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Unraveling many-body effects in ZnO: Combined study using momentum-resolved
electron energy-loss spectroscopy and first-principles calculations
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We present a detailed study of the dielectric response of ZnO using a combination of low-loss momentum-
resolved electron energy-loss spectroscopy (EELS) and first-principles calculations at several levels of theory,
from the independent particle and the random phase approximation with different variants of density functional
theory (DFT), including hybrid and DFT + U schemes; to the Bethe-Salpeter equation (BSE). We use a method
based on the f -sum rule to obtain the momentum-resolved experimental loss function and absorption spectra
from EELS measurements. We characterize the main features in the direct and inverse dielectric functions of
ZnO and their dispersion, associating them to single-particle features in the electronic band structure, while
highlighting the important role of many-body effects such as plasmons and excitons. We discuss different
signatures of the high anisotropy in the response function of ZnO, including the symmetry of the excitonic
wave functions.
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I. INTRODUCTION

Zinc oxide (ZnO) is a transparent semiconductor ma-
terial with attractive properties for electronics, spintronics,
optoelectronics, and nanotechnology [1–5]. It has been the
subject of intense research in diverse applications, including
transistors, supercapacitors, lasers, solar cells, batteries, pho-
toluminescent materials, photocatalysis, and biosensors (see,
e.g., recent reviews [6–9]), and beyond, being used in sun-
screens and cosmetics [10,11], textiles and rubber industry
[11], pharmaceutics [12], and many other biomedical and
biological applications [6,11,13,14]. With this wide range of
applications, there is a great need for fundamental understand-
ing of its electronic and optical properties. In fact, ZnO has
been characterized with a range of different spectroscopic
techniques [1,15], including optical absorption [16–18],
transmission [19], reflection [16,17], photoreflection [20],
photoemission [21–25], ellipsometry [26,27], photolumines-
cence [28–30], electron energy-loss spectroscopy (EELS)
[3,31–34]; in combination with characterization methods such
as x ray [35,36], low-energy electron diffraction [22] and other
microscopy techniques [1].

ZnO has also attracted considerable interest from the
ab initio community due to the difficulty of reproducing
its experimental quasiparticle (QP) band structure from first
principles. At the density functional theory (DFT) level, cal-
culations with standard semi-local functionals such as the
local density approximation (LDA) or the generalized gradi-
ent approximation (GGA) underestimate the electronic band
gap of ZnO at zero Kelvin by as much as 80% (see, e.g.,
Refs. [37–39]). At the GW level of theory, converging QP
energies has proven to be very cumbersome, with a strong
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interdependency of the convergence parameters [40–42]. Al-
though several schemes to accelerate the calculations with
respect to the number of empty states have been proposed
[37,43–45], G0W0 calculations on top of LDA or GGA still
underestimate the band gap of ZnO by around 10%. This
underestimation arises when evaluating the self-energy both
with plasmon-pole models and with numerical full-frequency
integrations [38,46–48].

Such G0W0 methods also find too shallow d-band positions
compared to photoemission measurements [21,25], which can
be attributed to a spurious hybridization of Zn-s/O-p and
Zn-d states. This hybridization has also been linked to the
band gap underestimation [25,46,49,50]. While quasiparticle
self-consistent GW schemes [51–55] can improve the band
gap, these schemes do not update the wave functions and
hence, do not correct their orbital hybridizations [25]. Fully
self-consistent GW schemes can correct both, the position and
the hybridization of the d states; however, such calculations
are computationally expensive and tend to overestimate band
gaps due to the lack of vertex corrections [53,56,57]. Incor-
porating such vertex corrections bears prohibitively higher
computational costs. To address these issues at a more af-
fordable level of theory, several DFT and GW @DFT schemes
using hybrid functionals or including a Hubbard-like U term
(DFT + U ) have been applied to ZnO [25,58–69]. While the
U term can be a simple and effective way to account for
the strong on-site Coulomb interactions of localized electrons
like the Zn-d states, there is no unique way to choose this
parameter [58].

Alongside the band structure, the response function of
pure and doped ZnO has also been studied both experimen-
tally [3,28,32–34,70–72] and theoretically [33,58,60,67,72].
Single-particle, plasmonic, and excitonic features shape the
excitation spectra of ZnO obtained by EELS. In particu-
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lar, excitonic contributions [28,29,34,60] have been found
to be responsible for distinct low-energy features in the re-
sponse properties of ZnO, including the very sharp onset
of the EELS spectra [34,72–75], and the significant tem-
perature dependence of the optical gaps [19,28–30,75,76].
Other features at larger energies have been associated with
single-particle and plasmonic excitations [3,31,33,70,72], de-
scribed with optical calculations in both, the independent
particle (IPA) and the random phase (RPA) approximations
[33,60,66,72,77]. The important role of electron-hole interac-
tions in the absorption spectra of ZnO has been studied with
the Bethe-Salpeter equation (BSE) method [60,66,67,77–80],
showing results in excellent agreement with, e.g., ellipsometry
measurements [60].

Another distinct feature of the dielectric response of ZnO is
its strong anisotropy along the direction perpendicular to the
hexagonal plane of its wurzite crystalline structure. In particu-
lar, the static dielectric constant of ZnO is about 10% smaller
in this direction [81]. The high-symmetry lines in the Brillouin
zone are therefore classified as in-plane and out-of-plane,
according to its component along the perpendicular direction.
The adsorption spectrum in the optical limit, q → 0, along in-
plane and out-of-plane directions also differs at finite energies,
as found both experimentally and theoretically by changing
the polarization of the external electric field [27,60,72,78]. In
addition, momentum-resolved EELS experiments have been
carried out [3] to describe how the loss function disperses
along the [120] in-plane and [001] out-of-plane crystalline
directions. However, the effects of the anisotropy at finite
values of q have not yet been addressed in the literature.

In this work, we conduct ab initio electronic structure and
response function calculations combined with momentum-
resolved EELS experiments, to examine the role of different
physical effects on the momentum and energy-dependent re-
sponse functions of ZnO, including a theoretical description
of the anisotropy at finite q. Several theoretical approaches
are used, allowing us to systematically unravel the key many-
body features in the spectra. We perform DFT calculations
with standard and hybrid functionals, including DFT + U . We
then benchmark optical calculations with the different DFT
inputs at the IPA and RPA levels. The DFT + U scheme,
which results in a better agreement with the EELS spectra,
is then chosen to study the excitonic contributions at the BSE
level.

The paper is organized as follows. Section II introduces
the theory and main concepts behind EELS experiments and
first-principles calculations at the different levels of approxi-
mation. Section III provides experimental and computational
details. In Sec. IV, we describe and analyze the main results,
and finally, Sec. V holds the conclusions.

II. THEORY

In EELS experiments, the double-differential scattering
cross-section, σ , per unit of volume resolved in energy ω and
momentum Q, proportional to the solid angle ϕ, is given by
(in atomic units) [82,83]

1

V

d2σ

dϕdω
= γ 2

2π2

k f

ki
v(Q)L(Q, ω), (1)

where γ = 1/
√

1 − v2
e /c2 is the relativistic factor stemming

from the velocity ve of the incident electrons; ki and kf
are the initial and the final momenta of the electrons with
ki ≡ |ki| and k f ≡ |kf |, so that the transferred momentum is
given by Q = kf − ki, with Q ≡ |Q|; while v(Q) = 4π/Q2

is the Coulomb potential in reciprocal space. The loss func-
tion is defined by the imaginary part of the macroscopic
inverse dielectric function, L(Q, ω) ≡ Im[−ε−1

M (Q, ω)]. The
macroscopic inverse dielectric function, ε−1

M , is related to the
macroscopic polarizability, χM , by

ε−1
M (Q, ω) = 1 + v(Q)χM (Q, ω). (2)

Note that the macroscopic momentum transfer, Q, can
exceed the first Brillouin zone. The macroscopic and micro-
scopic density-density response functions are related by

χM (Q, ω) = χGG(q, ω), (3)

where Q = q + G, q is confined to the first Brillouin zone,
and G is a reciprocal lattice vector. χGG′ (q, ω) is the Fourier
transform in space and time of the nonlocal dynamic polariz-
ability function χ (r, r′, t − t ′).

In the many-body theory, the microscopic polarizability
can be evaluated perturbatively from Kohn-Sham DFT by
solving the Dyson equation for this operator:

χ = χ0 + χKχ0, (4)

where for simplicity the dependencies, GG′ and (q, ω), have
been omitted, χ0 is the independent-particle polarizability, and
the kernel K defines the given level of theory. At the IPA
level, KIPA = 0, only single-particle transitions are accounted
for, while local field effects are included in RPA, KRPA =
v(q + G). Electron-hole interactions can also be included
in Eq. (4) by using four-particle operators, i.e., replacing
the polarizabilities (two-particle operators) by four-particle
response functions and using the Bethe-Salpeter kernel,
KBSE = v(q + G) − WGG′ (q, ω), where W is the dynamically
screened Coulomb potential. In practice, the dynamical effects
are neglected by considering only the WGG′ (q, ω = 0) term at
the RPA level (W = v + vχv), leading to a simplified Bethe-
Salpeter equation with a static kernel [84].

In this work, we compute the IPA polarizability χ0 from
Kohn-Sham (KS) eigenvalues and eigenvectors as

χ0GG′ (q, ω) = 2
∑
v,c

∫
BZ

dk
(2π )3

ρ∗
vck(q, G)ρvck(q, G′)

× fvk−q(1 − fck )

⎡
⎣ 2�KS

vckq

ω2 − (
�KS

vckq

)2

⎤
⎦, (5)

where the factor 2 accounts for the spin degeneracy, the v and
c indices run respectively over valence and conduction bands,
ρvck(q, G) ≡ 〈vk|ei(q+G)·r|ck − q〉 are transition matrix ele-
ments, the f factors are the occupations of the KS states,
�KS

vckq = (εck − εvk−q) − iδ are KS single-particle transitions,
and the limit δ → 0+ is implicit and ensures the correct time
ordering [84].
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III. METHODS

To make a reliable comparison between EELS measure-
ments and the theoretical loss function, the QP band structure
used as input for the computation of the spectra needs to be in
good agreement with the experimental band structure and the
corresponding density of states, such as obtained from angle-
resolved photoemission spectroscopy (ARPES) [25] and x-ray
photoelectron spectroscopy (XPS) [23,85]. However, as dis-
cussed in the introduction, computationally obtaining a QP
band structure of ZnO in good agreement with the experiment
is in itself challenging. We therefore compute the DFT band
structure and density of states at different levels of theory, as
will be discussed in Sec. III B. These results are compared
with the experimental data of Refs. [25,85], focusing on the
role of orbital hybridization in the position of the Zn-d states.
Such benchmarkings proved to be important for determining
a suitable starting point to compute the response functions of
ZnO at the different IPA, RPA and BSE levels of theory.

A precise theory-experiment comparison of the loss
function also requires careful processing of the EELS mea-
surements. The recorded intensity is proportional to the differ-
ential cross-section defined in Eq. (1); however, because of the
finite momentum and energy resolutions the resulting spec-
tra are convoluted in these two variables, which hinders the
factorization of the loss function, L(q, ω). Furthermore, the
measured intensity is sensitive to several parameters related to
the specific experiment, such as instrumental broadening, ex-
posure time, and thickness variations of the sample. It is there-
fore common to model the absolute thickness and perform an
approximate normalization using, e.g., the method known as
Kramers-Kronig sum rule [82]. While such procedures can be
sufficient for analyzing trends in peak positions, they neglect
broadening, surface-mode scattering, and retardation effects
[82], and thus may be insufficient to analyze the dispersion
of the intensity with q. Hence, we use a simple method
based on the physical constraint of the f -sum rule [82,84] to
extract the experimental loss function, as detailed in Ap-
pendix A. We also perform Kramers-Kronig analysis with the
procedure described in Appendix B to obtain the momentum-
dependent absorption spectra from the experimental loss
function. Similar methods have also been used for inelastic
x-ray scattering spectroscopy (IXSS) measurements [86–90].

In this work, we use transferred momenta constrained to
the first Brillouin zone (Q = q), for both experiments and
ab initio calculations. Both theoretical and experimental data
are given in coarse grids along different directions in q space,
while the frequency grid is denser with respect to the energy
range we consider. Thus the first-order spline interpolation is
used to obtain the smooth color-maps in Secs. IV B and IV D.

A. Experimental details

Single crystal ZnO with at least 99.99% purity was pur-
chased from the MTI Corporation. Transmission electron
microscopy (TEM) specimens were prepared by mechanical
grinding using an Allied Multiprep system and polished with a
Gatan Precision Ion Polishing System (PIPS) II. Two different
samples were prepared to access both the in-plane and out-of-
plane directions.

Momentum-resolved EELS measurements were obtained
in TEM mode, using a Gatan GIF Quantum 965 spectrometer
attached to a monochromated FEI Titan G2 60-300, operated
at 60 keV. We used the ω − q mapping technique, where an
angle-selection slit was placed along the M, K , MK , and
A high-symmetry lines in the diffraction plane. The spec-
trometer disperses the electrons according to their velocity
perpendicular to the direction of the slit, and the resulting ω-q
map is a 2D intensity distribution as a function of energy loss
(eV) and momentum q (Å−1).

The momentum resolution is estimated by the effective
width of the angle-selecting slit to be 0.6 Å−1 in the in-plane
directions and 0.45 Å−1 in the out-of-plane one, as given by
the angular range used in each case. The energy resolution
is estimated as �0.30 eV, quantified by the full width at half
maximum of the zero-loss peak (ZLP), consisting of electrons
elastically scattered or transmitted with energy losses below
the resolution of the instrumentation. The energy dispersion
of the spectrometer was set to 0.025 eV/channel, as a com-
promise between energy resolution and signal intensity.

At the  points (q → 0), the ZLP is dominated by
quasielastic scattering, while the relative contribution of in-
elastic scattering increases at finite q. The finite size of Bragg
spots around  constrains the accessibility to the q → 0 limit.
Moreover, the dynamic range of the detector does not provide
a good signal-to-noise ratio for the full q-range of interest.
Therefore the data acquisition was split in two q-ranges to
optimize the quality of the signal: qin � 0.15 Å−1 and qin �
0.20 Å−1 in the in-plane directions, and qout � 0.30 Å−1 and
qout � 0.35 Å−1 in the out-of-plane one.

The individual EELS spectra were extracted from the full
data sets by summing few adjacent spectra in a maximum
range of ∼0.1 Å−1, for statistical averaging. The resulting
spectra were then extracted in intervals of 0.05 Å−1. The back-
ground from the ZLP was subtracted using the standard power
law model described in Ref. [91]. We thereafter have applied a
Savitzky-Golay filter to remove remaining fluctuations in the
spectra (see details in Sec. IV of Ref. [92]).

B. Computational details

DFT calculations were performed using the plane wave
implementation of the QUANTUM ESPRESSO package [93,94]
with the Perdew-Burke-Ernzerhof (PBE) variant of the GGA
functional [95], its hybrid (tuned) PBE0 version [96], and PBE
in a DFT + U scheme with tunable U parameters [97,98].
We adopted the norm-conserving optimized Vanderbilt pseu-
dopotentials of Ref. [99], with a kinetic energy cutoff of
70 Ry for the wave functions. ZnO is modeled in its hexag-
onal wurtzite crystal structure with lattice constants set to the
experimental values, a = 3.25 Å and c = 5.21 Å [76,100].
In all the DFT calculations, the Brillouin zone was sampled
with a 36 × 36 × 24 Monkhorst-Pack grid. Notice that even
if the DFT calculations are over-converged with respect to
this grid, such dense grids are necessary to obtain a smooth
representation of the response functions.

For hybrid PBE0-type calculations, the exact exchange
fraction is set to 0.22, slightly lower than the default value
of 0.25, selected to reproduce the experimental band gap at
room temperature. Similarly, for PBE + U calculations, U
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FIG. 1. Band structure (a) and projected density of state (PDOS) [(b)–(d)] of ZnO obtained with PBE, PBE0 and PBE + U . Scissors
corrections of 2.51 and 0.02 eV have been applied respectively to PBE and PBE0 results in order to match the PBE + U gap of 3.38 eV.
The momentum k is given in grid units, i.e., the length of the M, MK , KH , HA, A, and K high-symmetry lines in the band structure is
proportional to the number of sampling points along them, which is 19 for M, 7 for MK , and 13 for the rest; with the 36 × 36 × 24 k grid.
Three horizontal lines are drawn in each of the PDOS plots, the bottom of the conduction band determining the gap (dotted), the Fermi level
at null energy (solid), and the energy from which the DOS become predominantly of d character (dashed); −2.96 eV for PBE, −4.45 eV for
PBE0, and −5.66 eV for PBE + U .

values for O and Zn atoms were set to UO = 7.5 eV and
UZn = 9.5 eV. This combination reproduces both the experi-
mental band gap and the position of the d states obtained from
ARPES and XPS measurements in Refs. [25,85].

One-shot G0W0 and QP self-consistent GW0 and GW cal-
culations starting from PBE results were performed with the
YAMBO code [101,102]. We concluded that the QP band struc-
ture within these approaches can be approximately obtained
from the PBE results by applying scissors and stretching oper-
ations [84], and thus be used to compute the direct and inverse
dielectric functions. The details of such GW calculations are
provided in Sec. I of Ref. [92].

The calculations of the optical spectra within IPA, RPA,
and BSE were also performed with YAMBO, including the use
of scissors operators [103]. The Brillouin zone for both k and
q spaces was sampled with the same grid as DFT, except for
the BSE calculations, where a smaller grid of 18 × 18 × 12 k
points was adopted due to their high computational cost. The
IPA and RPA polarizability matrices were computed using a
total number of occupied plus unoccupied states of 100 and
an energy cutoff of 5 Ry for the reciprocal lattice vectors.
For the BSE calculations, we use a static W matrix with 7
occupied and 14 unoccupied states respectively below and
above the Fermi level, and the same cutoff of 5 Ry. The BSE
kernel is constructed directly from the PBE0 and PBE + U
eigenvalues and eigenstates rather than the more common
choice of using GW , since the band gap is already accurate
within those approaches. All the spectra are computed with a
Lorentzian broadening of 0.2 eV.

IV. RESULTS

The results of our work are presented in four follow-
ing sections. Section IV A describes DFT results obtained
at the PBE, PBE0, and PBE + U levels of theory, and the

role of orbital hybridization in the band structure of ZnO.
Its importance for interpreting the main features in the loss
function is highlighted in Sec. IV B, by comparing our the-
oretical and experimental spectra with previous studies in
the optical limit. In Sec. IV C, we provide a more detailed
description of the direct and inverse dielectric functions, as
obtained at finite momentum along different directions in the
Brillouin zone. The in-plane M line, which has the most
accurate experimental data, is used to benchmark the differ-
ent IPA and RPA approaches, and select the best input for
BSE calculations. We discuss the dispersion of the main fea-
tures defined in the optical limit, including single-particle and
plasmonic excitations and the strong anisotropy along the out-
of-plane direction. Finally, Sec. IV D is dedicated to excitonic
effects.

To facilitate the following descriptions, here we introduce
some useful concepts: the peaks in Im[−ε−1] and Im[ε] will
be called two-body or many-body states, or simply excitation
states. For instance, such peaks could be originated from
single-particle transitions from valence to conduction states,
or have plasmonic or excitonic character. The dispersion of
such excitation states with transferred momentum, q, defines
a band structure of excitations in q space, for both Im[−ε−1]
and Im[ε], analogous to the standard band structure of valence
and conduction (one-body) states in k space, like the plot in
panel (a) of Fig. 1. While one-body states from valence and
conduction bands respectively have negative and positive en-
ergy with respect to the Fermi level, the poles of the response
functions corresponding to the (many-body) excitation states
are positively defined [see, e.g., Eq. (5)]. Another property
of the one-body-state band structure is the possibility to have
bands crossing at some point in the Brillouin zone, changing
the order of the bands before and after a crossing. Due to
the band reordering, similar crossings can happen for the
excitation states, not necessarily at the same points.
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A. Band structure and electronic density

Figure 1 compares the KS band structure (panel a) and
the projected density of states (PDOS) (panels b-d) of ZnO
computed with PBE, PBE0, and PBE + U . We obtain a fun-
damental gap of 0.87 eV for PBE, 3.36 eV for PBE0, and
3.38 eV for PBE + U with the chosen parameters. Here,
scissors corrections of 2.51 and 0.02 eV, respectively, align
the PBE and PBE0 band structures to the PBE + U gap.
The comparison shows very similar conduction bands in the
three approaches, except for a slight stretching of the PBE0
bands compared to those of PBE and PBE + U . However, the
valence bands differ considerably, in particular, the positions
of the d states (located at the bottom part of the figure) of
PBE and PBE0 bands are too high in energy compared to
those of PBE + U and the ARPES experiments of Ref. [25].
In the PDOS plots [(b) and (c)], the horizontal dashed lines
indicate a change from O-p to Zn-d orbital character that
predominates in the total density of states (DOS). The change
occurs at −2.96, −4.45, and −5.66 eV, respectively for PBE,
PBE0, and PBE + U . Among these, the PBE + U DOS is the
most consistent one with the ARPES and XPS measurements
of Refs. [25,85], as by construction its maximum weight is
located around the experimental value of −7.5 eV.

Perturbative approaches, whether simple schemes such
as correcting KS energies with scissors and stretching op-
erations, or advanced methods such as one-shot or QP
self-consistent GW , rest on the assumption that DFT with
standard functionals provides quantitatively accurate elec-
tronic orbitals, and associated electronic density, but this is
not the case for ZnO [25,46]. Alternatively, fixing the band
gap in a (fully) self-consistent DFT approach can be done with
a hybrid functional like PBE0, by tuning the fraction of exact
exchange, but it does not provide much improvement for the
position of the d states, even combined with QP GW methods,
as also found, e.g., in Ref. [25].

Our PBE + U PDOS results confirm the importance of
having a correct orbital hybridization. They also show that by
tuning the U parameters it is possible to improve the descrip-
tion of both features, the gap and the d states, as compared
to ARPES [25] and XPS experiments [23,85]. There is a
plethora of possible values of U used for ZnO in the literature
[58], even formulated as pseudohybrid functionals [64,65].
We chose the combination, as mentioned in Sec. III B, that
best agrees with the experimental band structure and DOS of
Refs. [25,85], and the gap of 3.37 eV at room temperature
[28,58]. This choice reduces the variety of possible response
functions that can be found with different values of U (see, for
example, Fig. 7 of Ref. [58]).

B. Response properties in the optical limit

Figure 2 compares the computed loss function, L(q, ω),
of ZnO in the q → 0 limit along the in-plane M line;
obtained at the IPA level on top of scissor-corrected PBE,
PBE0, and PBE + U ; with the corresponding EELS mea-
surements. For PBE + U , the spectrum at the RPA level is
also shown. In the figure, we indicate eight main features of
L(qM → 0, ω), labeled as F1, F2,..., F8, following a simi-
lar notation to Refs. [33,34]. A detailed comparison of the
experimental and theoretical features allows us to asses the

FIG. 2. Loss function of ZnO in the q → 0 limit along the M
line computed at the IPA level with PBE, PBE0 and PBE + U and
the RPA level on top of PBE + U . The normalized experimental
measurements are also plotted. The same scissors corrections from
Fig. 1 are used. Eight features of the loss function are indicated in
the plot.

accuracy of the different levels of theory, and facilitates the
interpretation of the features with respect to previous studies.

The experimental loss function exhibits a sharp onset at
F1, with an optical gap of 3.2 eV, estimated from standard
parabolic fitting used in EELS [104]. This value is consistent
with the range of values reported in other experiments at room
temperature [15,26,28,75,104]. However, the fitted band gap
is around 0.1 eV smaller than the reference value of 3.37 eV
from optical measurements [16,26,28,29], taking an excitonic
binding energy of 60 meV into account [16,26,29,105]. This
underestimation is also common in other spectroscopies sus-
ceptible to valence band-donor transitions from the bulk of the
system, when comparing to experimental techniques probing
the surface, such as ellipsometry and luminescence [15,29].

After the onset, there is a prominent peak at 9.4 eV (F2) and
a shoulder structure between 12 and 15 eV (F3). At larger en-
ergies we find the bulk plasmon, with a double peak located at
18.4 eV and 18.9 eV (F4), followed by two shoulders around
20.8 eV (F5) and 23.1 eV (F6). Finally, there are two shallow
hills, the first one around 32 eV (F7), which vanishes in the
q → 0 limit, and a more prominent one around 36 eV (F8)
showing only small variations with q. The measured energy-
loss spectrum is in very good agreement with previous EELS
experiments [3,33,34,70,72,73,106], according to their energy
scale and resolution. While many of these measurements were
performed for different ZnO nanostructures, where surface
plasmons may be present, the rest of the features correspond
to those from bulk ZnO [3,33,34,70,72].

On the theoretical side, the onset F1 is smoother and lower
in intensity, mainly due to the absence of electron-hole in-
teractions in the IPA and RPA approximations. The position
of the F2 peak is overestimated by 0.8, 0.5, and 0.7 eV, for
PBE, PBE0, and PBE + U , respectively. The agreement in the
PBE0 case is slightly better due to the asymmetry caused by
the superposition of two peaks, absent in the other theories
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and the experiment. For all the four types of calculations, the
shoulder F3 arises from a set of peaks. In the case of PBE and
PBE0, the width of the F3 region is larger, while PBE + U
agrees better with the experiment and shows better-defined
peaks. The intensity of F2 and F3 is also lower in the theory,
which is linked to the overestimation of the position of the
plasmon and its tail. The theoretical spectra also exhibit an
extra subtle shoulder around 18.3 eV for PBE and PBE + U ,
and 18.8 eV for PBE0, which is not present in the experiment.

As in the experiment, the plasmon presents a double peak
shape, with maximums located at 19.8 eV and 22.0 eV for
PBE, 20.6 eV and 22.7 eV for PBE0, and 19.9 and 21.6 eV
for PBE + U , overestimating the experimental value on 3.1,
3.8, and 2.7 eV, respectively. In all the theoretical approaches,
the intensity is larger for the second peak, pronouncedly so
for PBE and PBE0. In general, the relative intensity among
the different features in PBE + U is in much better agreement
with the experiment, due to a better description of F4. More-
over, whereas F5 and F6 are subtle shoulders in the PBE and
PBE0 spectra, in PBE + U they are prominent peaks at 23.9
and 25.6 eV respectively.

Last, the agreement between experiment and theory is very
good for the F7 and F8 hills. The position of F7 is around
30.9 eV for PBE, 31.8 eV for PBE0, and 32.3 eV for PBE +
U , the latter being more structured. F8 is located around 34.7,
35.8, and 37.0 eV, for PBE, PBE0, and PBE + U , respectively.
The intensities of these peaks are also affected by the position
and tail of the plasmon, which are higher for PBE and PBE0
than for PBE + U . In particular, the RPA@PBE + U intensity
of F7 tends to vanish in the q → 0 like in the experiment, as
described in the next section.

While the theory overestimates the position of the plas-
mon and there are several other smaller shifts for the rest
of the features, the overall agreement between theory and
experiment is quite good. Except for some contraction of the
spectrum beyond 9 eV, the overall shape of scissor-corrected
PBE is very similar to that of PBE0, which can be attributed
to a similar orbital hybridization with some stretching of the
PBE0 bands compared to PBE, as discussed in Sec. IV A.
In contrast, PBE + U , with its improved description of the
d-states gives a spectrum much closer to the experiment, even
if a significant shift toward larger energies remains.

Comparing the IPA and RPA results in Fig. 2 allows us to
assess the role of local-field effects, as obtained by solving
the Dyson equation in Eq. (4) at this level of theory. These
effects broaden the tail of the plasmon, due to long-range
Coulomb interactions, renormalizing the intensity of the peaks
in the spectra, even at energies below the plasmon such as the
F2 feature. As shown in Fig. 2, the renormalization at high
energies is quite large, even for the macroscopic inverse di-
electric function. This is the main reason for the cumbersome
convergence of GW calculations, requiring the evaluation
of the microscopic polarizability with a high energy cut-
off for the lattice vectors and the number of empty states
[40–42].

A better understanding of the main orbital character of
the features in the loss function of ZnO, can be obtained
by analyzing the dipole matrix elements and identifying the
bands responsible for the main electronic transitions that form
the given features. Such an analysis is provided in Sec. II of

the Ref. [92], at the IPA@PBE + U level of theory. Overall,
we find that the compositions of all these features is consistent
with previous works [3,33,72,106], although we address the
main disagreements for F2 and F3.

According to our results, F1 and F2 are dominated by
excitations from O-p states, while previous analyses based on
DFT calculations with a GGA-based functional [72] assign
a Zn-d character to F2, which could be due to an incorrect
orbital hybridization similar to our PBE results. Instead, an
O-p character is assigned in Ref. [33]. Moreover, instead of
a structured shoulder shape at F3, some of the earlier experi-
ments have reported only 1-2 peaks in this region [33,34,106],
which we attribute to limitations in the resolution of their
measurements. Consequently, different characters have been
assigned to F3. The literature [33,34,72] agrees on one of
the peaks around 13.5 eV corresponding to transitions from
Zn-d states. A surface plasmon is reported at 15.8 eV only
in Ref. [34]. Three peaks are identified in Ref. [72] at 13.0,
13.5, and 14.8 eV, respectively with Zn-d , O-p and mixed
character, this is more consistent with the mixed character of
F3 in our results. An orientational dependent part of F3 [3,72]
and a momentum-dependent composition at finite q has also
been reported [3].

A double-peaked plasmon has not been previously reported
in Refs. [3,33,34,72], however, the asymmetric shape of the
plasmon peak measured in Ref. [72] is consistent with our
findings. The plasmon and the rest of the F5–8 features are
also expected to have mixed characters, although they have
been less studied in the literature. Furthermore, as detailed in
Sec. II of the Ref. [92], we find that the weight of the differ-
ent orbital contributions is not the same for all the features,
for example, F5 and F6 have a dominant Zn-d component.
The comparison with the experiment in Fig. 2 shows the
limitations of the theory for features at such large energies.
Therefore a better agreement is expected with an improved
description of the d states beyond DFT + U .

C. Inverse and direct dielectric functions in q space

In this section, we address several properties of the
momentum dependence of the direct and inverse response
functions of ZnO. Even if PBE + U results are closer to the
experiment in the q → 0 limit, it is not obvious whether
this simple approach provides accurate results also at finite
momentum. Therefore, in Fig. 3, we benchmark the disper-
sion of the features obtained with the same four theoretical
approaches and the experiment of Fig. 2, along the M line.
The experimental momentum-dependent loss function was
obtained with the method described in Appendix A. The com-
parison between theory and experiment shows the same level
of agreement for the whole M line.

At low energy and momentum, both the experimental and
computed onset, F1, disperses quadratically with q, as ex-
pected from the dispersion of the bands slightly below and
above the Fermi level, as shown in Fig. 1. We have fitted
the full M dispersion with a cubic polynomial represent-
ing a Taylor expansion truncated at third order, of the form
E (q) = E0(1 + c1q + c2q2/2 + c3q3/6), where E0 is the band
gap. The values of the c1−3 coefficients fitted to the theoretical
and the experimental spectra are summarized in Table I, while
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FIG. 3. Color-map representation of the energy and momentum-dependent inverse dielectric function, Im[−ε−1(q, ω)], along the M
line. Comparison between several flavors of theory: IPA@PBE (a), IPA@PBE0 (b), IPA@PBE + U (c) and RPA@PBE + U (d), and EELS
experiments (e). The dispersion of the features F1–4 defined in Fig. 2 is appreciable, as indicated with labels in the experimental panel (e). The
edge of the onsets is drawn with approximate lines to guide the eye, while a fit is provided in Table I. The dotted gray line at qM = 0.18 Å−1

in (e) indicates the change of experimental data set (see description in Sec. III A).

the polynomials are plotted in Fig. S4 of the Ref. [92]. We
have obtained accurate fits in all the cases (1 − R2 < 10−4).
Notice that the effective mass of the dispersion is obtained
from the c2 coefficient, and can be compared to other values in
the literature [67]. However, we obtain a finite c1 term for IPA
and RPA, thus deviating from a parabolic dependence at low
q, while c1 is closer to zero in the experiment and BSE, even
if the uncertainty is larger in these two cases. The excitonic
effects responsible for the BSE dispersion are discussed in
Sec. IV D.

In all the panels, the F2 peak is fairly nondispersive in
energy while its intensity decreases quickly with q. After
half the M distance, small deviations are observed due to
the emergence of different states at energies slightly above

TABLE I. Coefficients of the cubic polynomial, E (q) = E0(1 +
c1q + c2q2/2 + c3q3/6), used to fit the dispersion of the onset F1
along the M line, obtained with the different levels of theory and
the EELS experiment.

c1 (Å) c2 (Å2) c3 (Å3)

IPA@PBE 0.61 ± 0.01 1.95 ± 0.06 −2.62 ± 0.13
IPA@PBE0 0.33 ± 0.01 2.58 ± 0.06 −4.00 ± 0.12
IPA@PBE + U 0.22 ± 0.01 3.60 ± 0.06 −5.29 ± 0.12
RPA@PBE + U 0.22 ± 0.01 3.64 ± 0.06 −4.65 ± 0.13
BSE@PBE + U 0.004 ± 0.11 3.67 ± 0.22 −4.16 ± 0.47
EELS 0.01 ± 0.05 4.13 ± 0.20 −6.38 ± 0.41

F2. In the case of PBE0, F2 is separated into two peaks
from the beginning. In agreement with the experiment, all the
theoretical descriptions find that F3 is a mixture of several
peaks, arising from its mixed orbital character discussed in
the previous section. However, whereas PBE + U and the
experiment exhibit an admixture of dispersive and nondis-
persive peaks, they are predominantly nondispersive for PBE
and PBE0. PBE and PBE0 also exhibits a notable valley
respectively at around 16.6 eand 17.2 eV, more pronounced
for PBE0. This valley is not appreciable in PBE + U nor in the
experiment.

The plasmon (F4) and all the following features (F5-8), are
nondispersive in their energy position, while changing mainly
in intensity with q, as found in both theory and experiment.
This nondispersive nature is related to the localization of the
d states, which have very flat dispersions in the band structure
of Fig. 1, and their dipole elements dominating the tail of the
spectra. In all the theoretical approaches, the intensity of the
double-peaked plasmon F4 is larger for the peak at higher
energy, even if PBE and PBE0 present very different rela-
tive intensities with respect to PBE + U results. For qM �
0.2 Å−1, the intensity of the first peak is slightly larger in the
experiment, while the intensity of both peaks is very similar
at larger q values, with the second one becoming slightly
larger. The decreasing intensities of F4–6 with increasing q
are related to the quasiparticle nature of the plasmon. The
states forming F7 tend to overlap more at finite momentum,
thus increasing the intensity of this feature with q, while F8
remains almost unaltered.
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FIG. 4. Similar color maps to Fig. 3 but for the energy and momentum-dependent dielectric function, Im[ε(q, ω)]. In the case of the
experiment we plot the results of the Kramers-Kronig analysis on the experimental loss function (see Appendix B). The same borderlines from
Fig. 3 are plotted here to show the similarity of the dispersion of the onset. In (e), we also plot the same dotted gray line at qM = 0.18 Å−1. In
addition, we include labels indicating the position of the F1–4 features defined for the loss function in Fig. 2.

In Fig. 4, we show color-map plots of the momentum-
dependent dielectric function, Im[ε(q, ω)], analogous to
Fig. 3, where the experimental spectra were obtained by
Kramers-Kronig analysis with the procedure described in
Appendix B. We have found a similar level of agreement
between theory and experiment, as for the loss function. These
complementary results allow us to better understand the col-
lective nature of the excitations responsible for the features
observed in Fig. 3.

Figure 4 exhibits many dispersive and nondispersive fea-
tures, where PBE + U results show a better agreement with
the experimental dispersion, as in Fig. 3. The largest inten-
sities in Fig. 4 are found for the peaks in the region between
8 eV and 18 eV, since plasmons are less relevant for Im[ε] than
for Im[−ε−1] [84]. There are peaks in Im[ε] analogous to the
features F2 and F3 defined for Im[−ε−1], at energies ∼0.5 eV
below. F2 and F3 are then interpreted as plasmon resonances
of the corresponding excitations in Im[ε], i.e., the excitations
in Im[−ε−1] and Im[ε] come respectively from long and short
range electronic interactions. Due to the larger nondispersive
character in PBE and PBE0 results compared to PBE + U ,
there is an effective state superposition that increases the
maximum intensity and shows an apparent better agreement
of PBE and PBE0 with the experimental intensity. In addition,
the maximum intensity decreases at the RPA level with respect
to IPA. The experiment also shows a large fraction of the
spectral weight concentrated around the optical gap. Excitonic
contributions, which are not accounted for in the IPA and RPA
approximations, are considered at the BSE level in Sec. IV D,
providing a better description of the intensity with respect to
IPA and RPA.

Figure 4 also shows several crossings of excitation states
corresponding to F3, in particular a very intense one around
12.5 eV, with its vertex around qM ∼ 0.25 Å−1. Some of
these crossings in Im[ε] can be related to band crossings
or reorderings in the band structure of Fig. 1. These cross-
ings are also present in the experiment, although not all of
them well appreciated in the color-map plot due to limita-
tions in the experimental resolution, especially for q → 0
and around the border between the two experimental data
sets.

In Fig. 5, we focus on the region below 23 eV and extended
the range of q values to several high-symmetry lines in the
Brillouin zone, matching the ones used in the band structure
plotted in Fig. 1, for both Im[−ε−1] and Im[ε]. These exci-
tation band structures correspond to RPA@PBE + U results,
while a full comparison of analogous plots at the IPA level on
top of PBE, PBE0, and PBE + U is provided in Sec. III of the
Ref. [92]. The experimental dispersion of the onset around the
subset of measured lines is included in the figure, showing an
excellent agreement with the theory. We can also track how
the other features change along the different directions, as
similarly done for the experimental data in Ref. [3] along a
selected in-plane and out-of-plane directions. The dispersion
exhibits diverse and complex behaviors in both panels, show-
ing several states vanishing, emerging, crossing, or splitting,
especially for the multiple states in the zone from 8 to 18 eV.
However, the most notable property is the strong anisotropy at
 in the out-of-plane A line, compared to the in-plane lines
M and K , as also found in previous works [3,33,60,67,72].

Focusing on Im[−ε−1], there are features along A not
present in the in-plane lines, for example the peak between
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FIG. 5. Color-map representation of the energy and momentum-dependent loss function, Im[−ε−1(q, ω)], (left) and dielectric function,
Im[ε(q, ω)], (right) along several high-symmetry lines in the Brillouin zone, computed at the RPA@PBE + U level. Similar borderlines to
Fig. 3 are plotted, including the experimental edge when available. The same labels indicating the position of the experimental F1–4 features
are shown.

F2 and F3 at ∼12 eV, as also identified in Refs. [3,72]. Other
states in the zone of F3 start to appear at finite momentum,
reaching their maximum intensity at q = A. The anisotropy
manifests even clearer in the region of the plasmon. Compar-
ing the Im[ε] and Im[−ε−1] band structures, the superposition
of low-range excitations (red and dark orange features in
Im[ε]) and their corresponding plasmon resonances (light
blue features in Im[−ε−1]) is much less overlapped along
HA than in the MK lines. In fact, the out-of-plane lines
present a very well-defined zigzag sequence of hills and val-
leys that alternate from Im[ε] to Im[−ε−1]. In other words,
the hills and valleys above 8 eV in Im[ε] can be identified
respectively as valleys (dark blue features) and hills (light
blue features) in Im[−ε−1]. The origin of the zigzag spectra
in the anisotropic direction can be related to the band cross-
ings around the middle of the A line shown in Fig. 1. The
anisotropy in the A direction is confirmed at the BSE level
and the experiment in Sec. IV D.

In Fig. 5, we have included q = K at the intersection of the
in-plane MK and out-of-plane KH lines. At this point of the
Brillouin zone border, the anisotropy is less evident than in
the case of  in the AK lines, and the limit q → K appears
continuous in the plot. However, there should be indications
of the anisotropy at finite q as well, since it is a geometric
property of the system. In order to address this question at a
simple level of approximation, we focus on zero frequency
and compute the IPA@PBE + U static dielectric constant,
Re[ε(q, ω = 0)], of ZnO at several in-plane and out-of-plane
finite q values. The selected 2D projections of the Brillouin
zone are displayed in Fig. 6.

As mentioned in the introduction, the static macroscopic
dielectric constant Re[ε(q → 0, ω = 0)] is anisotropic. Al-
though there is a range of experimental values reported in the
literature [76,81], the difference between the static dielectric
constant in the in-plane and out-of-plane directions is around
0.9. In our IPA@PBE + U calculations shown in Fig. 6, the
static dielectric constant decreases quadratically from 3.13 for
vanishing q to 1.95 at the border of the Brillouin zone. In the
q → 0 limit, we find a difference of 0.02 between the in-plane
and out-of-plane directions. The accuracy of these numbers is

limited by the incompleteness of the f -sum rule [82,84] and
the level of approximation, since we use a finite number of
100 bands and neglect the local-field effects. In addition, the
inclusion of excitonic interactions is expected to increase the
intensity of the onset F1, and therefore affect the dielectric
constant at small frequencies. Even if we get a much lower
difference with respect to the experimental references, we can
still analyze the anisotropy at finite q.

In Fig. 6, we include contours at fixed values of the di-
electric constant. The shape of these isolines (gray shades) is
asymmetric with respect to π/2 rotations due to the anisotropy
between in-plane and out-of-plane directions, as compared
with an ideal isotropic contour (dashed blue circumference).
The radius of the contours along the M and K is the

FIG. 6. Color-map representation of the momentum-dependent
static dielectric constant, Re[ε(q, ω = 0)] of ZnO, computed at the
IPA@PBE + U level of theory along in-plane and out-of-plane pro-
jections of the Brillouin zone. Contour isolines (gray shades) show
anisotropy between the in-plane and out-of-plane directions at finite
momentum. The dashed blue circumference, which is tangent to the
second smaller isoline in the MK lines, represents an ideal isotropic
contour.
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FIG. 7. Color-map representation of the energy and momentum-dependent loss function, Im[−ε−1(ω, q)] [(a) and (b)], and dielectric
function, Im[ε] [(c) and (d)], computed at the BSE@PBE + U level and compared to the experiment along the MA lines. Two points
beside the high-symmetry ones are marked in the experimental panels, m and a, which correspond to qM = 0.18 Å−1 and qA = 0.30 Å−1,
respectively, the dotted lines at these points separate different experimental data sets (see description in Sec. III A). Similar borderlines from
Fig. 3 are plotted, and the same labels indicating the position of the experimental F1–4 features.

same, as the response is isotropic along these lines, while
the radius along A is larger. Since the overall intensity de-
creases quadratically with q, a larger A radius compensates
for a larger dielectric constant along this line. Moreover, the
difference between the in-plane and out-of-plane radii re-
mains constant at �q ≈ 0.08 Å−1, for contours sufficiently
far from , resulting in parallel ellipsoidal contours. Due to
the decay of the intensity with q, the difference between the
dielectric constant in the in-plane and out-of-plane directions
also decays quadratically, and therefore the anisotropy is less
appreciable at the border of the Brillouin zone.

D. Excitonic effects

As described in Sec. IV B, excitonic effects in ZnO cause
a very sharp step-like onset in the EELS spectrum in the
optical limit. These effects are highlighted in the imaginary
part of the dielectric function, obtained by Kramers-Kronig
analysis. In this case, the onset becomes a prominent peak,
characteristic of an excitonic nature resulting in a lower op-
tical gap, as found in other experiments measuring directly
the absorption spectrum [27,81]. The fine structure of the
excitonic contributions is very rich, presenting several free
and bound excitons with different temperature-dependent be-
haviors [29]. Additional intrinsic and extrinsic fine structures
such as polaritons, two-electron satellites, donor-acceptor
pair transitions, and longitudinal optical-phonon replicas
have also been observed in time-resolved photoluminescence
experiments [29].

By describing intrinsic excitonic effects at the BSE level
of theory, we here focus on the main broad effects on the
computed spectra, since our EELS measurements do not re-
solve the fine excitonic structures. Moreover, due to the high
computational cost of the BSE calculations, the accuracy
of the resulting spectra is limited by the convergence pa-
rameters specified in Sec. III B. Despite this limitation, the

BSE calculations provide key insights to understand the role
played by electron-hole interactions in the response functions
of ZnO.

The excitonic binding energy between the top of the va-
lence and the bottom of the conduction band is experimentally
found to be around 60 meV [16,26,29,105]. Our calculations
with the 18 × 18 × 12 k-grid result in a four times larger
value, as the binding energy convergences very slowly with
the number of k points. Nonetheless, our values are com-
parable to the ones found in Ref. [67] with similar grids.
Furthermore, extrapolating to grids finer than 36 × 36 × 24
results in a binding energy within ∼5 meV of the experimen-
tal value, as shown in Ref. [67].

In Fig. 7, we present color-map plots of the q dispersion
of the inverse [(a) and (b)] and direct dielectric functions [(c)
and (d)] in the same energy range of Fig. 5. In this case, we
compare BSE@PBE + U results with the experiment along
the MA lines. We have applied a stretching correction to
compensate for the larger excitonic binding energy of our BSE
calculations, and thus align the onset with the experimental.
As in the previous IPA and RPA calculations, at the BSE level
of theory we can recognize the features discussed in Sec. IV C,
although they are blurred due to the coarser k grid used in
BSE. The poor discretization also causes oscillations on the
flat area of the onset below F2. Moreover, the limited number
of bands provides a maximum excitation energy of ∼35 eV,
which is not enough to obtain the features above the plasmon.
High-energy features like plasmons are not usually explored
with BSE calculations due to the high computational cost. The
trends in our unconverged BSE calculations, nonetheless, sug-
gest that electron-hole interactions lower the plasmon energy
by ∼1 eV compared to RPA and IPA, resulting in a much
better agreement with the experiment. Compared to earlier
work, we also note that the BSE loss function of ZnO was
computed in Ref. [78] in the optical limit, while here we
provide results for finite momentum.
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(a) (b)

(c) (d)

FIG. 8. Comparison of the experimental and theoretical absorption spectra, Im[ε(q, ω)], in the M [(a) and (b)] and A [(c) and (d)] lines
in the q → 0 limit [(a) and (c)] and for finite momentum [(b) and (d)], qM ≈ 0.4 Å−1 and qA ≈ 0.3 Å−1. Black circles correspond to the
reference experimental data extracted from Tables D2-1 and D2-2 of Ref. [81], solid red lines correspond to the dielectric function obtained
by Kramers-Kronig analysis on the EELS data (see Appendix B) and dashed orange and dashed-dotted blue lines correspond respectively to
BSE and RPA calculations on top of DFT + U .

At small energies, the dispersion of the onset F1, in-
dicated by the solid green and dashed purple lines in
Fig. 7, is similar in the theory and the experiment (see also
Table I). However, the dispersion of the intensity of the ex-
citonic peak is qualitatively different. Where the theoretical
decreases quadratically following the energy dispersion, the
experimental drops abruptly, in comparison. As mentioned
above, there are accuracy limitations in the theory, due to
the difficulties in localizing the excitons with unconverged k
grids. There are also accuracy limitations in the experiment,
due to the different data sets delimited by the dotted gray lines
at qGM = m and qGA = a. However, as commented below, we
attribute the main difference in the decay of the intensity to
physical effects not described in the theory.

Figure 8 provides a comparison of our theoretical and
experimental results of Im[ε(ω, q)] in the q → 0 limit [(a)
and (c)] and at selected finite values of q [(b) and (d)], in the
in-plane [(a) and (b)] and out-of-plane [(c) and (d)] directions.
In panels (a) and (c), we also include absorption measure-
ments from Ref. [81]. The absorption spectra obtained from
the EELS measurements, with the methods described in
Appendixes A and B, show an excellent agreement with
previous experimental results [27,81], confirming the viabil-
ity of the proposed procedures. As for IXSS experiments

[86–90], these methods provide EELS with a route to resolve
the momentum dependence of the direct dielectric function,
Im[ε(q, ω)], not easily accessible in other spectroscopies. The
figure also shows the very good agreement of the result-
ing BSE on top of PBE + U spectra with both experiments,
and they also agree with ellipsometry measurements from
Refs. [26,27,60]. Only some of the peaks beyond ∼13 eV and
the tail of the BSE spectra are lower due to the limited number
of bands included in the calculations.

At finite q, the BSE results are also in good agreement
with the experiment, except for the slower diminishing of
the intensity of the excitonic peak with transferred momen-
tum, as discussed above. Thus, for the selected values of
q along each direction, the experiment is very close to the
RPA spectra, which do not account for excitons. The rapid
decay of the experimental intensity, shown in both Figs. 7
and 8, is likely related to the different dispersion of the ex-
citonic fine structure of ZnO [29], including exciton-phonon
and exciton-defect coupling. However, analyzing the effect of
such many-body effects [29], is out of the scope of this work.

The BSE results in Figs. 7 and 8 confirm the anisotropy of
the features described in Sec. IV C at lower levels of theory.
In addition, they show anisotropy in the onset of the direct
dielectric function, as found experimentally. We investigate
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FIG. 9. Symmetries of the excitonic wave functions manifested by the A, B, and C excitons of ZnO (see Table II). The contours (yellow)
correspond to the real-space probability distribution of finding a hole when an electron is placed at the dot in the center (blue) and vice versa.
View along the direction perpendicular to the hexagonal plane of the crystalline structure of Zn (gray) and O (red) atoms.

this excitonic anisotropy by analyzing the excitons formed by
the coupling of the top three valence states at the  point with
the first conduction state. These excitons are usually denoted
as A, B, and C in the literature [17,19,29,30,60,107].

From theoretical arguments on the symmetry ordering in
ZnO (wurtzite crystal) [17,29,107] and the band structure
in Fig. 1, the lowest conduction state is predominantly of
Zn-s type and has 7 symmetry, while the top three valence
states are predominantly of O-p type and have symmetries
9, upper 7 and lower 7, respectively. The 9 × 7 →
5 + 6 and 7 × 7 → 5 + 1 + 2 combinations gener-
ate the excitons [29,107]. The energy splitting of the states
due to spin-orbit interactions [29] is smaller than the energy
resolution of our EELS experiments, therefore we have not
considered them in our calculations. In Fig. 9, we show the
two types of excitonic wave functions we obtain for the A,
B, and C excitons, which have 1 and 5 symmetries. The
composition is however asymmetric in the M and A lines.
As summarized in Table II, in the M the A and B wave
functions have 1 symmetry and the C exciton is of type 5,
while in the A line A and B are of type 5 and C of type 1.

V. CONCLUSIONS

In this work, we have thoroughly studied the low-energy
response functions of ZnO, by characterizing their main
features up to 42 eV and their dispersion with transferred
momentum. To do so, we have combined momentum-resolved
EELS experiments and first-principle calculations at differ-
ent levels of the many-body theory. We have identified and
described the orbital character of eight main features in the
loss function. The quantitative comparison between theory
and experiment, of both, the momentum-dependent direct and
inverse dielectric functions, allows us to link some of the

TABLE II. Symmetry of the excitonic wave functions corre-
sponding to the A, B and C excitons of ZnO computed at the  point
in the M and A lines.

A B C

M 1 1 5

A 5 5 1

main low-energy signatures, like the onset of the spectra and
their dispersion, with the band gap and other features of the
electronic band structure, like crossings and band reorderings,
that are usually measured in angle-resolved photoemission
and inverse photoemission experiments.

Our results emphasize the importance of performing an
accurate postprocessing of the EELS measurements to obtain
a quantitative comparison between the theoretical and the
experimental loss functions, especially their dispersion in q
space. We have used a procedure based on the f -sum rule,
computed partially with a finite cutoff energy, to impose a
momentum-dependent normalization on the intensity of our
EELS measurements and be able to extract the experimental
loss function from them. The proposed method is a key in-
gredient to perform Kramers-Kronig analysis on our EELS
measurements at finite momentum. The obtained absorption
spectra have an accuracy comparable to direct measurements
using, e.g., absorption spectroscopies and ellipsometry, while
accessing the full q dependence.

Relevant many-body interactions, such as plasmons and
excitons, have been unraveled by systematically increasing
the level of the theoretical calculations, from DFT at the PBE,
PBE0, and PBE + U level to optical calculations at the IPA,
RPA, and BSE level. We highlight the strong anisotropy of
ZnO along the perpendicular direction with respect to the
hexagonal plane of its crystalline structure, illustrated by very
clear signatures in its momentum-resolved dielectric response
and its excitonic wave functions. Moreover, we provide a
theoretical and experimental description of the dispersion with
transferred momentum of the excitonic peak that gives shape
to the onset of the imaginary part of the dielectric function.
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(a) (b)

FIG. 10. Partial sum rule relative to its value for qM = 0 at a maximum frequency of 45 eV, corresponding to RPA@PBE + U results.
(a) frequency dependence for four values of momentum, qM . (b) Momentum dependence in the M interval at the maximum frequency, fitted
to a parabola with the form S(qM )/S(qM = 0) = 1 − aq2

M , where a = 0.13 Å2.

APPENDIX A: LOSS FUNCTION FROM EELS
MEASUREMENTS

The double differential cross-section obtained in EELS
is in practice affected by the finite momentum and energy
resolutions of the experiment. As mentioned in Sec. III, it
is difficult to obtain the loss function directly from the mea-
surements. The main effect of the momentum and energy
convolution is the different scale and dispersion of the in-
tensity of the spectra as a function of momentum, q. We
address this issue by proposing a q-dependent normalization
based on the physical constraint given by the f -sum rule
[82,84].

As done in Ref. [106] for the dielectric function, Im[ε], we
define the following integral for the loss function:

Sω(q) = 2

π

∫ ω

0
dω′ω′L(q, ω′). (A1)

According to the f -sum rule, if the integration is performed
to infinity, the resulting quantity, S∞, is independent of q
and proportional to the electronic density of the system. This
condition has been used in momentum-resolved IXSS ex-
periments to normalize the measured intensities [86–90]. In
the case of our EELS measurements, the sensitivity of such
experiments to multiple scattering processes, more common
at larger energies, and the quick decay of the intensity due to
the 1/q2 factor in Eq. (1), may introduce undesired variations
in the f -sum rule [90], especially for large q. We therefore
apply a more strict normalization on our truncated spectra
at 45 eV. A partial integration of Eq. (A1) accounts for the
effective density forming the features at energies below the
cutoff value [106], which may then induce a q dependence
due to the electronic contributions left out of the integration.

In Fig. 10(a), we plot the partial sum rule, Sω(q), of ZnO
numerically integrated with a piecewise linear quadrature rule,
as a function of the frequency for four values of transferred
momentum along the M line. The curves are obtained from
RPA@PBE + U results truncated at a maximum energy of
ωmax = 45 eV. In panel (b), we show the momentum de-
pendence of Sω at a fixed value of ω = ωmax in the whole

M interval. The data is accurately fitted with a parabola,
S/Smax = 1 − aq2, where we obtain a value of a = 0.13 Å2

and a p value of the order of 10−44. In Fig. 10(a), we also show
a dashed vertical line at 42 eV, from where the dependence is
approximately linear, so that a fit at any fixed frequency in
this 3 eV interval preserves the value of the amplitude of the
parabola, a, and the quality of the fit. Moreover, at variance
with a full integration, a partial integration of the f -sum rule
is sensitive to the local variations of the electronic density
obtained with different levels of theory, however, with the
selected cutoff we do not find significant differences in the
parameters fitted to PBE, PBE0 and PBE + U results.

If we apply Eq. (A1) with the same maximum energy to
the EELS measurements, we find a different q dependence for
SEELS, since the intensity of the experiment corresponds to a
different quantity. However, we can use two inputs from our
RPA calculations to define a q dependent normalization and
find the experimental loss function as

LEELS(q, ω) = IEELS(q, ω)
SRPA(1 − aRPAq2)

SEELS(q)
, (A2)

where IEELS is the measured intensity, SRPA is the theoretical
sum rule in the q → 0 limit and aRPA is the fitted amplitude of
the parabolic dispersion. A plot of the resulting experimental
loss function of ZnO is provided in Sec. IV of Ref. [92].
The proposed normalization uses an additional parameter, a,
with respect to previous methods based on the f -sum rule,
as applied in IXSS [86–90]. Note that while here we have
computed this parameter at the RPA level, it could be also
obtained in other ways, theoretically or experimentally.

APPENDIX B: KRAMERS-KRONIG ANALYSIS

The real and imaginary parts of the polarizability function,
χ , defined in Sec. II, are related by the Kramers-Kronig re-
lations [82,84]. Therefore we can obtain the complex inverse
dielectric function from its imaginary part, by the following
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(time-ordered) Hilbert transform:

ε−1(ω + iδ) = 1 + i

2π

∫ ∞

0
dω′Im[ε−1(ω′)]

×
[

1

ω − ω′ + iδ
− 1

ω + ω′ + iδ

]
, (B1)

where δ → 0+. We can use the previous equation to perform
Kramers-Kronig analysis [82] on the experimental data and
obtain the direct dielectric function ε(ω), as also done for
the EELS data on ZnO in Refs. [33,73]. In our case, we
apply it to the momentum-resolved experimental loss func-
tion, L(q, ω), obtained with the procedure described in Sec. A.
Similar Kramers-Kronig analyses at finite momentum have
been performed on IXSS measurements for other materials
[86–90].

As for the f -sum rule of Eq. (A1), the integration in the
Hilbert transform of Eq. (4) is truncated at the same finite

frequency, ω′ = ωmax, and is solved numerically with the
same piecewise linear rule. In this case, the partial integra-
tion only affects frequencies close to the cutoff, due to the
inverse dependence with the integration frequency ω′, as also
found in Ref. [90]. To avoid this issue, it is sufficient to
extend the integration domain by extrapolating the spectra
a few electron-volts beyond the cutoff. The only remaining
contribution is the integration of the tail ω′ ∈ (ωmax,∞),
which is common to all the frequencies ω < ωmax and re-
sults in a constant shift of Re[ε−1(ω)] [82]. However, getting
a correct static limit Re[ε−1(ω = 0)] is important when in-
verting ε−1 to get an accurate dielectric function, ε, as also
found in Ref. [90]. While in principle we can use other ex-
perimental references for the static dielectric constant [81],
Re[ε(ω = 0)], we opted to use the completeness of the f -sum
rule in Eq. (A1) to set the weight of the tail in the Hilbert
transform.
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[29] A. Teke, U. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth,
J. Nause, and H. O. Everitt, Excitonic fine structure and re-
combination dynamics in single-crystalline ZnO, Phys. Rev. B
70, 195207 (2004).

[30] S. Tsoi, X. Lu, A. K. Ramdas, H. Alawadhi, M. Grimsditch,
M. Cardona, and R. Lauck, Isotopic-mass dependence of the
a, b, and c excitonic band gaps in ZnO at low temperatures,
Phys. Rev. B 74, 165203 (2006).

[31] R. Dorn, H. Lüth, and M. Büchel, Electronic surface and bulk
transitions on clean ZnO surfaces studied by electron energy-
loss spectroscopy, Phys. Rev. B 16, 4675 (1977).

[32] Y. Ding and Z. L. Wang, Electron energy-loss spectroscopy
study of ZnO nanobelts, J. Electron Microsc. 54, 287
(2005).

[33] Z. Zhang, X. Qi, J. Jian, and X. Duan, Investigation on optical
properties of ZnO nanowires by electron energy-loss spec-
troscopy, Micron 37, 229 (2006).

[34] C.-T. Wu, M.-W. Chu, C.-P. Liu, K.-H. Chen, L.-C. Chen,
C.-W. Chen, and C.-H. Chen, Studies of electronic excitations
of rectangular ZnO nanorods by electron energy-loss spec-
troscopy, Plasmonics 7, 123 (2012).

[35] J. M. Recio, M. A. Blanco, V. Luaña, R. Pandey, L. Gerward,
and J. S. Olsen, Compressibility of the high-pressure rocksalt
phase of ZnO, Phys. Rev. B 58, 8949 (1998).

[36] S. Desgreniers, High-density phases of ZnO: Structural and
compressive parameters, Phys. Rev. B 58, 14102 (1998).

[37] J. A. Berger, L. Reining, and F. Sottile, Efficient gw cal-
culations for SnO2, ZnO, and rubrene: The effective-energy
technique, Phys. Rev. B 85, 085126 (2012).

[38] M. Stankovski, G. Antonius, D. Waroquiers, A. Miglio, H.
Dixit, K. Sankaran, M. Giantomassi, X. Gonze, M. Côté, and
G.-M. Rignanese, G0W 0 band gap of ZnO: Effects of plasmon-
pole models, Phys. Rev. B 84, 241201(R) (2011).

[39] M. Shishkin and G. Kresse, Self-consistent gw calculations
for semiconductors and insulators, Phys. Rev. B 75, 235102
(2007).

[40] B.-C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie,
Quasiparticle band gap of ZnO: High accuracy from the
conventional G0W 0 approach, Phys. Rev. Lett. 105, 146401
(2010).

[41] C. Friedrich, M. C. Müller, and S. Blügel, Band convergence
and linearization error correction of all-electron GW calcu-
lations: The extreme case of zinc oxide, Phys. Rev. B 83,
081101(R) (2011).

[42] T. Rangel, M. Del Ben, D. Varsano, G. Antonius, F.
Bruneval, F. H. da Jornada, M. J. van Setten, O. K. Orhan,
D. D. O’Regan, A. Canning, A. Ferretti, A. Marini, G.-M.
Rignanese, J. Deslippe, S. G. Louie, and J. B. Neaton, Re-
producibility in G0W0 calculations for solids, Comput. Phys.
Commun. 255, 107242 (2020).

[43] F. Bruneval and X. Gonze, Accurate gw self-energies in a
plane-wave basis using only a few empty states: Towards large
systems, Phys. Rev. B 78, 085125 (2008).

[44] J. Deslippe, G. Samsonidze, M. Jain, M. L. Cohen, and S. G.
Louie, Coulomb-hole summations and energies for gw cal-
culations with limited number of empty orbitals: A modified
static remainder approach, Phys. Rev. B 87, 165124 (2013).

[45] J. c. v. Klimeš, M. Kaltak, and G. Kresse, Predictive gw calcu-
lations using plane waves and pseudopotentials, Phys. Rev. B
90, 075125 (2014).

[46] M. Usuda, N. Hamada, T. Kotani, and M. van Schilfgaarde,
All-electron GW calculation based on the lapw method: Ap-
plication to wurtzite ZnO, Phys. Rev. B 66, 125101 (2002).

[47] A. Miglio, D. Waroquiers, G. Antonius, M. Giantomassi,
M. Stankovski, M. Côté, X. Gonze, and G.-M. Rignanesee,
Effects of plasmon pole models on the G00W0 electronic struc-
ture of various oxides, Eur. Phys. J. B 85, 322 (2012).

[48] P. Larson, M. Dvorak, and Z. Wu, Role of the plasmon-pole
model in the gw approximation, Phys. Rev. B 88, 125205
(2013).

[49] S. Lany, Band-structure calculations for the 3d transition
metal oxides in gw, Phys. Rev. B 87, 085112 (2013).

[50] A. Grüneis, G. Kresse, Y. Hinuma, and F. Oba, Ionization po-
tentials of solids: The importance of vertex corrections, Phys.
Rev. Lett. 112, 096401 (2014).

[51] A. R. H. Preston, A. DeMasi, L. F. J. Piper, K. E. Smith,
W. R. L. Lambrecht, A. Boonchun, T. Cheiwchanchamnangij,
J. Arnemann, M. van Schilfgaarde, and B. J. Ruck, First-
principles calculation of resonant x-ray emission spectra
applied to ZnO, Phys. Rev. B 83, 205106 (2011).

[52] M. van Schilfgaarde, T. Kotani, and S. Faleev, Quasiparticle
self-consistent GW theory, Phys. Rev. Lett. 96, 226402 (2006).

[53] M. Shishkin, M. Marsman, and G. Kresse, Accurate quasipar-
ticle spectra from self-consistent gw calculations with vertex
corrections, Phys. Rev. Lett. 99, 246403 (2007).

[54] H. Jiang and P. Blaha, GW with linearized augmented plane
waves extended by high-energy local orbitals, Phys. Rev. B
93, 115203 (2016).

[55] A. Kutepov, V. Oudovenko, and G. Kotliar, Linearized
self-consistent quasiparticle gw method: Application to semi-
conductors and simple metals, Comput. Phys. Commun. 219,
407 (2017).

[56] W. Chen and A. Pasquarello, Accurate band gaps of extended
systems via efficient vertex corrections in GW , Phys. Rev. B
92, 041115(R) (2015).

[57] H. Cao, Z. Yu, P. Lu, and L.-W. Wang, Fully converged plane-
wave-based self-consistent GW calculations of periodic solids,
Phys. Rev. B 95, 035139 (2017).

[58] K. Harun, N. A. Salleh, B. Deghfel, M. K. Yaakob, and
A. A. Mohamad, Dft+u calculations for electronic, structural,

115153-15

https://doi.org/10.1063/1.3116223
https://doi.org/10.1103/PhysRevB.86.235113
https://doi.org/10.1103/PhysRevB.58.3586
https://doi.org/10.1016/0038-1098(95)00054-2
https://doi.org/10.1103/PhysRevB.70.195207
https://doi.org/10.1103/PhysRevB.74.165203
https://doi.org/10.1103/PhysRevB.16.4675
https://doi.org/10.1093/jmicro/dfi039
https://doi.org/10.1016/j.micron.2005.10.016
https://doi.org/10.1007/s11468-011-9284-6
https://doi.org/10.1103/PhysRevB.58.8949
https://doi.org/10.1103/PhysRevB.58.14102
https://doi.org/10.1103/PhysRevB.85.085126
https://doi.org/10.1103/PhysRevB.84.241201
https://doi.org/10.1103/PhysRevB.75.235102
https://doi.org/10.1103/PhysRevLett.105.146401
https://doi.org/10.1103/PhysRevB.83.081101
https://doi.org/10.1016/j.cpc.2020.107242
https://doi.org/10.1103/PhysRevB.78.085125
https://doi.org/10.1103/PhysRevB.87.165124
https://doi.org/10.1103/PhysRevB.90.075125
https://doi.org/10.1103/PhysRevB.66.125101
https://doi.org/10.1140/epjb/e2012-30121-4
https://doi.org/10.1103/PhysRevB.88.125205
https://doi.org/10.1103/PhysRevB.87.085112
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevB.83.205106
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.99.246403
https://doi.org/10.1103/PhysRevB.93.115203
https://doi.org/10.1016/j.cpc.2017.06.012
https://doi.org/10.1103/PhysRevB.92.041115
https://doi.org/10.1103/PhysRevB.95.035139


DARIO A. LEON et al. PHYSICAL REVIEW B 109, 115153 (2024)

and optical properties of ZnO wurtzite structure: A review,
Results in Physics 16, 102829 (2020).

[59] F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin,
and G. Kresse, Quasiparticle band structure based on a
generalized kohn-sham scheme, Phys. Rev. B 76, 115109
(2007).

[60] P. Gori, M. Rakel, C. Cobet, W. Richter, N. Esser, A.
Hoffmann, R. Del Sole, A. Cricenti, and O. Pulci, Optical
spectra of ZnO in the far ultraviolet: First-principles calcu-
lations and ellipsometric measurements, Phys. Rev. B 81,
125207 (2010).

[61] Q. Yan, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg,
M. Scheffler, and C. G. V. de Walle, Band parameters and
strain effects in ZnO and group-III nitrides, Semicond. Sci.
Technol. 26, 014037 (2011).

[62] Y. Kang, G. Kang, H.-H. Nahm, S.-H. Cho, Y. S. Park,
and S. Han, GW calculations on post-transition-metal oxides,
Phys. Rev. B 89, 165130 (2014).

[63] A. Ciechan and P. Bogusławski, Theory of the sp–d cou-
pling of transition metal impurities with free carriers in ZnO,
Sci. Rep. 11, 3848 (2021).

[64] L. A. Agapito, S. Curtarolo, and M. Buongiorno Nardelli,
Reformulation of DFT + u as a pseudohybrid hubbard density
functional for accelerated materials discovery, Phys. Rev. X 5,
011006 (2015).

[65] P. Gopal, M. Fornari, S. Curtarolo, L. A. Agapito, L. S. I.
Liyanage, and M. B. Nardelli, Improved predictions of the
physical properties of Zn- and Cd-based wide band-gap semi-
conductors: A validation of the ACBN0 functional, Phys. Rev.
B 91, 245202 (2015).

[66] A. Riefer, N. Weber, J. Mund, D. R. Yakovlev, M. Bayer, A.
Schindlmayr, C. Meier, and W. G. Schmidt, Zn–VI quasipar-
ticle gaps and optical spectra from many-body calculations,
J. Phys.: Condens. Matter 29, 215702 (2017).

[67] X. Zhang and A. Schleife, Nonequilibrium Bn-ZnO: Op-
tical properties and excitonic effects from first principles,
Phys. Rev. B 97, 125201 (2018).

[68] N. Colonna, R. De Gennaro, E. Linscott, and N. Marzari,
Koopmans spectral functionals in periodic boundary condi-
tions, J. Chem. Theory Comput. 18, 5435 (2022).

[69] E. Goh, J. Mah, and T. Yoon, Effects of hubbard term
correction on the structural parameters and electronic prop-
erties of wurtzite ZnO, Comput. Mater. Sci. 138, 111
(2017).

[70] J. Wang, X. An, Q. Li, and R. F. Egerton, Size-dependent
electronic structures of ZnO nanowires, Appl. Phys. Lett. 86,
201911 (2005).

[71] J. Wang, Q. Li, C. Ronning, D. Stichtenoth, S. Müller, and D.
Tang, Nanomaterial electronic structure investigation by va-
lence electron energy loss spectroscopy–an example of doped
ZnO nanowires, Micron 39, 703 (2008).

[72] Y.-W. Yeh, S. Singh, D. Vanderbilt, and P. E. Batson,
Polarization selectivity of aloof-beam electron energy-loss
spectroscopy in one-dimensional ZnO nanorods, Phys. Rev.
Appl. 16, 054009 (2021).

[73] M. R. S. Huang, R. Erni, H.-Y. Lin, R.-C. Wang, and C.-P.
Liu, Characterization of wurtzite ZnO using valence electron
energy loss spectroscopy, Phys. Rev. B 84, 155203 (2011).

[74] C. S. Granerød, S. R. Bilden, T. Aarholt, Y.-F. Yao, C. C.
Yang, D. C. Look, L. Vines, K. M. Johansen, and O. Prytz,

Direct observation of conduction band plasmons and the re-
lated burstein-moss shift in highly doped semiconductors: A
stem-eels study of ga-doped ZnO, Phys. Rev. B 98, 115301
(2018).

[75] C. S. Granerød, A. Galeckas, K. M. Johansen, L. Vines, and
O. Prytz, The temperature-dependency of the optical band
gap of ZnO measured by electron energy-loss spectroscopy in
a scanning transmission electron microscope, J. Appl. Phys.
123, 145111 (2018).

[76] S. Adachi, Handbook on Physical Properties of Semiconduc-
tors (Springer, New York, NY, 2004, 2004).

[77] R. Laskowski and N. E. Christensen, Ab initio calculation of
excitons in ZnO, Phys. Rev. B 73, 045201 (2006).

[78] A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F.
Bechstedt, Optical and energy-loss spectra of MgO, ZnO, and
CdO from ab initio many-body calculations, Phys. Rev. B 80,
035112 (2009).

[79] M. Dvorak, S.-H. Wei, and Z. Wu, Origin of the variation of
exciton binding energy in semiconductors, Phys. Rev. Lett.
110, 016402 (2013).

[80] T. Shen, K. Yang, B. Dou, S.-H. Wei, Y. Liu, and H.-X. Deng,
Clarification of the relative magnitude of exciton binding ener-
gies in ZnO and SnO2, Appl. Phys. Lett. 120, 042105 (2022).

[81] S. Adachi, Optical Constants of Crystalline and Amorphous
Semiconductors: Numerical Data and Graphical Information
(Springer, New York, NY, 2013, 2013).

[82] R. Egerton, Electron Energy-Loss Spectroscopy in the Electron
Microscope (Springer, New York, NY, 2011).

[83] A. Alkauskas, S. D. Schneider, C. Hébert, S. Sagmeister, and
C. Draxl, Dynamic structure factors of Cu, Ag, and Au: Com-
parative study from first principles, Phys. Rev. B 88, 195124
(2013).

[84] R. M. Martin, L. Reining, and D. M. Ceperley, Interacting
Electrons (Cambridge University Press, Cambridge, 2016).

[85] P. D. C. King, T. D. Veal, A. Schleife, J. Zúñiga-Pérez,
B. Martel, P. H. Jefferson, F. Fuchs, V. Muñoz-Sanjosé, F.
Bechstedt, and C. F. McConville, Valence-band electronic
structure of CdO, ZnO, and MgO from x-ray photoemission
spectroscopy and quasi-particle-corrected density-functional
theory calculations, Phys. Rev. B 79, 205205 (2009).

[86] W. Schülke, U. Bonse, H. Nagasawa, A. Kaprolat, and A.
Berthold, Interband transitions and core excitation in highly
oriented pyrolytic graphite studied by inelastic synchrotron
x-ray scattering: Band-structure information, Phys. Rev. B 38,
2112 (1988).

[87] W. Schülke, H. Nagasawa, S. Mourikis, and A. Kaprolat,
Dynamic structure of electrons in be metal by inelastic x-ray
scattering spectroscopy, Phys. Rev. B 40, 12215 (1989).

[88] W. Schülke, J. R. Schmitz, H. Schulte-Schrepping, and A.
Kaprolat, Dynamic and static structure factor of electrons in
si: Inelastic x-ray scattering results, Phys. Rev. B 52, 11721
(1995).

[89] N. Watanabe, H. Hayashi, and Y. Udagawa, Bethe surface
of liquid water determined by inelastic x-ray scattering spec-
troscopy and electron correlation effects, Bull. Chem. Soc.
Jpn. 70, 719 (1997).

[90] H.-C. Weissker, J. Serrano, S. Huotari, E. Luppi, M.
Cazzaniga, F. Bruneval, F. Sottile, G. Monaco, V. Olevano, and
L. Reining, Dynamic structure factor and dielectric function
of silicon for finite momentum transfer: Inelastic x-ray scat-

115153-16

https://doi.org/10.1016/j.rinp.2019.102829
https://doi.org/10.1103/PhysRevB.76.115109
https://doi.org/10.1103/PhysRevB.81.125207
https://doi.org/10.1088/0268-1242/26/1/014037
https://doi.org/10.1103/PhysRevB.89.165130
https://doi.org/10.1038/s41598-021-83258-1
https://doi.org/10.1103/PhysRevX.5.011006
https://doi.org/10.1103/PhysRevB.91.245202
https://doi.org/10.1088/1361-648X/aa6b2a
https://doi.org/10.1103/PhysRevB.97.125201
https://doi.org/10.1021/acs.jctc.2c00161
https://doi.org/10.1016/j.commatsci.2017.06.032
https://doi.org/10.1063/1.1927711
https://doi.org/10.1016/j.micron.2007.10.015
https://doi.org/10.1103/PhysRevApplied.16.054009
https://doi.org/10.1103/PhysRevB.84.155203
https://doi.org/10.1103/PhysRevB.98.115301
https://doi.org/10.1063/1.5023316
https://doi.org/10.1103/PhysRevB.73.045201
https://doi.org/10.1103/PhysRevB.80.035112
https://doi.org/10.1103/PhysRevLett.110.016402
https://doi.org/10.1063/5.0079621
https://doi.org/10.1103/PhysRevB.88.195124
https://doi.org/10.1103/PhysRevB.79.205205
https://doi.org/10.1103/PhysRevB.38.2112
https://doi.org/10.1103/PhysRevB.40.12215
https://doi.org/10.1103/PhysRevB.52.11721
https://doi.org/10.1246/bcsj.70.719


UNRAVELING MANY-BODY EFFECTS IN ZnO: COMBINED … PHYSICAL REVIEW B 109, 115153 (2024)

tering experiments and ab initio calculations, Phys. Rev. B 81,
085104 (2010).

[91] M. Stöger-Pollach, Optical properties and band gaps from
low loss eels: Pitfalls and solutions, Micron 39, 1092
(2008).

[92] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.115153 for a detailed description.

[93] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M.
Lazzeri, L. Martin-Samos et al., QUANTUM ESPRESSO: A
modular and open-source software project for quantum sim-
ulations of materials, J. Phys.: Condens. Matter 21, 395502
(2009).

[94] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S.
de Gironcoli, P. Delugas, R. A. DiStasio, Jr., A. Ferretti, A.
Floris, G. Fratesi, G. Fugallo et al., Advanced capabilities
for materials modelling with Quantum ESPRESSO, J. Phys.:
Condens. Matter 29, 465901 (2017).

[95] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gra-
dient approximation made simple, Phys. Rev. Lett. 77, 3865
(1996).

[96] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mix-
ing exact exchange with density functional approximations,
J. Chem. Phys. 105, 9982 (1996).

[97] M. Cococcioni and S. de Gironcoli, Linear response approach
to the calculation of the effective interaction parameters in the
LDA + U method, Phys. Rev. B 71, 035105 (2005).

[98] V. L. Campo, Jr. and M. Cococcioni, Extended DFT + U +
V method with on-site and inter-site electronic interactions,
J. Phys.: Condens. Matter 22, 055602 (2010).

[99] D. R. Hamann, Optimized norm-conserving Vanderbilt pseu-
dopotentials, Phys. Rev. B 88, 085117 (2013).

[100] C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc
oxide: from fundamental properties towards novel applications
(Springer-Verlag, Berlin Heidelberg, 2010).

[101] A. Marini, C. Hogan, M. Grüning, and D. Varsano, yambo:
An ab initio tool for excited state calculations, Comput. Phys.
Commun. 180, 1392 (2009).

[102] D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri,
E. Cannuccia, P. Melo, M. Marsili, F. Paleari, A. Marrazzo, G.
Prandini, P. Bonfà, M. O. Atambo, F. Affinito, M. Palummo,
A. Molina-Sánchez, C. Hogan, M. Grüning, D. Varsano, and
A. Marini, Many-body perturbation theory calculations us-
ing the yambo code, J. Phys.: Condens. Matter 31, 325902
(2019).

[103] R. Del Sole and R. Girlanda, Optical properties of semicon-
ductors within the independent-quasiparticle approximation,
Phys. Rev. B 48, 11789 (1993).

[104] W. Zhan, V. Venkatachalapathy, T. Aarholt, A. Y. Kuznetsov,
and Ø. Prytz, Band gap maps beyond the delocaliza-
tion limit: correlation between optical band gaps and
plasmon energies at the nanoscale, Sci. Rep. 8, 848
(2018).

[105] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky,
and J. Narayan, Excitonic structure and absorption coeffi-
cient measurements of ZnO single crystal epitaxial films
deposited by pulsed laser deposition, J. Appl. Phys. 85, 7884
(1999).

[106] R. L. Hengehold, R. J. Almassy, and F. L. Pedrotti, Electron
energy-loss and ultraviolet-reflectivity spectra of crystalline
ZnO, Phys. Rev. B 1, 4784 (1970).

[107] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G.
Cantwell, and W. C. Harsch, Valence-band ordering in ZnO,
Phys. Rev. B 60, 2340 (1999).

115153-17

https://doi.org/10.1103/PhysRevB.81.085104
https://doi.org/10.1016/j.micron.2008.01.023
http://link.aps.org/supplemental/10.1103/PhysRevB.109.115153
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.472933
https://doi.org/10.1103/PhysRevB.71.035105
https://doi.org/10.1088/0953-8984/22/5/055602
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1016/j.cpc.2009.02.003
https://doi.org/10.1088/1361-648X/ab15d0
https://doi.org/10.1103/PhysRevB.48.11789
https://doi.org/10.1038/s41598-017-18949-9
https://doi.org/10.1063/1.370601
https://doi.org/10.1103/PhysRevB.1.4784
https://doi.org/10.1103/PhysRevB.60.2340

