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Invariant points amidst gauge sensitivity in cylindrical and toroidal lattices
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We examine the spectrum for lattices with cylindrical and toroidal topology subject to Abelian gauge poten-
tials. Gauges that are equivalent in planar lattices with trivial topology develop differences due to the periodic
boundary conditions. But some residual gauge equivalency, evident in the spectrum, is found to remain under
specific conditions. This is associated with the gauge structure being commensurate with the lattice periodicity,
and the behavior of the associated field along the symmetry axes. The interplay of the gauge choice and the
periodic boundary conditions leads to a class of persistent degeneracies that are found to be robust against vast
changes in system parameters and even under change of topology from cylinder to torus.
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I. INTRODUCTION

The quantum mechanical description of electrons in a two
dimensional (2D) lattice potential subject to a magnetic field
has been a seminal model in physics leading to an appreciation
of topological effects in many body quantum systems [1].
The most recognizable feature of this system is the fractal
spectrum known as the Hoftstadter butterfly [2]. The spectrum
as well as the typical considerations assume an infinite lattice
[3] with flexible choice of gauge [4]. However, cylindrical
and toroidal topologies were famously invoked in two seminal
models, Laughlin [5] and TKNN [6], to explain the quantum
Hall effect [7]. With advances in optical lattices and syn-
thetic gauge fields [8,9], creation of these configurations has
gained renewed interest [10–15]. An interesting alternative
route has utilized synthetic dimensions to implement such
configurations wherein the periodic boundary condition is
implemented by cyclic coupling of internal states [16–19].
These new developments have led to experimental realization
of established theoretical models that have been challenging
to realize previously [20], as well as the discovery of new
phenomena [21,22].

For finite systems with periodic boundary conditions the
typical gauges used in planar lattices with trivial topology
lose their characteristic equivalency. This directly impacts
the physical properties of the system, and specifically the
differences become clearly evident in the spectrum. Yet, under
certain conditions some of those gauges continue to present
identical spectral features even in the presence of the pe-
riodic boundary conditions. In some cases, slightly shifting
the gauge can act like a perturbation about those regimes of
agreement. Significantly, we find that certain features remain
remarkably robust against drastic variations of system param-
eters for certain gauge choices. They can remain invariant
even on changing the topology of the system from a cylinder
to a torus. The purpose of this paper is to identify and analyze
those invariant features. We will present them in the context
of a cylinder first then show how they also apply to a torus.

In Sec. II, we present our physical model and describe how
we analyze the spectra for different configurations. Section III
describes the interplay of the gauge choices and the boundary
conditions. The essential invariant feature of persistent degen-
eracies is described in Sec. IV, followed by a comparison of
the impact of different gauge choices in a cylindrical lattice
in Sec. V. We then describe in Sec. VI how these features
translate to a toroidal lattice configuration. We summarize our
main findings in Sec. VII.

II. PHYSICAL MODEL

Consider a quantum mechanical system of particles in a
finite 2D lattice potential, its x and y orientations indexed
by m ∈ {1, · · · , M} and n ∈ {1, · · · , N} respectively, and de-
scribed by the Hamiltonian, H (n, m):∑

m,n

[Jxe−i2πα f (n)ψn,m+1+Jye−i2παg(m)ψn+1,m

+ Jxei2πα f (n)ψn,m−1+Jyei2παg(m)ψn−1,m], (1)

where we allow for different nearest neighbor hopping
strengths Jx and Jy in the two relevant directions, with lat-
tice spacings ax and ay. The parameter α = qBaxay/h is
due to a magnetic field along z. The factors f (n) and g(m)
are associated with the vector potential and set the gauge:
For example, Landau x and y gauges would have f (n) =
−n, g(m) = 0 and f (n) = 0, g(m) = m, and the symmetric
gauge f (n) = ∓ 1

2 n, g(m) = ± 1
2 m, corresponding to contin-

uum vector potentials �A = (−By, 0, 0), �A = (0, Bx, 0), and
�A = (∓ 1

2 By,± 1
2 Bx, 0). In general, the vector potential can be

parametrized as

�A =
(

∓ r

s
By,± s − r

s
Bx, 0

)

r ∈ {0, 1, 2, · · · } s ∈ {1, 2, · · · } (2)

so that f (n) = ∓ r
s n and g(m) = ± s−r

s m. The Landau gauges,
referred to henceforth as x and y gauges, are limiting cases
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FIG. 1. The effect of the boundary condition and choice of gauge
is illustrated for a 9 × 9 lattice: (a) for hard wall boundary in both
directions and (b), (c), (d) with periodic boundary along the x orien-
tation but differing in the gauge used as indicated. (e), (f) The flux
per plaquette for α = 1/4 is shown schematically for a cylindrical
lattice with M = 3 sites in the periodic direction, the rightmost sites
being identical to the leftmost ones; the Landau x gauge maintains
uniform flux, while the Landau y gauge is nonuniform.

with r = s and r = 0, respectively. All other gauges with
other values of r, s, we will call split gauges.

Cylindrical topology can be introduced by imposing pe-
riodic boundary conditions along either orientation such that
N + 1 ≡ 1 or M + 1 ≡ 1; without loss of generality we pick
the latter as shown in Fig. 1. Insisting on both creates a torus
topology. For cylindrical topology, the periodic boundary con-
dition breaks the equivalency of these different gauges, as
evident in the spectrum in Fig. 1, where we compare plots of
9 × 9 lattices as a function of α: One presents box boundary
conditions and the other three have a cylindrical configura-
tion each with a different gauge. Although the well-known
butterfly shape is present in all, they are very distinct. The
box boundary spectrum is insensitive to the choice of gauge,
while the spectrum in the cylindrical configuration varies sig-
nificantly with the gauge.

The energy spectra is computed by diagonalizing the
Hamiltonian in Eq. (1) in the MATLAB computational soft-
ware [23]. We map the 2D Hamiltonian to a 1D ordered array,
and adjust the boundary conditions by setting array elements
corresponding to the coupling of sites at opposite edges either
to zero for box boundary conditions or equal to the relevant
coupling coefficients for a periodic boundary condition. The

gauge choices are made by specifying the functions f (n) and
g(m).

III. INTERPLAY OF GAUGE AND BOUNDARY
CONDITIONS

Contrasting the two Landau gauges highlights some of
the key impacts of the gauge choice on observables when
we introduce periodic boundary conditions. In the x gauge,
the phase is collected along the periodic boundary, resulting
in a net field along the symmetry axis of the cylinder; this
is clearly not possible with the y gauge. Both gauges can
however produce a radial field tied to the net phase collected
in a circuit about each plaquette. This is evident even in the
continuum expressions [4],

�Bx−gauge = −Bρ̂ + By

R
ŷ �By−gauge = −Bρ̂, (3)

up to a sign defined by the charge, with R being the radius of
the cylinder. In our choice of coordinates, the symmetry axis
is along the y coordinate. When we consider the discrete lat-
tice Hamiltonian, the differences between the x and y gauges
become more prominent, as contrasted in Figs. 1(e) and 1(f):
For the x gauge, the net flux through each plaquette is identical
for any value of α. However, for the y gauge, that is generally
not the case as shown in Fig. 1(f) for α = 1/4, and even the
direction of the flux can change.

It is also clear that for the x gauge there is a net nonzero
radial flux if we sum over all the plaquettes azimuthally since
the flux has the same orientation in all of them. But, for
the y gauge the net radial flux vanishes on summing over
all the plaquettes along the azimuth. If we consider a trans-
verse cross-sectional volume of the cylinder comprising of
any number of its constituent coupled rings, the integrated
net flux vanishes for both gauges; for the x gauge the axial
contribution cancels out the radial contribution. This is as one
would expect in the absence of singularities such as mag-
netic monopoles. It is interesting to note, net nonvanishing
radial flux has been demonstrated with synthetic gauge fields
[16,22].

In the discrete lattice Hamiltonian, a discontinuity is
present in the radial flux for the y gauge, but never present
in the x gauge, as contrasted in Figs. 1(e) and 1(f). This dis-
continuity is associated with the flux reversal that creates the
vanishing of the net radial flux in this gauge. The discontinuity
is interesting because, due to the cylindrical symmetry of the
system, it cannot be predicted a priori where it would mani-
fest, somewhat analogous to spontaneously broken symmetry.

While the flux remains the same in each plaquette, a dif-
ferent kind of discontinuity can arise in the x gauge, in the
phase accumulated in a full azimuthal circuit. For example,
in Fig. 1(e), phase of 1.5π is accumulated in a circuit of the
bottom ring for α = 1/4. The requirement for the quantum
state to be single valued would not be met for a stationary state
unless the net phase accumulated in each circuit is a multiple
of 2π . Those would correspond to the allowed states for the
system at rest. Configurations where that phase condition is
not met can correspond to circulating states where the rotation
rate will contribute the additional phase needed to meet the
phase condition [24].
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FIG. 2. Spectra for a 4 × 4 cylindrical lattice: (a)–(f) Vary cou-
pling Jy at fixed Jx for Landau gauge along periodic (x) and open
(y) directions on left and right columns, respectively. Examples of
slideby of spectral lines are marked by dotted line circles, avoided
crossings by solid line circles, and persistent degeneracies by red dots
[shown for left half only in (a), (c), (e), but leaving out the ones on the
axis at α = 0]. Vertical dotted lines show the persistence of degen-
eracies at the same α values. The panel sequence (e → g → h → f)
tracks gauge change at fixed Jx = 1, Jy = 5 from Landau x to Landau
y by splitting the parameters f (n), g(m); persistent degeneracies dis-
appear, with reappearance only at spectral equivalent point α = 0.25
for the y gauge.

IV. PERSISTENT DEGENERACIES

Despite its complexity, several features stand out in the
energy spectrum, best illustrated in the context of the x gauge.
In the limit Jy/Jx → 0, shown in Fig. 2(a), we have a system
of decoupled rings. Plotted as a function of α, there are N × M
distinct spectral curves defined by the energies

En,m = 2Jx cos

(
2πm

M
− 2παn

)
. (4)

Each of the n ∈ {1, 2, · · · , N} rings contributes a set of M si-
nusoidal spectral curves of set period 1/n but phase shifted by
2πm/M, m ∈ {1, 2, · · · , M}. The multitude of intersections
that mark degeneracies at this limit fall into a few distinct
categories which determine the behavior as the inter ring
coupling Jy is turned on.

The most trivial intersections are between spectral lines
representing different states (different m) from the same ring
(same n). They slide by each other as Jy is increased until
the lines separate and form parts of different bands. These
intersections occur between spectral curves of the same period
but different phase. Intersections between curves representing
the corresponding states (same m) on different rings (different
n), for example, ground state of each ring, lead to avoided
crossings which mark a mixing of the states. When the cou-
pling Jy between rings is raised sufficiently, these intersections
split and widen, just as band gaps open up in multiple-well
systems. Stronger coupling is needed to blend states on rings
which are further away from each other.

The most interesting feature is the case of intersections that
occur between spectral lines corresponding to different states
(different m) from different rings (different n). They persist
at exactly the same value of α regardless of the value of the
coupling ratio Jy/Jx. This is remarkable because the shape of
the entire spectrum changes dramatically with changing Jy/Jx

as seen in Fig. 2. In the case of an odd number of rings N , these
intersections can also occur between different states from the
same ring, but only for the central ring. Figure 2 indicates
that persistent degeneracies appear in both Landau gauges, but
with different origins as will be shown.

We find that persistent degeneracies occur at α values
which meet the condition

αM(N + 1) = k, (5)

with integer k, in the case of a closed boundary condition
in the x direction. Thus, in Figs. 2(a), 2(c), and 2(e), with
(N, M ) = (4, 4), the vertical dotted lines are at α = k/(4 ×
5) = 0.05 × k with k ∈ {0, 1, 2, · · · }. While the factor M has
a clear interpretation tied to the phase acquired in as many
hops about a ring in a full circuit, the dependence on N + 1
instead of N is initially puzzling. The explanation resides in
the fact that persistent degeneracies occur between spectral
curves originating from rings which are complementary, ring
1, 2, . . ., with ring N, N − 1, . . ., respectively. This is illus-
trated in Fig. 3. In the case of odd value N , the center ring
forms its own complement.

This is a curious relation, seeming to require phase ac-
quired cooperatively between complementary pairs of rings
to add up to a multiple of 2π . It is intriguing that the com-
plementary pairing varies with the number of rings in the
cylinder, as seen in Eq. (5), but what is fixed is the ordering of
the paired rings relative to the two edges. Even though such
pairing and identification makes some sense when the rings
are isolated, the degeneracies endure when the system has
no resemblance to individual rings, and spectral expressions
become too complex to have tractable analytic descriptions.

V. GAUGE COMPARISON FOR A CYLINDER

A. Gauge as perturbation

The x gauge plays a special role, as can be seen in the
sequence of panels Figs. 2(e)→2(g)→2(h)→2(f), where the
gauge is varied from x to y as ( f (1), g(1)) = (−1, 0) →
(−0.9, 0.1) → (−0.8, 0.2) → (0, 1) for fixed coupling Jx =
1, Jy = 5. We find that gaps open up in all the persistent
intersections as we perturb farther away from the x gauge,
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FIG. 3. In the Landau x gauge, persistent degeneracies occur
between spectral curves that arise from complementary rings in a
cylindrical lattice: (a), (c) In a 4 × 4 lattice with an even number
of rings, between rings 1,4 and 2,3; (b), (d) in a 3 × 4 lattice with
an odd number of rings they also occur between lines from the
self-complementary center ring.

with the gauge component in the y orientation acting very
much like a perturbation. In the pure y gauge itself, some
persistent degeneracies remain as seen in Fig. 2, however they
are substantially fewer and occur only at points of equiva-
lency with the x gauge, discussed next. The perturbation of
the persistent degeneracies at split gauges can be viewed as
a failure to complete multiples of 2π in a circuit, as the y
gauge component “pulls away” phase accumulation from the x
gauge component. As the split gauges defined in Eq. (2) skew
more toward the y gauge, and | f (1)/g(1)| gets progressively
smaller, the gaps widen at those degeneracy points.

B. Spectral equivalent points

While the closed topology generally makes the system
gauge sensitive, certain conditions allow a form of gauge
equivalency to be restored. If the lattice is wrapped into
a cylinder of M sites in the periodic direction, then if
αM| f (1)| = j with j = 1, 2, 3, . . ., both the Landau x and y
gauges will have matching spectra for any ratio Jy/Jx. This
condition assures that in an azimuthal circuit, the phase ac-
cumulated is a multiple of 2π, removing the discontinuity in
the x gauge mentioned in Sec. III. This is analogous to the
Aharonov-Bohm condition for flux quantization [25].

The x and the y gauges continue to present distinct flux
patterns, even at these points, with the former comprising
of both radial and axial components while the latter only
presents radial components. However, their spectral values

are identical. Comparing with the case of the box boundary
condition provides an explanation, where the spectra for the
two gauges are identical for any value of α. This is because in
the limit when either one of Jx or Jy vanishes, reducing such
a system to a set of isolated 1D lattice strips, the spectrum
has no dependence on α. For box boundary conditions, for
the gauge to have an impact on the spectrum, there has to
be coupling in both x and y directions, and therefore is a
consequence of the freedom of 2D motion. In a cylinder, on
the other hand, when gauge factors appear in the hopping
terms along the periodic direction, then even for an isolated
1D ring the spectrum presents nontrivial dependence on α as
can be seen from Eq. (4). But when the condition above is met,
αn = j/M [assuming f (n) = −n], the terms in the argument
of the cosine function in Eq. (4) become effectively the same,
since the gauge periodicity is commensurate with the lattice
period. Then, in a sense, the effect of the gauge “vanishes”
for an isolated ring, as for a 1D strip. Thus, at those points,
only the effects arising from the 2D coupling of the lattice
sites remain, and the spectrum becomes equivalent for the
two gauges, just as for a lattice with no periodic boundary
conditions.

The spectral equivalence condition can be generalized for
any pair of split gauges ( f1, g1) ≡ (r1, s1) and ( f2, g2) ≡
(r2, s2) which would occur, provided

αM(| f1(1)| − | f2(1)|) = αM

(
r1

s1
− r2

s2

)
= k, (6)

assuming closed boundary in the x orientation, and integer
k. The difference between the phase collected around each
ring under the influence of the two different gauges will be
a multiple of 2π . This provides a criterion for when a split
gauge will match one of the Landau gauges. We can illustrate
this by introducing an additional constant phase factor along
the closed orientation, Jx → Jxeiϕ marking an extra axial field
such as assumed in the well-known Laughlin model for the
quantum Hall effect [5]. In Fig. 4 we plot the spectra for
two different gauges: x gauge (r1, s1) = (1, 1) and (r2, s2) =
(4, 7) as a function of ϕ on a cylinder with the number of
rings and sites (N, M ) = (4, 4). In panels (a) and (b), where
α = 2/3, the spectra are different, since the condition in
Eq. (6) is not satisfied, but panel (c), for α = 7/12, shows
a spectrum identical for both gauges since that condition is
met. That equivalence holds for arbitrary Jy/Jx even though
the spectrum itself changes and, when plotted versus α, is
marked by both gauges always having the same eigenvalues at
that point. When a split gauge matches the y gauge, the phase
accumulated in an azimuthal circuit is necessarily a multiple
of 2π .

VI. TORUS

We now consider if and how the features discussed above
manifest in a toroidal lattice. Since a torus has periodic bound-
ary conditions in both x and y orientations, there can be two
axial fields, one along each symmetry axis. For two different
gauges to match, the condition in Eq. (6) has to be gener-
alized to be satisfied in both orientations, giving us the two
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For a cylindrical lattice, the spectra differs for two gauges [labeled
by values of (r, s)] for arbitrary values of the gauge parameter α, for
example for α = 2/3 in panels (a) and (b), but for certain values,
such as α = 7/12, that satisfy Eq. (6) the two gauges present the
same spectrum shown in panel (c). For a torus along with α, the
symmetry of the lattice is a relevant factor: (d), (e) for α = 7/8
the two gauges considered present different spectra when the number
of sites along two axes differ N �= M, but present the same spectrum
shown in panel (f) when N = M.

conditions (with integer k and k′),

αM(| f1(1)| − | f2(1)|) = k

αN (|g1(1)| − |g2(1)|) = k′, (7)

which requires axial fields to match along both orientations up
to multiples of 2π . The second condition can also be written
as αN[| f1(1)| − | f2(1)|] = −k′, since g(1) − f (1) = 1. So in
the case of a symmetric torus when M = N, one condition
guarantees the other. This is illustrated in Figs. 4(d) and 4(e),
where two gauges (r1, s1) = (3, 7) and (r2, s2) = (5, 7) yield
different spectra for α = 7/8 when (N, M ) = (3, 4), since the
second condition above is not satisfied. But, Fig. 4(f) displays
identical spectra presented by both of these gauges for the
same value of the parameter α when the lattice becomes
symmetric with the same number of sites along both axes,
N = M = 4. Even for asymmetric tori, N �= M, the spectral
equivalency between the gauges will occur for those values of
α which satisfy both conditions. Clearly with two conditions
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FIG. 5. Persistent degeneracies appear in the spectrum of a torus
(N, M ) = (3, 4) marked by red dots with dashed lines showing the
invariant α as the coupling ratio varies (the ones on the axes at α =
0, 0.5 are not marked). Left and right columns present x and y gauges,
respectively. In transition from (a) a cylinder with x gauge (all gauge
in periodic direction) to (c), (e) torus, the spectrum changes but the
α values for the degeneracies are invariant. (b) A cylinder with y
gauge (all gauge in open direction) only has such degeneracy where
it matches the x gauge, yet numerous new persistent degeneracies
emerge in transitioning to a torus (d), (e).

instead of one, such equivalency is more restricted for a torus
than for a cylinder.

We find that persistent degeneracies also occur in the torus
at α values which meet the condition in Eq. (5) that we
presented in the context of cylindrical lattices. But now, with
periodic boundary conditions in both directions, that expres-
sion has to be interpreted to mean that the gauge factor on the
hopping potential appears only along the direction indexed
by M which, without loss of generality, we assume to be
the x gauge. If we switch to a y gauge, we simply switch
N ↔ M in that expression. Specifically, this implies that if
we have a cylinder with x gauge, the α values where the
persistent degeneracies occur will not change if we convert
to a torus, although the general spectrum changes. This is
shown in Figs. 5(a), 5(c), and 5(e) with (N, M ) = (3, 4); the
vertical lines marking the persistent degeneracies are shown at
α = k/(N × M ) = k/16, with k ∈ {0, 1, 2, . . ., } for both the
cylinder and the torus. For the same cylinder, with y gauge,
persistent degeneracies only occur at points of equivalency
with x gauge which satisfy Eq. (6), such as at α = 1/4 as
seen in Fig. 5(b). However, in the torus created by closing that
cylinder, numerous persistent degeneracies are seen to occur
for α = k/(3 × 5) with k ∈ {0, 1, 2, . . . ,} in Figs. 5(d) and
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5(f) corresponding to switching N ↔ M in Eq. (5). Notably,
the degeneracy point in the y-gauge cylinder does not corre-
spond to any of those persistent degeneracies that appear in the
torus, underscoring the crucial role of boundary conditions.

For a torus, Figs. 5(c)–5(f) establish that persistent inter-
sections occur for both Landau gauges. Hence, split gauges
can have persistent degeneracies when there is spectral equiv-
alency with either of the two Landau gauges in the sense of
Eq. (6), if that equivalency occurs at a persistent degeneracy
for the latter. The same applies to a cylinder, but the equiva-
lency has to be with the x gauge.

VII. CONCLUSIONS

We have shown that typical gauge equivalency assumed
in open 2D lattices subject to a perpendicular magnetic field
is clearly not applicable in finite systems with nontrivial
topology. These gauges now correspond to fundamentally
different fields and fluxes with distinct characteristics. Yet,
certain residual equivalency, evident in the spectrum, remains
between specific pairs of gauges under conditions that we
identify. Despite that loss of equivalency among commonly
used gauges, we found that the spectrum for such topolog-
ically nontrivial lattices can present persistent degeneracies
that occur at the same specific values of the characteristic

parameter α. They remain remarkably robust across the com-
plete range of coupling ratios, Jy/Jx and even under change of
topology from cylinder to torus under certain conditions. Such
persistent degeneracies do not seem to be present in lattices
with box boundary conditions along both axes. Even for cylin-
drical and toroidal lattices, they occur for particular choice of
the gauge. This indicates that these features are characteristic
of the interplay of gauge structure and the periodic boundary
condition.

Small lattices as we consider here tend to highlight such
features and suggest that, particularly in the context of topo-
logically nontrivial lattices, interesting new phenomena can
be explored that may be suppressed for large systems. In
future work, we plan to examine the implications of these
features on the stationary states of the system. These invariant
points can offer a novel way to characterize and understand
properties of such systems with nontrivial topologies. Systems
with non-Abelian gauge fields may also provide interesting
counterparts to our findings.
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