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Spin-resolved nonequilibrium thermopower of asymmetric nanojunctions
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The spin-resolved thermoelectric transport properties of correlated nanoscale junctions, consisting of a
quantum dot/molecule asymmetrically coupled to external ferromagnetic contacts, are studied theoretically in
the far-from-equilibrium regime. One of the leads is assumed to be strongly coupled to the quantum dot resulting
in the development of the Kondo effect. The spin-dependent current flowing through the system, as well as
the thermoelectric properties, are calculated by performing a perturbation expansion with respect to the weakly
coupled electrode, while the Kondo correlations are captured accurately by using the numerical renormalization
group method. In particular, we determine the differential and nonequilibrium Seebeck effects of the considered
system in different magnetic configurations and uncover the crucial role of spin-dependent tunneling on the
device performance. Moreover, by allowing for the spin accumulation in the leads, which gives rise to finite spin
bias, we shed light on the behavior of the nonequilibrium spin Seebeck effect. In particular, we predict new sign
changes of the spin-resolved Seebeck effect in the nonlinear response regime, which stem from the interplay of
exchange field and finite voltage and temperature gradients.
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I. INTRODUCTION

Quantum transport through nanojunctions containing
quantum dots or molecules has been under tremendous
research interest due to promising applications of such nanos-
tructures in nanoelectronics, spintronics, and spin caloritron-
ics [1–4]. Due to the strong electron-electron interactions and
a characteristic discrete density of states, these systems can
exhibit large thermoelectric figure-of-merit and are excellent
candidates for nanoscale heat engines [5–10]. As far as more
fundamental aspects are concerned, correlated nanoscale sys-
tems enable exploration of fascinating many-body phenomena
in a controllable fashion, which is hardly possible in bulk
materials. One such phenomena is the Kondo effect [11,12],
which can drastically change the system’s transport properties
at low temperatures by giving rise to a universal enhancement
of the conductance to its maximum [13,14]. In addition to
voltage-biased setups’ investigations, the emergence of Kondo
correlations can be also probed in the presence of a tempera-
ture gradient, where thermoelectric transport properties reveal
the important physics [6–8]. In fact, the thermopower of quan-
tum dot and molecular systems has been shown to contain the
signatures of the Kondo phenomenon. More specifically, the
sign changes in the temperature dependence of the Seebeck
coefficient with the onset of Kondo correlations have been
identified in both theoretical [15] and experimental [16–18]
studies.

Further interesting properties arise when the junction’s
electrodes are ferromagnetic and the tunneling processes
become spin-dependent [1,3,4,19]. In the presence of a
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finite temperature gradient, one can then observe an intri-
cate interplay of heat, charge, and spin, which gives rise to
the emergence of the spin Seebeck effect [20,21]. Besides
this fundamental phenomenon, which is of interest for spin
caloritronics [2], ferromagnetic nanojunctions allow for the
exploration of competition between the Kondo correlations
and the so-called ferromagnet-induced exchange field, which
acts as a local magnetic field that can suppress the Kondo
effect [22–25]. Such competition has already been revealed
in theoretical studies on thermoelectric properties of various
strongly correlated molecular and quantum dot systems with
ferromagnetic contacts [26–34]. Most of these investigations,
however, concerned the case of the linear response regime.
As far as fully out-of-equilibrium settings are concerned,
there have already been some efforts to understand nonlin-
ear thermopower of nonmagnetic junctions [35–40], while
the spin-dependent thermoelectric properties of ferromagnetic
nanojunctions remain to a large extent unexplored.

The primary goal of this work is therefore to analyze
the spin-resolved nonequilibrium thermopower of correlated
nanoscale junctions, in which the interplay between the
Kondo and exchange field is relevant. In particular, we study
thermoelectric characteristics of nanojunctions that exhibit
asymmetry in the couplings to ferromagnetic metallic leads.
Such asymmetric couplings can be encountered especially
in molecular junctions [41–46], and can be also present in
artificial heterostructures with quantum dots by appropri-
ately adjusting the gate voltages [47–49]. We thus consider
a quantum dot/molecule strongly coupled to one ferromag-
netic lead and weakly coupled to the other nonmagnetic
or ferromagnetic lead kept at different potentials and tem-
peratures, as displayed in Fig. 1. To determine the current
flowing through such system, we perform a perturbation
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FIG. 1. The schematic of the considered asymmetric tunnel junc-
tion with embedded quantum dot/molecule strongly coupled to a
cold ferromagnetic left lead and weakly coupled to a hot (a) non-
magnetic or (b) ferromagnetic right lead. The right lead is subject to
voltage and temperature gradients, while the left lead is grounded and
kept at zero temperature. The device in (b) can be in two magnetic
configurations: the parallel (P) and antiparallel (AP) one, as indicated
by the arrows.

expansion with respect to the weak coupling, while the prop-
erties of the strongly coupled subsystem, in which the Kondo
correlations may arise, are obtained with the aid of the nu-
merical renormalization group (NRG) method [50,51]. This
allows us to accurately explore the signatures of the interplay
between the spin-resolved transport and the Kondo correla-
tions in the Seebeck coefficient. Furthermore, we study how
different magnetic configurations of the system affect the dif-
ferential and nonequilibrium Seebeck effects of the system. In
particular, we show that the Seebeck coefficient exhibits new
sign changes as a function of the bias voltage, which can be
associated with the Kondo resonance split by exchange field.
These sign changes are found to extend to the temperature
gradients on the order of the Kondo temperature. Moreover,
we provide a detailed analysis of the nonequilibrium spin
Seebeck coefficient and demonstrate that it exhibits new sign
changes in the nonlinear response regime, which stem from
the interplay of spin-resolved tunneling and finite voltage and
temperature gradients.

The paper is organized as follows: The system Hamilto-
nian and the theoretical framework are described in Sec. II.
The numerical results and their discussion are presented in
Sec. III, where we first analyze the exchange field effects on
nonequilibrium thermopower, then, we consider the role of
different magnetic configurations and, finally, we present the
behavior of the nonlinear spin Seebeck effect. The summary
and concluding remarks can be found in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model and Hamiltonian of the system

We consider a nanoscale junction with an embedded quan-
tum dot/molecule, which is schematically shown in Fig. 1.
The quantum dot is assumed to be strongly coupled to the
left ferromagnetic lead and weakly coupled to the right lead,
which can be either nonmagnetic [Fig. 1(a)] or ferromagnetic
[Fig. 1(b)]. In the case of two ferromagnetic electrodes, we
will distinguish two magnetic configurations: the parallel (P)
one when the leads magnetic moments point in the same
direction and the antiparallel (AP) one, when the orientation

of magnetic moments is opposite, see Fig. 1(b). It is assumed
that there are finite temperature and voltage gradients applied
to the system, with TL = 0 and μL = 0, whereas TR = �T
and μR = −eV , as shown in Fig. 1, where Tα and μα are the
temperature (kB ≡ 1) and the chemical potential of lead α.

With the assumption of weak coupling between the quan-
tum dot and right contact the system Hamiltonian can be
simply written as

H = HL + HR + HT . (1)

HL describes the strongly coupled left subsystem, consisting
of the quantum dot and the left lead, and it is given by

HL = εd

∑
σ

nσ + Un↑n↓ +
∑
kσ

εLkσ c†
Lkσ

cLkσ

+
∑
kσ

tLkσ (d†
σ cLkσ + c†

Lkσ
dσ ), (2)

where nσ = d†
σ dσ , with d†

σ (dσ ) being the creation (annihi-
lation) operator on the quantum dot for an electron of spin
σ , cαkσ (c†

αkσ
) annihilates (creates) an electron in the lead

α with momentum k, spin σ and energy εαkσ . The quantum
dot is modeled by a single orbital of energy εd and Coulomb
correlations U . The hopping matrix elements between the
quantum dot and lead α are denoted by tαkσ and give rise to
the level broadening �ασ = πρασ |tαkσ |2, which is assumed to
be momentum independent, where ρασ is the density of states
of lead α for spin σ .

The second part of the Hamiltonian describes the right lead
and is given by

HR =
∑
kσ

(εRkσ − μR)c†
Rkσ

cRkσ , (3)

while the last term of H accounts for the hopping between the
left and right subsystems

HT =
∑
kσ

tRkσ (d†
σ cRkσ + c†

Rkσ
dσ ). (4)

In the following, we use the lowest-order perturbation theory
in HT to study the spin-dependent electric and thermoelectric
properties of the system.

B. Method and nonlinear transport coefficients

The electric current flowing through the system in the spin
channel σ in the lowest-order perturbation with respect to the
coupling to the right lead can be expressed as [52,53]

Iσ (V,�T ) = −e�Rσ

h̄

∫ ∞

−∞
dω ALσ (ω)

× [ fL(ω) − fR(ω − eV )], (5)

where fα (ω) = [1 + exp(ω/Tα )]−1 is the Fermi-Dirac dis-
tribution function, while ALσ (ω) denotes the spin-resolved
spectral function of the left subsystem. The total current flow-
ing through the system under potential bias V and temperature
gradient �T is thus I (V,�T ) = ∑

σ Iσ (V,�T ). Since we
treat the coupling to the right lead as a perturbation, we ex-
pect the next-order contributions, e.g., Iσ ∼ �2

Rσ , to be much
smaller, and assume that these do not affect the main behavior
of the system.
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The spectral function of the left subsystem ALσ (ω) is
calculated by means of the NRG method [50,51,54], which
allows us to include all the correlation effects between the
quantum dot strongly coupled to the left contact in a fully
nonperturbative manner. The spectral function ALσ (ω) is de-
termined as the imaginary part of the Fourier transform of
the retarded Green’s function of the left subsystem Hamilto-
nian, HL, Gσ (t ) = −i
(t )〈{dσ (t ), d†

σ (0)}〉. For the purpose of
NRG calculations, the conduction band of the left lead can
be discretized logarithmically with discretization parameter �

and mapped onto a tight binding chain (Wilson chain) with
couplings that decay as �−n/2, where n is the site number in
the chain. This mapping transforms HL into a tight-binding
Hamiltonian with each quantum dot spin σ coupled to the
first site of the chain with an effective coupling

√
2�Lσ /π .

The new Hamiltonian is then solved iteratively, while keeping
a relevant number of the lowest energy eigenstates NK . In
our calculations, we use � = 2, the iteration number N = 60
and the kept states NK at least 210. To obtain the spectral
function, the data is collected in logarithmic bins that are then
appropriately broadened to obtain a smooth function [55]. We
note that in general the spectral function also depends on tem-
perature, however, to shed light on the Kondo correlations in
thermoelectric transport behavior, we assume that the left lead
temperature is well below the Kondo temperature, TK . Hence,
the spectral function for TL 
 TK is essentially equivalent to
the zero-temperature spectral function.

For the further analysis, it is convenient to express the cou-
pling constants �ασ by using the spin polarization of the lead
α, pα , as �Lσ = (1 + σ pL )�L and �Rσ = (1 + σ pR)�R for the
parallel magnetic configuration, with �Rσ = (1 − σ pR)�R in
the case of the antiparallel configuration of the system. Here,
�α = (�α↑ + �α↓)/2. Furthermore, in the case when the right
lead is nonmagnetic, pR = 0, while for both ferromagnetic
leads we for simplicity assume pL = pR ≡ p.

As far as thermoelectric coefficients are concerned, the
differential Seebeck coefficient can be expressed as [56]

Sd = −
(

dV

d�T

)
I

= −
(

∂I

∂�T

)
V

/(
∂I

∂V

)
�T

. (6)

Furthermore, the extension of the conventional Seebeck coef-
ficient to the nonlinear response regime is referred to as the
nonequilibrium Seebeck coefficient Sn, and it can be defined
as [39,47,49,57–59]

Sn = −
(

�V

�T

)
I (V +�V,�T )=I (V,0)

. (7)

The above definitions will be used to describe thermo-
electric transport in different configurations of the system,
respectively.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present the main numerical results and
their discussion. In our considerations we assume that the
left lead is always ferromagnetic, while the right electrode
can be either nonmagnetic or ferromagnetic, cf. Fig. 1. For
the studied setup, the strong coupling to the left contact may
give rise to the Kondo effect [12,13]. However, it is crucial to
realize that the presence of the spin-dependent hybridization

results in a local exchange field on the quantum dot, which can
split the dot orbital level when detuned from the particle-hole
symmetry point, and thus suppress the Kondo resonance. The
magnitude of such exchange field can be estimated from the
perturbation theory, which at zero temperature gives [60],

�εexch = 2pL�L

π
ln

∣∣∣∣ εd

εd + U

∣∣∣∣. (8)

The presence of the exchange field and its detrimental effect
on the Kondo phenomenon has been confirmed by various
experiments on electronic transport measurements in quantum
dot and molecular systems [23,24,61,62].

We start our considerations with the analysis of electric
transport properties, revealing the effects of the exchange
field. Further on, we study the nonlinear thermoelectric re-
sponse, first for the case of nonmagnetic right lead and then
for the case of two ferromagnetic leads. In numerical calcula-
tions, we use the following parameters: U = 0.2, �L = 0.02,
�R = 0.002, in units of band halfwidth, and p = 0.4 for the
ferromagnetic leads. For the assumed parameters, the Kondo
temperature of the left subsystem for εd = −U/2 is equal to
[60,63], TK ≈ 0.035�L. We notice that one could, in principle,
expect that the coupling to the right contact should also give
rise to the Kondo correlations. However, due to exponential
dependence of TK on the ratio of Coulomb correlations and
coupling strength, the estimated right-lead Kondo temperature
is completely negligible. Thus, it is fully justifiable to assume
that the Kondo correlations result only from the coupling to
the left lead.

To begin with, it is instructive to analyze the properties
of the left subsystem itself as described by its local den-
sity of states. The spectral function for each individual spin
channel is shown in Fig. 2. First of all, one can see that
for εd = −U/2, there is a pronounced Kondo peak at the
Fermi level for each spin component. However, when detuned
from the particle-hole symmetry, a finite exchange-induced
splitting emerges, cf. Eq. (8), which suppresses the Kondo
effect when |�εexch| � TK . Because of that, each spin com-
ponent of the spectral function displays a slightly detuned
from Fermi energy side peak, constituting the split Kondo
resonance. In addition, the Hubbard resonances at ω ≈ εd and
ω ≈ εd + U become affected as well: although their position
is only slightly modified, their magnitude gets strongly spin-
dependent.

The splitting of the Kondo resonance is directly visible in
the differential conductance of the system, which is displayed
in Fig. 3. This figure presents the bias voltage dependence of
the differential conductance in different magnetic configura-
tions for various temperature gradients, as indicated. More
specifically, G corresponds to the case when the right lead
is nonmagnetic [cf. Fig. 1(a)], while GP (GAP) presents the
case of both ferromagnetic leads in the parallel (antiparallel)
alignment [cf. Figs. 1(b)–1(c)]. When the orbital level is de-
tuned out of the particle-hole symmetry point, the splitting of
the Kondo resonance may emerge depending on the magnetic
configuration of the system. The behavior of the differential
conductance at low bias voltage is displayed in the insets of
Fig. 3.

Let us begin the discussion with the case of nonmagnetic
right lead, presented in Fig. 3(a). First of all, one can note a
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FIG. 2. The energy dependence of the spectral functions for the
individual spin channels, (a) AL↑(ω) and (b) AL↓(ω) calculated for the
strongly coupled left subsystem with orbital energies as indicated.
The zoomed Kondo and split-Kondo peaks are shown in the insets.
The other parameters are: U = 0.2, �L = 0.02, in units of band half
width, and p = 0.4.

large asymmetry of the differential conductance with respect
to the bias reversal. Moreover, for small temperature gradi-
ents, �T � TK , the split zero-bias anomaly due to the Kondo
effect is visible. To qualitatively understand this behavior, it is
helpful to inspect the behavior of the spectral function around
the Fermi energy, see the insets of Fig. 2. One can note that
the split Kondo peak in AL↑(ω < 0) has a smaller weight
compared to the split Kondo peak in AL↓(ω > 0). Because, for
low temperature gradients, for eV > 0 (eV < 0), we probe the
density of states of the left subsystem for negative (positive)
energies, the above-mentioned asymmetry in ALσ (ω) gives
rise to highly asymmetric behavior of the differential con-
ductance, see Fig. 3(a), with the peak in the negative voltage
regime more pronounced than the other. Interestingly, when
the tunneling to the right lead becomes spin dependent, in the
case of parallel configuration one observes a rather symmetric
behavior of GP, with nicely visible split zero-bias anomaly,
see Fig. 3(b). This is due to the fact that the increased tun-
neling rate of spin-down electrons due to larger density of
states becomes now reduced since the spin-down electrons
are the minority ones in the right lead. On the other hand,
the tunneling of spin-up electrons to the right is enlarged. As
a consequence, the unequal contributions of the currents in
each spin channel become now equalized and the differential
conductance in the parallel configuration exhibits split-Kondo
resonance with the side peaks of comparable height. On the
other hand, when the magnetization of the right lead is flipped,
the asymmetric behavior visible in Fig. 3(a) is even further

x

x

FIG. 3. The differential conductance for the quantum dot
strongly coupled to ferromagnetic left lead and weakly coupled to
(a) nonmagnetic right lead, ferromagnetic right lead in (b) the par-
allel, and (c) antiparallel magnetic configuration. The insets show
the closeup of the differential conductance behavior for respec-
tive configurations. The parameters are the same as in Fig. 2 with
εd = −U/3, �R = 0.002, and different temperature gradients, as
indicated.

magnified, see Fig. 3(c). This can be understood by invoking
similar arguments as above, keeping in mind that now the
rate of spin-up tunneling to the right lead is smaller than that
for the spin-down electrons. With increase in the temperature
gradient, the Kondo-related behavior gets smeared and finally
disappears when �T � TK, |�εexch|.

A. Effects of exchange field on nonequilibrium thermopower

In this section, we focus on the case where the right lead
is nonmagnetic, see Fig. 1(a). In such a setup it will be
possible to observe clear signatures of ferromagnet-induced
exchange field on the thermoelectric properties of the system
subject to temperature and voltage gradients. We first study
the case of the linear response in potential bias with nonlinear
temperature gradient in Sec. III A 1, while in Sec. III A 2
the discussion is extended to the case of nonlinear response
regime in both �T and V .

1. Zero-bias thermoelectrics with finite temperature gradient

Figure 4 displays the zero-bias differential conductance
G, the differential Seebeck coefficient Sd and the nonlinear
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FIG. 4. (a) The differential conductance G, (b) the differential
Seebeck coefficient Sd , and (c) the nonequilibrium Seebeck coeffi-
cient Sn of the quantum dot strongly coupled to left ferromagnetic
lead and weakly attached to the right nonmagnetic lead plotted as a
function of the orbital energy εd and the temperature gradient �T .
The dashed lines show the Kondo temperature for the corresponding
parameters. The system is assumed to be in the linear response
regime with respect to the bias voltage. The other parameters are the
same as in Fig. 3.

Seebeck coefficient Sn calculated as a function of orbital level
εd and finite temperature gradient �T . For low temperature
gradients, the conductance shows considerable increase near
three values of εd . The peaks for εd ≈ 0 and εd ≈ −U cor-
respond to the Hubbard resonances, whereas the maximum
at εd = −U/2 is due to the Kondo effect. In fact, in the
local moment regime, −1 � εd/U � 0, the Kondo resonance
is suppressed by the exchange field once |�εexch| � TK , i.e.,
for values of εd away from the particle-hole symmetry point,
cf. Eq. (8). With the increase in the temperature gradient, the
Kondo resonance dies out when �T > TK , see the dashed line

in the figure, and the Hubbard peaks get suppressed when
�T > �L, see Fig. 4(a).

In the case of differential and nonlinear Seebeck coeffi-
cients presented in Figs. 4(b) and 4(c), respectively, we can
see an overall antisymmetric behavior across the particle-hole
symmetry point εd = −U/2. The sign of the Seebeck coef-
ficient here corresponds to the dominant charge carriers in
transport, holes for εd < −U/2 and particles for εd > −U/2.
The differential Seebeck coefficient shows two sign changes
in the local moment regime as a function of the temperature
gradient. Typically, in the linear response regime, the sign
change at the lower temperature gradient corresponds to the
Kondo correlations and is seen around the Kondo temperature
TK [15]. However, in our system the exchange field suppresses
and splits the Kondo resonance, such that the signatures of
the Kondo correlations are seen at �T ≈ �L, which is much
larger than �T ≈ TK . In the case of nonlinear Seebeck coeffi-
cient, we do not find the corresponding sign changes because
Sn can deviate considerably from the linear response Seebeck
coefficient at large �T [33]. Additionally, one can see that
both Seebeck coefficients decay with decreasing �T . This
behavior can be captured using the Sommerfeld expansion for
the linear response Seebeck coefficient

S(T ) ∝ T

A(ω = 0, T )

∂A

∂ω

∣∣∣∣
ω=0

. (9)

We also note that both Seebeck coefficients can possess finite
values at even lower �T inside the local moment regime than
outside of it, due to the additional contribution associated with
the Kondo effect.

2. The case of nonlinear potential bias and temperature gradients

Let us now inspect the behavior of the nonequilibrium
thermoelectric coefficients as a function of both potential bias
and temperature gradient shown in Fig. 5, focusing on V and
�T range where Kondo correlations are important. The first
row of the figure corresponds to the case of particle-hole
symmetry, εd = −U/2, while the second row presents the
results for εd = −U/3. Consider the first case. Figure 5(a)
depicts the bias and temperature gradient dependence of the
differential conductance G. There exist a prominent peak at
low �T centered at V = 0, this is the zero-bias conductance
peak characteristic of the Kondo effect. As the temperature
gradient increases, the Kondo peak dies out and becomes
smeared when �T � TK . It is important to note that the
increase in the temperature of the right lead does not sup-
press the Kondo resonance in the strongly correlated left
subsystem. Finite TR rather obscures the characteristics of
the Kondo effect by smearing the transport window defined
by [ fL(ω) − fR(ω − eV )], cf. Eq. (5). The differential and
nonlinear Seebeck coefficients, shown in Figs. 5(b) and 5(c),
exhibit a sign change with respect to the bias voltage reversal.
Moreover, while Sd exhibits considerable values around the
Kondo peak and becomes suppressed as �T grows, Sn gets
enhanced when �T � (�L/U )|eV |.

When the orbital level is detuned out of the particle-hole
symmetry point, one can observe an interesting interplay be-
tween the exchange field and Kondo effect, and its signatures
present in the nonlinear thermoelectric coefficients. First,
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FIG. 5. (a), (d) The differential conductance G, (b), (e) the differential Seebeck coefficient Sd and (c), (f) the nonequilibrium Seebeck
coefficient Sn as a function of the potential bias V and the temperature gradient �T . The first row corresponds to the particle-hole symmetry
point εd = −U/2, while the second row shows the case of εd = −U/3. The dashed horizontal lines indicate the Kondo temperature TK for the
corresponding εd . The other parameters are the same as in Fig. 3.

Fig. 5(d) shows the splitting of the Kondo peak due to the ex-
change field present in the strongly correlated subsystem. As
observed in the discussions of Fig. 3(a), the split Kondo peaks
are not symmetric, with the more prominent one in the eV < 0
regime and both dying off at large �T . Interestingly, the
differential and nonlinear Seebeck coefficients also capture
the signatures of the exchange field shown by the split Kondo
peak. In fact, there exist additional sign changes in the non-
linear response regime with respect to V . More specifically, at
low �T , there is a sign change at low bias voltages, followed
by another one, roughly located around the split-Kondo peak,
see Figs. 5(e) and 5(f). These sign changes correspond to the
additional energy scale in the system, namely the exchange
field �εexch. They occur at slightly different absolute values
of eV , which is due to the fact that the Kondo resonance
exhibits an asymmetric splitting, cf. Fig. 2. With increasing
the temperature gradient, we observe that the right split Kondo
peak in the conductance dies out first, accordingly the regime
of positive values of the Seebeck coefficients corresponding
to the right peak disappears around �T ≈ 0.03�L. Moreover,
we also note that the overall sign change of the thermopower
as a function of the bias voltage is now shifted to negative val-
ues of eV , as compared to the case of particle-hole symmetry,
see Fig. 5.

B. Effects of different magnetic configurations
on nonequilibrium thermopower

In this section we study the case where the quantum dot
is coupled to both ferromagnetic leads with spin polarization
p = 0.4. The magnetic moments of the external leads are
assumed to be aligned either in parallel or antiparallel. The

focus is on the effects of different magnetic configurations on
nonequilibrium thermoelectric transport properties.

1. The case of zero bias with nonlinear temperature gradient

The zero-bias thermoelectric properties of the system with
two ferromagnetic leads are shown in Fig. 6. The differential
conductance for the parallel GP and antiparallel GAP con-
figuration of the lead magnetizations is shown in Figs. 6(a)
and 6(b). The qualitative behavior of both conductances is
similar to the case of nonmagnetic lead on the right, where
G shows a region of high conductance around εd = −U/2
due to the Kondo effect. Similarly to the previous case, the
exchange field suppresses the linear response conductance for
values of εd away from the particle-point symmetry point.
Around εd ≈ 0,−U , there is am increase in the conductance
corresponding to the contribution from the Hubbard peaks.
It is interesting to note that the conductance in the case of
parallel configuration is smaller than that in the antiparallel
configuration around the Kondo resonance, cf. the discussion
of Fig. 3, while this situation is reversed for the resonances at
εd ≈ 0,−U .

The Seebeck coefficients SP
d and SP

n shown in Figs. 6(c)
and 6(e) for the parallel configuration display very interest-
ing features corresponding to various energy scales. These
coefficients show antisymmetric behavior across εd = −U/2
and sign changes as a function of temperature gradient in the
local moment regime −1 � εd/U � 0. Let us first consider
the linear response in �T for SP

d . In this regime one can
relate the Seebeck coefficient to the conductance through the
Mott’s formula. Thus, the changes of GP as a function of
orbital level are reflected in the corresponding dependence of
the thermopower, which shows sign changes as εd is detuned
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FIG. 6. (a), (b) The differential conductance G, (c), (d) the differential Seebeck coefficient Sd and (e), (f) the nonequilibrium Seebeck
coefficient Sn in (first column) the parallel (P) and (second column) antiparallel (AP) configuration calculated as a function of �T and εd

assuming linear response in voltage. The spin polarizations of both leads are equal to p = 0.4 and the other parameters are the same as in
Fig. 3.

from the particle-hole symmetry point. The first sign change
occurs when detuning is large enough to induce the exchange
field that suppresses the Kondo effect. Further sign change
occurs at the onset of conductance increase (as function of
εd ) due to the Hubbard resonance. This behavior extends to
higher �T as long as the thermal gradient is smaller than
the Kondo energy scale (or �εexch). Otherwise, another sign
change occurs as a function of �T , see Fig. 6(c). Very similar
dependence can be observed in Fig. 6(e), which shows the
nonequilibrium Seebeck coefficient SP

n . The main difference
can be seen for large �T , where SP

n takes considerable values
while SP

d decreases, as explained earlier.
The situation is completely different in the case of the an-

tiparallel configuration, where one does not see any additional
sign changes, neither in SAP

d nor in SAP
n , other than the ones

present across εd = −U/2, see Figs. 6(d) and 6(f). This can
be understood by realizing that the interplay of exchange field
with spin-dependent tunneling to the right contact hinders the
splitting of the Kondo resonance as a function of the bias
voltage. Consequently, one only observes a single resonance
displaced from V = 0, cf. Fig. 3(c), which results in much

more regular dependence of the differential and nonequilib-
rium Seebeck coefficients.

2. The case of nonlinear potential bias and temperature gradient

The nonequilibrium thermoelectric properties of the quan-
tum dot coupled to both ferromagnetic leads are shown in
Fig. 7. The first row corresponds to the case of parallel
configuration of the leads’ magnetizations. The differential
conductance depicted in Fig. 7(a) exhibits the split Kondo
anomaly, with side peaks of similar magnitude located at
roughly the same distance from the zero bias. Both peaks die
off with the temperature gradient around �T ≈ 0.05�L, i.e.
when thermal gradient exceeds the Kondo temperature.

At low �T the differential and nonequilibrium Seebeck
coefficients exhibit similar bias voltage dependence to the
case presented in Figs. 5(e) and 5(f), see Figs. 7(b) and 7(c).
Now, however, the region of negative Seebeck coefficient is
smaller. This can be attributed to the fact that the split Kondo
resonance is more symmetric across the bias reversal in the
case of parallel magnetic configuration, cf. Fig. 3(b). Unlike
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FIG. 7. (a), (d) The differential conductance G, (b), (e) the differential Seebeck coefficient Sd and (c), (f) the nonequilibrium Seebeck
coefficient Sn as a function of the bias voltage and temperature gradient in the case of εd = −U/3. The first (second) row corresponds to the
parallel (antiparallel) magnetic configuration of the system. The other parameters are the same as in Fig. 6.

in the case of nonmagnetic right lead, the sign changes at finite
bias corresponding to the split Kondo peak persist as long
as �T � TK and disappear around comparable temperature
gradient.

The case of antiparallel magnetic configuration of the sys-
tem is presented in the second row of Fig. 7. Consistent
with the discussion of Fig. 3(c), the differential conductance
exhibits two conductance peaks but with a large difference in
their magnitudes. The peak in the negative bias regime is far
more pronounced than the miniscule peak one can observe
in the positive regime. Just as in the case of other config-
urations, the peaks die out with increasing the temperature
gradient but the negative bias peak survives till larger temper-
ature gradients �T ≈ 0.2�L, whereas the positive bias peak
vanishes at temperature gradients as low as �T ≈ 0.02�L.

The Seebeck coefficients SAP
d and SAP

n , shown in Figs. 7(e)
and 7(f), respectively, demonstrate a similar behavior to the
other configurations only at very low temperature gradients.
However, now, instead of sign changes, one only observes
suppression of the Seebeck coefficients at the corresponding
values of the bias voltage associated with the exchange field.
These suppressions extend to temperature gradients of the
order of �T ≈ 0.03�L, see Figs. 7(e) and 7(f).

C. Finite spin accumulation and the associated nonequilibrium
spin Seebeck effect

In this section we consider the case when ferromagnetic
contacts are characterized by slow spin relaxation, which can
result in a finite spin accumulation [64,65]. Such a spin ac-
cumulation will induce a spin bias across the quantum dot.
Here, we assume that the spin accumulation and the resulting
spin-dependent chemical potential occurs only in the right

lead. Thus, we define the induced spin bias as, eVs/2 = μR↑ =
−μR↓ (keeping μL = 0). The nonequilibrium spin bias across
the quantum dot enables the spin chemical potentials to be
tuned separately and thus the thermal bias induced transport
can be different in the separate spin channels. The system
can then exhibit interesting spin caloritronic properties, such
as the spin Seebeck effect. The spin Seebeck coefficient Ss

quantifies the magnitude and the direction of the spin current
induced in the presence of a thermal bias [20]. Analogous to
the differential Seebeck effect Sd , the differential spin Seebeck
coefficient Ss in the nonlinear response regime can be defined
as

Ss = −
(

dVs

d�T

)
Is

= −
(

∂Is

∂�T

)
Vs

/(
∂Is

∂Vs

)
�T

, (10)

where Is = I↑(μR↑,�T ) − I↓(μR↓,�T ) is the net spin cur-
rent flowing through the system. This quantity acts as a
response over the spin current as a function of both the spin
bias Vs and the temperature gradient �T . In addition to the
net spin current, there can also exist a charge current I =∑

σ Iσ (μRσ ,�T ) flowing across the system originating solely
from the thermal and the spin biases. We define the Seebeck
coefficient that estimates the charge current in the presence
of the spin bias as the charge Seebeck coefficient S [64]. The
charge Seebeck coefficient S can thus be defined based on the
response of charge current I as

S = −
(

dVs

d�T

)
I

= −
(

∂I

∂�T

)
Vs

/(
∂I

∂Vs

)
�T

. (11)

We first discuss the case of linear response in the spin
bias Vs with large and finite temperature gradient �T , fo-
cusing on the differential spin Seebeck coefficient Ss and the
charge Seebeck coefficient S. It is pertinent to note that the
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FIG. 8. The charge Seebeck (first column) and the spin Seebeck (second column) coefficients under nonlinear temperature gradient �T
and linear response spin bias Vs as a function of the orbital level energy εd and �T . The first row corresponds to the case of nonmagnetic
right lead, while the second (third) row presents the case of ferromagnetic right lead in the parallel (antiparallel) magnetic configuration of the
system. The other parameters are the same as in Fig. 6.

nonequilibrium equivalent of the spin Seebeck coefficient
Ss,n tends to remain undefined in our considerations, since
the magnitude of the spin bias fails to compensate for the
thermally induced spin current in (parts of) the regimes con-
sidered. Hence in this paper, we limit our discussions to the
differential spin Seebeck coefficient Ss ≡ Ss,d in the case of
different configurations. We further investigate the depen-
dence of Ss and S on large and finite spin bias under applied
temperature gradient.

1. The case of zero spin bias with nonlinear temperature gradient

Figure 8 shows the behavior of the charge Seebeck co-
efficients S, SP, SAP and the spin Seebeck coefficients Ss,
SP

s , SAP
s for the case of nonmagnetic right lead, as well as

the case of ferromagnetic lead in the parallel and antiparallel
magnetic configurations, respectively. The first row of Fig. 8
shows the case of right lead with spin polarization p = 0, but
with finite spin accumulation occurring from the spin-resolved
transport through the quantum dot. Figure 8(a) displays the
charge Seebeck S coefficient, which behaves similarly to the

differential Seebeck effect Sd presented in Fig. 4 except some
points of divergences. At temperature gradients smaller than
�L, there exist two additional sign changes, both in the local
moment regime symmetric across the particle-hole symmetry
point. The points of sign change spread out of the local mo-
ment regime for thermal biases �T � 3�L. The sign changes
of the Seebeck effect are also accompanied by large diver-
gences in the magnitude of S. The additional sign changes
and divergences originate from the behavior of the denom-
inator in the definition of S, cf. Eq. (11). The denominator
in Eq. (11), which can be represented as, Gcs = (∂I/∂Vs)�T ,
is the differential mixed conductance [64] that estimates the
charge current in the presence of a spin bias, which can be
either negative or positive, resulting in its zero crossing points
causing the divergence. From a physical perspective, tuning
the temperature gradient in these specific regimes will result
in extraordinary changes in the induced charge current. Note
that the colormaps in Figs. 8(a) and 8(e) have been truncated
for readability.

The charge Seebeck coefficient for the parallel configu-
ration [see Fig. 8(c)] nicely recreates the behavior seen in
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FIG. 9. The charge Seebeck (first column) and the spin Seebeck (second column) coefficients for the orbital level εd = −U/3 as a function
of the applied spin bias Vs and �T . The first row corresponds to the case of nonmagnetic right lead, while the second (third) row presents the
case of ferromagnetic right lead in the parallel (antiparallel) magnetic configuration of the system. The other parameters are the same as in
Fig. 6.

Fig. 6(c). In the case of the parallel configuration, the relative
scaling of the couplings in each spin channel on the right
and left is the same, resulting in a non-negative Gcs and,
thus, no divergences. Similarly, the charge Seebeck effect
in the antiparallel configuration shown in Fig. 8(e) presents
the behavior resembling the Seebeck coefficient discussed in
Fig. 6(d), but overlaid by the divergences associated with Gcs.
In this case, the additional sign changes start from inside the
local moment regime at very low temperature gradients and
move out of the local moment regime monotonously around
�T ≈ 10−1�L.

The differential spin Seebeck coefficient Ss shown in
Figs. 8(b), 8(d), and 8(f) for different lead configurations
behave antisymmetrically across the particle-hole symmetry
point (εd = −U/2). As can be seen, there exists a pronounced
spin Seebeck coefficient in the local moment regime for all
the configurations that dies off at �T � 10�L. Such regions
of considerable spin Seebeck effect have been observed in
the linear response studies of symmetrically coupled quantum
dots as a function of the global temperature T [27,33]. In
addition to the sign change at the particle-hole symmetry

point, at very low �T , Ss changes sign when moving out of
the local moment regime (i.e., at εd ≈ −U, 0). In the case
of the nonmagnetic right lead, the region of sign change
outside the local moment regime extends up to �T ≈ �L,
whereas for the antiparallel configuration the sign change
extends only up to �T ≈ 0.2�L. On the other hand, the sign
change of the spin Seebeck coefficient in the local moment
regime survives at thermal gradients even greater than �T ≈
102�L for the parallel configuration.

2. The case of nonlinear spin bias and temperature gradient

The dependence of the nonlinear charge and spin Seebeck
effects is shown in Fig. 9 for the case of orbital energy
level εd = −U/3. The first column in Fig. 9 focuses on the
charge Seebeck effect for various magnetic configurations
of the system. For the case of nonmagnetic right lead, the
charge Seebeck coefficient S changes sign multiple times as a
function of eVs at temperature gradients below �T ≈ 0.5�L,
see Fig. 9(a). Two among these sign changes (around eVs ≈
0.001U and eVs ≈ 0.15U ) correspond to the zeros in the
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mixed conductance Gcs, which can be identified from the
divergence in S around the sign changes. The other two sign
changes (around eVs ≈ −0.05U and eVs ≈ 0.03U ) originate
from the zeros of the thermal response −(∂I/∂�T )Vs , i.e., the
numerator in the definition of the charge Seebeck coefficient,
cf. Eq. (10). As the temperature gradient increases, the regions
of sign change introduced by Gcs and the thermal response be-
come larger in the spin bias regime until around �T ≈ �L/3
for the sign change associated with the mixed conductance,
and until �T ≈ �L/2 for the sign change associated with the
thermal response. With further increase in the temperature
gradient, the regions of sign change disappear. This happens
around �T � �L/2 for the sign change caused by the mixed
conductance, and for �T � 0.8�L in the case of the sign
change due to the thermal response. The remaining two sign
changes at eVs ≈ −U/2 and eVs ≈ U/2 can be associated with
the Hubbard resonances. The region of these sign changes
disappears above temperature gradient �T � 4�L. On the
other hand, at eVs ≈ 0 and very large temperature gradients
(around �T � 10�L), there exists another sign change that
originates from the zeros of Gcs. For positive eVs, this sign
change moves to lower �T , while for negative eVs, the sign
change moves to higher �T , see Fig. 9(a).

Figure 9(c) shows the charge Seebeck coefficient SP corre-
sponding to the system in the parallel magnetic configuration
of ferromagnetic leads. We observe that there are two sign
changes as a function of the spin bias eVs. At low tem-
peratures, �T � 0.01�L, the region of sign change appears
between eVs ≈ 0.005U and eVs ≈ 0.5U . One can identify
that these sign changes originate solely from the thermal
response of the current under spin bias. As can be seen in
Fig. 9(c), the position of the sign changes in eVs hardly de-
pends on temperature gradient as long as it is lower than
�T ≈ 0.5�L. On the other hand, once �T � 0.5�L, the nega-
tive region of SP around eVs ≈ 0.005U disappears. However,
unlike in the previous case of S, the sign change around
eVs ≈ U/2, which is due to the contribution from the Hubbard
resonance, survives for large temperature gradients �T . This
sign change moves closer to Vs ≈ 0 when the temperature
gradient �T is increased �T � �L, see Fig. 9(c).

The charge Seebeck coefficient for the antiparallel con-
figuration SAP does not exhibit any sign change in the local
moment regime apart from the particle-hole symmetry point
εd = −U/2, as shown in Fig. 8(e). However, as a function of
the spin bias eVs, two new regions of sign change form in the
dependence of SAP. More specifically, one sign change occurs
in the negative spin bias regime around eVs ≈ −0.15U , and
the other one in the positive regime for eVs ≈ 0.03U . As can
be seen in the figure, the negative values of the charge Seebeck
effect extend until |eVs| � U/2. Furthermore, with increasing
�T , the corresponding sign changes move further apart into
the negative and positive spin bias regimes, respectively. On
the other hand, for �T � �L, SAP becomes positive for all
values of eVs considered, see Fig. 8(e).

It is important to emphasize that the sign changes observed
in the charge Seebeck coefficient as a function of spin bias
eVs do not correspond to the sign changes seen in the Seebeck
coefficient as a function of eV , as discussed and presented in
Figs. 5 and 7. This is associated with the fact that the gener-
ated current as a function of voltage V scans through each of

the split Kondo resonances shown in Fig. 2 separately, result-
ing in the split peaks seen in the differential conductance and
the corresponding sign changes in the Seebeck coefficients.
However, as a function of the spin bias eVs, the signatures
from the split Kondo resonance cannot be identified directly
in the generated current I . This is because for finite spin
bias, μR↑ − μR↓ = eVs, both split Kondo peaks contribute
simultaneously, and the total current I is rescaled by relative
couplings of the separate spin channels �Rσ . Hence, the sign
changes in the charge Seebeck coefficient are solely resulting
from the sign changes in the thermal response and the mixed
charge conductance.

The spin Seebeck coefficient in the nonlinear spin bias
regime is presented in the second column of Fig. 9. Fig-
ures 9(b), 9(d), and 9(f) show the case of the nonmagnetic
right lead as well as ferromagnetic right lead in the parallel
and antiparallel magnetic configuration of the nanojunction,
respectively. As can be seen, the behavior of the spin Seebeck
coefficient is qualitatively comparable for almost all config-
urations. From the discussion of the linear Vs case shown in
Fig. 8, we observe that the differential spin Seebeck coeffi-
cient for eVs ≈ 0 does not change sign as a function of thermal
gradient for all three configurations. Thus, for negative eVs, Ss

is positive irrespective of magnetic arrangement, see the right
column of Fig. 9. On the other hand, for positive spin bias
eVs, one observes a sign change around eVs ≈ 0.02 U , which
moves to higher eVs with increasing �T above �T ≈ �L.
Moreover, with further increasing eVs, there is a region of sup-
pressed Ss around eVs ≈ 0.2U , which extends to eVs ≈ U/2.
Interestingly, one can note that the spin Seebeck effect in this
region changes sign in the case of parallel configuration, thus
introducing another sign change as a function of spin bias, see
Fig. 9(d). This region disappears once �T � 0.2�L.

IV. CONCLUDING REMARKS

In this paper we have analyzed the nonequilibrium
spin-resolved thermoelectric properties of a ferromagnetic
nanojunction consisting of a quantum dot/molecule asym-
metrically coupled to external ferromagnetic leads. The
considerations have been carried out by performing perturba-
tive expansion with respect to the weakly coupled electrode,
while the properties of quantum dot strongly coupled to fer-
romagnetic lead were extracted by numerical renormalization
group method. The emphasis has been put on the signatures
of the interplay between spin-resolved tunneling and strong
electron correlations in the nonequilibrium spin-dependent
thermopower of the system. In particular, we have deter-
mined the bias voltage and temperature gradient dependence
of the differential and nonequilibrium Seebeck coefficients
in different magnetic configurations of the system. We have
observed new signatures in the Seebeck effect corresponding
to the Kondo resonance and the regions where the ferromag-
netic contact induced exchange field suppresses the Kondo
effect, both in the potential bias and the temperature gradient.
More specifically, we have demonstrated that the Seebeck
coefficient exhibits new sign changes as a function of bias
voltage, which are associated with the split Kondo resonance.
These sign changes, depending on the transport region, ex-
tend to the temperature gradients on the order of the Kondo
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temperature or of the temperature associated with the energy
scale of the exchange field. Furthermore, we have investigated
the influence of the spin accumulation in the leads, that gives
rise to finite spin bias, on the Seebeck and spin Seebeck
coefficients. The nonlinear charge Seebeck coefficient and the
spin Seebeck coefficient showed points of sign changes in the
presence of finite spin and thermal bias, indicating an intricate
interplay of Kondo correlations with spin-resolved tunneling
processes at nonequilibrium settings.

We believe that our work sheds new light on the spin-
resolved nonequilibrium thermopower of correlated nanoscale
junctions and, thus, provides a better understanding of ther-
moelectrics under finite temperature and voltage gradients.
We also hope that our findings will foster further theoretical
and experimental investigations of spin thermoelectric prop-
erties in fully nonequilibrium conditions.

As an outlook, we would like to notice that it would be
of importance to explore the nonequilibrium thermoelectric

transport properties of nanoscale systems strongly coupled
to both left and right leads. Accurate treatment of corre-
lations in such setups would however require resorting to
more sophisticated numerical techniques, such as recently
developed hybrid method of NRG and time-dependent density
matrix renormalization group [66,67]. While addressing such
a problem goes beyond the scope of the present paper, it
definitely provides an important objective for future research
endeavor.
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moelectric properties of a Kondo-correlated quantum dot with
Rashba spin-orbit coupling, J. Phys.: Condens. Matter 25,
505305 (2013).

[29] K. P. Wójcik and I. Weymann, Thermopower of strongly corre-
lated T-shaped double quantum dots, Phys. Rev. B 93, 085428
(2016).

[30] Ł. Karwacki and P. Trocha, Spin-dependent thermoelectric
effects in a strongly correlated double quantum dot, Phys. Rev.
B 94, 085418 (2016).

[31] K. P. Wójcik and I. Weymann, Strong spin Seebeck effect
in Kondo T-shaped double quantum dots, J. Phys.: Condens.
Matter 29, 055303 (2017).

[32] G. Górski and K. Kucab, Effect of assisted hopping on spin-
dependent thermoelectric transport through correlated quantum
dot, Phys. B 545, 337 (2018).

[33] A. Manaparambil and I. Weymann, Spin Seebeck effect of
correlated magnetic molecules, Sci. Rep. 11, 9192 (2021).

[34] P. Majek, K. P. Wójcik, and I. Weymann, Spin-resolved ther-
mal signatures of Majorana-Kondo interplay in double quantum
dots, Phys. Rev. B 105, 075418 (2022).

[35] M. A. Sierra and D. Sánchez, Strongly nonlinear thermovoltage
and heat dissipation in interacting quantum dots, Phys. Rev. B
90, 115313 (2014).

[36] A. Svilans, M. Leijnse, and H. Linke, Experiments on the ther-
moelectric properties of quantum dots, C. R. Phys. 17, 1096
(2016).

[37] M. A. Sierra, R. López, and D. Sánchez, Fate of the spin- 1
2

Kondo effect in the presence of temperature gradients, Phys.
Rev. B 96, 085416 (2017).

[38] A. Khedri, T. A. Costi, and V. Meden, Nonequilibrium ther-
moelectric transport through vibrating molecular quantum dots,
Phys. Rev. B 98, 195138 (2018).
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