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Bulk axial Landau levels in the helically magnetized Weyl Hamiltonian
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In this paper, we study the electronic structure of a helically magnetized magnetic Weyl semimetal and propose
a multistate memory device utilizing the transport in such a magnetic superlattice. For both Bloch- and Néel-type
spiral magnetic textures, we report magnetization-tunable flat bands in the superlattice direction via the onset of
bulk axial Landau levels (LLs), find the analytic zeroth axial LL wave functions and energy spectrum of both
systems, and determine a condition for band flattening. We show that both Bloch- and Néel-type devices using
this electronic structure have application in neuromorphic memristive devices and do not rely on the topology
or spin polarization of the contacts, with Bloch-type devices allowing for an additional chirality filtering for
next-generation computing and memory.
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I. INTRODUCTION

Topological materials such as topological insulators, Dirac
semimetals, and Weyl semimetals have gained much inter-
est for their litany of novel electron transport behaviors
and potential utility in nanoelectronic devices [1–3]. Weyl
semimetals in particular must break either inversion or time-
reversal symmetry (TRS). In a magnetic Weyl semimetal
(MWSM), a Dirac cone is split into two Weyl cones with
opposite chiralities when TRS is broken, giving rise to effects
such as the chiral anomaly or negative longitudinal magne-
toresistance (MR) [4,5].

In intrinsically magnetic Weyl semimetals, the helicity of
Weyl fermions can be controlled by changing the magneti-
zation of the material, giving rise to large longitudinal MR
via the helicity mismatch of carriers in differently magnetized
portions of a sample. Previous works [6,7] have looked at this
MR associated with transport across MWSM domain walls
(DWs) and a magnetic tunnel junction (MTJ) constructed
from MWSMs, both of which conclude that on/off ratios
could be improved significantly (104% vs 102%) over the
MRs utilized in traditional CoFeB/MgO MTJs. This giant
Weyl MR arising from spatially varying magnetic textures
is expected to be resilient to disorder and large when com-
pared to the DW resistances attributed to anisotropic MR
or spin mistracking in a nontopological DW [8,9]. Such a
material platform has been long-sought after in neuromor-
phic computing or analog memory architectures [10–14], but
the fast write times and energy efficiency of existing spin-
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tronic memories have been offset by inefficient readout owing
to low MRs in MTJs, often necessitating peripheral com-
plementary metal-oxide-semiconductor (CMOS) circuitry
[15,16].

Experimentally, an elevated longitudinal MR of ≈7% was
observed by nucleating DWs in a sample of a Weyl ferro-
magnet Co3Sn2S2 [17] at 100 K. Other works [18–20] predict
that the chirality-magnetization locking will cause carriers to
localize at discontinuities in the magnetization profile, which
along with the recently observed topological Hall torque in
SrRuO3 [21], or large spin transfer torque in Co3Sn2S2 [22],
opens up an efficient means for electronic control of magnetic
information in MWSMs. Recently, one helitronic magnetic
memory platform has been proposed for unconventional
computing, for which MWSM DW MRs could massively
improve readout efficiencies [23]. Furthermore, the carrier
localization and chirality-magnetization locking in MWSMs
motivates interest in transport and the electronic structure of
the periodic exchange superlattices, with the starting intu-
ition that conductance should be forbidden in the direction
of alternating magnetic texture. Previous works [18,19] have
shown that Néel DWs will localize carriers in one dimension
(1D) coplanar to the DW, but a detailed understanding of
the connection between periodic magnetic textures, artificial
gauge fields, and spinful electronic band structures in 3D is
lacking.

In this paper, we explore the electronic structure of the
helically magnetized Weyl Hamiltonian and use this to study
transport in a multistate MWSM DW memory device (de-
picted in Fig. 1). We show that states are subjected to an
effective sinusoidal potential in spin space, locally gener-
ating axial Landau levels below an energy threshold, find
a condition for the generation of bulk flat bands, and find
the zero modes and energy spectrum of both Bloch- and
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FIG. 1. Diagram of a DW lattice MWSM device. x0 represents
the start position of a series of chiral DWs (red and blue domains
depicted). In the bottom device, few MWSM DWs are present be-
tween nonmagnetic gray contacts. In the top device, x0 is increased,
injecting DWs into the active region, increasing resistance between
the contacts.

Néel-type magnetic helices. We extend this picture to ex-
plain the transport behaviors of a device with a superlattice
exchange texture, and demonstrate its utility for multilevel
memory even with topologically trivial nonmagnetic contacts.
Experimentally, such a system could potentially be realized
in a MWSM helimagnet or via injection of chiral DWs into a
magnetic racetrack [24] with an electron mean free path larger
than the superlattice length.

II. DOMAIN WALL SUPERLATTICES
AND PLANE-WAVE ANALYSIS

We consider two models to elucidate the electronic
structure and transport in periodically magnetized MWSM su-
perlattices: one using the continuum plane-wave basis model
with a perfectly helical spin texture and another using the
standard tight-binding approximation for transport. For both
models, we consider the cases of Néel (N) and Bloch (B)
magnetic DW lattices with the spatially variant exchange field
defined as

βN (r) = J (cos θr ŷ + sin θr x̂), (1)

βB(r) = J (cos θr ŷ + sin θr ẑ), (2)

where θr is a spatially dependent magnetization angle. For
the infinite superlattice along x̂, θr can be defined as θr = Gx,
where the reciprocal lattice length G = 2π/as, and as = nxa0

is the superlattice period of nx unit cells of length a0. Later, we
define θr for a series of chiral DWs. For the continuum model,
we take the four-band model Hamiltonian of a TRS-broken
MWSM [1],

Ĥ (k) = h̄v f τx ⊗ (k · σ) + mτz ⊗ σ0 + τ0 ⊗ (β · σ ), (3)

defined in the spin (σ ) and pseudospin (τ ) spaces, where
v f denotes the Fermi velocity and m is a masslike term.
Imposing a 1D superlattice structure in x̂ and adding the
Fourier-transformed exchange field β̃ [25] to the Hamiltonian

off-diagonal terms result in

Ĥ (k) =
∑

G∈Z�bx

c+
G [h̄v f τx ⊗ (k − G) · σ + mτz ⊗ σ0]cG

+
∑

G′,G∈Z�bx

c+
G′ [τ0 ⊗ β̃(G′−G) · σ]cG. (4)

In our model, we take v f = 1.5 × 106 m/s [26] and focus
on m = 0 in this paper. An exchange splitting magnitude of
J = 0.25 eV is taken to split the Weyl nodes with a small
�k = 0.04 2π

a0
with a0 = 1 nm, and for comparison with pre-

vious work [6].
First, it is useful to develop an intuition for the spatially

varying case from the uniformly magnetized Weyl Hamilto-
nian. For a constant magnetization with unit vector M̂, the
exchange field β = JM̂ will split the |L〉 or |R〉 chiral Weyl
points (which we can denote with η ∈ {−1,+1}) in momen-
tum space as kη = −η�kM̂ = −η

√
J2 − m2/(h̄v f )M̂. Then

an equivalent low-energy model for the Weyl cone dispersions
can be taken as [1,3,18,19]

Ĥk,η = ηh̄v f [k+kη] · σ = ηh̄v f

[
k − η

e

h̄
A5

]
· σ, (5)

where A5 leads to a chirality-dependent magnetic field deter-
mined by the exchange field texture:

B5 = ∇ × A5 =
√

J2 − m2

ev f
∇ × M̂(r). (6)

We take m = 0 within the scope of this paper. Thus, the
magnetization profile generates the axial magnetic field

B5
N (r) = −2πJ

aSev f
(sin θr ẑ), (7)

B5
B(r) = −2πJ

aSev f
(cos θr ŷ + sin θr ẑ), (8)

for the Néel and Bloch wall cases, respectively. Applying this
axial vector potential field to our system significantly modifies
the band structure, generating flat bands and chirality-
dependent axial Landau levels (LLs), shown in Fig. 2,
where we plot the chirality-projected bands for the uniformly
magnetized, Néel, and Bloch helical-exchange superlattices.
The chirality operator γ 5 = τx ⊗ σ0 has eigenvalues ±1
corresponding to η, and 〈γ 5〉 = Tr[GR

k (E )γ 5]/Tr[GR
k (E )] is

computed with the time-retarded Green’s function GR
k =

(EÎ − Ĥk )−1 in this section. While straightforward to project
the Bloch eigenstates as 〈un(k)|γ 5|un(k)〉, it would be mis-
leading in the Néel wall case as the |L〉 and |R〉 states are
degenerate, thus obscuring one or the other. It is most in-
teresting to note the generation of bulk flat bands in the
direction of transport and axial LLs above the exchange-split
momenta of the Weyl cones, which we will discuss further
for each case. Both of these phenomena are explained in the
low-energy model by the construction of Bloch functions in
terms of localized harmonic oscillators created by the mixture
of magnetic exchange and momentum terms.
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FIG. 2. Chirality 〈γ 5〉 projected plane-wave band structures for
a superlattice of period as = 100 nm and J = 0.25 eV with differing
exchange fields. �kŷ denotes the position of the |L〉 Weyl point
in the uniformly magnetized case, with the superlattice X point at
k = [π/aS, 0, 0]. (a) Uniformly magnetized MWSM shows an |L〉
Weyl node with band folding. (b) Néel DW superlattices show band
flattening in x̂ and ŷ, while (c) Bloch DW superlattices only show
band flattening in x̂.

A. Néel helix Hamiltonian

To study the Néel helix Hamiltonian ĤN , it is first useful
to gauge transform away the x̂ term of βN ∝ A5

N , leaving the
observables of the Hamiltonian unchanged:

βN → β′
N = βN + ∇

(
J

G
cos(Gx)x̂

)
= J cos(Gx)ŷ, (9)

ĤN = h̄v f

[
ηkz 	

	+ −ηkz

]
, (10)

	 = −iη∂x − iJ cos(Gx) − iηky. (11)

We may notice Ĥ2
N is diagonal in spin space. Thus, we can

motivate the wave functions |�s〉 for each spin s ∈ ±1:

Ĥ2
N = (h̄v f )2

[
k2

z + 		+ 0

0 k2
z + 	+	

]
, (12)[

−∂2
x + Jη

h̄v f
[2ky cos(Gx) − sG sin(Gx)] + k2

y

+ k2
z +

(
J

h̄v f

)2 1 + cos(2Gx)

2

]
|�s〉 = E2

(h̄v f )2
|�s〉.

(13)

For realistic physical values of J > h̄v f G, and for small
enough ky, the above expressions reduce to the Mathieu dif-
ferential equation from the dominant cos(2Gx) term—notably
without general analytic solutions. However, we can note
that two locally parabolic potential wells are created around
regions of large |B5|, implying charge localization around
x = as(2Z + 1)/4. Increasing small values of ky will tilt the
potential wells, introducing anharmonicity away from k = �,
but ultimately preserving the charge localization for small
enough k2

y . This is consistent with an intuition of a B5 ∝ ẑ
which may localize charges in x and y. Around k = �, we

FIG. 3. For a system with aS = 100 nm, (a) and (c) show the
spectrum of ĤN (�) and ĤB(�kŷ), respectively, with the localization
condition Eq. (26) shown in purple. The analytic axial LL spacings
are shown with dashed lines, in magenta, red, or blue for the degen-
erate, |L〉, or |R〉 bands. For a fixed J = 0.25 eV, (b) and (d) show
the corresponding 3D energy surfaces across the Brillouin zone at
kx = 0.

can locally understand LL generation in ĤN by defining the
operators

ĝ = 1√
2h̄v f JG

[ηv f px − iJ cos(Gx)], (14)

ĝ+ = 1√
2h̄v f JG

[ηv f px + iJ cos(Gx)], (15)

which commute as

[g, g+] = −η sin(Gx) ≈ ±[1 − O(Gx)2 + · · · ] (16)

after a Taylor expansion at x = as(2Z + 1)/4. Thus, g and
g+ switch roles as the creation and annihilation operators
in different regions of the lattice and for differing electron
chiralities. Linearizing the exchange term and mapping the
problem onto the standard Dirac LL Hamiltonian, max(B5)
is predictive of the energy spacings for small enough n, as
shown in Fig. 3(a):

max(|B5|) = GJ

ev f
, (17)

En ≈ sgn(n)
√

2|n|GJh̄v f + (h̄v f kz )2. (18)

We may take as a guess that the zeroth axial LL may have
zero energy at k|| = [ky, kz] = �, and proceed to directly solve
for the null space of Ĥ ′

N (�), leaving us with two expressions
for the corresponding |�±〉 states:√

2h̄v f JG ĝ|�−〉 = 0,√
2h̄v f JG ĝ+|�+〉 = 0.
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Finally, with a separation of variables, we can exactly solve
for the zero-mode wave functions of each spin,

|�s〉 = e
ηsJ

h̄v f G sin(Gx)|s〉. (19)

which, around the potential wells, are well approxi-
mated by Gaussians of characteristic magnetic length lB =√

h̄/(e|B5|) = √
h̄v f /(GJ ), thus acting as a well-defined ze-

roth LL state. This tells us that the local axial LL model may
hold in the limit where the local Bloch function spread (as
determined by lB) is much less than the superlattice length,
which will be discussed shortly.

B. Bloch helix Hamiltonian

The prior analysis fails for the Bloch wall case, motivating
us to consider other techniques to explain the behavior of
ĤB. Qualitatively, we expect an analogous axial LL physics
should manifest for the Bloch wall case, though the continu-
ously changing direction of B5 makes it somewhat obscure:
B5 rotates with constant magnitude in the y-z plane as a
function of x. As a result, the zeroth Landau level disperses
in different directions at well-defined positions in real space,
which can be seen in Fig. 2(c) for the ky and kz directions.
We do observe that the magnetization profile βB(r) [Eq. (2)],
which decides the separation of two Weyl nodes, leads to a
nodal-ring structure in the spectrum in the ky-kz plane cen-
tered at �. To analyze this, first we will construct ĤB with
G oriented in ẑ, and with a translated magnetic potential
see Supplemental Eq. (A10)–(A11) [25] while preserving its
spatial helicity. Defining kx = kr cos(θk ), ky = kr sin(θk ) in
cylindrical coordinates, and exploiting Euler’s identity, we can
write the Hamiltonian as

ĤB =
[ −iηh̄v f ∂z ηh̄v f kre−iθk + JeiGz

ηh̄v f kreiθk + Je−iGz iηh̄v f ∂z

]
. (20)

We can then change the basis to diagonalize the exchange
term, square the Hamiltonian, and change basis again [see
Supplemental Eqs. (A12)–(A20) [25]] giving us some insight
on the form of the wave functions:

Ĥ ′′2
B = − ηh̄v f GJσ̂x − iGh̄2v2

f ∂z(σ̂0 − σ̂z ) − h̄2v2
f G2

4
σ̂z

+
(

2J2 + 2ηh̄krv f J cos(Gz + θk )

− h̄2v2
f ∂

2
z + h̄2v2

f G2

2

)
σ̂0. (21)

This implies that the Hamiltonian produces a continuum
of locally parabolic potential wells per unique θk , and that
the solutions will take the form of slightly modified Mathieu
special functions for J > h̄v f G, this time with a doubled spa-
tial period and a single well per superlattice unit cell, though
the off-diagonal term complicates our analysis, mixing the
solutions of the diagonal Mathieu (s = 1) and Mathieu-like
(s = −1) differential equations. For further insight into the
spin structure and of ĤB, we can replace z with x (for consis-
tency with ĤN analysis), define  = (ηkreiθk + Je−iGx )−1, and
solve for the components of (ĤB − E )|�〉 = 0 by substitution

(see Supplemental Material for the full derivation [25]). This
is not analytically tractable in general, but we find two unnor-
malized solutions (s ∈ {±1}) at kr = −ηJ/(h̄v f ), θk = 0, and
E = ηh̄v f G/4:

|�s〉 = e
−iGx

4 e
4sJ

Gh̄v f
cos( Gx

2 )|−〉 − sηe
iGx
4 e

4sJ
Gh̄v f

cos( Gx
2 )|+〉. (22)

We turn to numerics to find the spectrum of the system, and
see that, as shown in Fig. 3(c),

En ≈ sgn(n)
√

2|n|GJh̄v f + ηh̄v f G

4
(23)

is indeed predictive at |kr | = J/h̄v f . This implies the
complex-modulated E = ηh̄v f G/4 wave functions may act as
an exotic zeroth axial LL, however, HB needs more analysis to
determine a pair of operators which may obey the harmonic
oscillator commutation relations. Interestingly, the dispersion
for |k||| = kr = 0 can be obtained analytically (see Supple-
mental Material for the full derivation [25]) and is given by

En = ±
√

J2 + h̄2v2
f

(
kx + π

aS
(2n + 1)

)2

+ ηh̄v f G

2
, (24)

so that the lowest-energy |R〉- and |L〉-chiral bands are raised
and lowered in energy with �E = η(

√
J2 + h̄2v2

f π
2/a2

S −
h̄v f π/aS ) ≈ ηJ at the � point for a magnetic texture with
right-handed spatial helicity and remain dispersive in x̂.

C. Localization and band flattening

Both cases lead to a infinite lattice of locally parabolic
potential wells, which gives us a means to analyze the band
flattening by considering a minimal tight-binding model. For
a localized LL state, 〈�x〉 = lB

√
n + 1

2 , which provides a
heuristic condition for band flattening as a function of the ax-
ial LL index, supposing individual tightly bound wave packets
may have a negligible overlap. The Bloch and Néel wall cases
provide one and two potential wells per unit cell, respectively,
thus √

h̄v f

JG

(
n + 1

2

)
�

{ aS
2 , Néel helix,

aS, Bloch helix.
(25)

Translating this into an energy cutoff, we expect to see the
onset of carrier localization for

|EN | <

√
J

(
πJ

4
− h̄v f

aS

)
, |EB| <

√
J

(
πJ − h̄v f

aS

)
, (26)

for the Néel and Bloch cases. As shown in Fig. 3, this approx-
imation matches well with the calculated spectrum, predicting
the onset of well-defined dirac LL energies.

In both cases, we understand that the electronic bands are
significantly flattened in the direction of the superlattice by
generating an emergent periodic potential for each spin, and
provide a heuristic to predict the onset of the bulk flat-band
state. This shows that the application of spatially varying or
periodic magnetic textures in MWSMs provides a means to
disable dispersion by effectively imposing a series of tunnel-
ing barriers in spin space, thus providing dynamic control
over the electronic structure. With this in mind, we move to
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a device picture to assess one application of MWSM DW
lattices.

III. QUANTUM TRANSPORT AND
TIGHT-BINDING ANALYSIS

For transport and spatial resolution of the distorted Weyl
cones, we employ a four-band, two-Weyl point (see Ref. [27])
tight-binding model of a MWSM [6], though instead choose
the τx and τz matrices for the momentum and mass terms, as
in Eq. (4),

Ĥsite i =
∑

j∈{x,y,z}

[
t

2
(c+

i τ̂z − c+
i+ ĵ

τ̂z ) ⊗ σ̂0ci

− −it

2
c+

i+ ĵ
τ̂x ⊗ σ̂ jci + H.c.

]
+ c+

i τ0 ⊗ [β(ri ) · σ]ci, (27)

with hopping parameter t = 1 eV, lattice parameter a0 = 1
nm for simplicity, 100 total sites in x, and the Bloch phase
prefactors applied to hoppings in ŷ and ẑ to construct a su-
percell H (k||). Here, θr of a 180◦ DW is defined in Ref. [28]
and convolved with a semi-infinite Dirac comb to generate the
magnetization angle (see Supplemental Fig. 6 [25]),

θr = [
2 tan−1

(
πe− x+d

d
)]

�

∞∑
n=0

δ(naS − x0 − x), (28)

with � being the convolution operator, x0 referring to the start
position of the chiral DW lattice, the DW width d = 8 nm, and
a truncated superlattice period as = 30 nm. In a real system,
thicker domain walls or a longer aS would decrease max(B5)
[19], thus decreasing the axial LL spacing and zone-folded
subband spacing; the above parameters were chosen for com-
putational tractability and for demonstration of the underlying
physics.

In the tight-binding model, we consider trivial metallic
electrodes [29] and semi-infinite MWSM electrodes to elu-
cidate the underlying physics. For the case with MWSM
electrodes, the magnetizations β(x = −a0) and β(x = as +
a0) are copied for the left and right contact and extend to
infinity for the generation of the Sancho-Rubio [30] contact
self-energies �L,R to retain the continuity of the magnetization
field texture.

Of particular interest is the distortion of the Weyl cones
in connection with the band structures of Fig. 2, which are
useful to understand transport. For all transport calculations
and tight-binding modeling, we take a chemical potential
μ = 0.1 eV to cut through the zeroth axial LL from Sec. II,
and note that henceforth η refers to the lifetime broadening.
Figure 4 plots isosurfaces of the chirality, position, and k||-
resolved local density of states (LDOS) of the periodically
magnetized racetrack devices, allowing us to spatially resolve
the distorted Weyl cones which construct the bulk harmonic
oscillator states. Néel devices show a ky-symmetric twisting of
the |L〉 and |R〉 Weyl cones, corresponding to the degenerate
states in Fig. 4(b). This can be understood from the profile
of βN for the Néel case which decides the position of two
Weyl nodes in the ky-kz plane. On the other hand, for the
Bloch DW case, B5

B rotates in y-z, twisting the Weyl cones

FIG. 4. Isosurfaces in the γ 5 and k||-resolved LDOS with a
chemical potential μ = 0.1 eV and broadening parameter η =
10−2.5 eV are shown for the (b) Néel and (d) Bloch cases with
corresponding exchange field textures (a) βN and (c) βB for x0 fixed
to 63 nm. In (b) and (d) |L〉-chiral states (〈γ 5〉 = −1) are shown in
red, while |R〉-chiral (〈γ 5〉 = 1) states are shown in blue. In (a) and
(c) color denotes the projection of the exchange fields onto ŷ.

as shown in Fig. 4(d) where for an infinitesimal nonzero
energy, |L〉 and |R〉 states are at a different radius in the ky-kz

plane. We see the |L〉-chiral states wrap around the expected
position of the Weyl points at �k, while the |R〉-chiral states
wrap closely to k|| = � for our chosen μ, having been lifted
up in energy from Eq. (24). These twisted Weyl cones mo-
tivate analysis of the chiral anomaly and Weyl orbits with
periodic real and axial magnetic fields (see recent insights in
Ref. [31]).

For device modeling, we neglect the orbital effects of
the magnetic field and consider transport in the Landauer
limit of the nonequilibrium Green’s function (NEGF) quan-
tum transport formalism [32]. With a minimal carrier lifetime
broadening of η = 10−4 eV, in Fig. 5(a) we show that device
conductance can be modulated by orders of magnitude via the
injection of DWs into the active region of the device, and that
this effect persists for both magnetization patterns, with both
MWSM and simple metal electrodes.

In Fig. 5(b), for a system with MWSM electrodes we sweep
the broadening parameter η, corresponding to a phenomeno-
logical inelastic momentum-preserving scattering self-energy
[33], and show that it (1) smooths out conductivity versus x0

and (2) forms stair steps in conductance with respect to the
number of DWs in the active region of the device—as one
might expect with an increasing number of spin-dependent
tunneling barriers. A similar behavior is observed for the
Bloch wall case.

Curiously, even a high-resolution 401 × 401 k grid over
the zoomed-in portion of the surface Brillouin zone (SBZ)
is unable to converge the value of the Landauer conductance
for small broadening parameters (η = 10−3, 10−4 eV), lead-
ing to unphysical spikes in conduction. To explain this, we
consider the k||-resolved transmission with MWSM electrodes
in Figs. 5(c) and 5(d) to resolve conductance behavior from
the distorted Weyl cones in the periodic magnetization region.
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FIG. 5. (a) Conductance modulation by orders of magnitude is shown for all combinations of MWSM and simple metallic electrodes with
Bloch and Néel DW lattices by sweeping x0. (b) A phenomenological broadening term η is swept for the Néel wall case, showing discrete stair
steps in conductance, thus multiweight behavior, as η increases (i.e., carrier lifetime decreases). (c) and (d) show k-resolved transmission maps
for the Néel and Bloch DW cases, respectively, sweeping x0, over the center of the surface Brillouin zone. Hot spots in transmission T (k||)
are visible where the bulk states from the left and right electrodes overlap, connected by twisted Fermi arcs of character determined by the
magnetic texture. The x0 position is labeled in white for each subplot.

We see that the distorted Weyl cones in the bulk form infinites-
imally thick curtains of conductance in the SBZ which are
challenging to capture numerically: In Fig. 5(c), the Néel DW
lattice conduction is dominated by the distorted |L〉 and |R〉
Weyl cones in the periodic region of the device, especially
where they overlap with the contact electrodes’ bulk Weyl
cones. In contrast, the Bloch DW device in Fig. 5(d) has
minimal conduction through the distorted Weyl cones which
wrap around the bulk Weyl cone states from either contact.
Thus, the majority of the conductance tunnels through the
periodic region of the device from the bulk states in both
contacts, leading to oscillations in Fig. 5(a). The case with
metal contacts in Fig. 5(a) is somewhat more convoluted,
given the formation of surface Fermi arcs at the metal/MWSM
interface, though the properties of the device Hamiltonian and
bulk Fermi arcs still dominate the qualitative behavior when
sweeping x0. Metal-contact k||-resolved transmission plots are
provided in the Supplemental Material [25] for both Néel and
Bloch cases. Interestingly, due to the broadening parameter
providing finite-lifetime states from both the MWSM and
metal contacts, in our magnetization with left-handed spatial
chirality, transport from the inner |R〉-chiral transmission ring
will begin to dominate the total conductance, giving rise to
a texture-dependent chirality filtering mechanism to generate
or reflect chiral currents. In principle this would be tunable
with a modulation in Fermi level or magnetic texture, opening
another means for generating chiral currents with potential in
emerging devices [34].

IV. DISCUSSION

We have explained the electronic structure and transport
in a MWSM superlattice device, have shown magnetization-
tunable axial LLs and flat bands in the direction of transport,
and have demonstrated that multiple conductance states could
potentially be encoded in such a device. We have also shown

that the multistate conduction behavior persists through all
electrode configurations we have considered, unlike the spin
transport in traditional spin filtering systems. With regards to
the superlattice picture, the exploration of periodic exchange
textures or artificial gauge fields and their topological struc-
ture is nascent in systems such as semiconductor nanowires
[35], magnetic superlattice graphene [36], or 2D moiré mag-
nets [37]. It should be noted that this effect only relies on
the mean-field exchange splitting of a periodic ferromag-
net, acting on spin space with contributions on the order of
100–1000 meV in bulk ferromagnets, as opposed to a real
magnetic field or proximity-induced exchange, the effects
of which would show with much weaker contribution to an
effective gauge field. Thus, we expect the electronic struc-
ture in periodic MWSM lattices to be more robust closer
to room temperatures, supposing a MWSM with Curie tem-
perature above 300 K as in Mn3Sn [38], Co2MnGa [39],
or Fe3Sn2 [40]. Nevertheless, other works discuss a sig-
nificant reduction in MR from skew scattering at MWSM
DWs [41] or from heavily tilted Weyl cones [42], suggest-
ing that the underlying electronic structure modulation in
the flat-band helical case may also be suppressed. Likewise,
spin dephasing or obfuscation by nontopological bands near
the Fermi energy may provide additional challenges towards
a longitudinal Weyl magnetoresistance or flat-band states
in experiments. We speculate that the expression Eq. (21)
for the chirality-dependent energy splitting of the disper-
sive kr = 0 states in the Bloch magnetic helix may be
one means to analyze this state or ensuing chiral currents
experimentally, given a knowledge of the exchange split-
ting magnitude, Fermi velocity, and magnetic superlattice
length.

Note added. Recently, we became aware of a paper which
considers the Bloch helix case and describes this system as
a “Fermi arc metal,” reporting further on the conductance in
real magnetic fields [31].
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