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Feshbach resonance of heavy exciton-polaritons
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We study interactions between polaritons formed by hybridization of excitons in a two-dimensional semi-
conductor with surface optical phonons or plasmons. These quasiparticles have a high effective mass and can
bind into bipolaritons near a Feshbach-like scattering resonance. We analyze the phase diagram of a many-body
condensate of heavy polaritons and bipolaritons and calculate their absorption and luminescence spectra, which
can be measured experimentally.
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I. INTRODUCTION

Exciton-polaritons, formed by coherent coupling of ex-
citons with photons in semiconductor microcavities, have
been a subject of active research [1,2]. These hybrid light-
matter quasiparticles are of interest due to their potential
device applications [3] and solid-state realizations of conden-
sation and superfluidity [4,5]. Many phenomena unique to
exciton-polaritons stem from strong interactions induced by
their excitonic component. Recent pump-probe optical exper-
iments revealed that exciton-polaritons can exhibit a Feshbach
scattering resonance mediated by the biexciton state [6–11],
which in some sense allows one to control the strength and
sign of polariton interactions, akin to the manipulation per-
formed in experiments with atomic gases.

The origin of the exciton-polariton Feshbach resonance
is associated with formation of bipolaritons, i.e., bound
states of polaritons. One might expect that bipolaritons are
realized when the Rabi splitting (Sec. II A) exceeds the
biexciton binding energy. However, due to the strong dis-
persion of the photon, exciton-polaritons have a very small
effective mass and the bipolariton binding energy is expo-
nentially suppressed in two dimensions. Thus, bipolariton
states are not observed [12], although radiative corrections
can significantly modify the biexciton dispersion [13–16].
Note that while such radiatively renormalized biexciton states
are often called bipolaritons in the literature, in this pa-
per we use the term bipolariton to mean a true bound
state of two polaritons with energy below the two-particle
continuum.

Polaritons in two-dimensional (2D) materials, such as
phonon-polaritons in hexagonal boron nitride and exciton-
polaritons in transitional-metal dichalcogenide (TMD) mono-
layers, are a growing research field, which provides a
controllable platform to study polaritons and their interac-
tions [17,18]. Motivated by this, we consider a novel type
of exciton-polariton formed by strong coupling of excitons in
a 2D semiconductor with surface optical phonons or surface
plasmons, see Figs. 1(a) and 1(b). In contrast to previous in-
vestigations of resonant exciton-phonon coupling [19–21], we

consider the regime where the phonon frequency is resonant
with transitions across the band gap, not between internal
states of the exciton. This is similar to the case of plexci-
tons, which are hybrid quasiparticles resulting from resonant
coupling between excitons and plasmons in metallic nanos-
tructures [22–24]. By analogy to heavy fermions, we use a
common term heavy exciton-polaritons for these quasipar-
ticles to emphasize that they have a large effective mass
inherited from a nearly flat dispersion of phonons or plas-
mons. This is why heavy exciton-polaritons can be confined
in nanocavities of size much smaller than the diffraction limit
of light. Note that such highly confined heavy polaritons have
a very small photonic component. In this regard, we wish
to clarify that we use the term polariton in a broad sense,
meaning a hybrid excitation of a polarizable medium.

In this paper, we analyze the Feshbach scattering reso-
nance between heavy polaritons and show that they can form
bipolariton states near the resonance. In contrast to previously
studied exciton-polaritons in photonic cavities, where paired
states are essentially biexcitons, heavy polaritons retain their
hybrid nature in the bound state [Fig. 1(c)] assuming that Rabi
frequency exceeds the biexciton binding energy. We subse-
quently consider a system with finite densities of polaritons
and bipolaritons that can exhibit Bose condensation and su-
perfluidity. We study possible phases of such a condensate, the
polariton superfluid (PSF) and bipolariton superfluid (BSF)
[25–28], and the associated excitation spectra within a mean-
field approximation.

The rest of this paper is organized as follows. In Sec. II
we first discuss single-particle states and compare heavy
exciton-polaritons to photon exciton-polaritons. We then in-
clude exciton-exciton interactions and show how bipolariton
states emerge near the Feshbach resonance. In the last part of
Sec. II, we study the consequences of heavy bipolariton for-
mation in many-body condensates. In Sec. III, we compute the
absorption and luminescence spectra of the polariton systems
and show that they are dominated by collective excitations of
the condensate. We discuss additional experimentally testable
predictions of our theory in Sec. IV. Details of our calcula-
tions are provided in the Appendix.
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FIG. 1. Schematic diagrams of the (a) photon cavity and
(b) phonon/plasmon cavity. The lines indicate the electric field
direction. (c) Schematic of the heavy exciton-polariton (left) and
bipolariton (right). The ring surrounding the exciton indicates the
characteristic polariton radius Rc = (1/mx�)1/2, with mx the exciton
mass and � the polariton Rabi frequency. Bipolaritons are well
defined when the biexciton binding energy Exx is much smaller
than �, or equivalently Rc is much smaller than the length scale
rxx = (1/mxExx )1/2, which is of order of the bipolariton radius.

II. MODEL

A. Single-particle states

We consider a simple model of the heavy polariton that
captures the essential physics. The Hamiltonian is

H0 =
∑

k

[
ωx,kb†

kbk + ωc,ka†
kak + �k

2
(b†

kak + H.c.)

]
, (1)

which is analogous to what is commonly used to model
exciton-polaritons in photonic cavities [2]. In that context
the operators a†

k and b†
k, respectively, create cavity mode and

exciton states with momentum k. The exciton kinetic energy
is ωx,k = k2/2mx, where mx is the exciton mass. In our case a†

k
creates a phonon or a plasmon (Fig. 1) with energy ωc,k = δ

independent of k since the dispersion of a surface optical
phonon (plasmon) is nearly flat compared to that of the ex-
citon. We refer to parameter δ as the cavity detuning. The
strength of the coupling is characterized by the Rabi frequency
�k, i.e., the rate of energy transfer between the two modes,
which we take to be momentum independent for simplicity:

FIG. 2. Plots of the polariton energy (left) and the exciton frac-
tion (right) versus momentum for (a) photon exciton-polaritons and
(b) heavy exciton-polaritons.

�k = �. We also ignore the polarization degree of freedom
of the exciton. We use units such that h̄ = 1 throughout. The
spectrum consists of upper and lower polariton branches with
energies

ω±,k = 1
2

[
ωc,k + ωx,k ±

√
(ωx,k − ωc,k)2 + �2

k

]
, (2)

and the exciton fraction in each branch is given by the squares
of the Hopfield coefficients

U 2
±,k = 1

2

[
1 ± (ωx,k − ωc,k)

/√
(ωx,k − ωc,k)2 + �2

k

]
. (3)

In Fig. 2, we compare the momentum dependence of the
polariton energy and Hopfield coefficients for conventional
photon exciton-polaritons and heavy exciton-polaritons. Cav-
ity photons have a very steep energy-momentum dispersion,
which takes the form ωp,k � δ + k2/2mp, with an effective
mass mp ∼ 10−4mx. Therefore, for a photonic cavity, the po-
laritons have a strong dispersion at small k, but with increasing
k outside the light cone the lower polariton rapidly becomes
mostly exciton and the upper polariton becomes mostly pho-
ton. This is contrasted with the heavy polaritons, which have
an effective mass of order of the exciton mass mx and retain
their hybrid character at much larger k.

B. Two-particle states

The interaction between two excitons, viewed as rigid
structureless bosons, takes the form

Hint = 1

2A

∑
kk′q

Wq b†
k+qb†

k′−q
bk′ bk, (4)

where A is the area of the system and Wq is an attractive
interaction that supports the biexciton bound state. The struc-
tureless boson approximation for excitons is justified if their
binding energy is much greater than all other relevant energy
scales in the problems, including the Rabi frequency, the
biexciton binding energy, etc. If this is not true, a more so-
phisticated formalism is required [29]. The total Hamiltonian

115401-2



FESHBACH RESONANCE OF HEAVY … PHYSICAL REVIEW B 109, 115401 (2024)

is H = H0 + Hint , with H0 defined in Eq. (1). We may estimate
the bipolariton binding energy E from the well-known for-
mula for weak attractive interactions in two dimensions [30]:

E � E� exp

(
− 2π

|Vp|mr

)
, (5)

with Vp < 0 the polariton interaction strength at zero mo-
mentum, mr the reduced mass of the two polaritons forming
the bound state, and E� a high-energy cutoff determined by
the range of the interaction. For photon exciton-polaritons,
mr ∼ mp ∼ 10−4mx, so the binding energy is exponentially
small, as mentioned earlier in Sec. I (see also Appendix A).
In contrast, for heavy polaritons mr and Vp are of the same
order as those of the exciton. Therefore, strongly bound bipo-
laritons are expected near the biexciton resonance. We find the
bipolariton energies from the poles of the exciton two-particle
scattering matrix. To simplify the calculation we choose Wq

to be momentum independent, i.e., a contact interaction, and
subsequently eliminate it in favor of the biexciton binding en-
ergy Exx to obtain the renormalized scattering matrix T (K, ω),
which depends on the total incoming momentum K and en-
ergy ω of the particles. We give an explicit formula for the
scattering matrix, along with details of the calculation, in
Appendix A.

Here and in the following calculations we choose � =
3Exx for the Rabi frequency. In Fig. 3(a) we plot the bipolari-
ton energies versus cavity detuning δ. There are two Feshbach
resonances. The first one occurs when the energy of a biex-
citon (the horizontal dotted line) coincides with the energy of
two lower polaritons (the lower boundary of the continuum),
2ω− = −Exx, all at momenta k = 0. The second resonance is
found where the biexciton energy is equal to the sum of the
energies of a lower and upper polariton, ω+ + ω− = −Exx.
In both cases there are bipolariton states lying below the
continuum of unbound two-particle states, e.g., ω = ω−(k) +
ω−(−k). In principle, two upper polaritons can also form a
quasibound state but it lies in the continuum and is damped.
Figure 3(b) shows the binding energies and radii of the states
outside the continuum versus δ. The bipolariton states become
more loosely bound with decreasing δ as the exciton fraction
u2

− decreases, e.g., for two lower polaritons mr ∝ u−2
− and

Vp ∝ u4
−, hence their binding energy decreases towards zero

in accordance with Eq. (5) while their radius diverges.

C. Phase diagram and excitations

Many-body physics of a system with a finite concentration
of polaritons may be described by a two-channel effective
Hamiltonian [28] that explicitly includes polariton (ξ1) and
bipolariton (ξ2) fields:

Heff =
∑
i=1,2

∑
k

(ωi,k − μi )ξ
†
i,kξi,k

+ 1

2A

∑
i j

∑
kk′q

gi j
kk′q ξ

†
i,k+qξ

†
j,k′−q

ξ j,k′ξi,k

+ 1√
2A

∑
kq

(
αkqξ

†
1,q/2+kξ

†
1,q/2−kξ2,q + H.c.

)
. (6)

FIG. 3. (a) Energies of the bipolariton states versus detuning δ

for � = 3Exx . The solid and dashed black lines are the energies
of lower-lower, upper-lower, and upper-upper bipolaritons, denoted
respectively by ω−−, ω+−, and ω++. The horizontal dotted line is the
biexciton energy, the negative of the biexciton binding energy Exx .
The dashed-dotted lines are the sum of the energies of two polaritons
at zero momentum, with the two-polariton continuum shown by the
shaded regions above. (b) The binding energies E−− = 2ω− − ω−−
and E+− = ω+ + ω− − ω+− and corresponding radii of the bipo-
lariton states versus detuning δ. The radii rss′ are defined by r2

ss′ =∫
d2r r2|ψss′ (r)|2, with ψss′ (r) the bipolariton wave function, and

r′
xx = (2/3mxExx )1/2 is the biexciton radius for the contact potential

model.

We assume that only the “–” polaritons, which are the
lower-energy states, are present. Parameter μ is the chemical
potential; μ1 = μ, μ2 = 2μ; ω1,k = ω−,k and ω2,k [defined by
Eq. (8) below] are the energies of the polariton and bipolari-
ton, respectively, and α is the polariton-bipolariton coupling.
Parameters gi j are repulsive background interactions, which
depend on the Hopfield coefficents according to

gi j
kk′q = U−,kU−,k′U−,k+qU−,k′−qg̃i j/mx, (7)

and g̃i j are dimensionless interaction strengths, which we
assume to be constant. The parameters α and ω2,k are deter-
mined by an expansion of the polariton-polariton scattering
matrix near the bipolariton pole (see Appendix A):

T−−(k, k′, K, ω) =U−,K/2+kU−,K/2−kU−,K/2+k′U−,K/2−k′

× T (K, ω) � αkKαk′K

ω − ω2,K
. (8)
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FIG. 4. (a) Schematic of polariton distribution in the BSF and
PSF phases. (b), (c) Ratio of single polariton condensate density to
the total density at zero temperature as a function of cavity detuning
δ and chemical potential μ (b) or density n (c). The background
scattering parameters are g̃11 = 6, g̃12 = 9, and g̃22 = 20. The normal
phase is labeled by N, the polariton superfluid by PSF, the bipolariton
superfluid by BSF, and phase separated regions by PS.

The system exhibits a transition from a polariton to bipo-
lariton superfluid with changing density and detuning. In the
polariton superfluid phase (PSF) both polaritons and bipolari-
tons condense; in the bipolariton superfluid phase (BSF) only
bipolaritons condense. Following Refs. [26,28], we calculate
the mean-field phase diagram at zero temperature using the
two-channel model of Eq. (6). We caution the reader that these
phase diagrams are not suitable for immediate comparison
with experiment because quantum fluctuations beyond mean-
field theory can significantly shift the phase boundaries [28].
Additionally, there is a significant uncertainty in the values of
phenomenological parameters g̃i j (see more below).

We plot the ratio of the single polariton condensate density
to the total density in Figs. 4(b) and 4(c) [note that rxx =
(1/mxExx )1/2], showing the BSF to PSF phase transition with
decreasing δ, which can be either first order or continuous. In
the case of a first-order transition, there is a region of phase
separation between the PSF phase and the BSF or normal
phase. The mean-field phase boundary of the continuous tran-
sition is described by the equation

E−− = (g22/2 − g12)n + α
√

2n, (9)

with E−− the bipolariton binding energy. This equation relates
the total density n to the cavity detuning δ. Note that the
parameters g̃i j are difficult to determine even for simplified
microscopic models; furthermore, they depend crucially on
details such as the exciton spin structure not included in
our simple model. We crudely estimate these parameters by
requiring that the BSF-PSF transition occur at a critical den-
sity nM in accordance with the Mott criterion nMr2

−− ∼ 0.03
[31,32]. Here r−− is the bipolariton radius, which is plotted
versus detuning in Fig. 3(b). Associated with this criterion is
the picture of particle distribution in real space, Fig. 4(a). In

the BSF phase, polaritons form a dilute gas of bound pairs. As
the system approaches the phase transition, the binding energy
of these pairs decreases while their radius becomes larger
so they begin to overlap in space. As a result, a significant
fraction of these pairs dissociate leading to the formation of
a single-polariton condensate in addition to the bipolariton
condensate in the PSF phase.

As discussed below in Sec. III, the optical response of
the PSF and BSF phases is dominated by their collective
excitations. The excitation spectrum has one gapless acoustic
mode and one gapped mode in each phase [26]. In the BSF
phase, the gapless mode is due to phase oscillations of the
bipolariton condensate and the gapped mode is due to pair
breaking of bipolaritons into two polaritons. The energy of
the gapped mode is

EBSF
1 = {[

1
2 (E−− − g22n2 + 2g12n2)

]2 − α2n2
}1/2

, (10)

where n1 is the single polariton density and n2 is the bipolari-
ton density. In the PSF phase, the gapless and gapped modes
are due to in-phase and out-of-phase fluctuations of polariton
and bipolariton fields, respectively. The energy of the gapped
mode is

EPSF
1 = {[E−−−g12n1 − g22n2 + 2g11n1+2g12n2 − α

√
n2]2

+ αn1[α − 2g12
√

n1 + (4g11 + g22)
√

n2]}1/2. (11)

Both EBSF
1 and EPSF

1 vanish along the phase boundary given
by Eq. (9). Far from the phase transition, and neglecting the
Feshbach coupling α, the energies of the gapped modes have a
simple interpretation. We may write EPSF

1 = ω̃2 − 2ω̃1, where
ω̃1 = g11n1 + g12n2 and ω̃2 = −E−− + g12n1 + g22n2 are, re-
spectively, the polariton and bipolariton energies renormalized
by interaction. This corresponds to the energy to create a bipo-
lariton. Similarly, EBSF

1 = 1
2 (2ω̃1 − ω̃2) corresponds to the

energy to break a bipolariton into its constituent polaritons.

III. EXPERIMENTAL SIGNATURES

One way to distinguish PSF and BSF phases is by mea-
suring the optical absorption or luminescence spectrum. The
spectrum in both normal and condensed states is determined
from the collective excitations of the system, which we calcu-
late from the effective Hamiltonian of Eq. (6). Details of the
calculation are given in Appendix B. There are two contribu-
tions: direct coupling of polaritons to photons, which gives
rise to sharp emission lines, and coupling of a bipolariton
to a photon and polariton, which yields a broad continuum.
In Fig. 5, we show plots of the absorption and luminescence
spectra for a polariton condensate at zero temperature.

The energy of a photon measured in an optical experiment
is the sum (difference) of the chemical potential μ and ex-
citation energy corresponding to absorption (emission) of a
photon along with emission of a collective excitation. There-
fore, the gapless modes follow the lines ω = μ (the solid lines
in Fig. 5), and the gapped modes are positioned above or
below these lines. Within the mean-field theory, the chemical
potential is given by

μ =
{

g11n1 + g12n2 − α
√

n1n2 (PSF)
1
2 (−E−− + g22n2) (BSF).

(12)

115401-4



FESHBACH RESONANCE OF HEAVY … PHYSICAL REVIEW B 109, 115401 (2024)

FIG. 5. (a) Absorption and (b) luminescence spectra at zero tem-
perature for density nr2

xx = 0.015 (left) and nr2
xx = 0.03 (right). The

chemical potential μ is denoted by the solid lines, and dashed gray
lines indicate thresholds associated with the emission of collective
excitations. The absorption spectrum is negative for frequencies be-
low μ, corresponding to optical gain, and positive for frequencies
above μ. Since only emission (and not absorption) of collective
excitations is possible at zero temperature, luminescence only occurs
at frequencies below μ.

The energy ω = μ + EPSF
1 of the collective mode above μ in

the PSF phase and the energy ω = μ − EBSF
1 below μ in the

BSF phase, can be viewed as the renormalized energy of the
bipolariton spectral line. Far from the transition, this energy is
given by the formula

ω = ω̃2 − ω̃1 = −E−− + (g12 − g11)n1 + (g22 − g12)n2.

(13)

At large positive δ, the system is in the BSF phase, where
bipolaritons are energetically favored. The gap between μ

and the absorption or emission threshold is the energy of
the gapped excitation mode, given by Eq. (10). The gapless
mode, which is due to phase oscillations of the bipolariton
condensate, is not observed in this phase because bipolaritons
do not couple directly to light. With decreasing detuning, the
gap decreases and closes at the phase transition, where single
polariton condensation becomes favorable. In the PSF phase,
both gapless and gapped modes are observed. The energy of
the gapped mode is given by Eq. (11).

We now discuss the relation of our results to previous
experiments on the polaritonic Feshbach resonance [8–10].
Photon exciton-polaritons studied in those experiments have
a polarization or pseudospin degree of freedom since there
are two countercircular polarization states of the photon that
couple to excitons with the same polarization. Since the in-
teraction between two excitons is attractive (repulsive) when
they have antiparallel (parallel) spin, only polaritons with
antiparallel spin can form biexcitons. In the experiments, the
system is pumped with circularly polarized light to create
a condensate of spin-up polaritons. A probe beam with the
opposite circular polarization then excites a few spin-down
polaritons, which interact with the spin-up condensate to form
biexcitons. This results in a shift in the spin-down polariton
energy observed in the probe transmission spectrum. The

FIG. 6. Density profiles for polariton condensate in a harmonic
trap for first-order transition (left) and continuous transition (right).
The plots correspond, respectively, to δ/Exx = 0 and δ/Exx = 2
in the phase diagram of Fig. 4(b). The trap potential is V (x) =
1
2 Exx (x/rtrap )2 with rtrap = 300rxx . Here n1 is the single polariton
density, n2 is the bipolariton density, and n = n1 + 2n2 is the total
density.

shift changes from positive to negative with decreasing cavity
detuning as the system is tuned across the Feshbach reso-
nance, which is often colloquially described as the interaction
changing from repulsive to attractive. The corresponding ef-
fect in our model is the change in the collective mode energy
from −EBSF

1 to EPSF
1 in Fig. 5(a) and crossing between the

photon energy ω in Eq. (13) and chemical potential μ. In
other words, the renormalized bipolariton binding energy ef-
fectively changes from positive in the BSF phase to negative
in the PSF phase. However, the aforementioned experiments
have studied a transient state rather than the true ground state
of the polariton system, since in principle biexcitons should
also condense.

In addition to photoluminescence spectroscopy of a uni-
form density system, the PSF to BSF transition can be
detected by imaging the polariton condensate confined in
a trap. In Fig. 6, we show the density profile in a har-
monic trap calculated in the Thomas-Fermi approximation
by solving μ[n(r)] + V (r) = μ0 for n(r), where μ[n] is the
local chemical potential as a function of density, V (r) =
1
2 Exx(r/rtrap)2 is the trap potential with rtrap = 300rxx, and
μ0 is the chemical potential at the center of the trap. Since
the local chemical potential μ(r) decreases with increasing
radial coordinate r, there is a transition from the PSF to
BSF phase, which results in a discontinuity in the density
n(r) or its derivative dn

dr for a first-order or continuous tran-
sition, respectively. Since μ is continuous across the phase
boundary of the continuous transition, 
μ = 0, we may relate
the discontinuity in ∂μ

∂n to that of ∂μ

∂δ
by 


∂μ

∂δ
= − dn

dδ



∂μ

∂n ,
with dn

dδ
determined from the phase boundary in Fig. 4(c).

From Fig. 5, ∂μ

∂δ
|c− = −0.022 and ∂μ

∂δ
|c+ = −0.026, where

c− (c+) indicates that the derivative is evaluated just below
(above) the transition point. This gives 


∂μ

∂δ
≈ −0.004, and

since dn
dδ

≈ 0.002/(Exxr2
xx ), we have 


∂μ

∂n ≈ 2Exxr2
xx. There-

fore, 
( dn
dr )

−1 = r2
trap

Exxr 

∂μ

∂n ≈ 10rtrapr2
xx, which is consistent

with the slopes in Fig. 6: dn
dr |c− ≈ −0.5/(rtrapr2

xx ) and dn
dr |c+ ≈

−0.05/(rtrapr2
xx ). This explains the large kink seen in the den-

sity profile of Fig. 6 (right) despite the small discontinuity of
∂μ

∂δ
in Fig. 5.
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IV. DISCUSSION AND OUTLOOK

We have investigated a novel type of quasiparticle, heavy
polaritons, formed by strong coupling of excitons in a 2D
semiconductor with surface optical phonons or plasmons.
Similar to systems of cold atoms, where this phenomenon
was first studied, heavy polaritons exhibit a Feshbach res-
onance when the biexciton energy becomes resonant with
that of two polaritons. Such resonances have been recently
probed in experiments with exciton-polaritons in photonic
cavities. However, in those experiments the polaritons did not
form true bound states. In contrast, we predict that heavy
polaritons bind into bipolaritons near the Feshbach reso-
nance. For a system with a finite density of polaritons and
bipolaritons we have analyzed the possible phases, polariton
(PSF) and bipolariton (BSF) superfluids, and their collec-
tive excitations within a mean-field approximation. We have
computed the absorption and luminescence spectra in these
phases.

Another observable signature of polariton condensation is
formation of quantized vortices. Such vortices can be induced
in the system by external perturbations or nonequilibrium
flow and subsequently detected by optical imaging [33–35].
According to Ref. [26], in the PSF phase the Feshbach cou-
pling of polaritons and bipolaritons induces a splitting of a 2π

polariton vortex into two π vortices connected by a domain
wall. Observation of this vortex splitting would confirm the
existence of the PSF phase.

In conclusion, we briefly mention possible materials re-
alizations of our results. Since phonons have frequencies in
the terahertz region, resonantly coupling them to excitons
requires a narrow band gap semiconductor. One candidate is
gapped bilayer graphene, where tunable excitons have been
observed with energies around 100 meV [36,37]. These exci-
tons can be tuned into resonance with the low-loss hyperbolic
phonon modes in hBN [38,39]. Regarding plasmons, several
experiments have demonstrated strong coupling of excitons in
TMD monolayers with plasmons in metallic nanostructures
[24,40]. TMDs host strongly bound biexcitons with Exx ≈
50 meV [41]. Also, a highly controllable realization of plas-
monic strong local coupling with excitons can be achieved
using a nano-optical antenna [42,43]. Note that previously the
term heavy polariton has been used to describe hybridization
of excitons with heavy photons, i.e., flat photonic bands, in
an optical lattice [44]. Even though the range of momenta
where this band dispersion remains flat is relatively narrow,
this could potentially be another path to realization of the
physics described in this paper.

Possible extensions of our work include studying a
Josephson-like effect where the optical spectrum in the PSF
phase depends on the relative phase of polariton and bipo-
lariton condensates and analyzing the collective modes of
the polariton condensate in a trap. A potential application
of the heavy polariton Feshbach resonance is the generation
of entangled pairs of polaritons [45], which is another inter-
esting subject for future study. In addition, experiments with
atomic Bose gases near a Feshbach resonance have observed
novel phenomena including Efimov states [46], universal dy-
namical behavior [47], and formation of solitons [48] or
quantum droplets [49]. The system of heavy polaritons studied

in this paper provides another potential avenue to realize these
phenomena.
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APPENDIX A: SCATTERING MATRIX CALCULATION

The scattering matrix satisfies the Bethe-Salpeter equation,
which with the notation k = (k, iωn) takes the form [11]

T (k, k′; k + q, k′ − q)

= W (k, k′, q) +
∑

q′
W (k, k′q′)Gx(k + q′)

× Gx(k′ − q′)T (k + q′, k′ − q′; k + q; k′ − q). (A1)

Here W (k, k′, q) is the interaction vertex and Gx(k) is the
exciton Green’s function. If W (k, k′, q) = W0 is frequency
and momentum independent, then T depends only on the
total incoming momentum and energy (K, ω) and Eq. (A1)
is solved immediately:

T (K, ω) = [
W −1

0 − �(K, ω)
]−1

, (A2)

with the two-exciton propagator (at zero temperature)

�(K, ω) =
∑

q

∫
dω′

2π i
Gx(K − q, ω − ω′)Gx(q, ω′). (A3)

Consider first the case of free excitons, where the Green’s
function is G0

x (k, ω) = (ω − ωx,k)−1, and the propagator is

�0(K, ω) =
∑

q

∫
dω′

2π i
G0

x (K − q, ω − ω′)G0
x (q, ω′)

=
∑

q

1

ω − ωx,K−q − ωx,q
. (A4)

Since the sum diverges logarithmically at large q, we must
impose a momentum cutoff �, and we have �0(K = 0, ω) =
− mx

4π
ln(−E�/ω), with E� = �2/2mx. We eliminate W0 by

requiring that the biexciton binding energy Exx is the pole
of the of the zero-momentum scattering matrix, so W −1

0 =
− mx

4π
ln(E�/Exx ), and the renormalized free exciton scattering

matrix takes the form

T0(K = 0, ω) = 4π/mx

ln (−Exx/ω)
, (A5)

which is the universal result for low-energy scattering in
two dimensions [50]. We now consider the case of exciton-
polaritons, where the exciton Green’s function is

Gx(k, ω) =
∑
s=±

U 2
s,k

ω − ωs,k
. (A6)

The polariton energies ω±,k and Hopfield coefficients U±,k are
given, respectively, in Eqs. (2) and (3) of the main text. The
two-exciton propagator is

�(K, ω) =
∑

q

∑
s,s′=±

U 2
s,K−qU

2
s′,q

ω − ωs,K−q − ωs′,q
. (A7)
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FIG. 7. Diagrams for calculating photon self-energy including (a) normal and (b) anomalous contributions. In the normal state only the first
two diagrams in (a) are nonvanishing. Single and double lines denote exciton and biexciton Green’s functions, respectively. The filled circle
denotes the photon-polariton coupling vertex, and the open circle is the photon-polariton-bipolariton coupling vertex. Dotted lines indicate
particles going into or out of the condensate.

For photon exciton-polaritons, the cavity mode dispersion takes the form ωp,k = δ + k2/2mp, with mp � mx. We expand
�(K = 0, ω) in mp/mx � 1 and find

T (K = 0, ω) = 4π

mx

{
ln(−Exx/ω) + mp

mx

�2

ω2

[
− 1 + ln[−(mx/2mp)ω/Exx] − 1

ω2 + �2

(
ω2 ln[(ω+ + ω− − ω)/Exx]

+ �2{− ln(−2ω/Exx ) + ln[(2ω+ − ω)/Exx] + ln[(2ω− − ω)/Exx]})] + . . .

}−1

. (A8)

Here ω± = 1
2 (δ ± √

δ2 + �2) are the polariton energies at zero momentum. This shows that T (K = 0, ω) has a pole at the
biexciton binding energy, which is slightly shifted from Exx and acquires a small imaginary part in the two-polariton continuum.
In addition, there are bipolariton poles at energies below ωs + ωs′ , but it is apparent from Eq. (A8) that the bipolariton binding
energy and spectral weight are exponentially small in the large mass ratio mx/mp, in agreement with Eq. (5) of the main text.

For heavy polaritons we take ωc,k = δ constant. Then the integral in Eq. (A7) may be evaluated analytically at K = 0 and we
find

T (K = 0, ω) = −(4π/mx )[(2δ − ω)2 + �2]

�2 ln[2(ω+ + ω− − ω)/Exx] + (2δ − ω)2{− ln[(2δ − ω)/Exx] + ln[(2ω+ − ω)/Exx] + ln[(2ω− − ω)/Exx]} ,

(A9)

The bipolariton energies ωss′,K are poles of T (K, ω). The
scattering matrix between two polaritons s and s′ with incom-
ing momenta K/2 + k and K/2 − k and outgoing momenta
K/2 + k′ and K/2 − k′ is given by

Tss′ (k, k′, K, ω)

= Us,K/2+kUs′,K/2−kUs,K/2+k′Us′,K/2−k′T (K, ω). (A10)

The polariton Green’s functions are Gs(k, ω) = (ω − ωs,k )−1

and we define G̃ss′ (k, K, ω) = ∫
dω′
2π i Gs(ω − ω′, K/2 −

k)Gs′ (ω′, K/2 + k), or

G̃ss′ (k, K, ω) = 1

ω − ωs,K/2−k − ωs′,K/2+k
. (A11)

In the spectral vicinity of the bipolariton resonance, we
have [15]

G̃ss′ (k, K, ω)Tss′ (k, k′, K, ω)G̃ss′ (k′, K, ω)

� ψss′ (k, K )ψss′ (k′, K )

ω − ωss′,K
, (A12)

which defines the bipolariton wave function ψss′ (k, K ). In our
approximation

ψss′ (k, K ) = NK
Us,K/2−kUs′,K/2+k

ωss′,K − ωs,K/2−k − ωs′,K/2+k
, (A13)

with NK a normalization factor such that
∑

k |ψss′ (k, K )|2 =
1. The bipolariton wave function is used to compute the opti-
cal spectra, see Appendix B.

APPENDIX B: CALCULATION OF ABSORPTION
AND LUMINESCENCE SPECTRA

Two processes contribute to the absorption and lumines-
cence spectra: direct coupling of polaritons to photons and
coupling of a bipolariton to a photon and polariton [51,52].
The relevant diagrams for calculating photon self-energy are
shown in Fig. 7. The filled circle denotes the photon-polariton
coupling vertex. In terms of the photon-exciton coupling μx,
it is given by

μ1,q = U−,qμx, (B1)

where U−,q is the Hopfield coefficient. The open circle denotes
the photon-polariton-bipolariton coupling vertex, given by

μ12,k,q = U−,kU 2
−,q+kψ ((q − k)/2, q + k)μx, (B2)

with ψ the bipolariton wave function defined by Eq. (A12).
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1. Normal state

In the normal state, only the first two diagrams of Fig. 7
contribute. The Matsubara Green’s functions are

Gi(k, iωn) = 1

iωn − ω̃i,k
, (B3)

where i = 1, 2 for the polariton and bipolariton, respectively.
Here ω̃1,k and ω̃2,k are the polariton and bipolariton energies
shifted by interaction (see Sec. II). The photon self-energy is

�(q, iωn) = |μ1,q|2G1(q, iωn) −
∑

k

∑
iω′

n

|μ12,k,q|2G1(k, iω′
n)

× G2(q + k, iωn + iω′
n). (B4)

Evaluating the sum over iω′
n, we obtain the absorption spec-

trum:

A(q, ω) = − 2Im �(q, ω − μ) = |μ1,q|22πδ(ω − μ − ω̃1,q)

+
∑

k

|μ12,k,q|2[nB(ω̃1,k) − nB(ω̃2,q+k)]

× 2πδ(ω − μ + ω̃1,k − ω̃2,q+k). (B5)

with

nB(ω) = (eβω − 1)−1 (B6)

the Bose distribution function, β being the inverse tempera-
ture. The luminescence spectrum is [51]

I (q, ω) = nB(ω − μ)A(q, ω)

= |μ1,q|2nB(ω̃1,q)2πδ(ω − μ − ω̃1,q)

+
∑

k

|μ12,k,q|2[1 + nB(ω̃1,k)]

× nB(ω̃2,q+k)2πδ(ω − μ + ω̃1,k − ω̃2,q+k). (B7)

For q = 0 and far from the Feshbach resonance, this spec-
trum consists of a sharp peak at ω = μ + g11n1 + g12n2

and a continuum below the energy ω = μ − E−− + (g11 −
g12)n1 + (g12 − g22)n2, similar to Eq. (13). In principle, this
spectrum is qualitatively different from what is shown in
Fig. 5(b), and so it can be used to identify the condensation
transition.

2. Condensed state

In the condensed state, there are two modes: a gapless
mode E0,k and gapped mode E1,k. The Matsubara Green’s
functions may be written

Gi(k, iωn) =
∑

σ=0,1

∑
s=±

s
(
uσ,s

i,k

)2

iωn − sEσ
k

. (B8)

Here the uσ,s
i,k are Bogoliubov coefficients that satisfy∑

σ,s s(uσ,s
i,k )

2 = 1. We also need the anomalous Green’s
functions

Fi j (k, iωn) = −
∑

σ=0,1

∑
s=±

suσ,s
i,k uσ,−s

j,k

iωn − sEσ
k

. (B9)

Expressions for the energies and Bogoliubov coefficients in
terms of the parameters in the effective Hamiltonian of Eq. (6)
are given in Ref. [26]. The photon self-energy is

�(q, iωn) = |μ1,q|2G1(q, iωn) −
∑

k

∑
iω′

n

|μ12,k,q|2G1(k, iω′
n)G2(q + k, iωn + iω′

n)

−
∑

k

∑
iω′

n

|μ12,k,q|2F12(k, iω′
n)F ∗

21(q + k, iωn + iω′
n)

+ |μ12,0,q|2[n1G2(q, iωn) + n2G1(q,−iωn) − 2
√

n1n2F12(q, iωn)]. (B10)

We find for the absorption spectrum

A(q, ω) = − 2Im �(q, ω − μ) =
3∑

n=1

An(q, ω),

A1(q, ω) = − |μ1,q|2
∑
σ,s

s
(
uσ,−s

1,q

)2
2πδ

(
ω − μ + sEσ

q

)
,

A2(q, ω) =
∑
σ,σ ′

∑
s,s′

∑
k

|μ12,k,q|2ss′
[(

uσ,s
1,k

)2(
uσ ′,s′

2,q+k

)2 + uσ,s
1,kuσ,−s

2,k uσ ′,−s′
1,q+k uσ ′,s′

2,q+k

][
nB

(
sEσ

k

) − nB
(
s′Eσ ′

q+k

)]
× 2πδ

(
ω − μ + sEσ

k − s′Eσ ′
q+k

)
,

A3(q, ω) = − |μ12,0,q|2
∑
σ,s

s
[
n1

(
uσ,−s

2,q

)2 + n2
(
uσ,s

1,q

)2 − 2
√

n1n2uσ,s
1,quσ,−s

2,q

]
2πδ

(
ω − μ + sEσ

q

)
. (B11)
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The luminescence spectrum is

I (q, ω) = I0(q, ω) + nB(ω − μ)A(q, ω) =
3∑

n=0

In(q, ω),

I0(q, ω) = (|μ1,0|2n1 + |μ12,0,0|2n1n2
)
(2π )3δ(ω − μ)δ(q),

I1(q, ω) = |μ1,q|2
∑
σ,s

s
(
uσ,−s

1,q

)2[
1 + nB

(
sEσ

q

)]
2πδ

(
ω − μ + sEσ

q

)
,

I2(q, ω) =
∑
σ,σ ′

∑
s,s′

∑
k

|μ12,k,q|2ss′
[(

uσ,s
1,k

)2(
uσ ′,−s′

2,q+k

)2 + uσ,s
1,kuσ,−s

2,k uσ ′,s′
1,q+kuσ ′,−s′

2,q+k

][
1 + nB

(
sEσ

k

)][
1 + nB

(
s′Eiσ

q+k

)]
× 2πδ

(
ω − μ + sEσ

k + s′Eσ ′
q+k

)
,

I3(q, ω) = |μ12,0,q|2
∑
σ,s

s
[
n1

(
uσ,−s

2,q

)2 + n2
(
uσ,s

1,q

)2 − 2
√

n1n2uσ,s
1,quσ,−s

2,q

][
1 + nB

(
sEσ

q

)]
2πδ

(
ω − μ + sEσ

q

)
. (B12)

The first term is due to coherent spontaneous emission of photons from the condensate, and is not present in the absorption
spectrum. Actually, when q → 0 the weight of the peak at ω = μ diverges due to the divergence of the Bogoliubov coefficients.
We deal with this by integrating over a finite range of q, q < qc. Physically, the cutoff qc represents a typical momentum due to
scattering by inhomogeneities, phonons, etc., or the inverse trap size in the case of confined polaritons (Sec. III).
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