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Symmetry determined topology from flux dimerization
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In the field of symmetry-protected topological phases, a common wisdom is that the symmetries may fix
the nontrivial topological classifications, but they alone cannot determine whether a system is topologically
nontrivial. Here, we show that this is no longer true in cases where symmetries are projectively represented.
Particularly, the Zak phase, a topological invariant of a one-dimensional system, can be entirely determined by
the projective symmetry algebra (PSA). To demonstrate this remarkable effect, we propose a minimal model,
termed the flux Su-Schrieffer-Heeger (f-SSH) model, where the bond dimerization in the original SSH model is
replaced by a flux dimerization. We present experimental realization of the f-SSH model in an electric-circuit
array, and our predictions are directly confirmed by electric measurement. Our work refreshes the understanding
of the relationship between symmetry and topology, opens up avenues for exploring novel PSA determined
topological phases, and suggests flux dimerization as an approach for designing topological crystals.
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I. INTRODUCTION

Symmetry-protected topological phases have been a focus
of physics research in the past two decades [1–7]. In general,
the action of symmetries on a physical system is described
by their representations. Such actions impose constraints on
the physical state and decide its topological classification, i.e.,
what are possible topologically distinct phases allowed by the
symmetries. Nevertheless, knowing the symmetries and their
representations alone does not automatically tell us which
phase (trivial or nontrivial) the system belongs to, which is
a common wisdom well known in the field [1–7].

To illustrate this point, recall the famous Su-Schrieffer-
Heeger (SSH) model [8] (see Fig. 1). Topological classifi-
cation of the SSH model can result from several choices of
symmetries. Let us consider the spacetime inversion PT being
the protecting symmetry, which leads to a Z2 classification,
with the nontrivial and trivial phases characterized by the Zak
phase γ = π and 0, respectively [9,10]. In the SSH chain, the
two phases correspond to the two bond dimerization patterns
shown in Fig. 1. Namely, in the unit cell (compatible with
boundary condition), the nontrivial (trivial) phase has the in-
tercell bond stronger (weaker) than the intracell bond. One
can see that the symmetry determines the Z2 classification,
but it cannot determine which phase an SSH chain belongs
to. Indeed, the two phases in Figs. 1(a) and 1(b) correspond
to the same symmetry representation, satisfying the same
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group relations

(PT )2 = 1, (PT )L(PT ) = L−1, (1)

where L is the unit translation along the chain [11].
In the presence of gauge fluxes, ordinary symmetry rela-

tions are extended into projective symmetry algebras (PSAs)
[12–18]. That is, the successive action of two crystal sym-
metry operators S1 and S2 may be modified by an additional
phase factor: ρ(S1)ρ(S2) = �(S1, S2)ρ(S1S2), where ρ(S) de-
notes the projective representation of S. In general, the phase
factor �(S1, S2) is valued in U (1) [12], but under time-
reversal symmetry T , it will be restricted to Z2 = {±1} [15].
Recently, it was realized that PSAs could enable a novel class
of symmetry-protected topological phases with much richer
properties compared to conventional ones. Examples include
the Mobius insulator [14,19,20], real topological charges
[21,22], realization of spinful topological phases by spinless
systems [23–27], and k-space nonsymmorphic symmetry pro-
tected topological phases such as the Klein-bottle insulator
[28–36].

In this work, we discover that the aforementioned com-
mon wisdom is violated for PSA enabled topological phases;
namely, knowing certain projective symmetry representations
alone is sufficient to completely determine the topological
phase. We demonstrate this remarkable phenomenon in a
minimal model, named the flux Su-Schrieffer-Heeger (f-SSH)
model, where the bond dimerization of the original SSH
model is replaced by a “flux dimerization.” We show that the
Zak phase of the f-SSH model is an invariant of PSA; i.e., it
is solely determined by the symmetries’ projective represen-
tations. Furthermore, distinct from conventional topological
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FIG. 1. Two phases of the standard SSH model. (a) The topologi-
cal phase with intercell bond stronger than the intracell bond. (b) The
trivial phase with intercell bond weaker than the intracell bond.

phases, where different bands are allowed to have different
Zak phases, the Zak phases enforced by PSA must be the same
for all the bands. Our theory is experimentally verified in a
topological electric circuit realizing the f-SSH model, where
the topological boundary modes, the manifestation of the PSA
dictated Zak phase, are confirmed by direct electric mea-
surement. Our work reveals a fascinating connection between
symmetry and topology in PSA enabled topological phases,
and provides a new strategy to explore topological phases via
designed PSAs and the method of flux dimerization.

II. THE f-SSH MODEL

Our f-SSH model is shown in Fig. 2(a). In this model, a unit
cell has four sites. All hoppings between nearest neighbors
have the same magnitude, but their signs can be positive or
negative, denoted by blue and red colors in Fig. 2(a). Going
around a plaquette, the accumulation of hopping signs

correspond to a gauge flux of 0 or π . The f-SSH model has
an alternating distribution of 0 and π fluxes.

Similar to the original SSH model, this model also pre-
serves P, T , and L symmetries. However, the flux dimerization
modifies the representation of these symmetries and their PSA
in a fundamental way. Consider the inversion operation. With
the inversion center at the center of a π -flux plaquette, direct
inversion transforms the chain from Fig. 2(a) to Fig. 2(b). One
observes that although the flux distribution is preserved, the
color of the bonds, i.e., the gauge connection configuration,
is not. To recover the original configuration in Fig. 2(a), an
additional gauge transformation G is required. For our current
case, G is illustrated in Fig. 2(c), which involves a sign (π -
phase) change at some of the local basis states. It follows
that the representation of inversion in the f-SSH model is a
combined operation:

P = GP. (2)

It is this operator P that commutes with the Hamiltonian.
Importantly, G does not commute with P and L. Instead,

we have PGP−1 = −G and LGL−1 = −G, as reflected in
Fig. 2(c) by noticing that both P and L inverse the sign of G.
Then, one immediately observes that the relations in Eq. (1)
satisfied by the ordinary representation are now modified into
a PSA, with

(PT )2 = −1 (3)
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FIG. 2. (a) Illustration of the f-SSH model. A unit cell (marked by the yellow box) contains four sites, labeled by a, b, c, and d. All hopping
amplitudes have the same magnitude but may have different signs. The negative and positive ones are marked in red and blue, respectively.
These signs result in a flux distribution as indicated in the figure. (b) Direct inversion operation with respect to the inversion center (red dot)
does not preserve the gauge configuration; i.e., the colors of the bonds are changed from those in (a). (c) An additional gauge transformation G
is required to recover the original configuration in (a). Here, the plus and minus signs indicate the phase change of the local basis at respective
sites. One observes that this G does not commute with L and P, as both L and P exchange ± signs. (d) Band structure of the f-SSH model.
All bands have Zak phase π as determined by the PSA. (e) Energy spectrum for the model with a length of 25 unit cells. The in-gap states are
surrounded by orange circles. (f) Spatial distribution of the two in-gap states in the third gap as indicated in the insert of (e). The two states are
distributed at two ends, and they represent the topological end states corresponding to the nontrivial Zak phase.
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and

(PT )L(PT )−1 = −L−1. (4)

The minus signs in the two identities are invariants of the
PSA, as shown in Appendix A. Here, we note that only the
combined symmetry PT is required to be preserved, while
both P and T can be broken.

More importantly, the PSA in Eqs. (3) and (4) dictates the
value of the Zak phase. To see this, note that in k space, L
is represented by eik (taking the lattice constant to be unit);
then Eq. (4) indicates that PT must send k to k + π . Consider
a single band |ψ (k)〉 with periodicity |ψ (k)〉 = |ψ (k + 2π )〉.
Then the PT operator acts on the band as

UPT |ψ (k)〉∗ = eiφ(k)|ψ (k + π )〉, (5)

where we expressed PT = UPT K with UPT a unitary operator
and K the complex conjugation. This equation means that PT
maps |ψ (k)〉 to |ψ (k + π )〉 up to a phase factor eiφ(k).

From Eq. (3), we have UPT U ∗
PT = −1, which leads to

eiφ(k+π )−iφ(k) = −1. (6)

Hence, the PSA establishes a connection between states at k
and k + π .

Using Eqs. (5) and (6), one can readily evaluate the Zak
phase [9],

γ =
∮

dk 〈ψ (k)|i∂k|ψ (k)〉, (7)

by dividing the integration domain into two parts, [−π, 0] and
[0, π ], and relating the two by PT (see Appendix B). For a
single band, one finds that the Zak phase is guaranteed to be
γ = π . It must be pointed out that the above analysis is com-
pletely general: We never used any details of the single band
except the PSA in Eqs. (3) and (4) that the model satisfies. In
other words, if an isolated band appears in a system with the
PSA, its Zak phase is determined to be nontrivial by the PSA.

When will the Zak phase be zero? From the above discus-
sion, this must occur in a configuration with a different PSA.
For the f-SSH model, this corresponds to the unit cell choice
with inversion center at zero-flux plaquette. One can easily
check that in this case, although Eq. (4) remains the same,
Eq. (5) is changed to (PT )2 = +1, which then dictates that
γ = 0.

Thus, the two topological phases of the flux SSH model
directly correspond to two distinct PSAs, with (PT )2 = α ∈
{±1}, such that the Zak phase can be expressed as

γ = i ln α mod 2π. (8)

This is in contrast to conventional cases, where symmetries
[as in Eq. (1)] cannot determine the topological phase.

Our claims above are confirmed by a direct calculation
of the model (see Appendix C). Figures 2(d)–2(f) show the
nontrivial case with PSA in Eqs. (5) and (6). The calculated
band structure is plotted in Fig. 2(d), and we verified that each
band here has a π Zak phase. This is another salient feature
distinct from conventional systems, where different bands are
not guaranteed to have the same Zak phase.

A π Zak phase requires the presence of 0D topological
modes at the end of the 1D chain. In our model, this occurs
for the first and the third bulk band gaps (the second gap is
trivial since the Zak phases for the two bands below add up to
zero). Such topological end modes are confirmed in Fig. 2(e),
by our calculation of a chain with a finite length. The profiles
of the two in-gap states in the third gap are plotted in Fig. 2(f).

III. EXPERIMENTAL DEMONSTRATION

The proposed f-SSH model constitutes a minimal model
for the PSA determined topology. Below, we present exper-
imental realization of this model in an electric-circuit array,
which directly verifies our theory. Some universal methods
to implement negative hopping amplitudes in a tight-binding
model can be found in Ref. [21].

Electric circuits are governed by Kirchhoff’s law. In the
frequency domain, it assumes the general form of Ii(ω) =∑

j Ji j (ω)Vj (ω), where Ii(ω) and Vi(ω) are the electric current
and voltage at node i, Ji j (ω) is the admittance between nodes i
and j, and the summation is over all adjacent nodes. It follows
that the behavior of a circuit is characterized by its J (ω)
matrix, also known as the circuit Laplacian, and the task is
to design a circuit whose J (ω) matrix can simulate the f-SSH
model.

The design is straightforward, thanks to the characters of
capacitors and inductors which naturally exhibit a phase dif-
ference in their responses [37–39]. As shown in Fig. 3(a), one
just needs to use capacitor (C1) for the blue bond and inductor
(L1) for the red bond. Then a unit cell contains four capacitors
and two inductors (and four nodes). The additional inductors
and capacitors (with values L1 and C2) at the top and bottom
in Fig. 3(a) are used to facilitate measurement. They are not
essential to PSA and topology.

For this simple circuit array, one readily derives that

J (ω, k) = iωC1H (ω, k), (9)

and at driving frequency ω = ω0 ≡ 1/
√

L1C1,

H (ω0, k) = HfSSH(k) − λ1, (10)

where HfSSH is just the f-SSH model put in dimensionless
form (see Appendix E), and λ = C2/C1 is a constant shift that
can be utilized to probe the topological end mode.

The measurement is on the impedance response Zab(ω)
between two nodes a and b, which can be expressed as

Zab(ω) = Va − Vb

Iab
=

∑
n

|ψn,a − ψn,b|2
jn(ω)

, (11)

where jn and {ψn,i} are the nth eigenvalue and eigenmode
of J (ω). In Zab(ω), the mode with jn close to zero (called
the zero-admittance mode) will dominate the response. For
any target mode, we can utilize the λ term in Eq. (10) (by
tuning C2) to shift its eigenvalue to zero. Here, we focus on
the topological end mode corresponding to the one in the third
gap of HfSSH in Fig. 1(e), which has a value of ∼1.48, so we
choose λ = 1.48 in our design. This makes the topological
end mode the zero-admittance mode at frequency ω = ω0.
In Fig. 3(c), we show the simulated J (ω) spectrum of our
designed circuit, which confirms this point.
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FIG. 3. (a) Circuit diagram for the f-SSH model with five unit cells. The shadowed area faithfully simulates the f-SSH model. Each inductor
(capacitor) corresponds to a negative (positive) hopping amplitude. A unit cell is indicated by the yellow rectangular. The remaining part is
designed to tune the reference voltage of the electric circuit. (b) Photograph of our fabricated circuit board. (c) Theoretical spectrum of the
circuit Laplacian as a function of the driving frequency. All frequency scales are normalized to the resonance frequency ω0. Two isolated modes
crossing the gap, which correspond to zero-energy eigenvalues of the circuit Laplacian at ω = ω0, are marked in red. They correspond to the
two topological end modes. (d), (e) Experimental and simulated impedance responses versus normalized frequency. The end (bulk) impedance
is measured between a2 (a1) and b2 (a2) in (b). The curve at the end (in the bulk) is marked in red (blue). The experimental curves well agree
with the simulation curves, confirming the topological end states of the f-SSH model.

Experimentally, we fabricate the designed circuit on a
printed circuit board, as shown in the photo in Fig. 3(b). It has
a length of five unit cells, not long but sufficient to discern the
topological end modes. We perform impedance measurement
on two pairs of nodes. The first pair a1 and b1 are in the
bulk (the middle cell), and the second pair a2 and b2 are at
the end (the first cell), as indicated in Fig. 3(b). From the
above analysis, one expects that the topological end mode of
the f-SSH model should manifest as a peak at ω = ω0 for
measurement at a2 and b2, and this peak will disappear for
measurement at a1 and b1. This is confirmed by the measured
results in Fig. 3(d). The experimental curves also agree very
well with results from numerical simulations of the circuit [see
Fig. 3(e)]. These results confirm the PSA enforced topology in
this topological circuit.

IV. DISCUSSION

We have discovered an extraordinary phenomenon beyond
the common wisdom regarding topological phases; i.e., a
particular projective algebraic structure of symmetries can
completely determine certain topological invariants. We pro-
pose a simple model, the f-SSH model, which demonstrates
the phenomenon. Remarkably, every isolated band is enforced
by PSA to have a nontrivial Zak phase. We also provide
experimental proof of this phenomenon using a designed
electric circuit array. Considering the rich crystal symme-
tries, we expect that there will be an abundance of such
intriguing effects to be discovered for PSA enabled topolog-
ical phases. Moreover, our proposed flux dimerization may
serve as an effective design strategy to realize novel PSA
determined topological phases, applying to a wide range of
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physical systems besides electric circuits, such as cold atoms
[40,41], phononic/photonic crystals [42–45], and mechanical
networks [46,47].
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APPENDIX A: GAUGE INVARIANCE OF PSA

One may modify PT by an arbitrary phase eiθ , as PT 	→
eiθ PT . One finds that

(eiθPT )2 = eiθ PTeiθ PT

= eiθ e−iθ (PT )2 = (PT )2. (A1)

In the second equality, we have used the fact that PT is
antiunitary, and therefore a complex number is conjugated
after commuting with PT . Hence, we see (PT )2 = α is gauge
invariant. It is known as a cohomology invariant for the PSA.
Similarly, one can verify the invariance of Eq. (4) in the main
text under PT 	→ eiθ PT and L 	→ eiθ ′

L.

APPENDIX B: DERIVATION OF THE
ENFORCED ZAK PHASE

The integrand in Eq. (7) in the main text is known as the
Berry connection A(k). From Eq. (5) in the main text, we find
that

|ψ (k + π )〉 = e−iφ(k)UPT |ψ (k)〉∗. (B1)

Substituting this into the Berry connection expression at k +
π , we obtain

A(k + π ) = −A(k) + ∂kφ(k). (B2)

Hence, the Zak phase can be expressed as

γ =
∫ π

0
dk [A(k) + A(k + π )] = φ(π ) − φ(0). (B3)

Then, using Eq. (6) in the main text, we find that γ = π .
In addition, following similar derivation, one finds that for

PSA with (PT )2 = α ∈ {±1} and (PT )L(PT )−1 = −L−1, we
must have

γ = i ln α mod 2π, (B4)

which is Eq. (8) in the main text.

APPENDIX C: FLUX SSH MODEL

Our proposed flux SSH model is a minimal model that re-
alizes the PSA in Eqs. (3) and (4) in the main text. According

to Fig. 2(a), the explicit form of the model in real space can
be written as

H = t
∑

i

(c†
i,aci,b + c†

i,bci,c + c†
i,cci,d − c†

i,d ci,a)

+ t
∑

i

(c†
i+1,bci,a − c†

i+1,cci,d ) + H.c., (C1)

where the hopping parameter t is taken to be real positive, i
labels the unit cell, the first term is intracell hopping, and the
second term is intercell hopping. For the minimal model, we
include the nearest-neighbor hopping. One can certainly add
more complicated terms, such as far-neighboring hoppings,
but as long as they respect the PSA, the topological character
of the system must remain unchanged.

Transforming to k space, the flux SSH model takes the
form of

HfSSH =

⎡
⎢⎢⎣

0 1 + eik 0 −1
1 + e−ik 0 1 0

0 1 0 1 − e−ik

−1 0 1 − eik 0

⎤
⎥⎥⎦,

(C2)

where we put it in dimensionless form (in unit of t). Its band
structure consists of four bands with

E (k) = ±
√

3 ± 2
√

1 + cos2 k, (C3)

which has been plotted in Fig. 2(d). Direct calculation shows
that every band here carries a π Zak phase, as we predicted
based on PSA. The topological end modes for a flux SSH
chain with 25 unit cells have been confirmed by the results
in Figs. 2(e) and 2(f).

In connection with the original SSH model, we also pro-
vide the following intuitive picture. In the flux SSH model,
consider the coupling between two neighboring sites along the
chain, e.g., between sites a and b. One can readily identify two
leading interaction paths; one is direct hopping between the
two, and the other is to go around three edges of a plaquette.
Then, the effective hopping amplitude is the superposition
of two paths. Clearly, the coupling is enhanced for 0-flux
plaquettes and reduced for π -flux plaquettes. As a result,
one can imagine that the effective hopping amplitudes form
a dimerization pattern similar to the original SSH model. This
offers an intuitive understanding of the result.

APPENDIX D: THE SPACETIME INVERSION OPERATOR

For the flux SSH model with HfSSH(k) in Eq. (C2), the
unitary matrix associated to PT is given by

UPT =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦, (D1)

which satisfies

UPT U ∗
PT = −1. (D2)
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It is straightforward to verify that

UPTH∗
fSSH(k)U †

PT = HfSSH(k + π ); (D3)

i.e., PT translates k by π .

APPENDIX E: J MATRIX FOR THE FLUX SSH CIRCUIT

By Kirchhoff’s law, our designed circuit has its circuit
Laplacian J (ω, k) = iωC1H (ω, k), where

H (ω, k) =

⎡
⎢⎢⎢⎣

2η − λ 1 + eik 0 −ζ

1 + e−ik 3η − λ 1 0
0 1 2η − λ 1 − ζe−ik

−ζ 0 1 − ζeik 2η − λ

⎤
⎥⎥⎥⎦,

where η = (L1C1)−1/ω2 − 1, ζ = (L1C1)−1/ω2, and λ =
C2/C1. When we tune the driving frequency ω to the LC
resonance frequency ω0 = 1/

√
L1C1, we have η = 0 and

ζ = 1. Compared with the flux SSH model in Eq. (C2), we

immediately notice that

H (ω0, k) = HfSSH(k) − λ1. (E1)

Therefore, the designed circuit constitutes a realization of our
proposed flux SSH model.

APPENDIX F: EXPERIMENTAL DETAILS

In the designed circuit, we choose C1 = 1 nF, L1 = 5.6 µH,
so the resonant frequency is 2.1268 MHz. Ideally, a single
capacitor with capacitance 1.48 nF can be chosen to realize
the desired C2, but in practice, it is difficult to find proper
capacitors with this exact value. Therefore, we use two capac-
itors whose capacitances are C2a = 1 nF and C2b = 0.47 nF in
parallel to realize C2. In this way, the capacitance C2 achieved
is 1.47 nF, slightly lower than the ideal value.

In the electric circuit that we fabricated, the part number of
C1 and C2a is GRM1885C1H102FA01D, the part number of
L1 is SLF10145T-5R6M3R2-PF, and the part number of C2b

is GRM1885C1H471FA01D. All impedance measurements
were performed with a HP 4194A impedance/gain-phase
analyzer.
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