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Magneto-oscillations in two-dimensional systems with spin-orbit interaction (SOI) are typically characterized
by fast Shubnikov–de Haas (SdH) oscillations and slower spin-orbit-related beatings. The characterization of
the full SdH oscillatory behavior in systems with both SOI and Zeeman coupling requires a time-consuming
diagonalization of large matrices for many magnetic field values. By using the Poisson summation formula, we
can explicitly separate the density of states into fast and slow oscillations, which determine the corresponding
fast and slow parts of the magneto-oscillations. We introduce an efficient scheme of partial diagonalization of our
Hamiltonian, where only states close to the Fermi energy are needed to obtain the SdH oscillations, thus reducing
the required computational time. This allows an efficient method for numerically fitting the SdH data, using the
inherent separation of the fast and slow oscillations. We compare systems with only Rashba SOI and both Rashba
and Dresselhaus SOI with and without an in-plane magnetic field. The energy spectra are characterized in terms
of symmetries, which have direct and visible consequences in the magneto-oscillations. To highlight the benefits
of our methodology, we use it to extract the spin-orbit parameters by fitting realistic transport data.
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I. INTRODUCTION

Two-dimensional (2D) electronic systems are believed to
hold the promise of improved device characteristics [1,2]. In
spintronics [3], spin-orbit interaction (SOI) plays an impor-
tant role in many physical phenomena, e.g., the spin Hall
effect [4–6] and the persistent spin helix [7–9]. In addition,
it underlies the physical mechanisms for, e.g., 2D topological
insulators and quantum spin Hall materials [10–12]. Neverthe-
less, extracting physical or model parameters associated with
these systems is rarely straightforward, and often a challeng-
ing endeavor.

Shubnikov–de Haas (SdH) oscillations [13,14] have been
an important tool to characterize charge densities and scat-
tering times in 2D semiconductors [15]. In addition, the SdH
oscillations have been used to extract the Rashba and Dressel-
haus SOIs [16]. An earlier theoretical description showed that
the SOI leads to changes in the oscillation beating pattern [17],
and further analysis of the same group incorporated the known
exact result [18] to improve the analysis of the Rashba and
Zeeman coupling [19]. As is pointed out in Ref. [19], the study
and interpretation of oscillations in the magnetoresistance re-
lies on some assumptions, as for example, what the dominant
source of SOI is. A method that has often been used to esti-
mate the strength of the Rashba coupling was introduced in
Refs. [20–22], which uses the density of states (DOS) at zero
magnetic field to relate the DOS to the Rashba SOI strength α.
However, this method has drawbacks since it cannot account
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for Zeeman (via the g factor g∗) or Dresselhaus spin-orbit
coupling strength β [23,24]. There have been some attempts
to analyze the SdH oscillations in terms of α, β, and g∗, but
they have mostly involved qualitative comparison with the en-
ergy spectrum of pure Rashba and pure Dresselhaus, resulting
in nominally identical samples being characterized as either
Rashba dominated [24] or Dresselhaus dominated [25]. In
addition, the method used in Ref. [26] is based on the position
of beating nodes, but for comparable strength of Rashba and
Dresselhaus couplings, the beating nodes can vanish. There-
fore, a systematic way of analyzing the experimental data in
terms of oscillation envelope shape rather than beating node
positions is required. This is what we present here.

Magnetoresistance oscillations were considered by
Averkiev et al. [27] and Tarasenko and Averkiev [28] for the
special case of α = β and no Zeeman coupling. They showed
that the beatings vanished for this case since the correspond-
ing spectrum consists of equally spaced Landau levels. Fur-
thermore, the effects of Zeeman splitting and tilted magnetic
field (in the absence of spin-orbit coupling) were considered in
Ref. [29]. In Ref. [30], full numerical calculations of magneto-
oscillations were performed for relatively high magnetic
fields and low electron densities, which is far away from the
regime of recent experimental works [31]. In Refs. [31,32],
numerical calculations of magnetoresistivity oscillations were
performed, but a general analysis of the oscillations, relating
the frequency and position of the beating pattern directly to α

and β, was not presented. Such connections are very important
for experimental works, as they allow the extraction of system
parameters. In a recent experimental work, SdH oscillations
were considered in InAs 2D electron gases (2DEGs), where
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the Rashba SOI was tuned, but there were unresolved issues
concerning the fitting of the cubic Dresselhaus coupling
constant γ , resulting in γ = 0 [31]. Furthermore, the effects
of the tilted magnetic field were theoretically considered in the
context of the cyclotron and electric-dipole spin resonances
in the presence of both Rashba and Dresselhaus SOIs [32].
For tilting angles at which the Zeeman splitting and cyclotron
energy were equal, the effects of the SOI could be made more
pronounced. This has been used in more recent experiments
studying magnetization [26] and magneto-oscillations [33],
although the analysis suffers from the same issues discussed
in Ref. [24], i.e., being based on the B = 0 DOS and not
accounting explicitly for nonzero g∗ or β.

In this paper, we introduce an efficient method to obtain
the relevant energy spectrum for magnetotransport, in the
presence of both Rashba and Dresselhaus SOIs and Zeeman
coupling. Our method is based on the diagonalization of a
partial/truncated Hamiltonian and allows a faster calcula-
tion and clearer interpretation of SdH magneto-oscillations.
In Sec. II, we introduce the system properties and the par-
tial Hamiltonian. In Sec. III, we present the DOS using the
Poisson summation formula and highlight the fast and slow
oscillations. Finally, we apply our method to accurately fit
realistic magneto-oscillation data, highlighting the speed and
convenience of our method.

II. HAMILTONIAN AND NUMERICAL
DIAGONALIZATION

Our focus will be on 2DEG in the presence of a magnetic
field B = [B‖ cos(φ), B‖ sin(φ), B⊥], where B⊥ is the compo-
nent of the magnetic field perpendicular to the 2DEG, and
B‖ is the corresponding in-plane component. In addition, we
consider both Rashba [18] and Dresselhaus [23] spin-orbit
couplings. The resulting Hamiltonian is

H2D = 1

2m∗
(
π2

x + π2
y

) + g∗μB

2
B⊥σz

+ g∗μBB‖
2

[σx cos(φ) + sin(φ)σy]

+ α

h̄
(πyσx − πxσy) + β

h̄
(πxσx − πyσy), (1)

where h̄ is the reduced Planck’s constant, m∗ is the effective
electron mass, g∗ is the effective g factor, μB is the Bohr
magneton, and σx, σy, and σz denote the usual Pauli matrices.
The angle θ describes the tilting of the magnetic field away
from the perpendicular direction. Throughout this paper we
choose B ≡ B⊥ to be fixed for all tilting angles, which is done
to ease the comparison between different tilting angles, with
the absolute value of the applied magnetic field B/ cos(θ ).
The strengths of the Rasbha and Dresselhaus SOIs are deter-
mined by the coefficients α and β, respectively. The momenta
are given by πx = px − eBy/2 and πy = py + eBx/2, where
e > 0 is the elementary electrical charge. Note that the gauge
is chosen such that B‖ drops out from the momenta once the
three-dimensional (3D) problem is projected onto the lowest
transverse level. Next, we introduce the ladder operators:

a = 	c√
2h̄

(πx − iπy), and a† = 	c√
2h̄

(πx + iπy), (2)

where 	c =
√

h̄
eB is the magnetic length. The ladder operators

obey the commutation relation [a, a†] = 1, as a consequence
of the canonical commutation relations [x, px] = ih̄ and
[y, py] = ih̄. The Hamiltonian then reduces to

H2D

h̄ωc
= a†a + 1

2
+ �̃

2

[
σz + tan(θ )

2
(σ+eiφ + σ−e−iφ )

]
+ β√

2h̄ωc	c

(a†σ+ + aσ−)

− iα√
2h̄ωc	c

(a†σ− − aσ+), (3)

where the Zeeman term �̃ = g∗μBB
h̄ωc

= g∗m∗
2m0

, with m0 being the
bare electron mass, inherited its sign from g∗, ωc = eB/m∗ is
the cyclotron frequency, and σ± = σx ± iσy. Although we use
a specific form in Eq. (3) corresponding to Rashba and (linear)
Dresselhaus couplings, the numerical procedure presented
here can be applied to general 2D Hamiltonians with nonzero
perpendicular magnetic fields that contain ladder operators
and Pauli matrices, e.g., topological insulators with linear
dispersion [12] and cubic Dresselhaus SOIs [16]. The standard
way of obtaining the spectrum of the Hamiltonian Eq. (3)
is by creating a matrix of dimension 2N × 2N , where N is
the number of eigenstates of a†a (i.e., a†a|m〉 = m|m〉, m =
0, 1, . . . , N − 1), in addition to accounting for the spin-degree
(i.e., σz|σ 〉 = σ |σ 〉, σ = ±1). The choice of N depends on the
number of eigenstates that are required for a given problem.
In the case of magnetotransport calculations in semiconduc-
tor quantum wells with densities ∼1012 cm−2 [26,31], the
required eigenstates are counted in the hundreds, and to cal-
culate those states accurately, the size of N should be ∼4
times larger [34], resulting in N ∼ 103. Although diagonal-
izing a single such matrix does not represent a computational
challenge, the diagonalization must be repeated for multiple
values of magnetic field (measured in the thousands), and
α, β, etc. Accounting for all this, calculating a set of mag-
netoresistance curves can lead to computational time around
multiple hours [35].

The method we introduce here is designed to efficiently
calculate the eigenenergies for a given n, which labels the
Landau levels. Before outlining the methods, we first dis-
cuss general properties of the Hamiltonian in Eq. (3). If
we have β = θ = 0, we can obtain exact eigenvalues (see
Appendix A):

εn,+ = n + 1 −
√

(1 − �̃)2

4
+ 4

εR

h̄ωc
(n + 1), (4)

εn,− = n +
√

(1 − �̃)2

4
+ 4

εR

h̄ωc
n, (5)

where εR = m∗α2

2h̄2 . These eigenvalues are plotted in Fig. 1(a)
for n = 150 (dashed orange curve). When the same system
is diagonalized numerically, the energy spectra take a saw-
tooth shape since the numerical diagonalization orders the
eigenvalues according to their size, and crossings turn into an-
ticrossings (black dotted lines). There is an underlying parity
symmetry for θ = 0, introduced in Refs. [36,37] for α = β

and later extended for systems with Rashba and Dresselhaus
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FIG. 1. Comparison of full diagonalization (black points)
and partial Hamiltonian (red and blue curves), for (a) α =
7.5 meV nm, β = 0, (b) α = 7.5 meV nm, β = 3.0 meV nm, and (c)
α = 7.5 meV nm, β = 3.0 meV nm, θ = π/3, and φ = 0. Other pa-
rameters are m∗ = 0.04, g∗ = −12, and n2D = 0.0176 nm−2 for
InAs-based systems [31].

couplings in Ref. [38]. This parity allows the spectrum to be
split into two separate subspaces that can be diagonalized sep-
arately, see Appendix B 1. When this is done, we obtain states
with different parities crossing each other, as they belong to
different parity subspaces (blue and red curves). However,
they anticross with other states that belong to the same parity
space.

In Fig. 1(b), a nonzero value of β = 3.0 meV nm is added,
which opens overall gaps in the spectrum [39] but leaves
some crossings unaffected, i.e., crossings of states that belong
to different parity subspace (see Appendix B 1). The spec-
trum now consists of pairs of states for each value of n and
s = ±1 which cross but anticross with adjacent states above
and below. Finally, in Fig. 1(c), an in-plane component of the
magnetic field is added with θ = π/3 and φ = 0. For this
case, the parity is no longer a good quantum number, i.e., the
parity operator does not commute with H2D, and extra anti-
crossings open between |n,+〉 and |n,−〉 states corresponding
to eigenenergies εn,+ and εn,+, respectively.

A. Numerical methods

Now we turn to describing the numerical diagonalization
procedure. As can be seen in Figs. 1(b) and 1(c), the eigen-
states are always pushed up or down by their couplings to
adjacent states. This results in each state following a unique
curve which can be tracked, as a function of 1/B, for all n.
Based on this, we introduce a partial diagonalization (PD)
outlined in Fig. 2, where n = 0, 1, 2 . . . is the Landau level
index of interest. The matrix representation of Eq. (3) can
be written as a block-tridiagonal matrix with diagonal 2 × 2
blocks:

[H2D]m,m

h̄ωc
=

[
m + 1

2 + �̃
2

�̃
2 tan(θ )eiφ

�̃
2 tan(θ )e−iφ m + 1

2 − �̃
2

]
, (6)

FIG. 2. The structure of HPD illustrated relative to the full matrix
H2D. For a given value of n, the partial matrix HPD is constructed
around matrix element [H2D]n,n.

and the off-diagonal 2 × 2 block is given by

[H2D]m,m+1

h̄ωc
= √

m + 1
1√

2h̄ωc	c

[
0 2β

−2iα 0

]
. (7)

With these, we construct the partial matrix HPD centered on
block n with NPD blocks above and below. The resulting
matrix has dimension 2(2NPD + 1) × 2(2NPD + 1).

If the parity is a good quantum number, i.e., θ = 0, then
each block in HPD is halved (i.e., becomes 1 × 1) when each
parity subspace is considered, see Appendix B 1 for details.
For states with n � NPD, the lower part of the partial ma-
trix is decreased accordingly, and for n = 0, only NNP states
above n are needed. With this, the entire spectrum can be
calculated for each value of n. To test the accuracy of this
procedure, we calculate the relative deviation between the
full numerical diagonalization ε[num]

n,s for N = 1000 and the
eigenstates obtained with the PD, ε[PD]

n,s , at B = 0.15 T for α =
7.5 meV nm, β = 3.0 meV nm, and θ = 0. Figure 3 shows our
results for NPD = 8, 12, 16, and 20. The value B = 0.15 T
corresponds to the typical lowest value of the magnetic field
where magneto-oscillations become visible in experiments.
This also corresponds to the case where the spin-orbit terms
in Eq. (3) (proportional to 1/

√
B) are relatively largest and

most numerically challenging, and the value of NPD is set
in this regime. For higher magnetic fields, the Hamiltonian
matrix becomes diagonally dominant and less numerically
challenging. Already for NPD = 16, the relevant eigenenergies
(first quarter of eigenvalues) have a relative deviation <10−10,
and for NPD = 20, the machine precision is reached for all
relevant eigenvalues.

As we will see in the next section, allowing n to take
noninteger values can be useful in calculating the DOS and
transport properties. As is discussed in Appendix B 1, this can
be implemented via the PD, i.e., one can calculate eigenen-
ergies εn+�x,s, where �x ∈ [−0.5, 0.5] is a real number. The
interval is set by the condition that εn+�x,s = εn+1−�x,s, i.e.,
�x = 0.5 corresponds to a crossing with the next state above,
and similarly, �x = −0.5 corresponds to a crossing with the
next state below.
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FIG. 3. Relative deviation between eigenstates obtained using
full numerical diagonalization with N = 1000, ε[num]

n,s , and the eigen-
states with the partial diagonalization ε[PD]

n,s as a function of NPD for
magnetic field B = 0.15 T. Parameter values are α = 7.5 meV nm,
β = 3.0 meV nm, and θ = 0. Other parameters are m∗ = 0.04, g∗ =
−12, and n2D = 0.0176 nm−2 for InAs-based systems [31].

III. DOS AND F FUNCTION

The eigenenergies of the Hamiltonian in Eq. (1) result in
a discrete spectrum, the well-known Landau levels [15]. The
resulting DOS is given by

D(E , B) = 1

2π	2
c

∞∑
n=0

∑
s

L[E − h̄ωcεns(B)], (8)

where 1/2π	2
c accounts for the Landau level degeneracy (per

spin), and L (x) describes broadening due to impurity scat-
tering [15]. Here, it is assumed that all levels are broadened
by a phenomenological parameter , e.g., δ(·) → L (·), for
Gaussian broadening with L (x) = exp(− x2

22 )/
√

2π2. In
addition, we assume that E = EF , where EF = h̄2πn2D/m∗
and n2D is the 2D electron density. Our goal is to rewrite the
DOS in a way that highlights the fast and slow oscillations,
which are not directly evident in Eq. (8). This is achieved by
using the Poisson summation formula [15,16,29,40], which
results in

δD(B) ≡ D(EF , B) − D0

D0

� 2
∞∑

l=1

L̃

(
l



h̄ωc

)
cos(l2πF+) cos(l2πF−), (9)

where D0 = h̄2

πm∗ is the zero-field DOS, L̃ is the cosine trans-
form of the broadening function, and the functions F± =
1
2 (F+ ± F−) represent the fast (+) and slow (−) parts of the
SdH oscillations, respectively. Details of this derivation are
found in Appendix C. The functions Fs = Fs(EF , B), with
s = ±1, are defined by the relation

εn,s(B) = EF

h̄ωc
⇔ n = Fs(EF , B), (10)

so determining Fs numerically becomes a root finding prob-
lem. If εn,s(B) is a continuous and differentiable function of
n, then one can always find n = Fn(EF , B), i.e., the noninteger

FIG. 4. (a) Energy level n = 150 using the partial diagonaliza-
tion (PD) algorithm, along with adjacent states (dashed black line)
for α = 7.5 meV nm and β = 0.0. The solid gray line shows EF /h̄ωc,
and its value at 1/B = 4.145 (gray circle). (b) The energy levels
εn,s(B) as a function of n showing the intersection with EF /h̄ωc

at 1/B = 4.145. Other parameters are m∗ = 0.04, g∗ = −12, and
n2D = 0.0176 nm−2 for InAs-based systems [31].

value of n that fulfills εn,s(B) = EF /h̄ωc [40]. In Fig. 4(a),
we plot a zoom-in of εn,s(B) along with EF /h̄ωc (gray solid
line). Accepting noninteger values of n allows the energy
levels to cross EF /h̄ωc for fixed values of 1/B and EF . The
dominant behavior of εn,s(B) with respect to n is linear (see
Appendix A), as is visible in Fig. 4(b). The energy levels
cross EF /h̄ωc at values n+ and n−, for εn,+(B) and εn,−(B),
respectively, which are the values of the corresponding Fs

functions: ns = Fs(EF , B).
As seen in Fig. 1(b), gaps open in the spectrum when

both α and β are nonzero. In Fig. 5(a), a zoom-in of
εn,s(B) is shown along with EF /h̄ωc (gray solid line) for

FIG. 5. (a) Energy level n = 150 using the partial diagonaliza-
tion (PD) algorithm for α = 7.5 meV nm and β = 3.0 meV nm. The
dashed curves correspond to α = 7.5 meV nm and β = 0. The solid
gray line shows EF /h̄ωc, and its value at 1/B = 4.145 (gray circle).
(b) The F function for α = 7.5 meV nm and β = 3.0 meV nm (solid
lines), and pure Rashba, β = 0 (dashed line). Other parameters are
m∗ = 0.04, g∗ = −12, and n2D = 0.0176 nm−2 for InAs-based sys-
tems [31].
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FIG. 6. (a) Energy level n = 150 using the partial diagonaliza-
tion (PD) algorithm for α = 7.5 meV nm, β = 3.0 meV nm, θ =
π/3, and φ = 0. The dashed curves correspond to α = 7.5 meV nm
and β = 0. The solid gray line shows EF /h̄ωc and its value at
1/B = 4.145 (gray circle). (b) The F function for α = 7.5 meV nm
and β = 3.0 meV nm (solid lines), and pure Rashba, β = 0 (dashed
line). Other parameters are m∗ = 0.04, g∗ = −12, and n2D = 0.0176
nm−2 for InAs-based systems [31].

α = 7.5 meV nm and β = 3.0 meV nm. The dashed curves
are the corresponding pure Rashba eigenenergies. Note the
sawtooth shape of the dashed curves since all states cross
in this case. The corresponding F functions are shown in
Fig. 5(b). The anticrossings in the spectrum are visible as a
rounding of the sawtooth shape, and level crossings corre-
spond to F− = 0.

It is instructive to look at the F± function in the case of
pure Rashba SOI:

F+ = EF

h̄ωc
+ 2εR

h̄ωc
− 1

2
= h

2e
n2D

1

B
− 1

2
+ 2εR

h̄ωc
, (11)

F− = −1

2
+

√
(1 − �̃)2

4
+ εREF

(h̄ωc)2
≈ m∗αkF

eh̄

1

B
, (12)

where kF = √
2πn2D, and the approximate sign in Eq. (12)

refers to the low field limit. Since the SdH oscillation fre-
quency in Eq. (11) is dominated by the term proportional to
n2D, we define the spin-orbit-related contribution to the fast
oscillations as

�F+ ≡ F+ −
(

h

2e
n2D

1

B
− 1

2

)
. (13)

This allows us to plot on the same graph the slow spin-orbit-
related oscillations described by F− and the spin-orbit-related
modification of the fast oscillation �F+. Note that the saw-
tooth shape in Fig. 5(b) for the case of pure Rashba SOI
(purple dashed curve) has a fixed slope ±m∗αkF

eh̄ . This is
equivalent to the result in Eq. (12), which is linear in 1/B,
since cos(2lπF−) = cos(−2lπF−), i.e., the sign of the F−
slope is irrelevant. Finally, we consider the influence of an
in-plane component of the magnetic field, i.e., θ �= 0. In this
case, the parity symmetry no longer holds, and all states
anticross, as seen in Fig. 6(a). This results in no states simul-
taneously crossing EF , due to the level repulsion. Note that
F− = 0 corresponds to both pseudospin species simultane-

ously crossing EF at a given B field. These new anticrossings
have a direct effect on the F− function here, which never
reaches zero, as opposed to Fig. 5(b), where F− takes both
positive and negative values. The F− thus contains informa-
tion on how close to (or far from) each other states with
opposite s cross EF . This property is useful when interpreting
so-called coincidence measurements [41] that have been used
to map out level crossings in SdH oscillations in 2DEGs in
tilted magnetic fields [42,43].

IV. FITTING MAGNETOTRANSPORT DATA

The oscillation frequencies introduced in the previous sec-
tion allow for a convenient separation of tasks when analyzing
the magneto-oscillations. In 2D systems, the longitudinal re-
sistance is proportional to the DOS [15], so the previous
analysis applies directly to their magneto-oscillations. The
rapid oscillations, i.e., SdH oscillation frequency f SdH =
h
2e n2D, can be easily extracted by calculating the frequency
spectrum via fast Fourier transform, thus yielding the 2DEG
density n2D [21,31]. The remaining parameters (α, β, and )
can be found by fitting the slow spin-orbit-related oscillations.
We outline below this procedure for fitting realistic magne-
toresistance data.

Our starting point is Eq. (8), which we use to generate
realistic magnetoresistance data like the experimental data
in Fig. S4 in Ref. [31]. We use parameters  = 0.45 meV,
n2D = 0.019 nm−2 (corresponding to EF = 114 meV), α =
7.20 meV nm, and β = 2.40 meV nm, and add a slight back-
ground and noise components to better mimic realistic data.
The resulting Rxx(B) is shown in Fig. 7(a), where a slight
upward slope is barely discernible. From the Rxx data, the
normalized magneto-oscillation is calculated:

�Rxx = Rxx(B) − Rxx;0

Rxx;0
, (14)

where Rxx;0 is defined as the resistance at the magnetic field
where the oscillations have been fully suppressed, in this case,
for B � 0.25 T. This is plotted in Fig. 7(b), where the extrema
have been marked with black dots, and central points (zeros)
are marked with red dots. The background signal showing a
slight upward trend is now more visible. The data are brought
to the proper normalized magneto-oscillation form, shown
in Fig. 7(c), by subtracting the background using a simple
linear interpolation between the middle points [red points in
Fig. 7(b)]. At this point, the data can be directly fitted to the
slow oscillating terms in Eq. (9) using only a small number of
points (black dots). Due to background compensation, we in-
troduce an extra parameter R0, so the resulting slow envelope
function used for fitting is [38,44]

δρxx(B) = 4R0L̃

(


h̄ωc

)
cos[2πF−(B; α, β )]. (15)

Fitting the data in Fig. 7(c) to Eq. (15) results in a slow
envelope shown in Fig. 8(a). The results of the fitting yield
parameter values R0 = 0.65 ± 0.07, Bq = 0.71 ± 0.03 T, α =
(7.24 ± 0.06) meV nm, and β = (2.5 ± 0.3) meV nm. The
fitting only takes a few tens of seconds and a few attempts
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FIG. 7. (a) Magnetoresistance data generated using Eq. (8) with
 = 0.45 meV, n2D = 0.019 nm−2, α = 7.20 meV nm, and β =
2.40 meV nm. Slight background slope and random noise is to mimic
realistic measurements. (b) Normalized magneto-oscillations show-
ing slope due to background. Extrema and zeros are indicated by
black and red dots, respectively. (c) Proper normalized magneto-
oscillations after subtracting background (see Sec. IV for details).
Other parameters are m∗ = 0.04, g∗ = −12 [31].

FIG. 8. (a) The normalized magneto-oscillations along with fit-
ted curve through six data points (black dots). Resulting fitted param-
eters are α = (7.24 ± 0.06) meV nm and β = (2.5 ± 0.3) meV nm.
(b) Normalized magneto-oscillations generated using Eq. (8) with
 = 0.45 meV, α = 3.30 meV nm, and β = 5.60 meV nm (see main
text). (c) Zoom-in on reference points and fitted curve which yields fit
values α = (3.33 ± 0.03) meV nm and β = (5.63 ± 0.02) meV nm.

for finding a good starting point for the fitting parameters.
Note that the time to generate the full data took a couple of
hours (on the same computer). Attempting to fit real trans-
port data using Eq. (8), which requires calculating the whole
spectrum εn,s(B) for all B values to capture both fast and slow
oscillations, would thus be prohibitively time consuming. Our
method circumvents this problem by extracting the important
slow spin-orbit-related oscillations via F−(B), which are eas-
ily fitted using only 5–10 magnetic field points.

Finally, we point out that, for cases where Rashba and
Dresselhaus SOI parameters are close to each other in value,
the slow part of the magneto-oscillations does not cross zero,
i.e., there are no beating nodes [38]. This can be seen in
magneto-oscillation data in Fig. 8(b) generated using α =
3.30 meV nm and β = 5.60 meV nm. The background can be
subtracted using center points between the red and black dots.
In Fig. 8(c), a zoom-in of the reference points and fitted curve
is shown. The fit values are α = (3.33 ± 0.03) meV nm and
β = (5.63 ± 0.02) meV nm, which are in very good agree-
ment with the parameter values used to generate the original
data. Note that, in both cases of Figs. 8(a) and 8(b), the
reference points fulfill δρxx < 0.4, which ensures that the
higher harmonics can be neglected, due to the exponential
suppression [38].

V. CONCLUSIONS

In this paper, we presented a method to efficiently calculate
the relevant energy spectrum for SdH magneto-oscillation
analysis. We showed that the numerical procedure along
with the Poisson summation formula allow for an efficient
calculation and a better understanding of the fast and slow
magneto-oscillations. The spin-orbit parameters α and β and
the Landau level broadening  can be uniquely extracted from
F−, which oscillates slowly. To illustrate our method, we
applied it to realistic magnetotransport data and found that
fitting the slow oscillations yielded very quick and accurate
fit results. The slow oscillations in F− can also shed light on
so-called coincidence measurements on tilted magnetic fields.
Our method does not rely on finding beating nodes, so it can
be used to fit data in cases of α and β being comparable in size.
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APPENDIX A: εn,s AND Fs

IN THE CASE OF PURE RASHBA

The Hamiltonian in Eq. (3) with β = θ = 0 results in the
pure Rashba Hamiltonian:

HR

h̄ωc
=

(
a†a + 1

2

)
+ �̃

2
σz + α√

2h̄ωc	c

(a†σ− + aσ−).

(A1)

115303-6



EFFICIENT METHOD FOR ANALYZING … PHYSICAL REVIEW B 109, 115303 (2024)

This can be written in 2 × 2 subspaces {|n,↑〉, |n + 1,↓〉},
n = 0, 1, . . . , [38], which results in the matrix:

HR;2×2

h̄ωc
=

⎡⎣ n + (1+�̃)
2

2α√
2h̄ωc	c

(n + 1)
2α√

2h̄ωc	c
(n + 1) n + 1 + (1−�̃)

2

⎤⎦

= (n + 1) +
⎡⎣ (1−�̃)

2

√
2α

h̄ωc	c
(n + 1)

√
2α

h̄ωc	c
(n + 1) − (1−�̃)

2

⎤⎦, (A2)

with eigenvalues:

εn,+ = (n + 1) −
√

(1 − �̃)2

4
+ 2m∗α2

h̄ωch̄2 (n + 1) (A3)

εn+1,− = (n + 1) +
√

(1 − �̃)2

4
+ 2m∗α2

h̄ωch̄2 (n + 1). (A4)

The above equations reduce to Eqs. (4) and (5) using εR =
m∗α
2h̄2 . The labeling of the eigenstates is chosen such that, in the
limit α → 0, the eigenstates evolve into the correct eigenstates
in the absence of SOI: εn,+ → ε0

n,↑ and εn+1,− → ε0
n+1,↓.

The definition of the DOS in Eq. (8) contains a sum over
n = 0, 1, 2, . . . which can formally be written as an integral
over the continuous variable x via the Poisson summation for-
mula (also known as a trace formula [40]) in Eq. (C1). Since
the eigenenergies εn,s are a well-defined function of n, the
index n can be replaced by a continuous variable x ∈ [0,∞).
The derivative of the eigenenergies with respect to x can then
be calculated:

∂εx,+
∂x

= 1 −
2εR
h̄ωc√

(1−�̃)2

4 + 4εR
h̄ωc

(x + 1)

, (A5)

≈ 1 −
√

εR

EF
≈ 1, (A6)

where we used x + 1 ≈ EF
h̄ωc

. The same argument applies to

εx,−, i.e., ∂εx,−
∂x ≈ 1. In the case of nonzero β and/or θ , Eq. (3)

will lead to anticrossings, which tend to flatten the square root
behavior of the energy levels, see Figs. 1(b) and 1(c), thus
making the approximation in Eq. (A6) even better.

APPENDIX B: PARTIAL HAMILTONIANS AND PARITY

Here, we describe the form of the partial Hamiltonian in
the case of parity symmetry [38] and in the absence of that
symmetry.

1. Matrix elements and parity symmetry

As was outlined in Ref. [38], the full basis |m, σ 〉 can be
split in two according to the eigenvalues of the parity operator:

P̂ = exp

{
iπ

[
a†a + 1

2
(σz − 1)

]}
, (B1)

which are P = ±1. The basis states of the resulting parity
subspace are then

P = +1 : {|0,↑〉, |1,↓〉, |2,↑〉, |3,↓〉, |4,↑〉, . . . }, (B2)

P = −1 : {|0,↓〉, |1,↑〉, |2,↓〉, |3,↑〉, |4,↓〉, . . . }. (B3)

The Hamiltonian matrix for each P = ±1 subspace becomes
a tridiagonal matrix with diagonal elements:

[
H (+1)

2D

]
k,k = k + 1

2
+ �̃

2
(−1)k, (B4)

[
H (−1)

2D

]
k,k = k + 1

2
− �̃

2
(−1)k, (B5)

where k = 0, 1, 2, . . . labels the basis states in subspace P =
±1. The alternating sign of the Zeeman term reflects the
alternating ↑ and ↓ in the basis states in Eqs. (B2) and (B3).
The off-diagonal matrix elements are given by[

H (+1)
2D

]
k,k+1 = √

k + 1

{
iα√

2h̄ωc	c

[1 + (−1)k]

+ β√
2h̄ωc	c

[1 − (−1)k]

}
, (B6)

[
H (−1)

2D

]
k,k+1 = √

k + 1

{
iα√

2h̄ωc	c

[1 − (−1)k]

+ β√
2h̄ωc	c

[1 + (−1)k]

}
. (B7)

The [1 ± (−1)k] terms take alternating values 0 and 2, which
results in [H (+1)

2D ]k,k+1 ∝ α for even values of k but, for odd
k, gives [H (+1)

2D ]k,k+1 ∝ β. For the P = −1 parity subspace,
the matrix elements in Eq. (B7), the even/odd pattern for
k is switched. Compare this with Eq. (7) in the absence of
parity symmetry, where each 2 × 2 block contains both α

and β.
The partial Hamiltonian for P = +1 centered on the nth

Landau level is constructed from Eqs. (B4) and (B6):[
H (+1)

PD (n)
]

m,m =
[

n + (m − NPD − 1) + 1

2

]
+ �̃

2
(−1)(n̄+m−NPD−1), (B8)[

H (+1)
PD (n)

]
m,m+1 =

√
(n + m − NPD − 1) + 1

×
{

iα√
2h̄ωc	c

[1 + (−1)(n̄+m−NPD−1)]

+ β√
2h̄ωc	c

[1 − (−1)(n̄+m−NPD−1)]

}
,

(B9)

where n̄ = round(n) and m ∈ [1, 2NPD + 1]. The eigenenergy
ε(+1)

n,s is obtained as the (NPD + 1)th eigenvalue of H (+1)
PD (n).

In a similar fashion, the partial Hamiltonian for P = −1,
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centered on the nth Landau level, is given by[
H (−1)

PD (n)
]

m,m =
[

n + (m − NPD − 1) + 1

2

]
+ �̃

2
(−1)(n̄+m−NPD−1), (B10)[

H (−1)
PD (n)

]
m,m+1 =

√
(n + m − NPD − 1) + 1

×
{

iα√
2h̄ωc	c

[1 − (−1)(n̄+m−NPD−1)]

+ β√
2h̄ωc	c

[1 + (−1)(n̄+m−NPD−1)]

}
,

(B11)

and the eigenenergy ε(−1)
n,s is obtained as the (NPD + 1)th

eigenvalue of H (−1)
PD (n).

2. Matrix elements without parity symmetry

In the absence of parity symmetry, i.e., for θ �= 0, the
matrix elements in Eqs. (6) and (7) are used to construct the
partial matrix centered on the nth Landau level:

[HPD(n)]m,m =
[

(n + m − NPD − 1) + 1

2

][
1 0
0 1

]

+
[

�̃
2

�̃
2 tan(θ )eiφ

�̃
2 tan(θ )e−iφ − �̃

2

]
, (B12)

[HPD(n)]m,m+1 =
√

(n + m − NPD − 1) + 1
1√

2h̄ωc	c

×
[

0 2β

−2iα 0

]
, (B13)

where m ∈ [1, 2NPD + 1]. The eigenenergy pair εn,+ and εn,−
is obtained as eigenvalues of HPD(n) number (2NPD + 1) and
(2NPD + 2).

APPENDIX C: POISSON’S SUMMATION FORMULA

Here, we will apply the Poisson summation formula:

∞∑
n=0

f (n) =
∫ ∞

0
dx f (x) + 2

∞∑
l=1

∫ ∞

0
dx f (x) cos(l2πx),

(C1)

to the sum over the broadened Landau levels in Eq. (8). Start-
ing with one spin species s:

∞∑
n=0

L[EF − h̄ωcεn,s(B)]

=
∫ ∞

0
dxL[EF − h̄ωcεx,s(B)]

+
∞∑

l=1

∫ ∞

0
dxL[EF − h̄ωcεx,s(B)] cos(l2πx). (C2)

Next, we introduce a change of variables:

u = EF − h̄ωcεx,s(B), (C3)

du

dx
= −h̄ωc

∂εx,s

∂x
. (C4)

The derivative ∂εx,s

∂x = 1 + O(
√

εR/EF ) when evaluated at
εx,s ≈ EF /h̄ωc:

∞∑
n=0

L[EF − h̄ωcεn,s(B)]

= 1

h̄ωc

{∫ ∞

−∞
duL (u) + 2

∞∑
l=1

∫ ∞

−∞
duL (u)

× cos [l2πFs(EF − u, B)]

}
. (C5)

To keep the equations as concise as possible, we will now drop
the B argument in both Fs and εx,s. The integrand in Eq. (C5)
has width ∼, and since EF � , we can use first-order
Taylor expansion of the Fs function in terms of u:

Fs(EF − u) = Fs(EF ) − F ′(EF )u + O(u2)

≈ Fs(EF ) − 1

h̄ωc
u, (C6)

where we have used dFs (EF )
dEF

= 1
h̄ωc

, which is a consequence of
∂εn,s

∂n = 1. This can be shown using that n = Fs(EF ) is the in-
verse function of EF = h̄ωcεn,s, i.e., n = Fs(h̄ωcεn,s). Taking
the derivative of this relation with respect to n results in

1 = dFs(EF )

dEF
h̄ωc

∂εn,s

∂n
≈ dFs(EF )

dEF
h̄ωc, (C7)

which yields the relation below Eq. (C6). We can thus write
Eq. (C5) as

∞∑
n=0

L (EF − h̄ωcεn,s)

= 1

h̄ωc

{∫ ∞

−∞
duL (u) + 2

∞∑
l=1

cos[l2πFs(EF )]

×
∫ ∞

−∞
duL (u) cos

(
l2π

u

h̄ωc

)}

= 1

h̄ωc

{
1 + 2

∞∑
l=1

cos[l2πFs(EF , B)]L̃

(
l



h̄ωc

)}
,

(C8)

where the symmetric broadening will make the sine term ap-
pearing in the Taylor expansion vanish. The cosine transform
is defined as

L̃

(
l



h̄ωc

)
=

∫ ∞

−∞
duL (u) cos

(
l2π

u

h̄ωc

)
, (C9)
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which for Gaussian broadening, leads to

L̃

(
l



h̄ωc

)
= exp

(
−

[√
2π l



h̄ωc

]2
)

= exp

(
−l2

B2
q

B2

)
,

(C10)

where Bq = √
2π m∗

h̄e . Finally, applying this to Eq. (8) and
using the trigonometric relation:

cos(l2πF+) + cos(l2πF+)

= 2 cos

(
l2π

F+ + F−
2

)
cos

(
l2π

F+ − F−
2

)
, (C11)

and 1
2π	2

c

1
h̄ωc

= h̄2

2πm∗ results in Eq. (9).
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