ∂ j (∂lβ ) = 0. The partial
derivative of ∂ jβ is

∂l (∂ jβ ) = 1(
B2

x + B2
y

)2

{
2ByBx(∂lBx∂ jBx − ∂lBy∂ jBy)

+ (
B2

y − B2
x

)
(∂lBx∂ jBy + ∂lBy∂ jBx )

+ (
B2

x + B2
y

)
[Bx∂l (∂ jBy) − By∂l (∂ jBx )]

}
. (A9)

∂ j (∂lβ ) can be obtained by swapping j with l and it is not
difficult to check that ∂ j (∂lβ ) = ∂l (∂ jβ ), which is

∂l (∂ jβ ) − ∂ j (∂lβ ) = 0. (A10)

So we prove that F j = 0, i.e., �F = ∇ × �A = 0.

2. Inside the nodal volume (γ2 > B2
x + B2

y)

a. Berry connection

Substituting Eqs. (6) and (7) into A j = Re(i〈φL
−|∂ j |φR

−〉),
the component of �A is

A j = −Re

[
1

	

(
η2∂ jβ + iη∂ jη

)]
(A11)

= −η2

	
∂ jβ

= (ε − γ )
(
Bx∂ jBy − By∂ jBx

)
2ε

(
B2

x + B2
y

) , (A12)

where ε =
√

γ 2 − B2
x − B2

yr , η = (γ − ε)/
√

B2
x + B2

y , and
	 = 2ηε/

√
B2

x + B2
y .

b. Berry curvature

We differentiate A j to obtain

∂lA j = ε − γ

2ε
∂l (∂ jβ ) − ∂l

(
γ

2ε

)
(∂ jβ ). (A13)

∂ jAl can be obtained by swapping the indexes l ↔
j, ∂ jAl = [∂ j (∂lβ )](ε − γ )/(2ε) − ∂ j (ε−1)(γ ∂lβ/2). There-
fore, the component of Berry curvature can be calculated

as

Fi = ∂lA j − ∂ jAl = γ

2ε2
(∂lε∂ jβ − ∂ jε∂lβ ) (A14)

and Eq. (A10) is used in the calculation. Then, moving
∂ jε = −ε−1

k (Bx∂ jBx + By∂ jBy) and Eq. (A4) into the afore-
mentioned equation, we have

∂lA j − ∂ jAl = γ

2ε3
(∂lBy∂ jBx − ∂lBx∂ jBy), (A15)

that is,

F j = ∂lAi − ∂iAl = γ

2ε3
(∂lBy∂iBx − ∂lBx∂iBy). (A16)

3. Berry connection and curvature in the
meridional cross section

This section gives the details of calculating Eq. (14) and
Eq. (16) under the constraint of condition 0 < r < γ .

The EP surface is in the form of a torus un-
der the condition m = √

(2 − γ )/γ + 1, a = [m − 1 +√
(m − 1)2 − γ 2 + 4]/(4 − γ 2), as presented in Fig. 1(a).

The schematic of the meridional cross section is presented
in Fig. 1(b). The center of the circle O(ky0 , 0) is the DP
for the Hermitian case; therefore, ky0 meets the condition
Bx(0, y0, 0) = 0, which yields

a cos ky0 = m − a − 1 (A17)

and

a2 sin2 ky0 = (m − 1)(2a − m + 1). (A18)

Replacing m and a with γ in Eq. (A18), we have a sin ky0 =
±1. Here we discuss the case of a sin ky0 = −1. In polar co-
ordinates, (ky, kz ) = (ky0 + r cos θ, r sin θ ), where r is small.
Using the above parameter settings and taking the Taylor
expansion, the Hamiltonian in Eq. (1) can be rewritten as

H =
(

iγ r eiθ

r e−iθ −iγ

)
(A19)

and the Berry connection in Eq. (8) and Berry curvature in
Eq. (9) can be reduced into⎧⎨

⎩
Ax = 0,

Ay ≈ ε−γ

2εr sin θ,

Az ≈ − ε−γ

2εr cos θ,

{
Fx ≈ γ

2ε3 ,

Fy = Fz = 0.
(A20)

By using a coordinate transformation of(
Ar

Aθ

)
= S

(
Ay

Az

)
, (A21)

where

S =
(

cos θ sin θ

− sin θ cos θ

)
, (A22)
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the form for Berry connection and curvature in polar coordi-
nates, {

Ar = Ax = 0,

Aθ =
√

γ 2−r2−γ

2εr ,

{
Fr = Fθ = 0,

Fx = γ

2ε3 ,
(A23)

can be easily obtained.

APPENDIX B: BERRY CONNECTION AND BERRY
CURVATURE DEFINED UNDER THE DIRAC NORM

This section gives the expressions for the Berry connec-
tion and Berry curvature under the Dirac orthonormal basis
in the broken region. As the purpose of this section is to
compare the results with those obtained under the definition
of biorthogonal bases sets, and the details of calculation are
similar to those in Appendix A, therefore only the results will
be presented.

The expression for the eigenstates of the Hamiltonian in
Eq. (1) is

|φR
+〉 = 1√

�

(
η ei( π

2 −β )

1

)
(B1)

corresponding to the eigenvalue −i
√

γ 2 − B2
x − B2

y , where

� = η2 + 1, η =
γ +

√
γ 2 − B2

x − B2
y√

B2
x + B2

y

. (B2)

The Berry connection can be defined by

�Ad
�k = i〈φR

+|∇�k|φR
+〉 = Ad

kx
ex + Ad

ky
ey + Ad

kz
ey, (B3)

where the component reads

Ad
j = ε + γ

2γ
(
B2

x + B2
y

) (Bx∂ jBy − By∂ jBx ) (B4)

and the Berry curvature can be defined by

Fd
j = ∂lAd

i − ∂iAd
l = ∂iBy∂lBx − ∂lBy∂iBx

2γ ε
. (B5)

The denominator of Ad
j has one less factor of ε compared to

the denominator of A j in Eq. (8), which leads a convergent
Ad

j at the EP surface.
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