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Fermi surface geometry and optical conductivity of a two-dimensional electron
gas near an Ising-nematic quantum critical point
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We analyze optical conductivity of a clean two-dimensional electron system in a Fermi liquid regime near
a T = 0 Ising-nematic quantum critical point (QCP) and extrapolate the results to a QCP. We employ direct
perturbation theory up to the two-loop order to elucidate how the Fermi surface’s geometry (convex vs concave)
and fermionic dispersion (parabolic vs nonparabolic) affect the scaling of the optical conductivity σ (ω) with
frequency ω and correlation length ξ . We find that for a convex Fermi surface the leading terms in the optical
conductivity cancel out, leaving a subleading contribution σ (ω) ∝ ω2ξ 4L, where L = const for a parabolic
dispersion and L ∝ ln ωξ 3 in a generic case. For a concave Fermi surface, the leading terms do not cancel,
and σ (ω) ∝ ξ 2. We extrapolate these results to a QCP and obtain σ (ω) ∝ ω2/3 for a convex Fermi surface and
σ (ω) ∝ 1/ω2/3 for a concave Fermi surface.
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I. INTRODUCTION

The study of quantum dynamics of electrons near an
electron-driven quantum phase transition at T = 0 offers a
fascinating window into the intricate interplay between elec-
tronic degrees of freedom and bosonic fluctuations of the
order parameter. In this work, we consider the optical con-
ductivity of electrons near a T = 0 nematic transition, which
leads to quadrupolar distortion of the Fermi surface (FS) [1].
There are two major scenarios of nematicity. The first postu-
lates that nematicity emerges in proximity to an ordered state
that breaks lattice rotational symmetry along with another
symmetry, e.g., spin-rotational one [2]. In this scenario, a ne-
matic state is a partially ordered state wherein spin-rotational
symmetry breaks prior to other symmetries. This scenario has
been successfully applied to a number of FeAs systems, where
nematic order appears in the vicinity of a stripe magnetic
order [3]. Another scenario postulates that nematic order is the
result of a Pomeranchuk instability in the channel with angular
momentum l = 2 [4]. This scenario has been applied to FeSe,
where a nematic order is not accompanied by a stripe mag-
netic order [5]. Our work explores the second scenario. We
discuss optical conductivity—a highly powerful experimental
tool to extract information about the behavior of correlated
electrons [6,7]—near the onset of l = 2 charge Pomeranchuk
order in a two-dimensional (2D) metal.

At a nematic quantum critical point (QCP), collective
bosonic excitations are massless and Landau overdamped. In
2D, the interaction between these excitations and low-energy
fermions destroys a Fermi liquid, resulting in a fermionic
self-energy �(ω) ∝ ω2/3 (see, e.g., Ref. [8]). Similar behavior
occurs in fermions coupled to a U (1) gauge field [9], and near
a ferromagnetic QCP [10], provided that ferromagnetism is of
the Ising type; otherwise, a continuous q = 0 transition would
be precluded by nonanalytic terms in the free energy [11]. The
behavior of conductivity is rather tricky. For interaction with a
small momentum transfer there is no Umklapp scattering [12],

unless the FS touches the Brillouin zone boundary [13], hence
for a clean system with small enough FS static conductivity is
infinite. Nonetheless, optical conductivity is generally finite
[14]. The conductivity [more precisely, its real part, σ (ω)], is
related to the retarded current-current correlator �(ω) via the
Kubo formula

σ (ω) ∝ Im
�(ω + iδ)

ω
. (1)

The correlator �(ω) is diagrammatically given by a fully
dressed particle-hole bubble with fermionic current in the
vertices. For free fermions, �(ω) is real and does not con-
tribute to conductivity. Renormalizations by fermion-boson
interactions make �(ω) complex. To leading order in the
fermion-boson coupling, the dressed �(ω) contains distinct
contributions from (i) dressing a fermionic line in the bub-
ble by a self-energy (SE) insertion, Figs. 1(a) and 1(b); (ii)
inserting Maki–Thompson-type (MT-type) vertex correction,
Fig. 1(c); and (iii), (iv) inserting two topologically nonequiv-
alent Aslamazov-Larkin (AL) vertex corrections, Figs. 1(d)
and 1(e). At a QCP, each of these contributions is propor-
tional to σ (ω) ∝ 1/ω4/3. However, for scattering by a small
angle θ , the sum of SE and MT contributions, as well as the
sum of the two AL contributions, is suppressed by a factor
of (1 − cos θ ) ≈ θ2/2. Because typical θ ∼ ω1/3, one gets
σSE+MT ∼ 1/ω2/3 and σAL1+AL2 ∼ 1/ω2/3, instead of 1/ω4/3.
This reduction can be viewed as the consequence of an ap-
proximate Ward identity as for the small-angle scattering the
renormalization of the charge current vertex mirrors that of the
charge density vertex. For the latter, the cancellation would be
exact by Ward identity associated with charge conservation.

For a Galilean-invariant system, σSE+MT and σAL1+AL2 can-
cel each other, in line with the general requirement that
conductivity in such a system must vanish at any finite fre-
quency. However, for a non-Galilean-invariant system, there
is no symmetry constraint that would relate these two compo-
nents. It was argued in Ref. [15] that, in this situation, the net
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FIG. 1. Second-order diagrams contributing to the normal con-
ductivity: (a), (b) The two self-energy (SE) diagrams, (c) the
Maki-Thompson (MT) diagram, and (d), (e) the two Aslamazov-
Larkin diagrams AL1 and AL2.

conductivity σ ∝ 1/ω2/3.1 However, subsequent studies have
found that, in 2D, the conductivity may be further reduced by
additional geometric restrictions on scattering processes [12].
For a circular FS, the cancellation of the 1/ω2/3 contributions
to conductivity from σSE+MT and σAL1+AL2 has been explicitly
demonstrated in Refs. [17,19,20]. It was further argued in
Refs. [12,21] that these restrictions hold for a circular, and,
more generally, convex FS, but not for a concave FS with an
inflection point, as for the latter there exist additional scatter-
ing channels, in which near-cancellation between σSE+MT and
σAL1+AL2 should not hold, hence σ (ω) should remain 1/ω2/3.

The computation of the conductivity at a QCP in the expan-
sion in the fermion-boson coupling is somewhat questionable
because for a non-Fermi liquid the self-energy is not a weak
perturbation. In a recent paper [22] the authors computed the
conductivity away from a QCP, when the correlation length
ξ for nematic fluctuations is large but finite, and the system
preserves a Fermi-liquid behavior at the lowest frequencies.
They obtained the formulas for σ (ω, ξ ) in the Fermi-liquid
regime at the smallest ω: σ (ω, ξ ) ∼ ω2ξ 4 ln ωξ 3 for a convex
FS and σ (ω, ξ ) ∼ ξ 2 for a concave FS. They conjectured that
there is a single crossover scale between a Fermi liquid and
a non-Fermi liquid at ω ∼ ξ−3. Substituting ω−1/3 instead of

1The same 1/ω2/3 behavior of the conductivity [16] has been
argued to hold at a q = 0 QCP towards loop-current order [17,18].

ξ , they reproduced the expected σ (ω) ∼ ω2/3 for a convex FS
and σ (ω) ∼ 1/ω2/3 for a concave FS.

The authors of Ref. [22] did not compute � diagrammat-
ically. Instead, they followed Refs. [23,24] and expressed the
conductivity via the retarded correlator of the time derivatives
of the current, K (t ) ≡ ∂t j = i[H, j], where H is the Hamilto-
nian, expressed K (t ) explicitly as four-fermion operators, and
evaluated the retarded correlator of K using Wick’s theorem.

In this work, we compute conductivity in a Fermi-liquid
regime near a nematic QCP by using the conventional Kubo
formula, Eq. (1), relating conductivity to the retarded current-
current correlator. We explicitly evaluate diagrammatically
the four contributions to the current-current correlator �. We
largely reproduce the results of Ref. [22], up to one relatively
minor discrepancy.

We also analyze additional term in the conductivity, asso-
ciated with the “anomalous” component of the current [22],
proportional to the gradient of the d-wave form factor.2 This
term is absent in a Galilean-invariant system, but does emerge
when Galilean-invariance is broken. The strength of this term
depends on the underlying fermion-boson model. In our study,
we consider a model, relevant to FeSe, in which a nematic
order spontaneously breaks the symmetry between dxz and
dyz orbitals of Fe [3]. This is a manifestly non-Galilean-
invariant lattice model, even if fermionic dispersion can be
approximated by a rotationally invariant, parabolic form. As
a consequence of the absence of rotational invariance, the
d-wave form factor F (k, k′) in the boson-mediated 4-fermion
interaction

H =
∑
k,k′,p

F (k, k′)V (p)c†

k+ p
2

c
k− p

2

c†

k′− p
2

c
k′+ p

2

(2)

is determined by coherence factors associated with the trans-
formation from orbital to band states, and at small p can
be factorized between k and k′ into fk fk′ [see Eq. (3) be-
low]. The factor fk for k on the FS can in turn be well
approximated by fk = cos 2θk [25,26], where θk is the an-
gle between k and, e.g., the x axis.3 For such a system, we
identify two contributions to conductivity: the “normal” one,
which contains powers of f 2

k , and the “anomalous” one, which
contains (∇k fk)2. The “normal” contribution comes predom-
inantly from momenta for which cos2(2θk) ≈ 1, i.e., in this
contribution fk can be safely approximated by one. For the
“anomalous” contribution, the angular dependence of fk is
crucial.

We compute the conductivity to second order in fermion-
boson coupling g, but go beyond this order to ascertain the
correct argument under the logarithm (see below). For non-
parabolic dispersion, we find that the normal contribution
supersedes the anomalous one, yielding σ (ω) ∝ ω2ξ 4 ln ωξ 3

for a convex FS, and σ (ω) ∝ ξ 2 for a concave FS. These
results are in agreement with Ref. [22]. For a circular FS
and parabolic dispersion, we find that the “normal” contribu-
tion to conductivity vanishes, but the anomalous contribution

2The anomalous contribution to conductivity has been identified
also for fermions coupled to the U (1) gauge field [15].

3For a rotationally invariant system, F (k, k′) depends on θk − θk′

and cannot be factorized into a single product of fk fk′ .
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remains nonzero. We find that the conductivity in this case
is σ (ω) ∝ ω2ξ 4. The authors of Ref. [22] obtained the same
form, but with an extra ln ωξ 3.

II. THE MODEL

We consider a fermion-boson system near a nematic QCP,
described by

H =
∑

k

εkc†
kck +

∑
p

ωpb†
pbp

+ g
∑
kp

fk(bp + b†
−p)c†

k+ p
2
ck− p

2
. (3)

Here ck and bp are the electron and boson annihilation op-
erator, respectively, εk and ωp are free-electron and boson
dispersions, g is a coupling constant, and a d-wave form factor
fk = cos(2θk).

The free-electron and boson propagators are, correspond-
ingly,

G(k) = 1

ik0 − (εk − μ)
(4)

and

D(p) = χ0

p2 + ξ−2
. (5)

Here k ≡ (k0, k) is a 1 + 2 component vector with a
one-dimensional (1D) frequency k0 and 2D momentum k
components, μ is the chemical potential, and ξ is the cor-
relation length. It is convenient to introduce the effective
electron-boson coupling ḡ = g2χ0, which has the dimensions
of energy.

The optical conductivity is determined by the Kubo cor-
relator of the longitudinal components of the current operator.
The paramagnetic part of the current is obtained from the vari-
ation of the Hamiltonian with the minimal coupling k→k + A
over the vector potential. This yields

J ≡ δH

δA

∣∣∣∣
A=0

= JN + JA, (6)

where the normal component JN comes from the electron
dispersion,

JN =
∑

k

vkc†
kck, (7)

with the group velocity vk ≡ ∇kεk, while the anomalous com-
ponent

JA = g
∑
kp

∇k fk(bp + b†
−p)c†

k+ p
2
ck− p

2
(8)

comes from the momentum (angular) dependence of electron-
boson interaction. The gradient of the d-wave form factor in
polar coordinates has the form ∇k fk = 2k−1

F sin(2θk)eθ .
We note that both components of the current must be kept

to satisfy the continuity equation for electron density. Indeed,
the normal component JN of the total current compensates for
the density commutator with the free-electron dispersion. The
electron-density commutator with the interaction part of the

(a) (b) (c)

FIG. 2. Other contributions to the current-current correlator with
two bosonic propagators. These contributions are small in 1/(kF ξ )
compared with those we included in our analysis.

Hamiltonian, given by the last term of Eq. (3), equals

ρ̇q = i[Hint, ρq] = ig
∑
kp

( fk+q − fk)(bp + b†
−p)c†

k+q+ p
2
ck− p

2
.

(9)

In the long-wave limit q→0, it is compensated by the anoma-
lous current of Eq. (8).

III. CONDUCTIVITY

The diagrammatic computation of the current-current cor-
relator is rather straightforward. We present the details in
Appendix and here quote the results. The contribution to �(ω)
from the normal component of the current (Fig. 1) is

�(ω) = π3

2ω2

ḡ2

χ2
0

∫
d2kd2k′d2 p

(2π )9 D2(p) f 2
k f 2

k′
(�v)2

ω − �ε − i0

× (
sign εk− p

2
− sign εk+ p

2

)(
sign εk′− p

2
− sign εk′+ p

2

)
× [

sign
(
εk− p

2
− εk+ p

2

) − sign
(
εk′− p

2
− εk′+ p

2

)]
.

(10)

Here

�v ≡ vk′− p
2
+ vk+ p

2
− vk′+ p

2
− vk− p

2
(11)

is the velocity change, and

�ε ≡ εk′− p
2
+ εk+ p

2
− εk′+ p

2
− εk− p

2
(12)

is the energy change in the two-electron-scattering process.
Im �(ω), which we need for conductivity, is obtained by
replacing 1/(ω − �ε − i0) by iπδ(ω − �ε).

For completeness, we also analyzed other diagrams for the
current-current correlator with two bosonic propagators. We
show these additional diagrams in Fig. 2. We found that their
contribution is suppressed by a factor of 1/(kF ξ ) compared
with Eq. (10), because the two bosonic propagators in the dia-
grams in Fig. 2 are with different momenta, and the integration
over momentum difference yields a factor 1/ξ instead of kF in
Eq. (10).

The contribution to �(ω) from the anomalous current
(Fig. 3) can be expresses as a convolution of two fermionic
bubbles,

�A(ω) = ḡ2

χ2
0

∫
d3 p

(2π )3 D2(p)�d (p)�̄d (p, q), (13)

where �d (p) is the conventional d-wave polarization bubble
with form factor f 2

k :

�d (p) =
∫

d3k

(2π )3 f 2
k G

(
k + p

2

)
G

(
k − p

2

)
, (14)
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FIG. 3. The second-order contribution to conductivity from the
anomalous current—the one with ∇k fk in the external vertices
(squares).

and �̄d (p, q) is the d-wave polarization bubble with form
factor (∇k fk)2 and frequency shifted by ω [we denote q ≡
(ω, 0)]:

�̄d (p, q) =
∫

d3k

(2π )3 (∇k fk)2G
(

k + p

2
+ q

)
G

(
k − p

2

)
.

(15)

There are other contributions to �(ω) from anomalous cur-
rent, but we verified that they are smaller in 1/(kF ξ ). Also, the
cross-contribution to � from correlator of JN and JA vanishes
because of orthogonality of vk and ∇k fk.

A. Systems with parabolic dispersion

We start with the case when fermionic dispersion εk is
rotationally invariant and can be approximated as parabolic:
εk = k2/2m. We recall that the fermion-boson Hamiltonian is
manifestly non-Galilean-invariant. For rotationally invariant
dispersion, the angle θk in the form factor fk can be measured
from any direction. It is convenient to measure it from the
direction of the bosonic momentum p.

Since for quadratic dispersion the velocity vk is linear
in momentum k, the velocity change of Eq. (11) vanishes,
i.e., there is no contribution to conductivity from the normal
current, hence �(ω) = �A(ω).

The anomalous contribution can be most straightforwardly
evaluated in Matsubara frequencies, for p = (ip0,m, p) and
q = (iωm, 0). The result for real ω is then obtained by re-
placing iωm by ω + i0. We assume and verify that �A(iωm) is
determined by internal p0,m ∼ vF p ∼ ωm. At small ωm, which
we are interested in, one can then compute the polarization
bubbles in the long-wavelength limit. On the Matsubara axis
we have

�d (p) = − m

4π

(
1− 2|ζ |√

1+ ζ 2
+ 4ζ 2 + 8ζ 4 − 8|ζ |3

√
1+ ζ 2

)
,

(16)

and

�̄d (p, q) = − m

πk2
F

(1 − 4(ζ + η)2 − 8(ζ + η)4

+ 8|ζ + η|3
√

1 + (ζ + η)2), (17)

where ζ ≡ mp0,m/kF p and η = mωm/kF p. In these variables,∫
d3 p→ ∫

p2d p
∫

dζ . The |ζ | term in �d (p) is a conventional
Landau damping. For �̄d (p, q), there is no Landau damping,
and the expansion in (ζ + η) starts with the quadratic term.

The absence of Landau damping is the consequence of the
(sin 2θk )2 form of the form factor: Landau damping comes
from θk ≈ ±π/2, for which this form factor vanishes. To
understand the form of �A(q), we expand the integrand in
�A(q) in η. The expansion holds in even powers of η, i.e.,
in even powers of ωm. The prefactor for η2 is regular in the
infrared and determined by ζ = O(1) and p ∼ ξ−1. This term,
however, does not give rise to Im �(ω) and hence is irrelevant
to conductivity. Subtracting this term, we find that by power
counting, �(ωm) ∝ ω3

m, and typical p0 and vF p are of order
ωm. On the real frequency axis, this contribution is imaginary
and hence relevant to conductivity. At small frequencies, when
ω � vF ξ−1, we can then approximate D(p) in Eq. (13) by
D(0). Evaluating the integral over p and ζ and converting to
real ω, we obtain

σ (ω) = σA(ω) = 0.888e2ḡ2

(
ν

4π

)2(
ω

εF

)2

ξ 4, (18)

where ν = m/2π the density of states and εF is the Fermi
energy. To high numerical accuracy, the prefactor is 8/9. We
note here that infrared convergence of the integral that gives
the prefactor is the consequence of the absence of Landau
damping term in �̄d (p, q). If the linear in frequency term were
present in �̄d (p, q), we would get an additional logarithmic
factor ln (ωξ 3).

We see that for a parabolic dispersion, σ (ω) ∝ ω2ξ 4. Using
ξ ∼ 1/ω1/3 for the crossover to the quantum-critical regime,
we find that, at a QCP, the conductivity behaves as σ (ω) ∼
ω2/3. This agrees with earlier estimates (see above), but we
emphasize that this conductivity comes exclusively from the
anomalous component of the current.

B. Systems with nonparabolic isotropic dispersion

We next analyze the conductivity for the case when the
dispersion εk can still be approximated as isotropic, but is not
parabolic. To be specific, we consider the dispersion of the
form

εk = k2

2m
+ λ

k4

4
. (19)

Consider first the contribution from the normal current. For
a nonzero λ, the factor �v in Eq. (11) is also nonzero and for
k and k′ on the FS is given by

�v = 2λ[(k · p)k − (k′ · p)k′]. (20)

One can easily verify that the integration over the 2D
electron momentum is confined to the range in between the
two Fermi seas, displaced relative to each other by the bosonic
momentum p. This region is composed of several disjoint
domains, with their count corresponding to the number of
intersection points between the shifted FSs (see Fig. 4).

In the k space, the intersection points are determined by
solving the equation εk−p/2 = εk+p/2. Because electron dis-
persion has inversion symmetry, intersection points always
occur in pairs at k and −k. A pair of any two intersec-
tion points defines a channel of electron-electron scattering.
The contributions from different scattering channels add to-
gether in �(ω). The regions around the intersection points are
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(a) (b)

FIG. 4. The (a) swap and (b) Cooper scattering channels for a
circular FS. The same holds for any convex FS. The circles are the
two FSs, shifted by p, which we directed along the x axis.

critically important for conductivity because when electrons
are near these points, �ε is small and can be made equal to ω.

Specifically, for a circular FS, the integration domains are
crescent-shaped, as depicted in Fig. 4, with intersections la-
beled as A and A′. Each domain is assigned an integer index,
±1, with adjacent domains alternating in sign. The factor in
the second line in Eq. (10) ensures that k and k′ are situated in
domains with opposing indices; in Fig. 4, these are indicated
by distinct colors.

The energy change is given by

�ε = vF p · (
k̂ − k̂′) = vF p(sin θk + sin θk′ ), (21)

where vF = vk=kF and k̂ ≡ k/k, with angles θk and θk′ , which
here are convenient to measure from the direction normal to
p. Both angles are in the interval (0, π ), such that sin θk and
sin θk′ are positive.

Both sin θk and sin θk′ must be small to satisfy �ε = ω.
This condition selects two distinct scattering channels. The
first, known as the swap channel, involves electron scattering
near the same intersection point, such that k ≈ k′ (θk ≈ θk′ �
1). The second, the Cooper channel, corresponds to the scat-
tering of electrons near points that are related by inversion
symmetry, i.e., where k ≈ −k′ (θk′ ≈ π − θk, θk � 1). These
scattering processes are depicted in Figs. 4(a) and 4(b), re-
spectively. In both cases, the integration is confined to the
vicinity of the intersection points, where k varies within the
range kF ± pθk/2.

Performing integration over k and k′ and combining the
contributions from the Cooper and swap channels we obtain

Im �(ω) = 64λ2π4

ω2

ḡ2

χ2
0

∫
d2 p

(2π )9 D2(p)p4
∫

dθkdθk′ f 2
θk

f 2
θk′

× (
θ3

k θk′ + θkθ
3
k′
)
δ(ω − vF p(θk + θ ′

k )). (22)

Performing angular integration, we arrive at

Im �(ω) = λ2ω3

40π4

ḡ2

v6
F χ2

0

∫ ∞

�

d p
D2(p)

p
. (23)

The momentum integral is logarithmically singular and re-
quires an infrared cutoff, �, which we determine below. The
ultraviolet cutoff for the logarithmic behavior is p ∼ ξ−1, set

by D(p). Setting the limits, we obtain

σ (ω) = λ2e2ḡ2

40π4v6
F

ω2ξ 4 ln ξ�. (24)

Strictly within perturbation theory, where D(p) is static, the
infrared cutoff is set at L ∼ ω/vF . However, near a QCP, the
dynamics of D(p) (the Landau damping) cannot be neglected.
Using the full dynamical form of the bosonic propagator along
the Matsubara axis,

D(p) = D(p, ωp) = χ0

p2 + ξ−2 + γ
|ωp|

p

, (25)

with γ ∝ ḡ, we find that once γ vF ξ 2 > 1, the lower cutoff
is set by � ∼ γ ξ 2ω. In this last regime, the normal compo-
nent of conductivity scales as σN (ω) ∼ ω2ξ 4 ln(γωξ 3). The
contribution from the anomalous current does not change
qualitatively when λ is finite and the anomalous component
of conductivity remains σA(ω) ∼ ω2ξ 4. We see that in the
Fermi-liquid regime, where ω is small and ln(γωξ 3) is large,
the normal component of σ is logarithmically larger than the
anomalous component.

As before, we extrapolate Eq. (24) to the nematic QCP by
replacing ξ ∼ ω−1/3. The conductivity becomes σ (ω) ∼ ω

2
3 .

Note that the argument of the logarithm becomes of order one.
For completeness, we also evaluated the contributions to

conductivity separately from SE, MT, an AL1 and AL2 di-
agrams for the correlator of the normal current. We found
that each individual contribution to conductivity scales as
ξ 4 ln (ωξ 3). At a nematic QCP this becomes 1/ω4/3. We see
that the total contribution is far smaller that individual ones.
At a QCP, the smallness is an extra ω2 factor in the full σ (ω).

C. Convex Fermi surface

The scaling form of the conductivity in Eq. (24) holds also
a more general case of a nonisotropic dispersion, when the FS
has a convex form. Once can verify [12] that any convex FS in
a 2D system, the intersections of the shifted FSs are limited to
no more than two points, the analogs of A and A′ in Fig. 4. This
constrains the potential scattering channels to only Cooper
and swap ones. As the consequence, the leading contributions
from SE + MT and AL1 + AL2 diagrams still cancel out
within each scattering channel. The leftover conductivity is
still given by Eq. (24). In practical terms, the SE + MT and
AL1 + AL2, taken separately, yield Im �(ω) as in Eq. (10),
but with (�v)2 replaced by vk− p

2
· (vk+ p

2
− vk− p

2
) for SE +

MT diagrams and vk− p
2
· (vk′− p

2
− vk′+ p

2
) for AL1 + AL2 dia-

grams, see Eqs. (A11)–(A13) in the Appendix.
Each contribution yields Im �(ω) ∼ ωḡ2ξ 2 with the same

prefactor, but the signs are opposite. This becomes evident
when we expand the velocity combinations to the second
order in the bosonic momentum:

vk− p
2
· (

vk+ p
2
− vk− p

2

) ∼ −1

2
pβ pγ

∂vα

∂kβ

∂vα

∂kγ

, (26)

while

vk− p
2
· (

vk′− p
2
− vk′+ p

2

) ∼ 1

2
pβ pγ

∂vα

∂kβ

∂vα

∂k′
γ

. (27)
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FIG. 5. Additional scattering channel for a concave FS. The col-
ored region is between the two FSs, shifted by p, which we directed
along the x axis. A, B, and L are crossing points between the FSs.
Points A and B exist only for a concave FS. The momenta k and
k′ belong to topologically different domains, which we depict by
distinct colors.

Evaluating the subleading terms, which do not cancel between
SE + MT and AL1 + AL2, we obtain Im �(ω) ∼ ω3ξ 4 ln ωξ 3

and σ (ω) ∼ ω2ξ 4 ln ωξ 3, like in Eq. (24).

D. Concave Fermi surface

The situation changes qualitatively for a concave FS, see
Fig. 5. For such a FS, additional intersection points emerge
[12], as we show in Fig. 5 for bosonic momentum p directed
along x. This gives rise to additional scattering channels,
beyond swap and Cooper ones. One new scattering channel
showcased in Fig. 5 involves electrons with momenta k and k′

near distinct and nonequivalent points L and B (k near L and
k′ near B). For these electrons, ∂vα/∂k′

γ and −∂vα/∂kγ are
not related and, as a result, there is no cancellation between
SE + MT and AL1 + AL2 contributions.

For a “weakly” concave FS, when the inflection points are
close to each other, electron dispersion near L and B can
be approximated by εk = k2

y − 2δk2
x + k4

x , where δ is small
but positive. The point L is at kx = 0 and the point B is at
kx = 1

2 (4δ − p2)1/2. Evaluating SE + MT and AL1 + AL2

contributions in the vicinity of points L and B, we find that
the leading terms in SE + MT and AL1 + AL2 do not cancel
at a finite δ. The sum of SE + MT and AL1 + AL2 is still
smaller than SE + MT and AL1 + AL2 taken separately, but
the smallness is by an overall factor δ7/2. Substituting into
Kubo formula, we obtain σ ′(ω) ∝ ḡ2ξ 2δ

7
2 ϑ (δ).

Combining this with the earlier results, we find that for a
concave FS at small δ, the full optical conductivity behaves as

σ (ω) ∼ ḡ2
[
C1ω

2ξ 4 ln ωξ 3 + C2ξ
2δ

7
2 ϑ (δ)

]
, (28)

where C1 and C2 are the combinations of system parameters.
For larger δ, the second term obviously becomes much larger
than the first one.

At a QCP, this becomes

σ (ω) ∼
[
C̄1ω

2/3 + C̄2

ω2/3
δ

7
2 ϑ (δ)

]
. (29)

IV. CONCLUSION

In this study, we analyzed the optical conductivity of
a pristine two-dimensional electron gas near the Ising-
nematic QCP at zero temperature. We considered the
model, in which Galilean invariance is explicitly bro-
ken by the lattice and, as a result, the d-wave nematic
form factor F (k, k′) in the effective 4-fermion interaction∑

k,k′,p F (k, k′)V (p)c†
k+p/2ck−p/2c†

k′−p/2
c

k′+p/2
, mediated by

soft nematic fluctuations with small p, can be factorized into
F (k, k′) = fk fk′ . Fermionic dispersion, on the other hand,
can still be, in some cases, well described by a parabola.
We considered four cases: (i) a parabolic dispersion, (ii) a
nonparabolic, but still isotropic dispersion, (iii) a nonisotropic
dispersion and a convex FS, and (iv) a concave FS. We com-
puted optical conductivity at the lowest frequencies in the
Fermi-liquid regime away from the nematic QCP and then
extended the results to the QCP by using the scaling be-
tween frequency and nematic correlation length ξ (ξ→ω−1/3).
We used Kubo formula, which relates conductivity to the
imaginary part of the fully renormalized current-current polar-
ization bubble �(ω) and obtained � diagrammatically, to the
second order in fermion-boson coupling, but combining con-
tributions from inserting fermionic self-energy and MT and
AL-type vertex corrections. We also computed additional con-
tribution to �(ω) from the anomalous current, proportional to
the gradient of the d-wave form factor. In the case (i) we found
that optical conductivity comes entirely from the anomalous
current and behaves as σ (ω) ∼ ω2ξ 4. In cases (ii) and (iii), the
conductivity predominantly comes from the normal current
and behaves as σ (ω) ∼ ω2ξ 4 ln ωξ 3. This conductivity is far
smaller than the contribution from each diagram (ξ 4 ln ωξ 3)
and even smaller than the combined contribution from SE +
MT and from AL1 + AL2 (ξ 2). The reduction from ξ 4 ln ωξ 3

to ξ 2 was expected, since for small-angle scattering the con-
tributions from SE + MT and from AL1 + AL2 contain extra
factor (1 − cos θ ) ≈ θ2/2 as a consequence of near equiva-
lence between current and density vertices for small-angle
scattering. Further reduction of conductivity between SE +
MT and AL1 + AL2 contributions (the cancellation of the
leading terms) is specific to 2D and is a consequence of the ge-
ometric restrictions imposed on the scattering on a convex FS.
In case (iv), the reduction by small (1 − cos θ ) still holds, but
there is no geometrical restriction. As a consequence, σ (ω) ∼
ξ 2. At a QCP, this yields σ (ω) ∼ 1/ω2/3—the same form as
has been suggested in the original work by Kim et al. [15].
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APPENDIX: THE DERIVATION
OF THE ELECTRON POLARIZATION

Here, we derive the Eq. (10) for the polarization. To begin
with, introduce the self-energy part given by the diagram in
Fig. 6(a). It equals

�(k) = − ḡ2

χ2
0

∫
d3k′d3 p

(2π )6 D2(p) f 2
k+ p

2
f 2
k′+ p

2

× G(k′)G(k′ + p)G(k + p). (A1)

The scalar vertex shown in Fig. 6(b) is given by

�(k + q; q) = − ḡ2

χ2
0

∫
d3k′d3 p

(2π )6 D2(p) f 2
k+ p

2
f 2
k′+ p

2
G(k′)

× G(k′ + p)G(k + p)G(k + p + q). (A2)

Since the free-electron propagator of Eq. (4) satisfies

G(k + p)G(k + p + q) = 1

iq0
[G(k + p) − G(k + p + q)],

(A3)

(a) (b)

FIG. 6. (a) Self-energy part. (b) Scalar vertex diagram.

the scalar vertex is seen to be related to the self-energy part by
the Ward identity,

�(k + q; q) = �(k) − �(k + q)

iq0
. (A4)

The SE diagrams of Figs. 1(a) and 1(b) are equal, respec-
tively, to

�SE1 = −
∫

d3k

(2π )3 G2(k + q)G(k)�(k + q)v2
k, (A5)

and

�SE2 = −
∫

d3k

(2π )3 G(k + q)G2(k)�(k)v2
k. (A6)

Making use of the relation of Eq. (A3) for the product of
G(k)G(k + q) we obtain

�SE1 + �SE2 = − 1

iq0

∫
d3k

(2π )3 {[G2(k)�(k) − G2(k + q)�(k + q)] + G(k)G(k + q)[�(k + q) − �(k)]}v2
k (A7)

= − 1

iq0

∫
d3k

(2π )3 G(k)G(k + q)[�(k + q) − �(k)]v2
k, (A8)

with the first term in parentheses in Eq. (A7) is seen to cancel out when shifting variables k + q→k.
The MT diagram of Fig. 1(c) is given by

�MT = ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′+ p

2
G(k)G(k + q)G(k + p)G(k + p + q)G

(
k′)G

(
k′ + p

)
vk · vk+p. (A9)

We represent it as �MT ≡ �
(a)
MT + �

(b)
MT , with

�
(a)
MT = ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′+ p

2
G(k)G(k + q)G(k + p)G(k + p + q)G

(
k′)G

(
k′ + p

)
v2

k

= −
∫

d3k

(2π )3 G(k)G(k + q)�(k + q; q)v2
k = −

∫
d3k

(2π )3 G(k)G(k + q)
�(k) − �(k + q)

iq0
v2

k

= −(�SE1 + �SE2 ), (A10)
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which means that the sum of �
(a)
MT + �SE1 + �SE2 exactly cancels. The remaining part of the MT diagram �

(b)
MT with the use of

Eq. (A3) can be transformed as

�
(b)
MT = ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′+ p

2
G(k)G(k + q)G(k + p)G(k + p + q)G(k′)G(k′ + p)vk · (vk+p − vk)

= 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′− p

2
{2G(k)G(k + q) − G(k)G(k + p + q) − G(k + q)G(k + p)}

× G(k′)G(k′ − p)vk · (vk+p − vk), (A11)

with the change in integration variable from k′ to k′ − p in the last equality.
The AL1 diagram coming from Fig. 1(d) equals

�AL1 = ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′− p

2
G(k)G(k + q)G(k + p + q)G(k′)G(k′ + q)G(k′ − p)vk · vk′]

= 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′− p

2
G(k + p + q)G(k′ − p)

× {G(k)G(k′) + G(k′ + q)G(k + q) − G(k)G(k′ + q) − G(k′)G(k + q)}vk · vk′

= 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′− p

2
G(k′)G(k′ − p) (A12)

× {G(k)G(k + q + p) + G(k + p)G(k + q) − 2G(k)G(k + p)}vk · vk′ ,

where in transitioning from the first to the second line, we used Eq. (A3), and when transitioning to the third equality, we
performed a change of integration variables according to k′→k′ − q and p→p − q in both the second and third terms in braces,
and k→k − q in the last term. These changes of variables are justified because the free bosonic propagator D(p) is frequency-
independent, given that q has only a nonzero frequency component.

Similarly, the AL2 diagram coming from Fig. 1(e) equals

�AL2 = 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′− p

2
G(k′)G(k′ − p)

× {2G(k)G(k + p) − G(k + p)G(k + q) − G(k)G(k + q + p)}vk · vk′−p. (A13)

Hence, the sum of the diagrams is given by [cf. Eq. (A.10) in Ref. [14] without form factors]

�
(b)
MT + �AL1 + �AL2 = 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k+ p

2
f 2
k′− p

2
G(k′)G(k′ − p){2G(k)G(k + p)

− G(k + p)G(k + q) − G(k)G(k + q + p)}vk · (vk+p + vk′−p − vk − vk′ ). (A14)

What remains to get the Eq. (10) is to perform some symmetrization of the indices. Let us make a change of integration variables
according to k→k − p/2 and k′→k′ + p/2. Then

�
(b)
MT + �AL1 + �AL2 = 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′G
(

k′ + p

2

)
G

(
k′ − p

2

){
2G

(
k − p

2

)
G

(
k + p

2

)

− G
(

k − p

2
+ q

)
G

(
k + p

2

)
− G

(
k − p

2

)
G

(
k + p

2
+ q

)}
vk− p

2
· �v, (A15)

with �v given by Eq. (11).
Let us transform the first term in the braces by changing integration variables according to k ↔ k′ and p→ − p. The

corresponding part of Eq. (A15) becomes

��I = 1

(iq0)2

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′2G
(

k′ + p

2

)
G

(
k′ − p

2

)
G

(
k + p

2

)
G

(
k − p

2

)
vk′+ p

2
· �v. (A16)

The remaining terms are transformed as

��II = 1

q2
0

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′G
(

k′ + p

2

)
G

(
k′ − p

2

)

×
{

G
(

k − p

2
+ q

)
G

(
k + p

2

)
+ G

(
k + p

2
+ q

)
G

(
k − p

2

)}
vk− p

2
· �v

115156-8



FERMI SURFACE GEOMETRY AND OPTICAL … PHYSICAL REVIEW B 109, 115156 (2024)

= 1

q2
0

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′vk− p
2
· �v

{
G

(
k′ + p

2
+ q

2

)
G

(
k′ − p

2
+ q

2

)
G

(
k − p

2
+ q

2

)

× G
(

k + p

2
− q

2

)
+ G

(
k′ + p

2
+ q

2

)
G

(
k′ − p

2
+ q

2

)
G

(
k + p

2
+ q

2

)
G

(
k − p

2
− q

2

)}

= 1

q2
0

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′G
(

k + p

2

)
G

(
k − p

2

)

×
{

G
(

k′ + p

2
+ q

)
G

(
k′ − p

2

)
+ G

(
k′ − p

2
+ q

)
G

(
k′ + p

2

)}
vk− p

2
· �v

= 1

q2
0

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′G
(

k′ + p

2

)
G

(
k′ − p

2

)

×
{

G
(

k − p

2
+ q

)
G

(
k + p

2

)
+ G

(
k + p

2
+ q

)
G

(
k − p

2

)}
vk′+ p

2
· �v. (A17)

Moving to the second line, we adjusted the integration variables as k→k − q/2 and k′→k′ + q/2. The shift to the third line
comes from applying p→p + q in the first term and p→p − q in the final term within the braces. The concluding equivalence
arises by swapping k ↔ k′ and setting p→ − p.

Summing up the Eqs. (A15)–(A17), we finally obtain

�
(b)
MT + �AL1 + �AL2 = 1

2q2
0

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′G
(

k′ + p

2

)
G

(
k′ − p

2

){
G

(
k − p

2
+ q

)
G

(
k + p

2

)

+ G
(

k + p

2
+ q

)
G

(
k − p

2

)
− 2G

(
k − p

2

)
G

(
k + p

2

)}(
vk− p

2
+ vk′+ p

2

) · �v

= 1

4q2
0

ḡ2

χ2
0

∫
d3kd3k′d3 p

(2π )9 D2(p) f 2
k f 2

k′G
(

k′ + p

2

)
G

(
k′ − p

2

){
2G

(
k − p

2

)
G

(
k + p

2

)

− G
(

k − p

2
+ q

)
G

(
k + p

2

)
− G

(
k + p

2
+ q

)
G

(
k − p

2

)}
(�v)2, (A18)

where the transition to the last line involves the change of p→ − p, taking into account that �v is an odd function of p. The
integration over the frequencies

∫
dk0dk′

0d p0 · · · is elementary, given the simple pole structure of the free electron’s Green’s
function (4), leading to Eq. (10).
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