
PHYSICAL REVIEW B 109, 115301 (2024)

Disorder-enhanced layer Hall effect in a magnetic sandwich heterostructure
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The layer Hall effect is a type of Hall effect where electrons on the top and bottom layers deflect in
opposite directions. In this paper, we investigate the disorder effects on the layer Hall effect in a magnetic
sandwich heterostructure that supports the axion insulator and normal insulator phases. We demonstrate that
the layer Hall effect in the axion insulator phase is robust against weak disorder. Most interestingly, we find
that the layer Hall effect in the normal insulator phase is significantly enhanced with increasing disorder
strength. Theoretically, the disorder-enhanced layer Hall effect at weak disorder is explained by using the Born
approximation. Experimentally, we suggest the disorder-enhanced layer Hall effect could be detected by applying
a perpendicular electric field.
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I. INTRODUCTION

An electron possesses multiple degrees of freedom, such
as charge, spin, and valley. These distinct degrees of freedom
lead to different types of Hall effects such as the anomalous
[1], spin [2], and valley [3] Hall effects. Moreover, electrons
possess spatial degrees of freedom, which leads to another
type of Hall effect, the layer Hall effect [4–10]. The layer Hall
effect describes the electrons in different layers spontaneously
deflect in opposite directions. The layer Hall effect was pro-
posed and experimentally observed in the antiferromagnetic
topological insulator MnBi2Te4 [6]. Later, the layer Hall effect
was proposed in various materials, such as MnSb2Te4 [7,8],
valleytronic van der Waals bilayers [9], and multiferroic two-
dimensional materials [10].

Previous studies have revealed that the layer Hall effects
in the axion insulator are significantly enhanced compared to
that in normal insulators [6,7]. This phenomenon is attributed
to the nontrivial band topology in the axion insulator, which
manifests strong hidden layer-locked Berry curvature and the
half-quantized surface anomalous Hall effect [11–13], lead-
ing to an enhanced layer Hall effect. This feature offers the
possibility to observe the significant layer Hall effect in the
antiferromagnetic topological insulator MnBi2Te4 in recent
experiments [6,7].

Disorder plays a crucial role in determining the transport
in low-dimensional electronic systems [14–18]. Tremendous
efforts have been devoted to investigating the disorder effects
on different types of Hall effects, such as the anomalous
Hall effect [19,20], valley Hall effect [21,22], spin Hall ef-
fect [23,24], and quantum Hall effect [25,26]. Moreover, the
disorder-induced topological phase, also termed the topologi-
cal Anderson insulator (TAI), was proposed by Li et al. [27].
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Later, disorder-induced topological effects were proposed
in various systems [28]. Furthermore, the TAI phase had
been observed experimentally in one-dimensional disordered
atomic wires [29], photonic platforms [30–32], a quan-
tum simulator on a superconducting-circuit device [33], and
acoustic systems [34]. However, a systematic study of disor-
der effects on the layer Hall effect is still absent.

In this paper, we study the disorder effects on the layer Hall
effect in a sandwich heterostructure of a magnetically doped
system. Depending on the parameter, we find that the system
supports the normal insulator and the axion insulator phases.
We demonstrate the layer Hall effect is robust against weak
disorder in the axion insulator phase. Remarkably, we reveal
that the layer Hall effect in the normal insulator phase can
be significantly enhanced by increasing the disorder strength.
The disorder-enhanced layer Hall effect is explained by us-
ing the Born approximation. Finally, we propose that the
disorder-enhanced layer Hall effect can be measured by using
an external electric field.

This paper is organized as follows. In Sec. II A, we present
the Hamiltonian that supports the normal insulator and axion
insulator phases. Then, we adopt the layer Hall conductance
to characterize the layer Hall effect in Sec. II B. The disor-
der effects on the layer Hall effect are numerically studied
in Sec. III A. In Sec. III B, the disorder-enhanced layer Hall
effect is theoretically explained by the Born approximation.
In Sec. III C, we propose that the layer Hall effect can be
experimentally detected by using a perpendicular electric
field. Lastly, a brief discussion and summary are presented in
Sec. IV.

II. MODEL AND METHOD

A. Model

To conduct numerical investigations on the layer Hall
effect, we use the following four-band tight-binding
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Hamiltonian defined on a cubic lattice [35,36]:

H =
∑

i

c†
i M0ci +

∑
i,α=x,y,z

(
c†

i Tαci+α + c†
i+αT †

α ci
)
, (1)

where Tα = Bσ0τz − i A
2 σατx describe the hopping term be-

tween different sites and M0 = (M − 6B)σ0τz + m(z)σzτ0.
m(z) denotes the magnitude of the magnetization introduced
in the z layer, which acts as an effective Zeeman field. The
lattice constant is taken to be unity. B and A are model pa-
rameters. In the following calculations, we fix the parameters
as A = 0.5 and B = 0.25. σ and τ are Pauli matrices repre-
senting spin and orbital, respectively. M determines the Dirac
mass of the system.

In our numerical calculations, we adopt the layer Hall
conductance σxy(z) to characterize the layer Hall effect
(see Appendix A). We take m(z) = mz for z = 1, 2, m(z) =
−mz for z = nz − 1, nz, and m(z) = 0 elsewhere. The system
breaks the inversion symmetry P and time-reversal symmetry
T symmetries but preserves the global space-time PT sym-
metry (see Appendix B), which guarantees that the total Hall
current is zero [37].

Next, we show that the value of M plays a significant role
in determining the topological nature of the system as well
as the strength of the layer Hall effect. First, let us consider
an infinite sample and neglect the magnetization effects. The
topology nature of the system is captured by the axion angle
θ [38–40]. When M < 0, the system corresponds to a normal
insulator phase with θ = 0. When M > 0, the system corre-
sponds to a topological insulator with θ = π .

Now, we consider a thick-enough film. The topological
insulator phase hosts gapless surface Dirac cones on the top
and bottom surfaces inside the insulating gap [41]. When
local time-reversal symmetry is broken on a certain surface
(e.g., through magnetic doping), the gapless surface Dirac
state will open a gap, allowing for a half-quantized surface
Hall conductance [42]. Moreover, it is noted that the sign of
the half-quantized surface Hall conductance depends on the
surface magnetization alignment.

As shown in Fig. 1(a), we introduce the magnetization
with opposite alignments on the top and bottom surface lay-
ers. For a topological insulator, each of the top and bottom
surfaces with antiparallel magnetization alignment can host
a half-quantized Hall conductance, but with opposite signs,
which establishes the axion insulator phase. Recently, the
axion insulator phase has attracted much attention because it
possesses a unique electromagnetic response from the massive
Dirac surface states, giving rise to unique phenomena such as
a quantized topological magnetoelectric effect [38–45].

In summary, for a thick-enough axion insulator film, the
top and bottom surface layers host Hall current propagating
along the opposite directions, which establishes the significant
layer Hall effect in the axion insulator phase. Such a signature
is absent in a 3D normal insulator, as long as the Fermi energy
is located inside the insulating gap.

Moreover, it should be noted that the layer Hall effect is
characterized by the hidden layer Berry curvature [6,7]. A
system with nonvanishing layer Hall conductance does not
indicate the existence of the layer Hall current. In our opinion,
it indicates the existence of the hidden layer Hall current that

FIG. 1. (a) Schematic illustration of the magnetically doped
sandwich structure. Here, we introduce the magnetization with oppo-
site alignments on the top and bottom surface layers. The layer Hall
effect in the normal insulator phase shown in (b) is much weaker
compared to that in the axion insulator phase shown in (c). (d)–(f)
The layer Hall conductance σxy(z) as a function of the layer index z
for different M and film thicknesses (d) nz = 10, (e) nz = 20, and
(f) nz = 30, respectively. (g) σt/b as functions of the Dirac mass
M with different film thickness. Here, σt/b correspond to the Hall
conductance of the top and bottom surface layers. In (d)–(g), we take
periodic boundary conditions along the x and y directions, and open
boundary conditions along the z direction. The Fermi level is 0.01.

can be revealed by PT -symmetry breaking, such as applying
a perpendicular electric field. In this sense, a normal insulator
is allowed to host a layer Hall effect.

B. Layer Hall effect

In the above content, we focus on a thick film. Now,
we study the case of a thin film version. It is noted that
the quantum confinement has been studied in different kinds
of topological insulators, including nonmagnetic topolog-
ical insulators [46–49] and antiferromagnetic topological
insulators [50].

Figures 1(d)–1(f) show the layer Hall conductance σxy(z)
as a function of the layer index z, with different film thickness
nz. Here, different colors correspond to different values of the
Dirac mass M. It is observed that the layer Hall effect with
M > 0 is significantly enhanced compared to that with M <

0. Such a phenomenon is observed more clearly in Fig. 1(g),
where we demonstrate σt and σb as functions of M. Here
σt = ∑5

z=1 σxy(z) and σb = ∑nz

z=nz−4 σxy(z) correspond to the
Hall conductance contributed from the top and bottom lay-
ers. When M is large enough, the surface Hall conductances
reach the half-quantized plateau, with σt/b = ±e2/2h. As M
decreases from 0.5 to −0.5, the surface Hall conductance
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gradually decreases and finally diminishes. Moreover, there is
a critical point (M = 0), which is thickness independent, that
separates two size-dependent regions with opposite trends as
the film thickness increases. This indicates that in the ther-
modynamic limit nz → ∞, the surface Hall conductance is
±e2/2h (0) as long as M > 0 (M < 0) [see the black dashed
line in Fig. 1(g)].

In the thermodynamic limit nz → ∞, as M changes from
M < 0 to M > 0, the system should undergo a topological
phase transition from a normal insulator (with no surface
Hall conductance) to an axion insulator (with a half-quantized
surface Hall conductance). When M changes from M < 0 to
M > 0, the plateau-to-plateau transition shown in Fig. 1(g)
is in accordance with the above theoretical predictions.
However, for a thin film with a finite thickness nz, the
plateau-to-plateau transitions are destroyed due to the quan-
tum confinement effect. Instead, we observe that the surface
Hall conductance evolves from 0 to ±e2/2h as M increases.
As the thickness increases, the corresponding curve becomes
increasingly sharp.

The axion insulators have been confirmed in the anti-
ferromagnetic topological insulators MnBi2Te4 [51,52] and
magnetic topological insulators sandwich structures such as
magnetically doped (Bi,Sb)2Te3 [44,45,53,54]. The layer Hall
effect has been studied in previous studies in the antiferro-
magnetic topological insulator MnBi2Te4 [6,7]. Our findings
regarding the layer Hall effect in the heterostructure of the
magnetically doped system are in accordance with the previ-
ous studies on MnBi2Te4.

Moreover, the emergent layer Hall effect with M < 0 orig-
inates from the crossover from a normal insulator to an axion
insulator. This does not indicate that adding magnetization
in the top and bottom surfaces of a general normal insulator
will render it conductive and accessing its valence/conduction
band does not guarantee surface conduction.

III. DISORDER EFFECT

A. Numerical results

Now we study the disorder effects on the layer Hall
effect. We introduce the Anderson disorder to the system
with �H = ∑

i Uiσ0τ0c†
i ci, where Ui is uniformly distributed

within [−W,W ], with W being the disorder strength. Fig-
ure 2(a) shows the surface Hall conductances σt/b as functions
of the disorder strength W for the axion insulator phase with
M = 0.4. With increasing the disorder strength, the surface
Hall conductances keep the half-quantized value until the
disorder strength exceeds about W = 0.9. Therefore, we show
that the layer Hall effect in the axion insulator phase is
robust against weak disorder. Further increasing the disor-
der strength, the half-quantized surface Hall conductance is
suppressed by disorder, then gradually decreases and finally
collapses to zero.

While for a normal insulator phase with M = −0.15
[Fig. 2(b)], in the clean limit, the surface Hall conductance is
much smaller compared to that of the axion insulator phase
shown in Fig. 2(a). With increasing disorder strength, the
disorder-averaged surface Hall conductance first increases,
then approaches the half-quantized value with σt/b = e2/2h,

FIG. 2. (a), (b) σt/b as functions of the disorder strength W in
(a) the axion insulator phase with the Dirac mass M = 0.4 and (b) the
normal insulator phase with M = −0.15. (c) σt as a function of W
and M. In (c), the black dashed line corresponds to σt/b = e2/4h,
which is obtained by the Born approximation in Eq. (4). In the
numerical calculations, we take periodic boundary conditions along
the x and y directions and open boundary conditions along the z
direction. The system size is taken as nx = ny = 20 and nz = 10.
In (a) and (b), the error bars show the standard deviation of the
conductance for 200 samples. In (c), each point is obtained after
averaged on 15 independent disorder configurations. The Fermi level
is 0.01.

and finally decreases. It is noted that the nearly quantization
of the disorder-averaged surface Hall conductance is not a co-
incidence. Such a phenomenon can be explained by the Born
approximation explained in the next section, where the disor-
der is regarded as an effective medium that modifies the value
of M.

Figure 2(c) shows the surface Hall conductance σt as a
function of the disorder strength W and the topological mass
M. The disorder-induced topological phase transitions can be
demonstrated more clearly. It is observed that the disorder-
enhanced layer Hall effect emerges over a broad range of
disorder strength. Eventually, for a large disorder strength, the
layer Hall effect disappears.

B. Born approximation

The disorder-enhanced layer Hall effect can be explained
by using the effective medium theory based on the Born
approximation in which high-order scattering processes are
neglected [55]. In the Born approximation, the disorder effect
is investigated perturbatively and described by the self-energy
� of the disorder-averaged effective medium

(EF − H0(k) − �)−1 = 〈(ẼF − H̃ (k))−1〉, (2)
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where EF is the Fermi energy and

H0(k) =
∑

z

c†
z [Mσ0τz + m(z)σzτ0 + 2B(cos kx

+ cos ky − 3)σ0τz + A(sin kxσx + sin kyσy)τx]cz

+
∑

z

(
c†

zTzcz+1 + c†
z+1T †

z cz
)

(3)

is the momentum-space Hamiltonian of the magnetic system
with the confinement imposed along the z direction. ẼF and
H̃ (k) correspond to the renormalized Fermi energy and renor-
malized Hamiltonian due to the self-energy � induced by
disorder. The self-energy � is expressed through the follow-
ing integral equation [55]:

� = W 2

12π2

∫
FBZ

dk[EF − H0(k) − � + iη]−1, (4)

where η is an infinitesimal number. This integration is over the
first Brillouin zone (FBZ). We will use the lowest-order Born
approximation, which means setting � = 0 on the right-hand
side of Eq. (4).

Through numerical calculations, we observe that the self-
energy has the following form:

� =
∑

z

c†
z (�0σ0τ0 + �Mσ0τz )cz. (5)

It is noted that both the Fermi energy EF and the self-energy
term �0 are expressed in terms of σ0τ0, and the Dirac mass
M and the self-energy term �M are expressed in terms of
σ0τz. Thus, the Fermi energy EF and Dirac mass are renor-
malized by disorder with ẼF = EF − �0 and M̃ = M + �M ,
respectively. By calculating the Hall conductance of the
renormalized Hamiltonian H̃ (k) = H (k) + ∑

z c†
z �Mσ0τzcz,

we obtain the black dashed line in Fig. 2(c). The results
based on the Born approximation are in agreement with the
numerical results. This indicates that the disorder is regarded
as an effective medium that modifies the value of M, which
give rise to the disorder-enhanced layer Hall effect.

C. Experimental proposal for detecting the disorder-enhanced
layer Hall effect

The layer Hall effect in the axion insulator phase has
been observed in the antiferromagnetic topological insulator
MnBi2Te4 [6] by measuring the emergent Hall conductance,
which is a result of the broken PT symmetry in the presence
of the electric field. Here, we suggest that the disorder-
enhanced layer Hall effect can be experimentally detected by
applying an external electric field.

Figure 3 shows the Hall conductance σxy = ∑nz

z=1 σxy(z) as
functions of the Fermi energy EF for different external electric
fields V and disorder strengths W . In the clean limit (i.e.,
W = 0), the electric field induces a nonzero Hall conductance
in both the axion and normal insulator phases [Figs. 3(a) and
3(e)]. However, the electric-field-induced Hall conductance
exhibits distinct characteristics in the two systems. In the
axion insulator, the induced Hall conductance can occur when
the Fermi energy resides within the bulk band gap [Fig. 3(a)].
Such a signature is absent in the normal insulator phase, where
the induced Hall conductance emerges only when the Fermi

FIG. 3. Hall conductance as functions of the Fermi energy EF ,
for different voltages V and disorder strengths W . (a)–(d) Axion
insulator phases with Dirac mass M = 0.15. (e)–(h) Normal insu-
lator phases with M = −0.15. In the numerical calculations, we
take periodic boundary conditions along the x and y directions and
open boundary condition along the z direction. The system size is
nx = ny = 20 and nz = 10. Here, the area enclosed by the black
dashed lines corresponds to the bulk band gap without the electric
field and the disorder effect.

energy is near the bulk band edge [Fig. 3(e)]. Furthermore,
for a certain Fermi surface, the induced Hall conductance has
an opposite sign compared to that in normal insulators.

The mechanism is explained in Figs. 4(a), 4(e), and
Appendix C. In the absence of the electric field, the two
systems preserve the PT symmetry and the energy states
are double degenerate. The PT symmetry guarantees that
the Hall conductance of the system is zero. The electric field
breaks the PT symmetry, leading to an energy offset between
the degenerate bands and enabling the emergence of the Hall
conductance (this is explained more clearly in Appendix C).
On the other hand, the axion insulators host surface state
inside the bulk gap. Once the electric field is introduced, the
compensated nature of the occupied bands is destroyed, which
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FIG. 4. Energy spectrum as a function of kx at ky = 0 for dif-
ferent disorder strengths W . Here, the color scheme indicates the
Berry curvature distribution. (a)–(d) Axion insulator phases with
Dirac mass M = 0.15. (e)–(h) Normal insulator phases with M =
−0.15. The film thickness is taken as nz = 10 and the strength of
the voltage is V = 0.02. Here, the area enclosed by the black dashed
lines corresponds to the bulk band gap without the electric field and
the disorder effect. In (b)–(d) and (f)–(h), the spectrum for different
disorder strengths is evaluated from the renormalized Hamiltonian
H + � by using the Born approximation in Eq. (4).

results in a nonzero Hall conductance when the Fermi energy
crosses the spilt surface states located within the bulk gap
[Fig. 4(a)]. However, in the normal insulator, the induced Hall
conductance is only observed when the Fermi energy crosses
the bulk bands because there is no in-gap state [Fig. 4(e)].
Moreover, since the occupied bands are dominated by op-
posite Berry curvatures [Figs. 4(a) and 4(e)], the sign of the
induced Hall conductance is of opposite signs for the axion
and normal insulators for a certain Fermi energy [Figs. 3(a)
and 3(e)].

When disorder is introduced, for both the axion and nor-
mal insulator phases, the regimes with nonvanishing Hall
conductance appear more close to the Dirac point (EF = 0)

[Figs. 3(b)–3(d) and Figs. 3(f)–3(h)]. For the axion in-
sulator, the induced Hall conductance collapses with the
increasing disorder strength [Figs. 3(b)–3(d)]. We observe
distinct phenomena in the normal insulator phase [Figs. 3(f)–
3(h)]. For moderate disorder strength [Fig. 3(h)], the induced
Hall conductance reverts its sign and becomes more signif-
icant compared to the case with weaker disorder strength
[Fig. 3(e)].

The disorder-induced phenomenon in Figs. 3(b)–3(d) and
Figs. 3(f)–3(h) can be explained by calculating the spectrum
of the renormalized Hamiltonian shown in Figs. 4(b)–4(d) and
Figs. 4(f)–4(h), respectively. The bulk gap of the renormal-
ized Hamiltonian decreases with increasing disorder strength,
which leads to the shift of the regime with nonzero Hall
conductance in Figs. 3(b)–3(d) and Figs. 3(f)–3(h). Further
increasing the disorder strength, the system crosses over from
the normal insulator to the axion insulator, accompanied by
the emergence of the gapped surface states inside the bulk
gap. Thus, it is the gapped surface states that give rise to the
significant electric-field-induced Hall conductance shown in
Fig. 3(h). We propose that such signatures may serve as a
probe for detecting the disorder-enhanced layer Hall effect in
the future.

In addition, the induced Hall conductance exhibits different
plateaus in Figs. 3(a) and 3(e). This is due to finite-size effects
in the real-space calculations. In Appendix B, we demonstrate
that the electric-field-induced Hall conductance, when com-
puted in momentum space, exhibits an analogous behavior to
the real-space calculations illustrated in Fig. 3(a), but displays
a smoother curve.

IV. CONCLUSION AND DISCUSSION

In this paper, we study the disorder effect on the layer Hall
effect. In the axion insulator phase, we show that the layer
Hall effect characterized by the half-quantized surface Hall
conductance is robust against weak disorder. Most interest-
ingly, in the normal insulator phase, we find that the layer
Hall effect is significantly enhanced due to the disorder effect.
The mechanism for the disorder-enhanced layer Hall effect
is explained by adopting the Born approximation. We also
propose that the disorder-enhanced layer Hall effect can be
experimentally detected by applying a perpendicular electric
field.

Based on our current results, the disorder-enhanced layer
Hall effect in the normal insulator phase may only apply in
systems that potentially can be turned into an axion phase. In
future work, we will continue to investigate whether disorder
can enhance the layer Hall effect in a wider range of systems.
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APPENDIX A: LAYER HALL CONDUCTANCE

1. Layer Hall conductance in the momentum space

In the absence of disorder, the system preserves the tran-
sitional symmetry and can be characterized by the layer Hall
conductance calculated in the momentum space. For the mth
occupied band, the layer-resolved Hall conductance in the
momentum space is expressed as [56–58]

σ̃m(z) = e2

2πh

∫
d2kFmm

xy (k, z), (A1)

where

Fmn
αβ (k) = ∂αAmn

β (k) − ∂βAmn
α (k) (A2)

+ i
[
Amn

α (k),Amn
β (k)

]
(A3)

is the non-Abelian Berry curvature in terms of Amn
α (k, z)

with the band indexes m and n. The Hall conductance
of all occupied bands of the layer is given by σ̃ (z) =∑

Em<EF
σ̃m(z), where the Hall conductance of the mth band

is σm = ∑nz

z=1 σ̃m(z).

2. Layer Hall conductance in the real space

In the presence of disorder, the system breaks the transi-
tional symmetry and can be characterized by the layer Hall
conductance calculated in the real space. The layer Hall con-
ductance can be calculated by summing up the layer-resolved
real-space Berry curvature [59,60],

�z = 2π iTr{P̂[−i[x̂, P̂],−i[ŷ, P̂]]}z, (A4)

where we take periodic boundary conditions along the x and y
directions and open boundary conditions along the z direction.
x̂ and ŷ are the coordinate operators in the real space. Here,
the trace is over the zth level, P is the projection operator
performed on the occupied states. In the real space, the Hall
conductance of each layer is σxy(z) = e2

h �z and the total Hall
conductance is given by σxy = ∑

z σxy(z). Figure 5 shows the
real-space layer Hall conductance σxy(z) as a function of the
layer index z for different values of the Dirac mass M, which

FIG. 6. Energy spectra as a function of kx at ky = 0 for different
voltages V . Here, the color scheme indicates the Berry curvature dis-
tribution. (a)–(c) Axion insulator phases with Dirac mass M = 0.15.
(d)–(f) Normal insulator phases with M = −0.15. The film thickness
is taken as nz = 10. Here, the area enclosed by the black dashed lines
corresponds to the bulk band gap without the electric field and the
disorder effect.

is in accordance with that calculated in the momentum space
[Fig. 1(d)].

APPENDIX B: PT SYMMETRY

In the absence of magnetization, the system satisfies the
following symmetries:

T H (k)T −1 = H (−k),

PH (k)P−1 = H (−k),

PT H (k)(PT )−1 = H (k), (B1)

where T = Inzσyτ0K is the time-reversal symmetry, Inz is
the identity matrix and K is the complex conjugation. P =
Mσ0τz depicts the inversion symmetry and M is the or-
thogonal matrix permuting the layers of the whole system
perpendicularly. When the magnetization is included, the sys-
tem breaks the inversion symmetry P and the time-reversal
symmetry T , but preserves the global space-time PT sym-
metry [61,62].

APPENDIX C: LAYER HALL EFFECT IN THE PRESENCE
OF THE ELECTRIC FIELD

Here, we present more details of the numerical results
on the layer Hall effect. In the absence of the electric field,
the axion insulator and the normal insulator preserve the
PT symmetry and the energy states are double degenerate
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FIG. 7. Energy spectra as a function of kx at ky = 0 for different
voltages V . Here, the color scheme indicates the wave function dis-
tribution. (a), (b) Axion insulator phases with Dirac mass M = 0.15.
(c), (d) Normal insulator phases with M = −0.15. The film thickness
is taken as nz = 10.

[Figs. 6(a) and 6(d)]. The electric field breaks the PT sym-
metry and causes energy offset between the degenerate bands
[Figs. 6(b), 6(c), 6(e), and 6(f)].

FIG. 8. Hall conductance calculated in the momentum space as
functions of the Fermi energy EF for different voltage V . (a) Axion
insulator phases with Dirac mass M = 0.15. (b) Normal insulator
phases with M = −0.15. The film thickness is nz = 10.

Figure 7 shows the probability distribution of the bands
in the normal insulator and axion insulators. In terms of the
Berry curvature distributions in Fig. 6, we observe that it is the
surface states that manifest the hidden layer Berry curvature
in the two systems.

Figure 8 shows the Hall conductance of the axion insulator
and normal insulator as functions of the Fermi energy EF for
different strength of the electric field. Here, the Hall conduc-
tance are calculated in the momentum space. The results are
similar to the results shown in Figs. 3(a) and 3(e), except that
the plateaus become smooth curves here.
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