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The qualitative reliability of the dynamical mean-field theory (DMFT) is investigated for systems in which
either the actual carrier density or the effective carrier density is low, by comparing the exact perturbative
and dynamical mean-field expressions of electron-scattering rates and optical conductivities. We study two
interacting systems: tight-binding models in which the chemical potential is near a band edge and Dirac systems
in which the chemical potential is near the Dirac point. In both systems it is found that DMFT underestimates
the low frequency, near-Fermi-surface single-particle scattering rate by a factor proportional to the particle
density. The quasiparticle effective mass is qualitatively incorrect for the low density tight-binding model but
not necessarily for Dirac systems. The dissipative part of the optical conductivity is more subtle: in the exact
calculation vertex corrections, typically neglected in DMFT calculations, suppress the low frequency optical
absorption, compensating for some of the DMFT underestimate of the scattering rate. The role of vertex
corrections in calculating the conductivity for Dirac systems is clarified and a systematic discussion is given
of the approach to the Galilean- or Lorentz-invariant low-density limit. Relevance to recent calculations related
to Weyl metals is discussed.
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I. INTRODUCTION

The dynamical mean-field approximation is an extraor-
dinarily useful tool for computing and understanding the
properties of correlated electron systems in both model
systems [1] and real-material [2,3] contexts. The approxi-
mation becomes exact in an infinite-dimensional or infinite-
coordination-number limit in which the electron self-energy
is momentum independent and it is believed to be reasonably
accurate when the momentum dependence of the self-energy
is weak relative to the frequency dependence, as occurs, for
example, in lattice models with typical band fillings. However,
for low electron density one may expect the physics to be
described by a theory with an effective Galilean or Lorentz
invariance, implying significant momentum dependence of
the electronic self-energy and therefore a breakdown in the
reliability of the dynamical mean-field theory (DMFT) ap-
proximation. While it has been generally understood since the
earliest days of the dynamical mean-field approximation that
the approximation was likely to break down near band edges
[1], a systematic study has been lacking.

“Dirac” and “Weyl” materials, semimetals in which a pro-
tected band crossing creates Dirac points at which the density
of states vanishes, are of intense recent interest [4]. These
materials typically have a high density of electrons (roughly
one per unit cell in the conduction bands) but are in a sense
low-density systems because if the Fermi level is near the
Dirac point and there are no extended Fermi-surface regions,
the density of mobile electrons may be small. Dynamical
mean-field theory has nevertheless been applied [5–7] and it

is therefore of interest to understand the limits of applicability
of the dynamical mean-field approximation in this case.

In a previous paper [8] we compared DMFT and pertur-
batively exact expressions for the optical conductivity of the
two-dimensional Hubbard model over a wide density range.
Here we extend the analysis to three-dimensional Hubbard
and Dirac systems, consider the self-energy in more detail
and provide a systematic examination of the low-density limit.
We find that the dynamical mean-field approximation qualita-
tively underestimates the low-frequency part of the imaginary
part of the self-energy by a factor proportional to the particle
density, calling into question some of the results obtained in
Refs. [6,7]. For the two- and three-dimensional tight-binding
models (throughout the paper, “tight-binding model” refers to
a one-band Hubbard model) with the chemical potential near
the band edge, we find that DMFT also fails to capture the
quasiparticle mass enhancement correctly. However, for three-
dimensional Dirac systems, dynamical mean-field theory may
provide a reasonable approximation to the real part of the
electron self-energy and therefore to the quasiparticle mass
enhancement and the critical interaction strength required to
drive a Mott transition.

The important features of our result can be understood
from a scaling argument. In a system with a continuous
translation invariance relevant energy scales are the chemical
potential, the frequency, and the temperature. At temperature
T = 0 we expect

Im �(ω, k) = μCI

(
ω

μ
,

k

kF

)
, (1)
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with C a constant determined by the interactions and density
of states, I a scaling function and Fermi momentum kF ∝ μλ

(λ = 1
2 for Galilean- and =1 for Lorentz-invariant systems). A

continuous translation invariance can emerge as a low-density
limit of a lattice model, in which case one would expect
Eq. (1) to hold in a low-density, low-frequency limit and
small-k limit (μ → 0, ω/μ, and k/kF of order unity). In a
translation-invariant Fermi liquid one expects that at ω → 0
for kinematic reasons the leading ω2 term in Im � vanishes for
k > 3kF , so at low frequency Im � has a strong momentum
dependence on the scale of kF . The dynamical mean-field
approximation in effect approximates the full frequency and
momentum-dependent self-energy by its average over the
Brillouin zone; the vanishing of Im � for k > 3kF means
that the function that is being averaged vanishes over most
of integration range so that the DMFT approximation gives
an estimate for the low-frequency self-energy that is O(kF a)d .
smaller than the actual value at the Fermi surface.

A further issue arises for transport: in Galilean and
Lorentz-invariant systems the scattering processes that con-
tribute to Im � approximately conserve current so the
transport scattering rate may be expected to be much smaller
than the quasiparticle rate. In diagrammatic calculations the
difference between the transport and quasiparticle scattering
rates is encoded in vertex corrections which are neglected in
practical DMFT calculations. We find that for the low-density
tight-binding model the DMFT underestimation of the quasi-
particle rate is to a large degree compensated by the neglect of
the vertex corrections. In Dirac systems additional issues arise
that will be discussed below.

The rest of this paper presents the calculations that
substantiate the scaling arguments and clarify the issues
of vertex corrections and the approach to the low-density
limit. In Sec. II we present results for the self-energy and

low-frequency conductivity for tight-binding models at low
carrier density. In Sec. III we present results for the
self-energy and low frequency conductivity for the three-
dimensional Dirac system. Section IV is a conclusion.
Appendixes A and B give details of some of the calculations.

II. LOW-DENSITY SYSTEMS

A. Formalism

We analyze the one-band Hubbard model [9–18],

H =
∑
�kσ

(E�k − μ)c†
�kσ

c�kσ
+ U

∑
i

ni↑ni↓, (2)

with interaction U , dispersion Ek , lattice constant a, and
chemical potential μ. We work in units where h̄ = c = e2 =
kB = 1 throughout the paper and define β as the inverse tem-
perature. We are interested in low densities, corresponding to
Fermi wave vector kF small compared with the lattice constant
(kF a � 1) or alternatively chemical potential μ close to the
lower band edge [μ − min(E�k ) � W = max(E�k ) − min(E�k )]
and work to second order in U .

B. Electron self-energy

The perturbative self-energy of interacting electron sys-
tems Hubbard models has been extensively studied (see
Refs. [19–23] for some of the original work and references).
We recapitulate the calculations here to obtain expressions in
forms convenient for our subsequent analysis.

The imaginary part of the second-order perturbation the-
ory expression for the electron self-energy may be expressed
in terms of the noninteracting electron spectral function
A(�k, x) = πδ(x + μ − E�k ) and the Fermi ( f ) and Bose (n)
distribution functions as

Im �(k, ω) = −U 2a2d
∫

dd �p1

(2π )d

dd �p2

(2π )d

∫
dxdy

π2
A( �p1, x)A( �p2, y)A( �p1 + �p2 − �k, x + y − ω)[ f (x) − f (x + y − ω)]

× [ f (y) + n(y − ω)], (3)

where f (x) = 1/(eβx + 1) and n(x) = 1/(eβx − 1). The momentum integrals are over the Brillouin zone. At zero temperature,
we have f (x) = 	(−x) and n(x) = 	(x) − 1, where 	(x) is the Heaviside function.

At temperature T and frequency ω low with respect to the bandwidth W (T, ω � W ) and small momenta (ka � 1), the
dispersion can be taken to be quadratic, E�k = k2

2m with μ = k2
F /2m and, as shown in Appendix A, Eq. (3) can be explicitly

written in a scaling form. We present the result here at T = 0,

Im �(k, ω) = −π

(
U

EL

)2

(akF )2d−4 μ

(2π )2d
I

(
ω

μ
,

k

kω

)
, (4)

where EL = 1
2ma2 is a lattice scale energy, the factor (akF )2d−4 expresses the scaling of the density of states as the band edge is

approached, and

I

(
ω

μ
,

k

kω

)
=

∫ 1+ ω
μ

1
dxx

d−2
2

∫ 2+ ω
μ
−x

max
[
1,1+ ω

μ
−x

] dyy
d−2

2

∫
d
xd
y

1 + ω
μ

× δ

⎛
⎜⎝1 + k2

k2
ω

+ 2

√
x
√

y cos θxy

1 + ω
μ

− 2

√
x cos θxk + √

y cos θyk√
1 + ω

μ

k

kω

⎞
⎟⎠,

kω =
√

k2
F + 2mω = kF

√
1 + ω

μ
. (5)

115154-2



ADEQUACY OF THE DYNAMICAL MEAN FIELD THEORY … PHYSICAL REVIEW B 109, 115154 (2024)

The rotational invariance of the low-energy theory im-
plies I (ω/μ, k/kω ) only depends on the magnitude of k.
Equation (4) follows directly from scaling the dimensional
factors out of the fundamental Eq. (3) and expresses the
imaginary part of the self-energy in the intuitively appealing
form of the energy scale of the low-energy theory (μ) times
π times the square of an interaction (made dimensionless
via a lattice-scale energy) times the square of a density of
states. However, for comparison with subsequent work it is
convenient to note that in the low-density limit of a short
ranged interaction model interaction effects are themselves
proportional to the particle density (including spin degener-
acy) n = 2(akF )d
d/d (2π )d , where 
d is the solid angle of
the unit sphere in d dimensions, and to rewrite Eq. (4) as

Im �(k, ω) = −πEL

(
U

EL

)2

n
d

2(2π )d
d

(
μ

EL

) d−2
2

I

(
ω

μ
,

k

kω

)
.

(6)

From Eq. (5) one may easily see that for ω/μ � 1, x, and
y are almost unity, so the δ function cannot be satisfied for
k/kF > 3, implying that, in the low-density limit for small ω,
the imaginary part of the self-energy is zero for most of the
Brillouin zone. For large ω (W 	 ω 	 μ), x and y can be of
order ω/μ, so the δ function could still be satisfied for k ∼
kω → √

2mω. Thus, as frequency is increased, the range of
k over which Im � �= 0 increases and for large enough ω the
imaginary part of the self-energy is nonzero throughout the
whole Brillouin zone, although of course the formulas derived
above no longer hold.

In the low-frequency limit (ω � μ) we have explicitly
kω → kF and

I

(
ω

μ
→ 0,

k

kF

)
= 1

8

(
ω

μ

)2

F

(
k

kF

)
, (7)

with F a scaling function given explicitly in Appendix A and
plotted for d = 2 and 3 in Fig. 1.

In the high-frequency limit (W 	 ω 	 μ), kω → √
2mω

and we find (see Appendix A)

I

(
ω

μ
	 1,

k

kω

)
= 
d

d

(
ω

μ

) d−2
2

G

(
k√

2mω

)
, (8)

with G a scaling function given explicitly in Appendix A and
plotted for d = 2 and 3 in Fig. 2. This scaling means that
the self-energy becomes independent of μ and varies with
frequency as ω(d−2)/2 [of course Im � still depends on density
via the interaction term (U/EL )2n]. From the plot we can see
that G(k/

√
2mω) goes to a constant for k < kω = √

2mω, so
that when ω is very large we expect Im �(k, ω) to be nonzero
over the whole Brillouin zone, although of course the exact
expression will differ from Eq. (8).

The second-order perturbation theory expression for the
dynamical mean-field approximation of the self-energy is

Im �DMFT(ω) = −U 2a2d
∫

dd �p1

(2π )d

dd �p2

(2π )d

dd �p3

(2π )d

∫
dxdy

π2

× A( �p1, x)A( �p2, y)A( �p3, x + y − ω)

× [ f (x) − f (x + y − ω)][ f (y) + n(y − ω)],

(9)

(a)

(b)

FIG. 1. Scaling function F [Eq. (7)] shown as a function of k/kF

in two (top panel) and three (bottom panel) dimensions. In the two
dimensional case the peak at k = kF is a logarithmic divergence re-
lated to the subleading singularity that gives rise to the |T | correction
to the specific heat coefficient extensively discussed in the literature
[22,23]. Because the singularity is integrable it does not affect the
conductivity. We can clearly see that F vanishes when k > 3kF .

and is seen to be the average, over the Brillouin zone, of the
exact perturbative expression implying for μ,ω � W that

Im �DMFT(ω) = −πEL

(
U

EL

)2

n
d

2(2π )d
d

(
μ

EL

) d−2
2

(akω )d

× 
d

(2π )d

∫
xd−1dxI

(
ω

μ
, x

)
. (10)

Since the imaginary part of the perturbative self-energy is
negligibly small in most of the Brillouin zone (i.e., for k 	 kω)
we may extend the x integral to infinity. The additional fac-
tor of (akω )d shows that at low frequencies (kω → kF ) the
dynamical mean-field approximation underestimates the near
Fermi surface electron-electron scattering rate by one factor
of density; as the frequency is increased the underestimate
becomes less severe and for ω ∼ W , kωa ∼ 1 and the DMFT
approximation may become reasonable. In the low-frequency
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(a)

(b)

FIG. 2. Scaling function G [Eq. (8)] shown as a function of
k/

√
2mω in two (top panel) and three (bottom panel) dimensions.

We can clearly see that G vanishes when k/
√

2mω >
√

2.

limit, we obtain

Im �DMFT(ω) = −
(

U

EL

)2

(akF )3d−4 π

(2π )3d

1

16
μ

(
ω

μ

)2

(
d )3.

(11)

We finally consider the quasiparticle weight (mass renor-
malization),

∂Re σ (ω, kF )

∂ω

∣∣∣∣
ω→0

∼ P
∫

dx

π

Im �(x, kF )

(ω − x)2

∣∣∣∣
ω→0

. (12)

where P is the principal value. For x � μ, Im � ∼ x2 while
for x 	 μ, Im � ∼ x(d−2)/2, so that for two and three di-
mensions, the integral is dominated by x ∼ μ; a frequency
range where Im � is not accurately captured by DMFT. To
sum up, in the low-density limit of lattice fermion mod-
els, DMFT parametrically underestimates the low-frequency
single-particle scattering rate and mass enhancement.

C. Optical conductivity

We now turn to the optical conductivity (response to
a long-wavelength frequency-dependent transverse electric
field). The optical conductivity is determined by the ability of
collisions to degrade momentum; in a Galilean-invariant sys-
tem electron-electron interactions conserve momentum and
therefore do not affect the conductivity. In the dilute limit of
a lattice model, the physics is nearly Galilean-invariant and
the effect of interactions on the conductivity is expected to
be small. We explore this issue by computing the frequency-
dependent conductivity perturbatively to second order in the
interaction strength at zero temperature. To understand the
calculation it is useful to consider the “extended Drude” ex-
pression for the conductivity,

σ (ω) = K

−i[1 + (ω)]ω + �(ω)
. (13)

Here 1 +  may be thought of as the “optical mass renor-
malization” and � as a frequency-dependent optical scattering
rate, which in a simple picture of momentum-independent
scattering is twice the single-particle scattering rate. K =
ne f f /m is a basic measure of the density of mobile carriers.
In a Fermi liquid at low ω and T = 0 one expects � ∼
γ0ω

2 while as ω → 0 (ω) goes to a constant 0 so that
limω→0 Re [σ (ω)] is a constant equal to Kγ0/(1 + 0)2. In
the small-interaction limit γ0,0 ∝ U 2 so Re σ (ω → 0) →
Kγ0 and in the dilute limit K = n/m, where n is the parti-
cle density and m is the bare mass (coefficient of the term
quadratic in k in the bare dispersion). Comparison of the γ0

obtained from the direct calculation of the conductivity to
the coefficient of ω2 in the ω → 0 limit of the self-energy
characterizes the low-frequency vertex correction.

We compute the conductivity perturbatively at zero temper-
ature via the force-force correlation function method [24]. The
formalism was described in detail in Ref. [8]. The essential
idea is to write the conductivity in terms of the current-current
correlation function χ j j as σ (ω) = [−K + χ j j (ω)]/iω and
integrate the expression for χ j j by parts twice, noting that time
derivatives correspond to commutators with the Hamiltonian.
The current-current correlation function is a tensor in spatial
indices ν and ν ′ and on the Matsubara axis

χν,ν ′
j j (iωn) = − 1

(iωn)2

∫ β

0
dτeiωnτ 〈Tτ Fν (τ )Fν ′ (0)〉, (14)

where Fν = [H, jν] is the force operator along direction ν.
For the Hubbard model, [H, jν] ∼ U so to leading per-

turbative order the expectation value in the force-force
correlation function may be evaluated at U = 0. We find for
the hypercubic lattice Hubbard model at T = 0, where σ is
the unit matrix [8],

Re σ ν,ν (ω) = U 2 π

ω3

∑
�k �k′ �q

f (ε�k ) f (ε �k′ )[1 − f (ε �k′−�q)]

× [1 − f (ε�k+�q )]
(
vν

�k+�q + vν
�k′−�q − vν

�k − vν
�k′
)2

× δ(ω + ε�k + ε �k′ − ε �k′−�q − ε�k+�q ), (15)

where ε�k = E�k − μ and vν
�k = ∂ε�k/∂kν .
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We see immediately from Eq. (15) that, if the energy is
quadratic (as is the case in Galilean-invariant or low-density
systems), the velocity is linear in �k and the factor (vν

�k+�q +
vν

�k′−�q − vν
�k − vν

�k′ )
2 vanishes. The leading low-density contri-

bution is obtained by expanding the velocity beyond quadratic
order; because the velocity operator is odd in momentum this
means the leading contribution to (vν

�k+�q + vν
�k′−�q − vν

�k − vν
�k′ )

2

is ≈(kF a)6. We write results specifically for a cubic lat-
tice tight-binding model with dispersion ε�k = −2t[cos(kxa) +
cos(kya) + cos(kza)]. Expanding the dispersion near k = 0
identifies the mass as m = 1/2ta2. The z-direction veloc-
ity is vz

�k = 2ta sin(kza) ≈ 2ta[kza − (kza)3/6]. Evaluation of
Eq. (15) for low frequency ω � μ yields

Re σ (ω) ≈ U 2m2a6(kF a)7 1

(2π )9
0.24π

(see Appendix A) per unit cell. It is instructive to express the
result as a combination of n/m, the single-particle scattering
rate divided by frequency squared, (2/3) Im �(kF , ω)/ω2 (the
factor two is from the standard relation between the single-
particle and optical scattering rates and the 1/3 is because,
in the absence of vertex corrections, the conductivity is an
average of � ∼ ω2 over a range of frequencies from 0 to ω),
and the vertex correction

Re σperturb(ω � μ) ≈ n

m

2Im �(kF , ω)

3ω2

9×0.24

64π3
(kF a)4

∼ n

m
(kF a)4. (16)

We see that the vertex correction suppresses the conductiv-
ity by a factor ≈(kF a)4 ∼ n

4
3 with a numerical factor which is

also very small.
We now examine the DMFT approximation to the con-

ductivity. Since the self-energy is local, only the self-energy
diagrams remain and vertex corrections vanish (see Ap-
pendix A). The closed-form expression is obtained in our
previous paper [8]

Re σ ν,ν (ω) = U 2 π

ω3

∑
�k �k′ �p1 �p2

f (ε�k ) f (ε �k′ )[1 − f (ε �p1 )]

× [1 − f (ε �p2 )]
[
vν

�k
2 + vν

�k′
2 + vν

�p1

2 + vν
�p2

2]
× δ(ε�k + ε �k′ + ω − ε �p1 − ε �p2 ). (17)

Since the integrand in Eq. (17) is always positive, we can
just use the quadratic dispersion, and as a result the veloc-
ities are of linear order in ka. We obtain the low-frequency
conductivity per unit cell Re σ (ω) = U 2m2a6(kF a)6 (4π )4

(2π )12
2
9π .

This may be written using the low-frequency limit of the
DMFT scattering rate Im �DMFT(ω) = gDMFTω2 with gDMFT

extracted from Eq. (11) as

Re σDMFT(ω � μ) = n

m

2 Im �DMFT(ω)

3ω2
∼ n

m
(kF a)3. (18)

We see that the DMFT underestimate of Im � by three factors
of kF a partially compensates for the neglect of vertex correc-
tions (kF a)4.

III. DIRAC SYSTEMS

A. Hamiltonian and formalism

We now turn to Dirac or Weyl systems and focus on the
three-dimensional case to provide a straightforward compar-
ison to previous DMFT-based work [6]. The new features
relative to the previous section arise from the Lorentz, rather
than Galilean, invariance of the low-energy theory, implying
among other things the presence of a low-lying interband
transition that breaks current conservation. Also, the linear
dispersion and low chemical potential means that many fea-
tures of the electron propagator and self-energy are dictated by
simple scaling considerations. Finally, at low T and nonzero
chemical potential one may consider projecting onto the par-
tially filled band. As noted in Ref. [25] this projection is
nontrivial.

We follow Ref. [6] and consider a lattice model with two
orbitals and two spin states per site and a microscopic (lattice)
length scale a. At low energies and for momenta near the
Dirac point (which we take to be k = 0), the kinetic (nonin-
teracting) part of the Hamiltonian is

Hkin = v
∑

�k
�

†
�k σz ⊗ (�k · �τ )��k, (19)

where ��k is a four-component spinor. σz and �τ are Pauli
matrices representing spin and orbital degrees of freedom and
the velocity v in combination with the length a sets the bare
energy scales of the model. Hkin describes physics at momenta
ka � 1 and energies ω and temperatures T � v/a and we
will be interested in lightly doped systems with chemical
potentials 0 < |μ| � v

a . The energy dispersion and occupied
states are sketched in Fig. 3(a).

In a model with multiple orbitals per unit cell the interac-
tion may take various forms. For ease of notation we take the
interaction to be

Hint = U
∑

i

�
†
i,↑�i,↑�

†
i,↓�i,↓, (20)

where �i,↑ is a spin-up two-component spinor describing the
orbitals on site i and �†� denotes contraction to a scalar in
orbital space so that the interaction is invariant under orbital
rotation. Notice that Ref. [6] uses an interaction with no in-
terorbital terms, breaking the rotation invariance of Hkin in
orbital space down to a rotation about the z axis. This dif-
ference changes some details of the calculation (in particular
the conductivity tensor will not be isotropic, with σzz �= σxx,yy)
but does not affect our qualitative conclusions.

We define the Green’s function, a matrix in the spin-orbital
basis, in terms of the bare Hamiltonian and the self-energy �,
also a matrix in the spin-orbital basis, as

G(�k, iωn) = [(iωn + μ)1 − Hkin − �(�k, iωn)]−1. (21)

Since the interaction is rotationally invariant, the symme-
tries of the problem dictate that the self-energy takes the form

�(�k, ω) = �0(k, ω)σz ⊗ 1 + �1(k, ω)σz ⊗ k̂ · �τ , (22)

where k̂ = �k/|k| is a unit vector parallel to �k.
The bare Green’s function G0, given by Eq. (21) with � =

0, can be written as a function of general complex-frequency
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k

E

μ

ω

σ(ω)

2μ

(a)

(b)

FIG. 3. (a) Sketch of dispersion showing filled states below
chemical potential (dashed line). The arrows represent intraband and
interband transitions. (b) Sketch of optical conductivity of 3D Dirac
system. Dashed line represents intraband transition and solid line
represents interband transition.

argument z. We have

G0(�k, z) =
∫

dx

π

A(�k, x)

z − x
, (23)

where the noninteracting spectral function A = A+ + A− is a
matrix in the basis of orbitals with ± referring to the upper
and lower bands, respectively, and

A±(�k, ω) = π

2
(1 ± σz ⊗ k̂ · �τ )δ(ω + μ ∓ vk). (24)

B. Self-energy

To order U 2 in the orbital basis the self-energy is

Im �↑,ab(�k, ω) = −U 2a6
∫

d3 �p1

(2π )3

d3 �p2

(2π )3

∫
dxdy

π2
A↑,ab( �p1, x)

× A↓,cd ( �p2, y)A↓,dc( �p1 + �p2 − �k, x + y − ω)

× [ f (x) − f (x + y − ω)][ f (y) + n(y − ω)].

(25)

We first evaluate Eq. (25) at T = 0 with chemical potential
μ > 0 and restrict to frequency ω > 0. See Appendix B for
details. The self-energy has a scaling form similar to that

(a)

(b)

FIG. 4. The dependence of (a) F0 and (b) F1 on k/kF in three-
dimensional Dirac system. We can clearly see that F0 and F1 vanish
when k > 3kF .

found for the low-density case

Im �↑,ab(�k, ω) = −πEL
U 2

E2
L

(kωa)5

(2π )6

1

8
Iab

(
ω

μ
,

k

kω

)
, (26)

with EL = v/a,

kω = ω

v
+ kF , (27)

and kF = μ/v.
For ω � μ, kω → kF we have

I

(
ω

μ
,

k

kF

)
=

(
ω

μ

)2[
F0

(
k

kF

)
1 + F1

(
k

kF

)
k̂ · �τ

]
, (28)

where F0 and F1 are shown in Fig. 4.
For ω 	 μ, kω → ω/v and we have

I

(
ω

μ
,

k

kω

)
= G0

(
k
ω
v

)
1 + G1

(
k
ω
v

)
k̂ · �τ , (29)

with G0 and G1 shown in Fig. 5.
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(a)

(b)

FIG. 5. The dependence of (a) G0 and (b) G1 on vk/ω in three-
dimensional Dirac system. We can clearly see that G0 and G1 vanish
when vk > ω.

Very similar considerations apply to the case of T �= 0 and
μ = 0. In terms of dimensionless variables we find

Im �(�k, ω) = −πEL
U 2

E2
L

(k(T,ω)a)5

(2π )6

1

8
IT

(
ω

T
,

k

k(T,ω)

)
, (30)

where for ω � T , k(T,ω) → kT = T/v and for ω 	 T ,
k(T,ω) → kω (an analytic expression for k(T,ω) valid for all
T/ω is not available). We do not present the expression for
IT here. As in the previous cases, � becomes very small for
k 	 k(T,ω), here decaying exponentially.

The content of Eqs. (26), (30) is that in a low-density,
low-frequency, low-temperature limit the self-energy may
be written as the product of ω5, μ5, or T 5 (whichever is
largest), and a scaling function of ω/[max(vk, μ, T )] and
k/[max(kF , kT , kω )]. The usual Fermi-liquid arguments imply
that this general structure of the low-frequency imaginary
part of the self-energy applies even beyond the perturbative
limit studied here, at least for frequencies less than μ and
T although the magnitude of the prefactor and the form
of the k/[max(kF , kT , kω )] dependence will depend on the

interaction strength. In particular, the vanishing of Im � for
k 	 max(kF , kT , kω ) is expected to be general.

We now consider the dynamical mean-field approximation.
Analogous to the derivation of Eq. (9), we obtain Eq. (31) but
with an extra momentum integral:

Im �
↑,ab
DMFT(ω) = −U 2a9

∫
d3 �p1

(2π )3

d3 �p2

(2π )3

d3 �p3

(2π )3

∫
dxdy

π2

× A↑,ab(p1, x)A↓,cd (p2, y)A↓,dc

× (p3, x + y − ω)[ f (x) − f (x + y − ω)]

× [ f (y) + n(y − ω)]. (31)

The extra momentum integrals lead to the vanishing of the
orbital-dependent terms in A0. For T = 0 and μ > 0, when ω

is small,

Im �
↑
DMFT(ω, T = 0) = −EL

U 2

E2
L

(
ω

μ

)2 (kF a)8

128π5
, (32)

while for T �= 0 and μ = 0 we obtain

Im �
↑
DMFT(ω = 0, T ) = −1779.1

8π5
EL

U 2

E2
L

(kT a)8. (33)

The T 8 dependence in Eq. (33) is the same power law as
obtained by DMFT calculations in Ref. [6].

We may understand the difference between the DMFT
results Eqs. (32), (33) and the perturbative results, Eq. (26)
and (30), via the argument that justified Eq. (10) in the pre-
vious section. Since at low frequency the imaginary part of
the perturbative self-energy vanishes for k/kF � 1, by doing
the average you get an extra factor (kF a)3. Similar arguments
hold for the μ = 0, T �= 0 case, where by doing the average
you get an extra (kT a)3. We can clearly see that DMFT gives
the wrong exponents compared with the perturbative results.
For high frequency, the same arguments as in the previous
section hold, where DMFT self-energy is reasonable.

Turning now to the real part of the self-energy, given by

Re �(ω, kF )

∣∣∣∣
ω→0

∼ P
∫

dx

π

Im �(x, kF )

ω − x

∣∣∣∣
ω→0

∼ P
∫

dx

π

x5G
(

vkF
x

)
ω − x

. (34)

Examination of this expression reveals that, for the three-
dimensional Dirac system, the integral diverges for large x
because G(vkF /x) approaches a constant for vkF /x → 0. The
divergence is cut off when x reaches a lattice scale energy
v/a. This means that the real part of the self-energy and
therefore the mass enhancement are dominated by Im � at
lattice scales, where we expect the self-energy to have only
relatively weak momentum dependence and therefore to be
reasonably approximated by DMFT.

To sum up, in the three-dimensional (3D) Dirac sys-
tem, the DMFT approximation for the imaginary part of the
low-frequency self-energy is incorrect because it strongly un-
derestimates low frequency near-Fermi-surface single-particle
scattering rate, but may be a reasonable approximation to the
real part of the self-energy and therefore may get issues right
such as the location of the Mott transition.
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C. Optical conductivity

We evaluate the conductivity at zero temperature and
nonzero μ to second order in the interaction strength using
the force-force correlation function formalism. The optical
conductivity of Dirac systems has additional features relative
to the tight-binding systems because the Lorentz, rather than
Galilean, invariance of the low-energy theory among other
things means that a low-energy (threshold 2μ) interband tran-
sition leads to current nonconservation although momentum
is conserved. We focus on the low-frequency limit ω � μ so
that real interband transitions are not relevant.

We consider the z-direction current, which is given by
jz = ∂Hkin/∂kz = v

∑
�k �

†
�k σz ⊗ τz��k . Our rotationally invari-

ant Hint commutes with jz: current nonconservation arises
wholly from the interband transitions in the noninteracting
part so the force operator is

Fz = [Hkin, jz] = 2iv2
∑
�k,γ

�
†
�k,γ

(�τ × �k) · ẑ��k,γ
, (35)

where γ is the spin index. In the energy basis that diagonalizes
Hkin, Fz has only off-diagonal matrix elements, reflecting the
role of interband transitions in breaking current conservation.
Unlike in the low-density tight-binding model case, where
the force operator was proportional to the interaction and
the force-force correlation function could be evaluated in the
noninteracting limit, here the force-force correlation function
must be evaluated to second order in the interaction strength.

Constructing the force-force correlation function as before
to second order in U we find the eight diagrams shown in
Fig. 6 and representing an energy dissipation process that
involves photon absorption via a virtual interband transition
followed by an interaction-induced downscattering to fill the
hole in the lower band. In each diagram there are six fermion
lines; the band off-diagonal nature of F means that at least
two of the fermion lines lie in the lower (filled) bands. At
|ω| < μ obtaining a nonzero conductivity requires that all four
remaining lines lie in the upper bands and the diagrams are
distinguished in part by the assignment of band indices to
the Green’s function lines. In drawing the diagrams it is also
convenient to distinguish different spins (solid and dashed
lines) because at the interaction vertex the incoming and out-
going line of the same spin also have the same orbital index.
The diagrams may be organized into self-energy diagrams
[“type 1,” Fig. 6(a)], and three kinds of vertex correction
diagrams [types 2–4, Figs. 6(b)–6(d)] distinguished by the
nature of the inter or intra-orbital scattering and by whether
the vertex correction involves a particle-hole (types 2 and 3)
or particle-particle (type 4) pair.

The diagrams are evaluated in Appendix B. Each diagram
gives a contribution to the optical conductivity that is a con-
stant plus terms of higher power in frequency. The constant
contribution of a diagram of type j is

c j
1

(2π )9

1

26

4096

135
π4 U 2(

v
a

)2 (kF a)5a2

per unit cell. We find c1 = 1, c2 = −3/7, and c3 = c4 =−2/7
so that c1 + c2 + c3 + c4 = 0 and the diagrams exactly can-
cel implying that the low-frequency optical conductivity

− +

+

+
−

+
−

+
+

+

−
+

(a) type one

− +

−+

++

+ −

+−

++

(b) type two

−

+

+

+

+

−

+

+

−

+

−

+

(c) type three

−

+

+

+

+

−

+

+

−

+

−

+

(d) type four

FIG. 6. All second-order diagrams contributing to the low-
frequency optical absorption. Here type one is the self-energy
diagrams and type two, three, and four are the vertex diagrams. +
corresponds to the top band while − corresponds to the lower band.
In panels (a)–(d), the dashed and thick lines indicate the paths over
which orbital indices are traced. Each diagram has a spin degeneracy
of two.

approaches zero as ω → 0, with the first correction ≈ω2, as
shown in Fig. 3(b), implying a transport scattering rate ≈ω4.

An alternate approach to computing the conductivity at
|ω| � μ is to project the Hamiltonian onto the partially oc-
cupied band. The current operator becomes the velocity in
the relevant direction and the interaction acquires a nontrivial
momentum dependence. The topological or geometric phase
considerations noted in Ref. [25] are higher order in the
interaction and frequency. Applying the force-force method
to this effective one-band model also leads to a conductivity
≈ω2.

The dynamical mean-field approximation to the conductiv-
ity is subtle. In the one-band tight-binding model the vectorial
nature of the current operator means that in the DMFT
approximation the current vertex vanishes, so the conduc-
tivity may be evaluated just from the self-energy diagrams.
However, in the Dirac system, the current operator jz ∼ τz

has interband terms that are not odd in momentum, which
would be subject to vertex corrections even in a momentum-
independent self-energy approximation. As noted above, the
projection onto the conduction band leads to an interaction
with an explicit momentum dependence that is important
in the calculation of the current-current correlation func-
tion. Thus even within a momentum-independent self-energy
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approximation, properly defining a DMFT approximation re-
quires care. However, in general in this approximation one
would expect that Re [σ (ω → 0)] �= 0. For example, evaluat-
ing the current-current correlation function within the DMFT
spirit by retaining on the self-energy diagram (type 1) and
evaluating the self-energy in the DMFT approximation via
Eq. (32) yields

Re σ (ω) = 1

(2π )3

1

128π5

16π

9

U 2(
v
a

)2 (kF a)8a2

per unit cell, which is nonvanishing, in contrast with the
exact answer. Notice that this expression can again be writ-
ten as Re σ (ω � μ) = K 2 Im �DMFT(ω)

3ω2 , where K = 2μ2/6π2v.
μ2/6π2v is the weight of a single node in the 3D Dirac
case, the factor two corresponds to the spin degeneracy, and
Im �DMFT(ω) follows Eq. (32).

IV. SUMMARY

It is well understood that the low-density and low-energy
limit of a lattice model will in general be described by a
translation invariant theory with subleading corrections. How-
ever the implications of this fact for the dynamical mean-field
theory description of correlated electron physics seem not to
have been fully discussed. In this paper we have addressed
this issue by combining a perturbative approach and scaling
analysis to compute both the exact (perturbative) and DMFT
approximations to the self-energy and T = 0 low-frequency
conductivity of two paradigmatic systems: the Hubbard model
and a Dirac or Weyl metal system. In both cases there is
a fundamental Hamiltonian which is described by a micro-
scopic length (lattice constant) a and at temperature T = 0 the
electron density may be expressed in terms of a Fermi wave
vector kF and we are interested in the limit kF a → 0 which
corresponds to a nearly empty band and emergent Galilean
invariant in the Hubbard model case and a chemical potential
near the Dirac point and emergent Lorentz invariance in the
Dirac case.

We find that in both the Hubbard and Dirac cases that
the DMFT approximation provides a qualitatively inaccurate
representation of the low-frequency scattering rate, too small
by a factor proportional to the particle density (kF a)d . The
essential reason, which indicates that our arguments hold
generally beyond the perturbative limit studied in detail here,
is that in the low-density and low-frequency limit the only
relevant scale is the Fermi wave vector kF , so the imaginary
part of the self-energy is a function of k/kF that vanishes
when k/kF becomes larger than a number of the order of
unity. This implies a strong momentum dependence of the
self-energy that is incompatible with the DMFT approxima-
tion, which in a d-dimensional system underestimates the
near Fermi surface scattering rate by a factor ∝(kF a)d , in
other words proportional to the density. As the frequency ω

becomes larger than the chemical potential, the imaginary
part of the self-energy becomes a scaling function of k/kω

where the momentum scale kω increases with ω and eventually
becomes comparable to the lattice scale a−1, by which point
the DMFT approximation may be expected to be qualitatively

reasonable. We find that, for the Dirac systems, but not the
low-density Hubbard systems, the real part of the self-energy
is dominated by high-frequency processes such that kωa ≈ 1,
so the real part of the self-energy of the Dirac system may be
correctly described within DMFT.

We also used the force-force correlation function method
to study the optical conductivity at T = 0 for frequencies less
than the chemical potential. This method provides a com-
pact and convenient representation of the vertex corrections
which represent the difference between scattering process
which degrade the current and those that do not. In a fermion
system at T = 0 and frequency ω � μ the single-particle
scattering rate can be represented as gspω

2/μ while the con-
ductivity can be represented in terms of an optical scattering
rate goptω

2/μ. In the dynamical mean-field approximation
gopt = 2gsp while in a strictly Galilean-invariant system the
identity of the current and momentum operators means gopt =
0. In the low-density d-dimensional Hubbard system we find
gsp ∼ [(kF a)d−2]2 with the factors (kF a)d−2 representing the
density of states which vanishes at the band edge for d > 2. In
three-dimensions gopt ∼ gsp(kF a)4, with the four extra factors
reflecting the subleading corrections that break the Galilean
invariance of the low-energy theory. In d = 2 the interplay of
scattering kinematics and momentum conservation means that
gopt = 0 for kF a less than a critical value corresponding to the
threshold for Umklapp scattering [8]. In the Dirac case the
model interaction used here commutes with the current but
real interband transitions occurring at ω > 2μ break current
conservation. Some care is thus required in the computation
of the conductivity but we find that gopt = 0 with corrections
of order ω2. The dynamical mean-field approximation, which
does not include vertex corrections, gives an incorrect repre-
sentation of the conductivity.

Our results raise questions regarding recent DMFT-based
calculations of transport in Weyl systems [6,7]. These pa-
pers report a T 6 resistivity for a 3D Dirac system at the
particle-hole-symmetric point from the combination of the
DMFT-predicted T 8 scattering rate and a T 2 Drude weight (or
effective carrier density). Our results indicate that the DMFT
results for the imaginary part of the self-energy and for the
transport scattering rates [6,7] are not correct for the low fre-
quencies and temperatures where Dirac points dominate the
physics, and suggest (although we did not consider the ω = 0,
T �= 0 conductivity explicitly) that vertex corrections also
need to be considered. The issue of interaction corrections to
the conductivity of Weyl systems should be revisited, build-
ing on previous quantum Boltzmann equation work [26–28].
In this context it is also interesting to consider an orbitally
anisotropic Hamiltonian, since many physically relevant Weyl
metals have multiple Dirac points related by symmetry so
that the Hamiltonian for one such point may not have the full
symmetry of the crystal.

Furthermore, a number of interesting d1 transition-metal
oxides such as SrVO3 or SrMoO3 may be viewed as being in a
low-density limit since the density of electrons per active spin-
orbital state is 1/6. While the Fermi surfaces are complicated,
comparison of perturbative and DMFT calculations should
be performed to confirm the accuracy of DMFT in these
systems.
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On the theoretical side, in the version used here, the force-
force correlation is a high-frequency expansion. At T = 0 in a
clean Fermi liquid at weak coupling the results can be applied
down to ω = 0 but alternative treatments of vertex corrections
that would remove the restrictions of weak coupling and T =
0 would be of great interest.
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APPENDIX A: LOW-DENSITY THREE-DIMENSIONAL
HUBBARD MODEL

1. Self-energy

This section gives some details of the perturbative self-
energy calculation for the low-density limit of the Hubbard
model. Introducing a lattice-scale energy

EL = 1

2ma2
, (A1)

and a single-spin density of states

N (ε) = ad
∫

pd−1d p δ

(
p2

2m
− ε

)
= 1

2EL

(
ε

EL

) d−2
2

, (A2)

and taking into account the limits of integration imposed by
the distribution functions and scaling x and y by μ and then
shifting them by 1, we may express Eq. (3) at T = 0 as

Im �(ω, k) = −πEL
U 2

E2
L

nd

8(2π )d
d

(
μ

EL

) d−2
2

∫ 1+ ω
μ

1
dxx

d−2
2

∫ 2+ ω
μ
−x

max
[
1,1+ ω

μ
−x

] dyy
d−2

2 I
(

ω

μ
,

k

kω

, x, y

)
, (A3)

with

I =
∫

d
xd
y

1 + ω
μ

δ

⎛
⎜⎝1 + k2

k2
ω

+ 2

√
x
√

y cos θxy

1 + ω
μ

− 2

√
x cos θxk + √

y cos θyk√
1 + ω

μ

k

kω

⎞
⎟⎠, (A4)

where n = 2(kF a)d
d/d (2π )d is the particle density (includ-
ing spin degeneracy), 
x,y are the solid angles describing the
orientation of �p1 (magnitude kF

√
x) and �p2 (magnitude kF

√
y)

on the unit sphere in d dimensions, θxy is the angle between
p1 and p2 etc. and

kω =
√

k2
F + 2mω = kF

√
1 + ω

μ
. (A5)

Here the limits on the x and y integrals express
the requirements that for ω > 0 εp1 , εp2 > 0 while
−μ < εp1+p2−k < 0.

Equation (A3) makes it manifest that, in the low-frequency
and -density limits, Im � has a magnitude determined by the
square of the interaction (made dimensionless by a lattice
scale energy) times the particle density (because for short
ranged interactions all interaction effects must scale with
the density) and its frequency and momentum dependence
is given as a scaling function of the frequency normalized
to the chemical potential and momentum normalized to kω

and (for dimensions above the marginal dimension d = 2) a
factor of a low-frequency scale normalized to the lattice scale.
While the precise form of the scaling function and definition
of the lattice scale will change if the calculation is pushed to
higher orders in the interaction, we expect that this qualitative
behavior is generic.

In the low-frequency limit, we may set x = 1 + u and
y = 1 + v and neglect ω, u, v in the expression for I and per-
form the u and v integrals to leading order in ω/μ. Defining

F = I (0, k/kF , 1, 1) we obtain

Im �(ω, k) = −πEL
U 2

E2
L

nd

8(2π )d
d

(
μ

EL

) d−2
2 ω2

2μ2
F

(
k

kF

)
.

(A6)

In the two-dimensional case, due to rotational invariance
we can choose the x direction of the internal coordinates to be
parallel to �k, obtaining

F (x) =
∫

dθ1dθ2δ(−1 − 2 cos (θ1) cos (θ2)

− 2 sin (θ1) sin (θ2) + 2x[cos (θ1) + cos (θ2)] − x2),

(A7)

where θ1 (θ2) is the angle between the x axis and �p1 ( �p2).
For three dimensions, we can choose the z axis of the

internal coordinates to be parallel to �k, obtaining

F (x) = 2π

∫
dθ1dθ2dφ sin (θ1) sin (θ2)

× δ(−1−2 cos (θ1) cos (θ2)−2 sin (θ1) sin (θ2) cos (φ)

+ 2x[cos (θ1) + cos (θ2)] − x2), (A8)

where φ is the azimuthal angle difference between �p1 and �p2,
and θ1 (θ2) is the polar angle between the z axis and �p1 ( �p2).

We now look at the high-frequency limit ω 	 μ

but ω � W . While it is possible to proceed from the
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scaling form Eq. (A4) it is more convenient to begin from the fundamental equation, which may be written as

Im �(k, ω) = −U 2a2d
∫

dd �p1

(2π )d

dd �p2

(2π )d
πδ(E �p1+ �p2−�k + ω − E �p1 − E �p2 + μ){ f (E �p1+ �p2−�k − μ)[1− f (E �p1 − μ)][1 − f (E �p2 − μ)]

+ [1 − f (E �p1+ �p2−�k − μ)] f (E �p1 − μ) f (E �p2 − μ)}, (A9)

with Ep = p2/2m.

For ω > 0, at T = 0, only the first term in the sum survives
and we may change variables to q = p1 + p2 − k and p1. In
the high-ω limit we may set Eq = 0 and μ = 0 inside the δ and
omit the q in the definition of p2, perform the integral over q
trivially, obtaining

Im �(k, ω) = −πU 2 ad n

2(2π )d

∫
dd �p1δ

×
(

ω − p2
1

2m
− (�k − �p1)2

2m

)
. (A10)

Now scaling the ω out of the δ, recalling the high-frequency
limit kω → √

2mω, we obtain

Im �(k, ω) = −πEL
U 2

E2
L

n

2(2π )d

(
ω

EL

) d−2
2

G

(
k

kω

)
, (A11)

with (writing G explicitly in two and three dimensions)

G2(x) =
∫

dvv

∫
dθδ(1 − 2v2 − x2 + 2xv cos (θ )),

(A12)

G3(x) = 2π

∫
dvv2

∫
sin θdθδ(1 − 2v2 − x2 + 2xv cos (θ )).

(A13)

2. Conductivity

Here we present explicit formulas for the conductivity for
the three-dimensional case (the two-dimensional case, which
presents some special features, was discussed in Ref. [8]),
and for ω � μ. We use the perturbative force-force correla-
tion approach and without loss of generality focus on the z-z
conductivity.

It is convenient to rewrite the diagonal components of the
conductivity [Eq. (15)] as

Re σ aa(
) = 2U 2

π
3

∑
�q

∫ 0

−


dω
[
B(2)

a (�q, ω + 
)B(0)
a (−�q,−ω)

+ B(1)(�q, ω + 
)B(1)
a (−�q,−ω)

]
, (A14)

where

Bα
a (�q, ω) = −π

∑
�k

[ f (ε�k ) − f (ε�k + ω)]δ(ω + ε�k − ε�k+�q )

× (
va

�k+�q − va
�k
)α

,

α = 0, 1, 2. (A15)

We assume cubic symmetry so σ ≈ 1 and without loss of
generality we may choose a = z. Inspection of Eq. (15) shows
that we need to retain only the terms in (va

�k+�q − va
�k ) cubic in

wave vector, so

vz
�k+�q − vz

�k = − ta4

3

(
3k2

z qz + 3kzq
2
z + q3

z

)
,

where we used t = 1/2ma2 = EL.
We see that at low frequency and T = 0 the combination

of Fermi function and δ function constrains k and k + q to lie
very near to the Fermi surface, implying a relation between
the magnitude of q and the angle between k and q that is most
conveniently treated using coordinates for k that are tied to the
direction of q. We adopt these coordinates and therefore write
kz = k cos θkẑ and view cos θkẑ as a function of the angular
coordinate specifying the orientation of k with respect to q
and the orientation of q with respect to ẑ. At small ω we may
set |�k| = kF and scale q by kF obtaining

Bα (�q, ω) = − π

(2π )3

(
−1

3

)α

m2ωtα (kF a)3α−1aα+4 kF

q
Iα

×
(

q

kF
, cos θq

)
, (A16)

with

Iα (q̄, cos θq) =
∫

dφkq(3q̄ cos2 θkẑ cos θq

+ 3q̄2 cos θkẑ cos2 θq + q̄3 cos3 θq)α, (A17)

where implicit in the definition of I and B is that cos θkq =
−q̄/2kF and that 0 < q̄ < 2. θq is the angle between �q and ẑ,
and θkq is the angle between �q and �k.

To obtain the expressions for cos θkẑ, we introduce the
rotation matrix

R(θ, φ) =

⎡
⎢⎢⎣

cos (θ ) + sin2 (φ)[1 − cos (θ )] − sin (φ) cos (φ)[1 − cos (θ )] sin (θ ) cos (φ)

− sin (φ) cos (φ)[1 − cos (θ )] cos (θ ) + cos2 (φ)[1 − cos (θ )] sin (θ ) sin (φ)

− sin (θ ) cos (φ) − sin (θ ) sin (φ) cos (θ )

⎤
⎥⎥⎦. (A18)

When R acts on a vector (0, 0, q), it will give the vector
q(sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )).

In the frame of q the coordinates of k is
k(sin(θkq) cos(φkq), sin(θkq) sin(φkq), cos(θkq)). To calculate

115154-11



ANQI MU, ZHIYUAN SUN, AND ANDREW J. MILLIS PHYSICAL REVIEW B 109, 115154 (2024)

FIG. 7. Self-energy contribution to the optical conductivity of the
Hubbard model.

kz, we use R(θq, φq ) to act act on this vector, and then project
on the z axis. We then have

cos θkẑ = − sin(θq) cos(φq) sin(θkq) cos(φkq)

− sin(θq) sin(φq) sin(θkq) sin(φkq)

+ cos(θq) cos(θkq). (A19)

Combining the expressions and performing the convolu-
tions gives

σ = U 2πm2

3
(kF a)7 a6

(2π )9

∫ 2

0
dq̄d cos θqdφq

(
I2I0 + I2

1

)
.

(A20)
Evaluating I2,1,0 and performing the integrals gives

Re σ (ω) ≈ U 2m2a6(kF a)7 1

(2π )9 0.24π. (A21)

If we do similar calculations for two dimension where the
rotation matrix is given by

R(θ ) =
[

cos (θ ) − sin (θ )
sin (θ ) cos (θ )

]
, (A22)

then evaluating the convolution will give us exactly zero,
which we have shown in our previous work [8].

For the DMFT approach, we only keep the self-energy
diagrams as in Fig. 7 (each diagram has a spin degeneracy of
two). In the low-frequency limit, since the self-energy is pro-
portional to ω2, by doing the integral over internal frequency,
which gives ω3, this cancels ω3 in the prefactor of Eq. (17).
The conductivity will approach a constant. Using the local
self-energy computed in Eq. (11), we obtain the conductivity
per unit cell

Re σ (ω) = U 2m2a6(kF a)6 (4π )4

(2π )12

2

9
π.

.

APPENDIX B: DIRAC SYSTEM

1. General remarks

We decompose the noninteracting Green’s function (a ma-
trix in spin and orbital space) as

G0(�k, iωn) = G+(�k, iωn) + G−(�k, iωn)

= 1

2

1 + σz ⊗ k̂ · �τ
iωn + μ − vk

+ 1

2

1 − σz ⊗ k̂ · �τ
iωn + μ + vk

. (B1)

Each diagram is a combination of Green’s function lines
and interaction vertices; the form of the interaction we have
chosen means that the sequence of lines corresponding to a
definite spin corresponds to a product of the orbital-space G
matrices.

2. Self-energy

This section gives some details of the perturbative self-energy calculation for a Dirac system with a chemical potential near
the Dirac point. Starting from the fundamental Eq. (25), specializing to ω,μ > 0 and T = 0, noting that the Green’s function
lines labeled by p1 and p2 must lie in the upper band, we have

Im �↑,ab(�k, ω) = − U 2a6

(2π )6

π

8
[S+−−(k, ω) + S+−+(k, ω)], (B2)

with

S+−−(k, ω) =
∫

d
1d
2M+( p̂1)Tr[M−( p̂2)M−( ̂p1 + p2 − k)]

×
∫ ω

v
+kF

kF

p2
2d p2

∫ ω
v
+2kF −p2

kF

p2
1d p1δ(vp1 + vp2 − v| �p1 + �p2 − �k| − (ω + μ)), (B3)

S+−+(k, ω) =
∫

d
1d
2M+( p̂1)Tr[M−( p̂2)M+( ̂p1 + p2 − k)]

×
∫ ω

v
+kF

kF

p2
2d p2

∫ ω
v
+2kF −p2

kF

p2
1d p1δ(vp1 + vp2 + v| �p1 + �p2 − �k| − (ω + μ)), (B4)

and

M±(k) = 1 ± k̂ · �τ . (B5)

We observe that S+−+ = 0 for ω < μ but for ω 	 μ, S+−+ 	 S+−−.
Noting that ω + μ = vkω and kω/kF = 1 + ω/μ, and scaling p1 and p2 by kω and defining EL = v/a we see that the

imaginary part of the self-energy can be explicitly written in the scaling form given in Eq. (26).
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For ω � μ, S+−+ = 0 and we may set the magnitudes of p1 and p2 = kF ;

F0

(
k

kF

)
=

∫
d
1d
2

(
2 + p̂1 · p̂2 − �k

kF
· p̂2

)
δ

(
1 −

∣∣∣∣∣p̂1 + p̂2 − �k
kF

∣∣∣∣∣
)

, (B6)

F1

(
k

kF

)
=

∫
d
1d
2( p̂1 · k̂)

(
2 + p̂1 · p̂2 − �k

kF
· p̂2

)
δ

(
1 −

∣∣∣∣∣ p̂1 + p̂2 − �k
kF

∣∣∣∣∣
)

. (B7)

For ω 	 μ we may focus on S+−+, set μ = 0, and obtain Eq. (29) with

G0

(
vk

ω

)
= 2

∫
p′2

1 d p′
1d
1 p′2

2 d p′
2d
2(1 − ̂(p′

1 + p′
2 − k) · p̂2)δ

(
p′

1 + p′
2 − 1

vk
ω

+ | �p′
1 + �p′

2 − k̂|
)

, (B8)

G1

(
vk

ω

)
= 2

∫
p′2

1 d p′
1d
1 p′2

2 d p′
2d
2( p̂′

1 · k̂)(1 − ̂(p′
1 + p′

2 − k) · p̂2)δ

(
p′

1 + p′
2 − 1

vk
ω

+ | �p′
1 + �p′

2 − k̂|
)

. (B9)

where we define p′
1 = p1

k , p′
2 = p2

k .

3. Optical Conductivity

We sketch the evaluation of the diagrams shown in Fig. 6. The evaluation of the self-energy diagrams [type 1, Fig. 6(a)]
proceeds slightly differently from the evaluation of the others. It is useful to denote the spin explicitly.

a. Self-energy diagrams Fig. 6(a)

In these diagrams we are explicitly computing the lifetime of a hole in the filled (-) band. Explicitly writing the analytical
formula for the left-hand diagram gives

s1(i
n) = a3

(i
n)3

∫
d3�k

(2π )3
T

∑
iωn

(−4v4)Tr{[(�τ × �k) · ẑ]G↑
−(�k, iωn + i
n)�↑(�k, iωn + i
n)

× G↑
−(�k, iωn + i
n)[(�τ × �k) · ẑ]G↑

+(�k, iωn)}. (B10)

We insert the spectral representation

�↑(�k, iωn + i
n) =
∫

dx

π

−Im �↑(�k, x)

iωn + i
n − x
,

and perform the Matsubara sums and perform the analytical continuation and also take the trace over orbital indices.
Since we are focusing on low frequency, we may put all momenta on the Fermi surface, so that we only need Im �↑(kF k̂, ω),

which is given by explicitly evaluating Eq. (B3) as

Im �↑(kF k̂, ω) = −
(

4

3
+ 4

5
k̂ · �τ

)
ω2

μ

U 2(
v
a

)2

(kF a)4

(2π )6 π3. (B11)

We obtain

s1(
) ∼ 1


3

∫
dx

∫
d3�kδ(vk − μ)[ f (x − 
) − f (x)]x2 1

(vk)2 Tr[· · · ]. (B12)

By performing the angular integral over �k and collecting all the prefactors we obtain

s1(
) = 1

(2π )9

1

26

4096

135
π4 U 2(

v
a

)2 (kF a)5a2.

b. Type-2 vertex correction diagrams Fig. 6(b)

In this diagram the dashed lines form a particle hole bubble which we denote by B↓(�q, iν) while the solid lines are a trace of
products of G and the force operator, so that

s2(i
n) = a6

(i
n)3

∫
d3�kd3 �q
(2π )6

T
∑

iωn,iν

(4v4)Tr{[(�τ × �k) · ẑ]G↑
−(�k, iωn + i
n)G↑

+(�k + �q, iωn + i
n + iν)

× [(�τ × (�k + �q)) · ẑ]G↑
−(�k + �q, iωn + iν)G↑

+(�k, iωn)}B↓(q, iν). (B13)
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As with the self-energy diagram we represent B via a spectral representation, perform the analytical continuation, and take
the trace over the Green’s function indices, obtaining

s2(
) ∼ 1


3

∫
dx

∫
d3�k

∫
d3 �q[n(x) + f (vk − μ + x + 
)][ f (vk − μ) − f (vk − μ + 
)]

× δ(v|�k + �q| − μ)Im B↓(q, x)
1

vk

1

v|�k + �q|Tr[· · · ]. (B14)

In the low-frequency limit both �k and �k + �q must be on the Fermi surface and

Im B↓(�q, ν) = − a3

(2π )3

(2π )2

4

k2
F

v2

ν

q

(
2 − q2

2k2
F

)
, (B15)

where the range of q is between 0 and 2kF .
By doing the integral and the trace we obtain s2 = − 3

7 s1.

c. Type-3 and -4 vertex correction diagrams Figs. 6(c) and 6(d)

In these diagrams the orbital structure is different; for example the analytical expression for the left-hand type-3 diagram is

s3(i
n) = a3

(i
n)3

∫
d3 �q

(2π )3 T
∑

iν

(4v)4T1(�q, iν, i
n)T2(�q, iν, i
n), (B16)

with

T1(�q, iν, i
n) = T
∑
iωn

a3
∫

d3�k
(2π )3

Tr{G↑
+(�k, iωn)[(�τ × �k) · ẑ]G↑

−(�k, iωn + i
n)G↑
+(�k + �q, iωn + iν)}, (B17)

T2(�q, iν, i
n) = T
∑
iωn

a3
∫

d3�k
(2π )3

Tr{G↓
+(�k, iωn + i
n)[(�τ × �k) · ẑ]G↓

−(�k, iωn)G↓
+(�k + �q, iωn + iν)}. (B18)

Again we may take the trace, perform the frequency sums, analytically continue, and evaluate the result in the low-frequency
limit where all the momenta must be near the Fermi surface.
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