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Impact of the Fizeau drag effect on Goos-Hänchen shifts in graphene
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We investigate the Goos-Hänchen shifts in reflection for a light beam within a graphene structure utilizing the
Fizeau drag effect induced by its massless Dirac electrons in incident light. The magnitudes of spatial and angular
shifts for a light beam propagating against the direction of drifting electrons are significantly enhanced, while
shifts for a beam copropagating with the drifting electrons are suppressed. The Goos-Hänchen shifts exhibit
augmentation with increasing drift velocities of electrons in graphene. The impact of the incident wavelength
on the angular and spatial shifts in reflection is discussed. Furthermore, the study highlights the crucial roles of
the density of charged particles in graphene, the particle relaxation time, and the thickness of the graphene in
manipulating the drag-affected Goos-Hänchen shifts. This investigation offers valuable insights for efficiently
guiding light in graphene structures under the influence of the Fizeau drag effect.
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I. INTRODUCTION

The optical phenomenon known as the Fizeau drag effect
was first elucidated in 1851 by Fizeau [1] and was later
verified for light propagating in flowing water [2–4]. Under
this effect, the speed of light can be modified when it is
propagating in a moving medium. This effect arises when a
moving optical element, such as a moving mirror or trans-
parent material, partially entrains a medium. In the Fizeau
experiment, light was directed through a tube containing a
flowing liquid. The light beam was split, with one part moving
in the direction of the liquid’s flow and the other against it.
Upon recombining the two beams, interference fringes were
observed. The experiment demonstrated that the motion of the
medium through which light traveled influenced its speed. The
beam moving with the flow of the liquid resulted in a slight
increase in speed, while the beam moving against the flow led
to a slight decrease in speed. This differential effect caused a
shift in the interference fringes.

By utilizing the high electron mobility in graphene
[5,6] and the slow plasmon propagation of its massless
Dirac fermions, Dong et al. [7] and Zhao et al. [8] re-
cently experimentally demonstrated the Fizeau drag effect for
graphene plasmons. They observed that the Dirac electrons
in graphene possess the ability to effectively drag surface
plasmons along their direction of propagation, a phenomenon
highlighted by the observed wavelength change in these
modes.

On the other hand, when light interacts with dielectric
interfaces, reflection and transmission occur [9]. In the case
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of total internal reflection at the interface between two media,
the reflected beam deviates laterally from the position pre-
dicted by geometrical optics. This lateral shift is known as
the Goos-Hänchen (GH) shift [10] and arises due to the phase
shift between the reflected and transmitted beams [11–13].
In this phenomenon, each plane wave component undergoes
a unique phase change. This results in a reflected beam that
experiences a lateral displacement due to the superposition
of these components. Furthermore, the different reflective
coefficients of each plane wave component contribute to an
angular change [14]. Widely applicable in angle measure-
ments [15], beam splitters [16], sensors [17], and optical
switches [18], the GH shift has been extensively studied in
various media and structures, including metal and dielectric
slabs [14,19], optical cavities and waveguides [20,21], pho-
tonic crystals [22,23], metamaterials [15,24], optomechanical
systems [25,26], atomic media [11,27], surface plasmon res-
onance structures [28,29], graphene [16,30–34], and other
two-dimensional (2D) materials [35,36]. GH shifts in ge-
ometries containing graphene can be efficiently tuned by
graphene, depending on its remarkable properties, such as
adjusting its carrier density through the applied gate voltage
[37,38], varying its number of layers or thickness [30,31],
using different substrates on which it is deposited [39,40], and
varying the direction of polarization of incident light [30].
Valley-dependent GH shifts were also studied in graphene,
where electrons in different valleys were shown to have
different shifts [34]. These investigations span both the fun-
damental understanding and practical aspects of the GH
shift.

The GH shift, although typically considered a subtle effect
[41], has significant implications for various optical applica-
tions, including precision measurement [31,42] and sensing
[13,43,44]. Hence, a crucial consideration is the exploration
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of strategies to enhance and improve the GH shifts. One
potential avenue we identify is the incorporation of relativistic
effects in graphene induced by its fast-moving, massless Dirac
electrons. These electrons can effectively drag light along or
against its propagation direction, leading to shifts that can be
either enhanced or suppressed.

We explore the dependences of the drag-affected GH shifts
on the thickness of a 2D graphene sheet, its carrier density, and
the incident wavelength. Our findings reveal that depending
upon the direction of propagation of the incoming light, the
angular and spatial shifts of the reflected beam are signif-
icantly amplified or suppressed by the inclusion of Fizeau
drag due to the swift motion of electrons in graphene. This
dependence is demonstrated across various drift velocities of
electrons in graphene. This study presents an efficient plat-
form for guiding light through graphene in its current-carrying
state. In our study, the Fizeau drag emerges as a relativistic
phenomenon, exhibiting a pronounced dependence on the rel-
ative motion of the medium. This implies that a significant
contrast in the dispersion characteristics of copropagating and
counterpropagating waves in graphene is induced only when
relativistic electron drift velocities are present. It is crucial
to note the distinction between light drag and plasmon drag
in graphene, attributed to the broken Galilean invariance, as
discussed in [7].

This paper is organized as follows. In Sec. II, we define
the geometry and revise the Fizeau drag effect based on the
special relativity. Subsequently, we present the analytical ex-
pressions for the description of GH shifts. Then we present
expressions for describing the transformations from a sta-
tionary frame to a moving frame, as well as for the optical
response of graphene. The results are presented and discussed
in Sec. III, and Sec. IV summarizes the results.

II. MODEL AND EXPRESSIONS FOR THE GH SHIFT
WITH FIZEAU DRAG

The geometry depicted in Fig. 1 illustrates our model for
investigating GH shifts of a light beam under the influence
of the Fizeau drag effect in graphene. A linearly polarized
light k0i impinges on a three-layer structure at an incident
angle θi with the z axis. The three layers consist of a graphene
sheet with relative electric permittivity ε2 positioned between
a substrate with a relative dielectric constant ε3 and an upper
medium with relative electric permittivity ε1. The parameters
d1, d2, and d3 represent the thicknesses of the top medium, the
graphene layer, and the substrate, respectively. In this context,
δr denotes the spatial GH shift, and �r represents the angular
shift of the reflected beam, with ± indicating the correspond-
ing positive and negative shifts. Vectors kr and kt denote the
reflected and transmitted portions of the incident light. Further
insights into such a three-layer model can be found in previous
works discussing GH shift phenomena [11,16,23]

We aim to explore spatial and angular shifts in the depicted
geometry by incorporating the influence of Fizeau drag caused
by Dirac electrons in graphene. In subsequent sections, we
outline the Fizeau drag effects of Dirac electrons in graphene
on the incident light. Subsequently, we provide expressions
for the GH shifts in both reflection and transmission.

(a)

(b)

FIG. 1. Three-layer structure for the investigation of GH shifts in
reflection for a light beam under the effect of Fizeau drag. A graphene
sheet of thickness d2 is deposited between two dielectric media of
thicknesses d1 and d3. k0i is the wave vector of the incident beam, kr

is its reflected part, and kt is its transmitted part. θi denotes the angle
of incidence of the light beam. (a) shows a schematic of the spatial
shifts in reflection δr , while the angular shifts �r are shown in (b).

A. Fizeau drag in graphene and the resulting expressions
for drag-affected GH shifts

We make the assumption that the Fizeau drag that affects
the incident light is solely a result of the drifting electrons
in graphene. These drifting electrons are considered to prop-
agate along the positive y axis. To explore the GH shifts
in the current-carrying state, we begin our analysis with
Lorentz transformations applied to various physical quantities
of graphene [7,45],

ω0 = γ (ω − vDkg), (1)

kg,0 = γ

(
kg − vD

c2
ω

)
, (2)

n0 = 1

γ
n, (3)

where ω represents the frequency of the incident light, kg

is the wave vector of light in graphene, n is the charge
density, and vD denotes the drift velocity of the charged
particles in graphene. The subscript 0 designates the quan-
tities measured in the frame moving with velocity vD, and
γ = (1 − v2

D/v2
F )−1/2 denotes the Lorentz factor [7]. Given

our assumption that graphene possesses free electrons and
an associated electric current, the effective relative optical
permittivity ε2(ω) of graphene, for a monochromatic light
with angular momentum ω, can be derived from its optical
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conductivity σ (ω) using Maxwell’s equations as [9]

ε2(ω) = ε1 + ε3

2
+ iσ (ω)

ωε0
, (4)

where ε0 represents the vacuum permittivity. An essential
parameter for an accurate depiction of the dielectric properties
of graphene is its optical conductivity. This quantity is contin-
gent on both the incoming frequency and the in-plane wave
vector. Notably, the energy-momentum relationship for elec-
trons in graphene is linear for energies below 1 eV, as opposed
to being quadratic. Consequently, the low-energy conductiv-
ity of graphene encompasses two components: intraband and
interband contributions. The graphene conductivity, derived
from the Kubo formula [46] or the random phase approxima-
tion [47], is expressed as σ (ω) = σintra(ω) + σinter(ω). These
contributions arise from intraband electron-phonon scattering
and interband electron transitions, given by [48]

σintra (ω) = e2εF

π h̄2

i

ω + iτ−1
,

σinter (ω) = e2

4h̄

{
ϑ (h̄ω − 2εF ) + i

π
ln

∣∣∣∣ h̄ω − 2εF

h̄ω + 2εF

∣∣∣∣
}
. (5)

Here, εF = h̄vF kF represents the Fermi energy, where kF =√
πn is the Fermi wave vector and vF = c/300 is the

Fermi velocity of the charged particles. The parameter τ

denotes the relaxation time of the charge carriers with den-
sity n, and ϑ is the Heaviside function. It is important to
note that the presented formulas are applicable for highly
doped or gated graphene, specifically when εF � kBT . In
the long-wavelength and high-doping limit, i.e., h̄ω � εF , the
interband contributions become negligible, and the intraband
term dominates, defining the total conductivity of graphene.

We will see that the normal component of the incident light
corresponding to the graphene sheet is

kz
g(ω) =

√
k2

g (ω) − k2
y , (6)

where kg = √
ε2(ω)k0 is the wave vector propagating with

velocity v in graphene and ky is the y component of the wave
vector k0 in vacuum. If we consider the Fizeau effect due to
drifting electrons in graphene, the phase velocity of the wave
becomes

v f /b = v ± vDF (ω), (7)

where the + and − signs stand for a wave propagating along
and against the drifting electrons in graphene, respectively.
We call the former the forward (f) mode and the latter the
backward (b) mode. F (ω) in Eq. (7) is the drag coefficient of
graphene and is obtained as

F (ω) = ng2(ω)

n2(ω)
− 1

n2
2(ω)

, (8)

where n2(ω) = √
ε2(ω) represents the refractive index of

graphene and ng2(ω) = n2(ω) + ω∂n2(ω)
∂ω

is its group index.
Rewriting Eq. (7) in terms of wave vectors and applying
the transformations given by Eqs. (1) and (2), we obtain the
following expression:

γ [ω − vDkg(ω)]

kg,0
− γωc2

c2kg,0 + γωvD
∓ vDF (ω) = 0. (9)

Notice that kg,0 becomes kg,b(ω) for the upper sign and kg, f (ω)
for the lower sign, the Fizeau drag-affected wave vectors of
the backward mode and forward mode, respectively. Solving
these equations, we get a quadratic equation in kg, f and kg,b

for each mode whose solution is

kg, f (ω) =
−γ c2kg ± vDγωF + γ

√
k2

gc4 − 2c2vDωkgF + 4c2ω2F + v2
Dω2F

2c2F
, (10)

kg,b(ω) =
γ c2kg − vDγωF ± γ

√
k2

gc4 − 2c2vDωkgF + 4c2ω2F + v2
Dω2F

2c2F
. (11)

The y component of this drag-affected wave vector be-
comes ky,0 = kg,0 sin θi. Additionally, the Fermi energy in
the current-carrying graphene channel is modified to εF =
h̄vF

√
πn0, where n0 is determined by the transformation given

in Eq. (3). Substituting these values into the expressions for
the GH shifts, we obtain the desired results for spatial and
angular shifts of light under the Fizeau drag effect.

B. General expressions for GH shifts

The incident beam on the geometry presented in Fig. 1
undergoes partial transmission and partial reflection through
the substrate layer to reach the graphene. The electric field
of the incident beam can be expressed as Ex(y, z = 0) =

1√
2π

∫
f (q)eiqydq [11,19]. We assume a Gaussian beam with

an angular spectrum f (q) = wy√
2

exp{−w2
y (q − k0 sin θi )2/4},

where wy = w0/ cos θi, with w0 being the beam waist, and

f (q) is distributed around k0 sin θi. Assuming that the inci-
dent wave has a sufficiently large width, that is, �k � k,
the GH shifts for the reflected and transmitted beams can
be obtained using stationary phase theory [11,37], which has
been demonstrated to be accurate for structures containing
graphene [16,30]. To facilitate this, we start the analysis with
the standard characteristic matrix approach [11,12], where the
input and output of the electric field propagating through each
medium in the structure are related via the transfer matrix

Mj (ky, ω, d j ) =
(

cos
(
kz

jd j
)

i sin
(
kz

jd j
)
/α j

iα j sin
(
kz

jd j
)

cos
(
kz

jd j
)

)
, (12)

where α j = kz
j/k0 and kz

j =
√

ε jk2 − k2
y is the z component of

the incident wave vector k0 in medium j such that k0 = 2π/λ

is the wave vector in vacuum. dj is the thickness of the jth
medium, where j = 1, 2, 3. For the three-layer nanostructure
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in our model, the total transfer matrix is

X (ky, ω, d j ) = M1(ky, ω, d1)M2(ky, ω, d2)M3(ky, ω, d3).
(13)

The reflection and transmission coefficients r(ky, ω, θi ) =
|r|eiϕr and t (ky, ω, θi ) = |t |eiϕt , where ϕr(t ) denotes the phase
of the reflection (transmission) coefficient, can be determined
as

r(ky, ω, θi ) = α0(X22 − X11) − (
α2

0X12 − X21
)

α0(X22 + X11) − (
α2

0X12 + X21
) , (14)

t (ky, ω, θi ) = 2α0

α0
(
X22 + X11

) − (
α2

0X12 + X21
) , (15)

where α0 = kz
0/k0 such that kz

0 is the z component of the
wave vector k0 in vacuum and Xi j are the elements of transfer
matrix given by Eq. (13). After r(ky, ω, θi ) and t (ky, ω, θi ) are
calculated, the lateral shifts (GH shifts) for a monochromatic
beam of wavelength λ can be calculated by using stationary
phase theory [11,37]. The GH shift in reflection (transmission)
is Sr(t ) = − λ

2π
Dr(t ), where

Dr(t ) = ∂ϕr(t )

∂θi
= 1

|r|(|t |)
∂|r|(|t |)

∂θi
+ i

∂ϕr(t )

∂θi
. (16)

However, we are interested in spatial δλ and angular �λ

GH shifts that contribute to the total GH shifts via Sλ = δλ +
l�λ [49] independently, and l represents the distance from the
origin of the point at which the total beam shift is observed.
The spatial and angular shifts in reflection and transmission
are given, respectively, by [37,49]

δr = λ

2π
Im[Dr], δt = λ

2π
Im[Dt ], (17)

�r = − θ2
0

2|r|Re[Dr],�t = − θ2
0

2|t |Re[Dt ]. (18)

In the above expression, θ0 = 2λ/w0 is the angular spread
of the beam, with w0 being its waist, and Re (Im) is the real
(imaginary) part of the quantity. Notice that at this stage, we
do need to substitute the Fizeau effect corrections into the
expressions for the GH shifts so that we obtain the desired
results for spatial and angular shifts for light. For the conve-
nience of the reader, the modified expressions are provided in
the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the spatial
and angular shifts of the reflected part of the light beam in
our model under the Fizeau effect. We assume the carrier
density in graphene is n = 1 × 1012 cm−2, and the relaxation
time τ = 10 fs. The thicknesses of the different media in the
structure are taken as d1 = d3 = 2.5 µm and d2 = 0.5 nm.
The waist of the incident beam is set to w0 = 1mm [32],
and the incident wavelength is λ = 600 nm unless otherwise
stated. The relative dielectric constants for the media above
and below graphene are assumed to be ε1 = 4 and ε3 = 3
throughout this work.

Here, we explain how to solve the sets of equations men-
tioned above. We start with Eq. (5) since the optical properties
of graphene are strongly dependent on its conductivity σ (ω).

We then substitute this expression into Eq. (4) and calculate
the dielectric function of graphene. The dispersion character-
istics of light propagating in graphene are obtained through
kg = √

ε2(ω)k0, and its normal component is obtained as in
Eq. (6). At this stage, we are dealing with a normal graphene
channel. To include the Fizeau effect, we make the transfor-
mation (1)–(3) to analyze the optical properties of graphene in
the current-carrying state. Then, we consider the interaction of
light with the structure. Depending upon the direction of prop-
agation, the phase velocity of the incoming light is modified
through Eq. (7). Making use of Eq. (9), we finally calculate
the drag-affected wave numbers of light co- and counterprop-
agating with the drifting electrons in graphene by utilizing
Eqs. (10) and (11). Subsequently, we calculate the transfer
matrix of each medium in the geometry by using Eq. (12).
However, the transfer matrix of the current-carrying graphene
channel is modified as given in the Appendix [Eq. (A1)].
The reflection coefficient of light is obtained from Eq. (14)
through Eq. (13). Finally, the spatial and angular shifts for the
incoming light are calculated from Eqs. (17) and (18).

To initiate our analysis, we compare the results obtained
for the GH shift of the reflected beam without drag and
under the Fizeau drag effect. One of the three media is the
current-carrying channel of graphene and is greatly modified
compared to a current-free graphene case. The comparison
is presented in Fig. 2, where we illustrate the reflection co-
efficients [Fig. 2(a)], spatial shifts [Fig. 2(b)], and angular
reflection shifts [Fig. 2(c)] as a function of the incident angle
θi. For the drag-affected GH shifts, we assume the drift veloc-
ity of the electrons in graphene is vD = 0.35vF . We find that
the reflection coefficients almost overlap for the two cases,
forward and backward waves, because of their small magni-
tude that varies only between 0 and 1. The difference becomes
clear in the case of GH shifts, where the magnitudes are
very high. The oscillation of the reflection coefficients orig-
inates from the trigonometric function of k jd j in the transfer
matrix.

The dash-dotted green curves depict the spatial δr,0/λ and
angular �r,0 shifts of light without the Fizeau drag effect, i.e.,
kg in graphene. In comparison, we observe that the angular and
spatial shifts for a light beam propagating along the direction
of drifting electrons are significantly reduced, while those for
a light beam propagating against the drifting electrons are
markedly amplified. The modifications stem from the new
momentum wave vectors in 2D graphene. The charge carriers
acquire finite drift velocity, which affects the dispersion char-
acteristics of the interacting light. This observation aligns well
with the experimental outcomes in Refs. [7,8] on the Fizeau
drag of surface plasmons due to Dirac electrons in graphene.
In those experiments, it was observed that the wavelength of
surface plasmons copropagating with the charge carriers in the
current-carrying graphene channel increased, while that of the
counterpropagating plasmon decreased.

In our proposed structure, the Fizeau drag due to Dirac
electrons in graphene also results in an enhancement and
reduction of the wave numbers of the backward and forward
modes. Consequently, the curves for GH shifts of drag-free
light in our model lie between those for the forward mode
and the backward mode. This implies that GH shifts for a
light beam under Fizeau drag are direction dependent. This
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(a)

(b)

(c)

FIG. 2. (a) Reflection coefficients and (b) spatial and (c) angular
GH shifts of the reflected beam as a function of incident angle θi. The
dash-dotted green curves correspond to the drag-free light case, kg

(in graphene), while the red dashed and solid blue curves correspond
to the coefficients and shifts for drag-affected forward kg, f (ω) and
backward kg,b(ω) modes. Notably, the angular and spatial shifts are
suppressed for a beam of light propagating along the drifting elec-
trons, whereas they are enhanced for a beam of light moving against
the drifting electrons. The directions of propagation of the drifting
electrons (shown by the small green circles) and the component
of the incident wave vector along the interface are indicated by
the arrows. For the drag-affected case, we assume vD = 0.35vF in
graphene.

directional dependence will be further elucidated when the
wavelength dependence of the GH shifts of a light beam
interacting with the given geometry is analyzed.

The point in Fig. 2(b) where the magnitudes of the spatial
shifts of the three modes are maximum corresponds to the res-

(a)

(b)

light

FIG. 3. Variations of (a) the spatial and (b) angular GH shifts in
reflection for the backward kg,b(ω) mode with different drift veloc-
ities of the charged particles in graphene. The inset arrows indicate
the directions of propagation of the drifting electrons (shown by the
small green circles) and the component of the incident wave vector
along the interface. The altering of the magnitudes and peak positions
of the curves originate from the impact of the drag coefficient. Notice
that the GH shifts of the backward mode increase noticeably with vD,
while the shifts for the forward mode vary only slightly and are not
shown here.

onant angles for the given wavelength in the structure, which
happens to be around 29.7◦ for λ = 600 nm. The angular
shifts are also found to be maximum at this angle, as shown
in Fig. 2(c). In addition to the magnitudes of the spatial and
angular shifts, the peaks of the shifts also exhibit slight shifts
toward higher (lower) incident angles for the forward (back-
ward) mode. Additionally, we numerically examine the fact
that as |r| approaches zero at certain θi, both δr and �r exhibit
peaks. One point occurs at θi = 29.7◦, where we noted higher
magnitudes of GH shifts compared to those at other minimum
peaks of |r|. In addition, the difference between GH shifts
of the forward and backward modes is also the greatest at
this angle. Therefore, in our analysis of the drag-affected GH
shifts, we mostly focus on the minimum peak of |r| occurring
at θi = 29.7◦.

The observed phenomena can be explained through the
understanding that Fizeau drag, as investigated in our study,
is a relativistic phenomenon intricately linked to the relative
motion of the medium. If we set vD to zero in Eq. (7) and
subsequent expressions, no drag effects on light are evident,
reducing the analysis to a standard graphene channel. Under
these conditions, the green curves in Fig. 2 for spatial and
angular shifts are recovered.
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(a1)

(b1)

(a2)

(b2)

light light

FIG. 4. (a) Spatial and (b) angular GH shifts in reflection for the backward kg,b(ω) mode (left) and forward kg, f (ω) mode (right) as a
function of θi for different thicknesses of the graphene sheet d2. The magnitudes of GH shifts for both modes are noticeably enhanced with
increasing d2. The dependence of the GH shifts on d2 comes from the trigonometric function of the d2 value in the transfer matrix. Similarly,
the peaks of the curves indicate that the angle of TIR is slightly shifted toward lower incident angles with increasing d2. The numerical results
are obtained for vD = 0.3vF , n = 1 × 1012 cm−2, and λ = 600 nm.

To further explore the impact of the Fizeau drag on GH
shifts, we plot the spatial and angular shifts of the forward and
backward modes with different drift velocities vD of the elec-
trons in graphene in Fig. 3. The drift velocity of the electrons
can be adjusted by applying a direct current from a source [7].
The GH shifts are depicted with three different drift velocities
of the charged particles, as indicated. We observe a substantial
amplification in both spatial and angular shifts as vD increases,
particularly for the counterpropagating mode. Simultaneously,
the resonant angle experiences a slight shift toward lower
incident angles with the increasing value of vD. To provide
context, we include the case where vD = 0, corresponding
to a normal graphene channel. It is evident that, under these
conditions, the magnitudes of spatial and angular shifts, rep-
resented by the black curves in Fig. 3, mirror those given
by the green curves in Fig. 2 at vD = 0. This demonstrates
that the application of Fizeau drag can significantly affect
GH shifts of light and should be considered when guiding
light through graphene or other 2D materials of interest in the
current-carrying state.

In our proposed geometry, the Fizeau drag-affected GH
shifts also strongly depend on the effective thickness d2 of
the graphene sheet. The thickness of graphene can be varied
by considering ripples or wrinkles in it. This dependence is
shown in Fig. 4 for three different thicknesses of the graphene
layer, as indicated. For comparison, the case of no graphene
sheet is also demonstrated, as shown by the black curves. In
this case, the GH shifts are found to be very small, and the role
of the graphene sheet in the geometry is clear. We observe that
the magnitudes of GH shifts for the forward and backward
reflected modes are significantly enhanced with increasing d2.

Similarly, the curve peaks indicate that the resonant angle is
slightly shifted toward lower incident angles as the thickness
d2 increases. This variation is independent of the propagation
direction, as the spatial and angular shifts of both modes
are equally enhanced with the increasing thickness of the
graphene sheet. Moreover, the angle of total internal reflection
(TIR) is the same for both modes. In a normal graphene chan-
nel, it has been demonstrated that the disparity between GH
shifts for the TM and TE modes tends to grow as the thickness
of the graphene material increases [30]. Nevertheless, it was
observed that the individual shifts were greater in the absence
of a graphene sheet and diminished as the number of graphene
layers increased.

The GH reflection shifts, influenced by the Fizeau drag, ex-
hibit similar variations, as depicted in Fig. 4, with an increase
in the number density n of charged particles in graphene.
This relationship is illustrated in Fig. 5 across four different
number densities. It is observed that both the spatial and
angular shifts of the backward mode amplify with the rising n
within the range of 0.5 × 1012to 2 × 1012 cm−2, as illustrated
in Figs. 5(a) and 5(b). We also see that the resonant angle for
the given wavelength is slightly shifted toward low incident
angles with increasing n for both spatial and angular shifts of
the backward modes. In a normal graphene channel, Cheng
et al. [37] noted a comparable rise in angular shifts with the
augmentation of Fermi energy εF for light of frequency ω = 5
THz. Given that εF = h̄vF

√
πn in graphene, our results are

compatible with those observed in [37]. Nevertheless, n is
further modified by Eq. (3) to account for the Fizeau effect
in our studied structure. Conversely, Wu et al. [32] observed
a reduction in angular shift as Fermi energy increased. It
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(a)

(b)

light

FIG. 5. (a) Spatial and (b) angular GH shifts in reflection for
the backward kg,b(ω) mode as a function of θi for different charge
densities n in graphene. The parameters are kept the same as in Fig. 2.
The GH peaks increase by increasing the electron density. We find
that the curves overlap in the case of the forward mode.

is important to note that their investigation focused on the
quantum Hall regime, employing a beam with a waist of
w0 = 1 mm and a frequency of ω/2π = 1 THz.

The profiles of GH shifts under the effect of Fizeau drag
exhibit strong variations with changing incident wavelength λ.
These variations are depicted in Fig. 6 for the reflection coeffi-
cients and GH reflection shifts of both forward and backward
beams. Multiple peaks, due to the wavelength dependence of
the transfer matrix, can be observed in the reflection coeffi-
cient of each mode, as illustrated in Fig. 6(a), corresponding
to the angles at which the GH shifts of the reflected wave
abruptly increase. We focus on a small range of angles be-
tween 40◦ and 45◦ to clearly observe the behavior of spatial
and angular shifts for both modes. Moreover, the three wave-
lengths are chosen randomly to demonstrate that our model
works well across the entire visible frequency range.

It is evident that both δr/λ and �r are small for low inci-
dent wavelengths and increase with increasing λ, as shown
in Figs. 6(b) and 6(c). Not only do the magnitudes of the
spatial and angular shifts vary with varying λ, but the angles at
which these shifts occur also shift toward different angles. We
should notice that at higher wavelengths, the variations in GH
shifts of the backward mode are comparatively smaller than
those for the forward mode. Accordingly, the GH shifts can
be modified depending on the choice of geometry and incident
frequency.

In Fig. 6(b1), an intriguing phenomenon is evident: the GH
shift δr,b for the backward mode undergoes a sign change at
670 nm. It becomes positive, whereas it is negative for two
shorter wavelengths. This behavior is a result of the structural
resonance occurring for different wavelengths at different an-
gles. We will see shortly that, for a given θi range, the δr,0

curve for drag-free light is also positive around 670 nm.
In Figs. 6(b) and 6(c), we note another intriguing feature:

as we transition from shorter to longer wavelengths, the peaks
in the curves shift to the right, but at the longest wavelength,
there is a sudden jump back. A similar variation, not presented
here without Fizeau drag, also occurs and is attributed to the
resonance of the structure at different wavelengths and angles.

To delve further into this, we plot δr and �r in terms of the
incident wavelength λ at θi = 41.57◦ in Figs. 7(a1) and 7(b1),
respectively. It is noteworthy that δr,0 for the drag-free light
turns positive around 669 nm at the given θi, as depicted in
Fig. 7(a1). Similarly, the backward mode exhibits variations
akin to the drag-free mode within the specified range of θi.
The GH shift δr,b for this mode is also observed to be positive.
However, the magnitudes of the GH shifts for the drag-free
and forward modes differ, and δr, f remains negative.

Figures 7(a1) and 7(b1) further demonstrate that the mag-
nitudes of the GH shifts increase for the forward mode and
decrease for the backward mode compared to drag-free light,
consistent with the results in Fig. 6. It is important to note
that these findings differ from the results presented in Fig. 2,
where increased GH shifts were observed for the backward
mode and decreased shifts were observed for the forward
mode. To validate these outcomes, we plotted the GH shifts
of the three modes at the same set of parameters as in Fig. 2
but with a different range of θi in Figs. 7(a2) and 7(b2). The
reason behind the alternation of GH shifts for the forward and
backward modes becomes apparent, and it is attributed to the
varying range of incident angles considered. This observation
is significant as it allows us to selectively enhance the shifts
of either the forward or backward mode based on the angle of
incidence. Additionally, it is worth noting that the magnitudes
of δr and �r for the three modes obtained at λ = 600 nm
in Figs. 7(a2) and 7(b2) are smaller than those shown in
Figs. 7(a1) and 7(b1). This aligns with the previous analysis,
indicating that the GH shifts in the structure tend to increase
with the wavelength.

IV. CONCLUSION

In summary, we investigated spatial and angular shifts in
reflection for a light beam in a graphene structure under the
effect of Fizeau drag due to Dirac electrons on incident light.
We found that compared to that in the drag-free case, the
magnitude of the GH shifts becomes directional, depending
on the propagation direction of light concerning the dragging
source. When the light is counterpropagating with the drifting
electrons in graphene, the magnitudes of both the spatial and
angular reflection shifts increase compared to those in the
drag-free case at low incident angles. Conversely, the GH
shifts were found to decrease for a light beam copropagating
with the drifting electrons. Interestingly, this varying behavior
for the two modes can be reversed at slightly higher angles.
The GH shift varies with the electron relaxation time because
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(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

light light

FIG. 6. Dependence on the angle of incidence of the (a) reflection coefficient and (b) spatial and (c) angular GH reflection shifts of the
backward kg,b(ω) mode (left) and forward kg, f (ω) mode (right). The three different curves correspond to different incident wavelengths λ of
incoming light. The angle dependence of the GH peaks is no longer linear in terms of wavelength. We set vD = 0.35vF , d2 = 0.5 nm, and
n = 1 × 1012 cm−2.

it influences conductivity and, consequently, the reflective
index of graphene.

Furthermore, we noted that irrespective of the propagation
direction of the beam light, the GH shifts in reflection increase
with the increasing velocity of the moving medium. In our
case, the dragging source of light is the drifting electron cloud,
leading to an enhancement of the spatial and angular shifts
with greater speeds. The thickness of the 2D system was also
found to significantly modify the GH shifts under Fizeau drag.
Additionally, we showed that with increasing Fermi energy of
graphene, the magnitudes of the spatial and angular GH shifts
in reflection can be increased.

The wavelength dependence of the GH shifts in our model
was analyzed, where the GH shifts were shown to increase
with the incident wavelength. These findings could be veri-
fied by current state-of-the-art experiments. Our results were
computed for visible frequencies, offering a practical and
experimentally accessible range. The distinct shifts observed
for the co- and counterpropagating modes in our methodology

suggest the potential for designing efficient light modulators
[50]. The directional modulation of GH shifts could find ap-
plications in nonreciprocal and directional energy transport
along interfaces [51].

Future extensions of our study could involve the develop-
ment of a more fundamental temperature sensor, leveraging
the temperature-sensitive optical properties of graphene. Pre-
vious proposals for temperature sensors based on the GH
shift and the Fizeau effect could be further explored [13,51].
Additionally, there is potential to enhance the sensitivity of
devices operating on the Doppler effect using insights gained
from this study. Exploring applications in twisted bilayer
graphene [52] represents another promising avenue for future
research.

Moreover, considering the dependence of the GH effect at
a p-n interface in graphene on the sublattice degree of freedom
due to electrostatic potential [53], incorporating sublattice
effects could provide intriguing future insight, expanding the
scope and applicability of the proposed ideas.
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(a2)

(b2)

(a1)

(b1)

FIG. 7. (a1) Spatial and (b1) angular shifts of the three modes for the same set of parameters as in Fig. 2 as a function of incident wavelength
λ such that θi = 41.57◦. (a2) and (b2) The same quantities as a function of incident angle θi with λ = 600 nm. We observe that the peaks for
the backward mode closely track those of the drag-free light. Additionally, the magnitudes of the GH shifts decrease and increase, respectively,
for the backward and forward modes compared to the drag-free light.
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APPENDIX: EXPRESSIONS FOR GH SHIFT UNDER THE EFFECT
OF FIZEAU DRAG IN GRAPHENE

Under the effect of Fizeau drag due to drifting electrons in graphene, the wave vector of light in graphene kg is modified to
kg,0, where 0 = f , b given by expressions (10) and (11). Using these equations, the transfer matrix of graphene from Eq. (12)
becomes

M0
2 (ky, ω, d2) =

(
cos

(
kz

g,0d2
)

i sin
(
kz

g,0d2
)
/α0

2

iα0
2 sin

(
kz

g,0d2
)

cos
(
kz

0d2
)

)
, (A1)

where α0
2 = kz

g,0/k0 is the counterpart of α2 = kz
g/k0 in the moving frame. Under this substitution, the total transfer matrix in our

model becomes

X 0(ky, ω, d ) = M1(ky, ω, d1)M0
2 (ky,0, ω, d2)M3(ky, ω, d3), (A2)

and the corresponding matrix elements are

X 0
11 =

{
cos

(
kz

1d1
)

cos
(
kz

g,0d2
) − α2 sin

(
kz

1d1
)

sin
(
kz

g,0d2
)

α1

}
cos

(
kz

3d3
)

− α3

{
cos

(
kz

g,0d2
)

sin
(
kz

1d1
)

α1
+ sin

(
kz

g,0d2
)

cos
(
kz

1d1
)

α2

}
sin

(
kz

3d3
)
, (A3)

X 0
12 =

{
sin

(
kz

1d1
)

cos
(
kz

g,0d2
)

α1
+ cos

(
kz

1d1
)

sin
(
kz

g,0d2
)

α2

}
i cos

(
kz

3d3
)

+
{

cos
(
kz

1d1
)

cos
(
kz

g,0d2
) − α2 sin

(
kz

1d1
)

sin
(
kz

g,0d2
)/

α1

α3

}
i sin

(
kz

3d3
)
, (A4)
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X 0
21 = {

α1 sin
(
kz

1d1
)

cos
(
kz

g,0d2
) + α2 cos

(
kz

1d1
)

sin
(
kz

g,0d2
)}

i cos
(
kz

3d3
)

+ α3

{
cos

(
kz

1d1
)

cos
(
kz

g,0d2
) − α1 sin

(
kz

1d1
)

sin
(
kz

g,0d2
)

α2

}
i sin

(
kz

3d3
)
, (A5)

X 0
22 =

{
cos

(
kz

1d1
)

cos
(
kz

g,0d2
) − α1 sin

(
kz

1d1
)

sin
(
kz

g,0d2
)

α2

}
cos

(
kz

3d3
)

−
{

α1 cos
(
kz

g,0d2
)

sin
(
kz

1d1
) + α2 cos

(
kz

1d1
)

sin
(
kz

g,0d2
)

α3

}
sin

(
kz

3d3
)
. (A6)

α j and kz
j in the above expressions are defined in the main text. Using these in Eq. (14), the modified expression for the reflection

coefficient of a light beam under the effect of Fizeau drag can be obtained. After the reflection coefficient is calculated, the
spatial and angular GH shifts of the reflected beam under the effect of Fizeau drag can be obtained using expressions (17) and
(18).
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