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Many-body interactions play a crucial role in quantum topological systems, being able to impact or alter
the topological classifications of noninteracting fermion systems. In open quantum systems, where interactions
with the environment cause dissipation and decoherence of the fermionic dynamics, the absence of Hermiticity
in the subsystem Hamiltonian drastically reduces the stability of the topological phases of the corresponding
closed systems. Here we investigate the nonperturbative effects induced by the environment on the prototype
Su-Schrieffer-Heeger chain coupled to local harmonic oscillator baths through either intracell or intercell transfer
integrals. Despite the common view, this type of coupling, if suitably engineered, can even induce a transition to
topological phases. By using a world-line quantum Monte Carlo technique we determine the phase diagram of
the model proving that the bimodality of the probability distribution of the polarization signals the emergence of
the topological phase. We show that a qualitative description can be obtained by using an approach based on the
cluster perturbation theory providing, in particular, a non-Hermitian Hamiltonian for the fermionic subsystem
and insights on the dissipative dynamics. We prove that non-Hermitian effects disappear in the presence of
classical heat baths.
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I. INTRODUCTION

Topological condensed matter physics is a relatively new
field of research that has garnered significant interest in recent
years [1–8]. Topological properties can give rise to new states
of matter that are protected from external disturbances, ex-
hibiting unique and nontrivial characteristics. Robustness of
these states represents a very peculiar feature, fundamental
in the context of quantum technologies, from quantum in-
formation and quantum computing [9–12] to ultracold atoms
[13–21] and topological photonics [22–25].

Commonly phase transitions are classified according to
their critical behavior within the framework of Landau-
Ginzburg-Wilson theory [26]. It includes concepts like scaling
laws and critical exponents, typically associated with local
order parameters undergoing a continuous or discontinuous
change. Topological phase transitions, on the other hand, do
not fit within this framework. They can manifest as the ap-
pearance or disappearance of gapless edge or surface states, or
the modification of topological invariants, described by global
properties, such as the Chern number. Internal symmetries
(time-reversal, particle-hole, and chiral symmetries) of the
bulk Hamiltonian play a central role in the theory and all pos-
sible combinations thereof give rise to the Altland-Zirnbauer
classification [27].

The natural question addressed in the last decade is if
interactions can influence the topological phases of matter and
alter the classifications of noninteracting fermion systems. It
has been proved that these influences can manifest in diverse

manners. Interactions between particles can destroy topo-
logical phases, but, in some cases, can even induce novel
topological phases that are not possible in noninteracting sys-
tems [28]. This opens the possibility to take advantage from
interactions between the particles to tune between different
topological phases [29–31].

There is another way to affect the topological properties:
it stems from the interaction between two different fields. A
typical example is provided by open quantum systems [32,33].
Since perfect isolation of quantum systems is impossible,
interaction with the environment plays a crucial role: it can
affect the system even in a nonperturbative way [34–37]. The
environment is usually described by an infinite set of quan-
tum harmonic oscillators whose frequencies and coupling
strengths obey specific distributions. Then the interaction of
the system particles with the environment is concerned with
the physics of two coupled fields. Exact elimination of the
environment degrees of freedom leads to a time retarded ef-
fective interaction and a non-Hermitian Hamiltonian (NHH)
for the system under consideration, inducing dissipation, loss
of coherence and information. At first glance it is expected
to be detrimental to preserve topological phases of matter. In
this framework, the search of a theory capable of generalizing
topological phase transitions for physical systems described
by NHH has been the focus of an extensive research activity
[38–42]. Most studies of the last decade concerned with the
investigation of NHHs describing noninteracting particles in
the presence of ad hoc terms simulating the presence of the
environment. The spectrum turns out to be complex and the
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FIG. 1. Schematic view of the SSH model in the presence of
intracell hopping coupled with local bosonic baths.

time evolution is not unitary. In other cases the environment
is taken into account through Lindblad master equation ap-
proach that is appropriate in the limit of weak Markovian
interaction [43].

In order to go beyond these approximations, we include the
environment in the Hamiltonian that describes the simplest
one-dimensional model exhibiting topological features, i.e.,
the Su-Schrieffer-Heeger (SSH) model: spinless fermions on
a lattice with a two site unit cell at half-filling. Electrons are
coupled with local bosonic baths in two different ways, i.e.,
modulating either intracell hoppings v or intercell hopping
w. Note that in our description, where the quantum bath
dynamics is explicitly taken into account, the full Hamiltonian
is Hermitian. Since, in general, decoherence effect is viewed
as an undesirable destructing factor, the main question we
want to address is: Can the coupling with the environment
be tailored such that topology is induced in a trivial insula-
tor? By using a quantum Monte Carlo (QMC) approach, we
prove that, in one of the two investigated cases, fermion-boson
interaction turns a trivial phase in a topological insulating
phase. Furthermore we show that, if open boundary conditions
are adopted, the polarization distribution displays a bimodal
character near the topological phase transition, both in the
absence and in the presence of interaction with the environ-
ment, signaling the appearance of edge states. This approach
is capable to unveil the emergence of topological quantum
phase transitions. Finally we propose a simple description of
the static and dynamical properties of the fermionic system
by using cluster perturbation theory (CPT) [44,45] and pe-
riodic boundary conditions in the thermodynamic limit. We
derive also an effective NHH for electrons, pointing out the
validity of bulk-boundary correspondence in the considered
models.

II. THE MODEL

The SSH model [46,47] (see Fig. 1) describes spinless
fermion hopping on a 1D chain with staggered hoppings. The
chain is made up by N unit cells, everyone containing two
sites, indicated with the sublattice indices A, B. The Hamilto-
nian is the sum of two contributions HSSH = Hv + Hw,

HSSH =
(

v

N∑
n=1

c†
n,Acn,B + w

N−1∑
n=1

c†
n+1,Acn,B

)
+ H.c. (1)

Here cn,ν (c†
n,ν) destroys (creates) an electron in the site ν =

A, B of the nth cell, with n = 1, . . . , N , and v (w) denotes
the intra(inter)cell hopping. This simple toy model under-
lines the main physical features of topological insulators at
half filling. When open boundary conditions are adopted, the

trivial insulating phase is obtained for v > w, whereas the
topological phase, characterized by the appearance of gap-
less edge states, sets in at v < w. On the other hand, in the
thermodynamic limit and assuming periodic boundary condi-
tions, the presence of spontaneous polarization is marked by
a topological invariant η that assumes a nonvanishing value
in a discontinuous way. Here we investigate the SSH chain in
the presence of local heat baths, H = HSSH + HB + HSSH−B.
HB = ∑

n HB,n describes the environment, i.e., local baths
where each of them is a collection of harmonic oscillators
with frequencies ωα,n, HB,n = ∑

α ωα,nb†
α,nbα,n, and HSSH−B

denotes the fermion-boson interaction,

HSSH−B =
∑
α,n

gα,n(b†
α,n + bα,n)Hhop,n. (2)

In Eq. (2) Hhop,n describes the intra- (c†
n,Acn,B + H.c.) or

the intercell (c†
n+1,Acn,B + H.c.) fermionic hopping. We limit

our attention to Ohmic baths, i.e., the spectral density is
given by J (ω) = ∑

α g2
α,nδ(ω − ωα,n) = αω̃( ω

ωD
)e−ω/ωD inde-

pendently on n. Here the adimensional parameter α measures
the strength of the coupling, ωD, Debye frequency, denotes
the cutoff frequency, the largest energy scale, and ω̃ is equal
to v (w) for intra(inter)cell couplings between fermions and
bosons. In the following we fix ωD = 10w and use units
such that h̄ = a = e = kB = 1, a, e and kB being the lattice
parameter, electronic charge and Boltzmann constant, respec-
tively. We emphasize that the Hamiltonians considered in this
letter fulfill both particle-hole and chiral symmetries, i.e., the
symmetries of the bare SSH model are not broken.

III. OPEN BOUNDARY CONDITIONS: QMC APPROACH

A. QMC algorithm

The concept of macroscopic polarization is crucial for
describing dielectric media. Polarization operator represents
the dipole electrical momentum per unit length and is defined
by p = ∑N

n=1( 2n−1−N
N−1 )(c†

n,Acn,A + c†
n,Bcn,B). It, being propor-

tional to the quantum mechanical position operator, is ill
defined within periodic boundary conditions. Then, in the
present section, we apply open boundary conditions and use a
world-line QMC approach to compute equilibrium values of
any quantum observable.

Consider the Hamiltonian without dissipation,

HSSH = v

N∑
n=1

(c†
n,Acn,B + c†

n,Bcn,A)

+ w

N−1∑
n=1

(c†
n+1,Acn,B + c†

n,Bcn+1,A), (3)

where n is the spatial coordinate of the cell and A, B denotes
the site within cell. We make a Suzuki-Trotter decomposition,
discretizing the imaginary time in 2L steps of width �τ = β

L
(the convergence with respect to �τ and N is discussed in
detail in Appendix A). In Fig. 2 we show the case of N = 4
cells (eight sites) and 2L = 8 time steps. The horizontal axis
corresponds to the sites (spatial coordinate) while the vertical
one corresponds to the imaginary time. The two terms of the
Hamiltonian (intracell and intercell) act on alternating time
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FIG. 2. Example of Suzuki-Trotter decomposition, for N = 4
cells (eight sites) and 2L = 8 time steps. Bold-black lines represent
the world-lines of four electrons, while dashed lines represent links
between hoppings. The electrons hop only on the shaded plaquettes.

steps, corresponding to the shaded plaquettes of Fig. 2. So
for example the term v(c†

1,Ac1,B + c†
1,Bc1,A) acts only on the

four shaded plaquettes in the leftmost column of Fig. 2, the
term w(c†

1,Bc2,A + c†
2,Ac1,B) on the four shaded plaquettes of

the second leftmost column, and so on.
On each site of the square lattice obtained there is a variable

nn,ν, j = 0, 1, where n = 1, . . . , N is the spatial coordinate
of the cell, ν = A, B denotes the site within cell, and j =
1, . . . , 2L the temporal coordinate, denoting the presence or
absence of a particle. The occupied sites (nn,ν, j = 1) form
continuous lines (world-lines), shown as bold lines in Fig. 2,
and particles can hop only where the corresponding term of
the Hamiltonian acts, therefore only on the shaded plaquettes.
Due to the cyclic property of the trace, periodic boundary
conditions are applied on the temporal (vertical) coordinate,
so that a particle must return at the final time at the initial
position.

In the absence of dissipation, we use the normal loop
algorithm to extract world-line configurations [48]. The mean
values 〈Hv〉 and 〈Hw〉 turn out to be, respectively, −β−1〈n(1)

hop〉
and −β−1〈n(2)

hop〉, where n(1,2)
hop are the number of hoppings

intracell (between n, A and n, B) and intercell (between n, B
and n + 1, A). At a given imaginary time j, the polarization is
given by

p j =
N∑

n=1

(
2n − 1 − N

N − 1

)
(nn,A, j + nn,B, j ), (4)

so that the polarization distribution P(p) can be computed
from the values of p j at each imaginary time and QMC step.

FIG. 3. [(a),(b)] Polarization probability distribution P(p) in the
trivial and topological phases, respectively. (c) Binder parameter vs
v/w; (d) average values of Hv and Hw vs v/w. All plots refer to the
noninteracting case with β = 100 and �τ = 0.001. N = 500 in (a),
(b), and (d).

In the presence of the environment, we include a new set
of variables, represented by links between two “hoppings”. A
hopping corresponds to a shaded plaquette where an electron
changes its position. The link between two hopping plaquette
(shown as dashed bold lines in Fig. 2) represents the emis-
sion and absorption of a phonon, that changes the weight
of the world-line by a factor ω̃−2K ( �τ

2 | j − j′|), where 1 �
j, j′ � 2L are the imaginary times of the plaquettes linked,

and K (τ ) = ∫
dω J (ω)

cosh[ω( β

2 −τ )]
sinh(βω/2) (K stems from the exact

elimination of the bath degrees of freedom).
We alternate Metropolis-like moves on the links, and

loop moves on the world-lines. When applying the loop
algorithm, linked hopping plaquettes have to be “frozen”,
because phonons cannot be emitted or absorbed on nonhop-
ping plaquettes. This algorithm satisfies detailed balance and
ergodicity, because the probability to remove all the links,
make a “free” loop move (which is ergodic in the absence of
the links), and then insert a different set of links, is larger than
zero.

B. QMC results: Polarization and Binder parameter as markers
of topological phases

Now we prove that the polarization distribution P(p) can
be used as marker of topological phase transition. To this aim,
we analyze the behavior of P(p) in the bare SSH where it
is well known that v = w represents the border between the
trivial and topological insulating phases. In Fig. 3(a), v > w,
P(p) displays one peak centered at p = 0. In Fig. 3(b), i.e.,
within the topological phase (v < w), P(p) acquires a bimodal
character, with two peaks centered at p = ±1. The presence
of two peaks, whose width becomes narrower and narrower
by decreasing the temperature T and increasing N , signals
the emergence of the edge states. In Fig. 3(c) we plot the
Binder parameter U vs the ratio v/w for different lattice sizes.
U = 1

2 (3 − 〈p4〉
〈p2〉2 ) is the fourth-order cumulant of the distri-

bution P(p) and, in statistical physics, is frequently used to
determine accurately critical points. Similar to standard phase
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FIG. 4. Polarization probability distribution in (a) [(c)] and
Binder parameter in (b) [(d)] vs α, in the case of intracell [inter-
cell] hopping coupled with local baths with N = 100, β = 100, and
�τ = 0.001. (Insets) Mean values of Hv,eff and Hw,eff vs α.

transitions, the plots point out that the different curves cross at
v = w, changing sign and exhibiting a minimum in the trivial
phase, near the threshold, that is the typical behavior within
first order discontinuous phase transitions. In Fig. 3(d) we
plot the average values of the two terms of the Hamiltonian
Eq. (1) vs v/w. As expected, in the thermodynamic limit,
they cross at v = w, where the topological quantum phase
transition sets in. These observations point out that, in order to
identify the occurrence of the topological phase transition, it
is possible to use the methods used in the statistical physics to
characterize the phase transitions, although the key concepts
of Landau classification, i.e., symmetry breaking and local
order parameter, are missing in topological phase transitions,
where gapless edge states appear and bulk properties show no
changes.

Now the natural question is: What happens when the in-
teraction with the environment is turned on? In Figs. 4(a) and
4(b) the plots of the probability distribution and the Binder
parameter show that, if the coupling with local baths affects
the intracell hopping, environment appears as detrimental for
topological states of matter. Starting from a topological in-
sulator, v < w, and increasing the strength of the coupling,
a phase transition occurs towards a trivial insulator. On the
other hand, if the interaction with the bosonic fields acts on
the intercell transfer integrals, a topological phase transition is
induced [see Figs. 4(c) and 4(d)]. Interestingly, the critical val-
ues of the fermion-boson coupling αc are in good agreement
with the crossing points of the average values of the hopping
terms, provided interaction contributions with the baths are
included (see insets).

The explanatory phase diagrams, corresponding to intra-
and intercell fermion-boson couplings, are reported in
Figs. 5(a) and 5(b). They clearly show that in the former
(latter) case the interactions with local baths is detrimental
(favorable) for the emergence of the topology. In Fig. 5 we
compare also the results obtained by considering classical and
quantum oscillators in the local heat baths. Finally, one can
show that also in the case of simultaneous coupling between
intra- and intercell hopping and local baths (but with different

FIG. 5. Phase diagram, in the case of intra[inter]cell hopping
coupled with local baths in (a) [(b)], for quantum [red diamonds]
and classical bosons [grey points] through MC technique. Green line
denotes the critical values of the couplings obtained through CPT for
quantum baths.

coupling strength) it is possible to observe a topological phase
transition. In the Appendix C we show the phase diagram
referred to a particular choice of the hopping.

IV. PERIODIC BOUNDARY CONDITIONS: TOPOLOGICAL
INVARIANT AND NON-HERMITIAN PHYSICS

A. Cluster perturbation theory (CPT)

In macroscopic systems, in general, one can assume also
periodic boundary conditions. A system of this kind has no
surface and all of its properties are by construction bulk ones.
In this case the spontaneous polarization is related to the Berry
phase and leads to the topological invariant η. Since the chiral
symmetry is preserved, η can be evaluated by performing an
integral over the Brillouin zone of the Green’s function at zero
frequency [49–53],

η = 1

4π i

∫ π

−π

dk Tr{σzG(k, 0)∂kG−1(k, 0)}, (5)

where σz is the Pauli matrix. The CPT approach [44,45]
represents a very straightforward approximation that gener-
ally applies to lattice models with local interactions. It is
particularly precise in models where the local interaction
is predominant. One starts by tiling the whole lattice into
identical and finite-size clusters. Then one proceeds to solve
these clusters exactly and connects them treating intercluster
hopping amplitudes through perturbation theory. It represents
a very smart tool to evaluate easily accurate Green’s functions
and, then, spectral functions. Naturally, the validity of the
approach improves by increasing the size of the cluster. Here
we consider a two site cluster: if the intra(inter)cell hoppings
v (w) are coupled with the local baths, the two cluster sites
belong to the same (different) cell of the SSH chain. In this
way, one obtains four mixed Green’s functions, Gi, j (k, ω) of
the interacting system (indexes i and j can assume two values
corresponding to the two cluster sites). These functions allow
us to calculate the topological invariant via Eq. (5) disclosing
the emergence of topological features. Usually the cluster
Green’s function is obtained through numerical approaches,
such as the Lanczos method. Surprisingly we show that, by
choosing as cluster two sites connected through an hopping
coupled with a local environment, the cluster problem admits
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an analytic solution (all calculations are presented in detail in
Appendix E). The specific form of the cluster Green’s function
GCL varies depending on the case under consideration. If
the intracell hoppings v are coupled with the local baths (so
ω̃ = v), we have in general that c1 = cn,A and c2 = cn,B, i.e.,
the two sites of the cluster belong to the same cell of the SSH
chain. As consequence in this case GCL does not carry any
dependence of the momentum k, but this dependence is en-
tirely in the intercluster matrix tIC , because different clusters
are in different cells of the chain. On the contrary, if we refer
to the case in which the intercell hoppings w are coupled with
external baths, then the sites of the clusters belong to different
cells of the SSH chain, i.e., c1 = cn,B, c2 = cn+1,A, meanwhile
different clusters are connected through sites belonging to
the same cells. In summary, the cluster Green’s function and
intercluster matrix (tIC) in the ω and k space read as

G(v)
CL (z) =

[
G11(z) G12(z)
G12(z) G11(z)]

]
, t (v)

IC (k) =
[

0 we−ik

weik 0

]

(6)

and

G(w)
CL (k, z) =

[
G11(z) G12(z)e−ik

G12(z)eik G11(z),

]
, t (w)

IC =
[

0 v

v 0

]
,

(7)

where in the Appendix E we show that G11(z) = G22(z) =
GP(z) + GB(z) and G12(z) = G21(z) = GP(z) − GB(z),

GP(z) = − i

2
e

ω̃+αω̃−z
ωD [i(ω̃ + αω̃ − z)]−1+ αω̃

ωD

× (iωD)−
ω̃α
ωD 

(
1 − αω̃

ωD
,
ω̃ + αω̃ − z

ωD

)
(8)

and

GB(z) = − i

2
e

ω̃+αω̃+z
ωD [−i(ω̃ + αω̃ + z)]−1+ αω̃

ωD

× (−iωD)−
ω̃α
ωD 

(
1 − αω̃

ωD
,
ω̃ + αω̃ + z

ωD

)
, (9)

introducing the incomplete Gamma function (a, x) =∫ ∞
x t a−1e−t dt .

Finally, the CPT Green’s function is built in the following
way: [

G(ω̃)
CPT (k, z)

]−1 = [
G(ω̃)

CL

]−1 − t (ω̃)
IC . (10)

describing the full SSH chain interacting with local baths,
under periodic boundary conditions. The Green’s function
GCPT (k, z) represents the primary quantity of the CPT ap-
proach and allows us to obtain several observables. First of all,
we emphasize that Green’s functions obtained through CPT
approach reduce naturally to that ones of the noninteracting
limit for α = 0 (see Appendix D). In addition, this type of
interacting SSH model preserves the chiral symmetry, estab-
lished by the operator σz in the electronic space, so that we can
evaluate the topological invariant η through Eq. (5) by means
of zero-frequency component of Eq. (10).

It is straightforward to show that, independently of the kind
of coupling considered, we have G11(z = 0) = 0 meanwhile

G12(z = 0) assumes a finite value depending only on ω̃ and
the strength of the coupling α.

If we focus on ω̃ = v and we define ṽ(α) = −1/G12(z =
0), by means of (5) and (10) we get

η(v) = 1

2π

∫ π

−π

dk
we−ik

ṽ(α) + we−ik
. (11)

In the opposite case, when ω̃ = w, we find the following
relation:

η(w) = 1

2π

∫ π

−π

dk
w̃(α)e−ik

v + w̃(α)e−ik
, (12)

where, in an analogous way, we have defined w̃(α) =
−1/G12(ω = 0).

The crucial points are: (i) at α = 0, −1/G12(z = 0) = ω̃

and (ii) −1/G12(z = 0) is an increasing monotonic function
with α. So, first of all, in the noninteracting case Eqs. (11)
and (12) reduce to Eq. (D4). Furthermore, if we start from
topological (trivial) state, characterized by v < w(v > w),
and consider the intra(inter)cell hopping coupled with the
environment, by increasing the strength of the coupling with
the bosonic fields α, a topological phase transition from a
topological (trivial) state to a trivial (topological) state sets
in. In this way one obtains the phase diagram shown in Fig. 5.

B. CPT results: Spectral functions and effective NHH

There are other Green’s functions of physical interest,
G+,+(k, ω), G−,−(k, ω), G−,+(k, ω), and G+,−(k, ω) corre-
sponding to the quasiparticle operators γk,+, γk,− of the bare
SSH model, in terms of which the Hamiltonian assumes
the diagonal form HSSH = ∑

k (Ek,+γ
†
k,+γk,+ + Ek,−γ

†
k,−γk,−)

(see Appendix D). They provide detailed pieces of informa-
tion on the renormalized band structure as well as spectral
functions, A(k, ω) = −�G(k, ω)/π . Clearly, in the absence of
fermion-boson coupling, the off diagonal Green’s functions,
G−,+(k, ω) and G+,−(k, ω), vanish, whereas the spectral
functions A−,−(k, ω) and A+,+(k, ω), corresponding to the di-
agonal Green’s function G−,−(k, ω) and G+,+(k, ω), are delta
functions centered at Ek,− and Ek,+, respectively. In Figs. 6(a)
and 6(b) we plot the spectral weight functions A−,−(k, ω) and
A+,+(k, ω) at k = π for the two considered models. In both
cases, by increasing the coupling with local heat baths, the two
main peaks become closer and closer and, at α = αc, become
coincident. For values α > αc, the two peaks swap: a closure
and reopening of the gap takes place. Note the presence of
tails in the spectral functions due to the interactions that are
associated with a corresponding reduction of the quasiparti-
cle spectral weight. We highlight that the critical values of
α, determined through the observation of the discontinuous
behavior of the topological invariant, align well with those
obtained using the Monte Carlo technique when consider-
ing classical oscillators, i.e., employing mean-field theory for
bosonic modes, in the local baths (see Appendix B). However,
the CPT Green’s function exhibits notable distinctions from
those derived by considering classical bosons, especially by
considering dynamical properties. Specifically, in the latter
scenario, a mere trivial renormalization of the hopping as-
sociated with coupling occurs for every momentum value k.
Consequently, the spectral functions manifest as trivial delta
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FIG. 6. [(a),(b)] Spectral functions A+,+(k, ω) and A−,−(k, ω) at
k = π and couplings below (a) and above (b) the critical value αc,
in the case of intracell hopping coupled with local baths. [(c),(d)]
Effective sublattice hopping μ vs cell distance δn for different in-
teraction strengths (with 0.1 < αc < 0.3), for intra- and intercell
fermion-boson couplings respectively.

peaks, lacking any indications of broadening or the presence
of excitation tails at T = 0. This stands in contrast to the CPT
Green’s function that, as we will prove in the following, allows
to introduce an effective NHH for the fermionic subsystem
(see Appendix F for details). The first step is the determination
of the poles of the 2 × 2 matrix G±,±(k, ω) for any fixed value
of k. They form two energy bands, −Ẽk − iδk and Ẽk − iδk

with δk � 0, i.e., the poles are located in the lower half plane.
The effective Hamiltonian assumes diagonal form in the mo-
mentum space. Clearly, it is possible to express it in terms of
creation and annihilation operators associated with Wannier
function in the real space, Heff = H1 + H2 + H3, where

H1 = −i
∑
n,δn

μ(|δn|)[c†
A,n+δncA,n + c†

B,n+δncB,n + H.c.], (13)

H2 =
∑
n,δn

ṽ(|δn|)[c†
A,n+δncB,n + c†

B,ncA,n+δn], (14)

and

H3 =
∑
n,δn

w̃(|δn| − 1)[c†
A,n+δncB,n + c†

B,ncA,n+δn], (15)

with μ(δn) = 1
2π

∫ π

0 dkδk cos[kδn], ṽ(δn) = ṽ
π

∫ π

0 dk Ẽk
Ek

cos

[kδn], w̃(δn) = w̃
π

∫ π

0 dk Ẽk
Ek

cos[kδn], where ṽ = ṽ(α) (ṽ =
v), w̃ = w (w̃ = w̃(α) if the coupling with the bosonic field
involves the intra- (inter)cell transfer integral. Finally E ′

k =
|ṽ + w̃e−ik| [the Appendix F contains the detailed deriva-
tion of the NHH, expressed as sum of Eqs. (13), (14), and
(15)]. Here: (i) H1 (anti-Hermitian operator) describes an ef-
fective hopping of the fermions within the same sublattice
(this contribution vanishes in the closed system) and (ii) H2

and H3 (Hermitian operators) represent the effective hopping
between two sites, each of them being located in one of the
two sublattices, whose distance is δn. Clearly in the absence
of interaction, Ẽk = Ek , δk = 0 and the only nonvanishing
hoppings are ṽ(0) = v and w̃(1) = w, i.e., Heff reduces itself
to the bare SSH model. The plots in Figs. 6(c) and 6(d) show

FIG. 7. Convergence tests of the QMC approach. (a) Mean value
of Hv vs imaginary time step and (b) mean value of Hv/N vs number
of cells N .

that, independently of the kind of coupling with local baths, by
increasing the strength of the interaction, the absolute value of
the magnitude of the quantity μ(δn), that is the main marker of
the non-Hermiticity of the subsystem Hamiltonian, becomes
larger and larger [54].

V. CONCLUSIONS

We investigated, within the SSH model, the effects on the
topological phase transitions induced by two different cou-
plings with the environment. We proved that one of them can
favor the emergence of topological features. Furthermore we
demonstrated that (1) bimodality of the polarization distribu-
tion can be used as marker of the topological phase transition
occurrence and (2) CPT provides an effective NHH for the
subsystem: main source of the non-Hermiticity is given by a
pure imaginary transfer integral within the same sublattice.
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APPENDIX A: QMC CONVERGENCE

We check the convergence of the observables with the step
�τ of the Suzuki-Trotter approximation, computing the mean
value of the energy for 10−5 � �τ � 10−2. For the value
used in the paper, �τ = 10−3, we get a result within the
third decimal figure from the asymptotic value, as shown in
Fig. 7(a). We also check the convergence with the number of
cells N , as shown in Fig. 7(b). In this case, already for N = 50
cells, the relative difference with the asymptotic value is less
than 10−3 (PBC were used).
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FIG. 8. Comparison between critical points obtained in the QMC
approach with local baths of classical phonons under PBC and OBC.

APPENDIX B: CLASSICAL OSCILLATORS

In the case of classical oscillators, the bath and interaction
Hamiltonians can be written as

HB + HSSH−B

=
∑
α,n

p2
α,n

2m
+

∑
α,n

mω2
α

2
x2
α,n +

∑
α,n

gα,n

√
2mωα

h̄
xα,nHhop,n,

(B1)

where m is the mass of the oscillators, pα,n the momentum,
and xα,n the position. As pα,n and xα,n commute, in the par-
tition function the integral over momentum variables can be
factorized and is irrelevant for the computation of other ob-
servables. The trace over electronic degrees of freedom can
be computed for fixed values of the positions xα,n, and the
ground-state energy

E ({xα,n}) =
∑
α,n

mω2
α

2
x2
α,n − lim

T →0
kBT ln Tr(e−βHSSH−B )

(B2)
can be computed. Then, E ({xα,n}) can be minimized with
respect to the positions xα,n, obtaining

mω2
αxα,n = gα,n

√
2mωα

h̄
Xn, (B3)

where Xn depends only on the cell. Substituting back in the
Hamiltonian, we obtain that

HB + HSSH−B =
∑

n

μn

2
X 2

n +
∑

n

μnXnHhop,n, (B4)

where Xn are the values that minimize the ground-state en-

ergy, and μn = 2
∑

α

g2
α,n

h̄ωα
= 2

∫
dω J (ω)

ω
. All the observables

can then be computed using the effective Hamiltonian (B4).
By considering the local baths as set of classical oscillators
(or in a equivalently way by considering mean-field theory for
bosons), one is able to compare the critical points obtained
under OBC and PBC. The results are shown in Fig. 8, pointing

FIG. 9. Phase diagram resulting by QMC simulation in the case
of intra- and intercell hopping simultaneously coupled with local
baths with different strengths, in the case w < v.

out how the topological phase transition is almost unaffected
by the choice of boundary conditions made.

APPENDIX C: SIMULTANEOUS COUPLING OF INTRA-
AND INTER CELL HOPPING WITH THE ENVIRONMENT

In order to show the robustness of the physics stressed in
the Sec. III, we perform further QMC simulations considering
the intracell hopping v and intercell hopping w simultane-
ously coupled with the environment, with in general different
coupling strength αv and αw, respectively. In Fig. 9 we analyze
the case with v = 1.2 and w = 1.0. The fundamental point is
the following: by starting from the condition v > w (w > v)
and fixed the value of the coupling αv (αw ), there exists a
greater value of αw > αv (αv > αw ) such that the system runs
into a topological phase transition. It is important to stress that
in general to obtain a topological phase transition the intra-
and intercell hoppings have to interact with the environment
with different strengths.

APPENDIX D: THE BARE SSH CHAIN

We start by recalling the main physical quantities for a
noninteracting SSH chain, in order to further stress how the
phononic interaction affects them.

The Hamiltonian of the bare SSH model is well known in
the literature of topological insulators,

HSSH = v

N∑
n=1

c†
n,Acn,B + w

N−1∑
n=1

c†
n+1,Acn,B + H.c.. (D1)

Here cn,ν (c†
n,ν) destroys (creates) an electron in the site ν =

A, B of the nth cell, and v (w) denotes the intra(inter)cell
hopping. In the following, we will adopt periodic boundary
conditions and use units such that h̄ = a = e = kB = 1; a, e,
and kB being the lattice parameter, the electronic charge, and
Boltzmann constant, respectively.
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In terms of the Fourier transform of fermionic operators in
the k space,

ak = 1√
N

∑
n

e−ikncA,n

bk = 1√
N

∑
n

e−ikncB,n, (D2)

where k belongs to the first Brillouin zone (BZ), the Hamilto-
nian reads as

H (k) = v
∑
k∈BZ

(a†
kbk + H.c.) + w

∑
k∈BZ

(eika†
kbk + H.c).

(D3)

Then, we can define four retarded Green’s functions,
GSSH

A,A (k, t ) = −iθ (t ) 〈{ak (t ), a†
k (0) }〉, GSSH

B,B (k, t ) = −i θ (t )
〈{bk (t ), b†

k (0)}〉, GSSH
A,B (k, t ) = −iθ (t ) 〈{ak (t ), b†

k (0)}〉, and
GSSH

B,A (k, t ) = −iθ (t ) 〈{bk (t ), a†
k (0)}〉. Here the symbol {c, d}

indicates the anticommutator between the operators c and d .
This simple toy model underlines the main physical fea-

tures of topological insulators at half filling. When open
boundary conditions are adopted, the trivial insulating phase
is obtained for v > w, whereas the topological phase, char-
acterized by the appearance of gap-less edge states, sets in
at v < w. On the other hand, in the thermodynamic limit
and assuming periodic boundary conditions, the topological
transition is marked by a topological invariant η that assumes
a nonvanishing value in a discontinuous way. In the case of a
bare SSH chain it reads as

η = 1

2π

∫ π

−π

dk
we−ik

v + we−ik
. (D4)

The quantity η is zero for v > w indicating a trivial phase,
while assumes a value equal to 1 in the topological phase
for v < w. The topological transition from a trivial state to
a topological state is signalled not only by the appearance of
the edge states, but it is also accompanied by the closure of
the energy gap, that happens precisely at k = ±π .

The Hamiltonian in Eq. (D3) can be easily diagonalized by
means of the quasiparticle basis {γk,+γk,−}, defined as

γk,+ = 1√
2

[ak + (nx(k) − iny(k))bk]

γk,− = 1√
2

[(nx(k) + iny(k))ak − bk], (D5)

where nx(k) = (v + w cos k)/Ek and ny(k) = w sin k/Ek .
After this unitary transformation, the Hamiltonian assumes

the diagonal form

H (k) =
∑

k

(Ekγ
†
k,+γk,+ − Ekγ

†
k,−γk,−), (D6)

where Ek = √
v2 + w2 + 2vw cos k. In particular −Ek and Ek

are the eigenvalues of (D3), which describe the two bands of
the topological insulator.

Analogously we can define the retarded Green’s
function associated with the quasiparticles Gμν (k, t ) =
−iθ (t ) 〈{γk,μ(t ), γ †

k,ν
}〉, with μ, ν = ±. It is trivial to obtain

the following relations in the frequency space:

G+,+(k, z) = 1
2

[
(nx(k) + iny(k))GSSH

A,B (k, z)

+ (nx(k) − iny(k))GSSH
B,A (k, z) + 2GSSH

A,A (k, z)
]

(D7)

and

G−,−(k, z) = 1
2

[ − (nx(k) + iny(k))GSSH
A,B (k, z)

− (nx(k) − iny(k))GSSH
B,A (k, z) + 2GSSH

A,A (k, z)
]
.

(D8)

In particular, G+,+(k, z) = 1
z−Ek

, G−,−(k, z) = 1
z+Ek

, and
G+,−(k, z) = G−,+(k, z) = 0. Here z = ω + iδ, with δ > 0 (z
lies in the upper half plane).

Finally, by performing the limit δ → 0, we can build up the
spectral functions, that describe two delta functions peaked at
ω = ±Ek ,

A±,±(k, ω) = − 1

π
�G±,±(k, ω) = δ(ω ∓ Ek ). (D9)

We naturally expect that interactions with local baths not only
generate the broadening of these peaks, but also tails due to
the phononic excitations.

Finally, one can define the DOS related to the two energy-
bands ±Ek of the insulators,

DOS(ω)+ =
∫ π

−π

dk
1

2π
A+,+(k, ω) (D10)

and

DOS(ω)− =
∫ π

−π

dk
1

2π
A−,−(k, ω). (D11)

APPENDIX E: THE CLUSTER PROBLEM

In this Appendix we will prove that the Green’s function of
the cluster problem admits an analytic solution.

Our starting point is the following cluster Hamiltonian.
describing two sites (labelled by i = 1, 2) connected through
an hopping interacting with a local environment,

H = ω̃C + C
∑

α

gα (bα + b†
α ) +

∑
α

ωαb†
αbα, (E1)

where C = c†
1c2 + c†

2c1 and ω̃ denotes the hopping within the
cluster. In particular, ω̃ = v (ω̃ = w) if the coupling with the
bosonic field regards the intra(inter)cell transfer integral.

115147-8



WITNESSING ENVIRONMENT INDUCED TOPOLOGICAL … PHYSICAL REVIEW B 109, 115147 (2024)

The problem associated to this type of Hamiltonian can
be solved analytically, in similar way to the independent bo-
son model. Indeed, we have that [C, H] = 0. Then, we can
consider the following unitary operator U = exp(C�), where
� = ∑

α
gα

ωα
(bα − b†

α ).
A generic operator transforms under U with the Baker-

Campbell-Hausdorff formula Ã = exp(S)A exp(−S) = A +
[S, A] + [S, [S, A]]/2! + .... As a consequence we have that
C̃ = C, b̃α = bα − (gα/ωα )C and b̃†

α = b†
α − (gα/ωα )C. Fi-

nally, the transformed Hamiltonian H̃ = U †HU reads as

H̃ = ω̃C − ERC2 +
∑

α

ωαb†
αbα, (E2)

where we have defined ER = ∑
α (g2

α/ωα ).
Now, we only need the eigenvalues and eigenstates of H̃ ,

by considering the subsectors of 0, 1, and 2 particles. In
particular for 0 and 2 particles we have that C |0A, 0B〉 = 0
and C |1A, 1B〉 = 0, then in these subsectors we have H̃ =∑

α ωαb†
αbα , i.e., the spectrum of free phonons. By consid-

ering the sector of 1 particle, we have that the electronic
eigenvectors are |ψ±〉el = (c†

1 ± c†
2) |01, 02〉 /

√
2.

We consider the half-filling case, so the ground state
of the original Hamiltonian, Eq. (E1), reads as |ψ0〉 =
U |ψ−〉el |01, . . . , 0M〉ph, where M indicates the number of
harmonic oscillators describing the bath.

Our purpose is to evaluate the retarded Green’s func-
tions GR

i j (t ) = −iθ (t ) 〈ψ0| {ci(t ), c†
j (0)} |ψ0〉, with i, j = 1, 2.

In particular, it is convenient to consider the Lehmann

representation in the space of frequencies,

GR
i j (ω + iδ) =

∑
m

〈
ψ

(N )
0

∣∣ ci

∣∣ψ (N+1)
m

〉 〈
ψ (N+1)

m

∣∣ c†
j

∣∣ψ (N )
0

〉
ω + (E (N )

0 − E (N+1)
m ) + iδ

+
∑

n

〈
ψ

(N )
0

∣∣ c†
j

∣∣ψ (N−1)
n

〉 〈
ψ (N−1)

n

∣∣ ci

∣∣ψ (N )
0

〉
ω − (E (N )

0 − E (N−1)
n ) + iδ

= G(N )−(N+1)
i j (ω + iδ) + G(N )−(N−1)

i j (ω + iδ),

(E3)

where, in our case, GR
i j (ω + iδ) = G1−2

i j (ω + iδ) + G1−0
i j (ω +

iδ) (particle and hole contributions), given by the following
relations:

G1−2
i j (ω + iδ) =

∑
m

〈ψ0| ci

∣∣ψ (2)
m

〉 〈
ψ (2)

m

∣∣ c†
j |ψ0〉

ω + (E0 − E (2)
m ) + iδ

(E4)

and

G1−0
i j (ω + iδ) =

∑
n

〈ψ0| c†
j

∣∣ψ (0)
m

〉 〈
ψ (0)

m

∣∣ ci |ψ0〉
ω − (

E0 − E (0)
m

) + iδ
. (E5)

Here |ψ (0)
m 〉 = U |01, 02〉el |u1, . . . , uM〉ph, |ψ (2)

m 〉 =
U |11, 12〉el |u1, . . . , uM〉ph, E (0)

m = E (2)
m = ∑

l ωl ul , uα being
the number of phonons with energy ωα and E0 = −ω̃ − ER is
the energy of the ground state at half filling.

By evaluating all the bra-ket products, it is straightfor-
ward to show that G1−2

i j (ω + iδ) = GP(ω + iδ) and G1−0
i j (ω +

iδ) = (2δi j − 1)GB(ω + iδ), where we have defined

GP(ω + iδ) = 1

2

∑
μ1···μM

(
e−S1

Sμ1
1

μ1!

)
· · ·

(
e−SM

SμM
M

μM!

)
1

ω + [−ω̃ − ER − (ω1μ1 + · · · + ωMμM )] + iδ
,

GB(ω + iδ) = 1

2

∑
μ1···μM

(
e−S1

Sμ1
1

μ1!

)
· · ·

(
e−SM

SμM
M

μM!

)
1

ω − [−ω̃ − ER − (ω1μ1 + · · · + ωMμM )] + iδ
,

with Sα = g2
α/ω2

α .
As a consequence we have that G11(ω + iδ) = G22(ω +

iδ) = GP(ω + iδ) + GB(ω + iδ) and G12(ω + iδ) = G21(ω +
iδ) = GP(ω + iδ) − GB(ω + iδ).

The next step is looking for analytic expressions for
GP(ω + iδ) and GB(ω + iδ). By considering that (ω +
iδ)−1 = −i

∫ ∞
0 ei(ω+iδ)t dt , we can rewrite GP(ω + iδ) and

GB(ω + iδ) in the following integral forms:

GP(ω + iδ) = − i

2

∫ ∞

0
dte− f (ω,t )

and

GB(ω + iδ) = − i

2

∫ ∞

0
dte−g(ω,t ),

where

f (ω, t ) =
∑

α

Sα (1 − e−iωαt )e−δt ei(ω−ω̃−ER )t

and

g(ω, t ) =
∑

α

Sα (1 − eiωαt )e−δt ei(ω+ω̃+ER )t .

Now, it is convenient to perform the limit from a discrete
set of frequencies {ωα} to a continuum

∑
α g2

α f [{ωα}] −→∫ ∞
0 dωJ (ω) f (ω), where we define the bath spectral function

J (ω) as

J (ω) = α ω̃
ω

ωD
e−ω/ωD (E6)

that corresponds to the Ohmic case, and ωD is a cutoff
frequency (it represents the largest energy scale). Then by
passing to the continuum ER = ∑

α (g2
α/ωα ) −→ αω̃ and by

solving the integrals in the frequency, we get the following
expressions:

GP(ω + iδ) = − i

2

∫ ∞

0
e− αω̃

ωD
log(iωDt+1)e−δt ei(ω−(α+1)ω̃)t dt,

GB(ω + iδ) = − i

2

∫ ∞

0
e− αω̃

ωD
log(−iωDt+1)e−δt ei(ω+(α+1)ω̃)t dt .
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Finally, after performing integrals with respect to the time, we
obtain

GP(ω + iδ) = − i

2
e

ω̃+αω̃−iδ−ω
ωD [i(ω̃ + αω̃ − iδ − ω)]−1+ αω̃

ωD

× (iωD)−
ω̃α
ωD 

(
1 − αω̃

ωD
,
ω̃ + αω̃ − iδ − ω

ωD

)
and

GB(ω + iδ) = − i

2
e

ω̃+αω̃+iδ+ω
ωD [−i(ω̃ + αω̃ + iδ + ω)]−1+ αω̃

ωD

× (−iωD)−
ω̃α
ωD 

(
1 − αω̃

ωD
,
ω̃ + αω̃ + iδ + ω

ωD

)
,

where we have introduced the incomplete Gamma function
(a, x) = ∫ ∞

x t a−1e−t dt .

APPENDIX F: EFFECTIVE NON-HERMITIAN SSH
HAMILTONIAN

Beyond the Hermitian topological Hamiltonian, stemming
from Green’s function evaluated at zero frequency and useful
to calculate the topological invariant, it is possible to intro-
duce a non-Hermitian Hamiltonian by using the poles of the
Green’s function, i.e., by calculating the Green’s function at
no vanishing frequency in the half lower complex plane. This
NHH captures the quasiparticle physics. To this aim, first of
all we consider the Green’s functions in the quasiparticle basis
of operators (D5),

G+,+(k, z) = 1
2

[
(nx(k) + iny(k))GCPT

AB (k, z)

+ (nx(k) − iny(k))GCPT
BA (k, z) + 2GCPT

AA (k, z)
]
,

(F1)

G−,−(k, z) = 1
2

[ − (nx(k) + iny(k))GCPT
AB (k, z)

− (nx(k) − iny(k))GCPT
BA (k, z) + 2GCPT

AA (k, z)
]
,

(F2)

G−,+(k, z) = (nx(k) + iny(k))2GCPT
AB (k, z) − GCPT

BA (k, z)

2
,

(F3)

and

G+,−(k, z) = (nx(k) − iny(k))2GCPT
BA (k, z) − GCPT

AB (k, z)

2
.

(F4)
In particular, we emphasize that, in general, in the presence of
fermion-boson interaction, the Green’s functions G+,−(k, z)
and G−,+(k, z) are different from zero.

Next step is to look for the poles of the quasiparticles
Green’s functions. In general, with no zero interaction, the
poles form two energy bands −Ẽk − iδk and Ẽk − iδk , with
δk > 0. Here Ẽk represents a renormalization of the bare spec-
trum and δk is associated to a finite lifetime of quasiparticle.
The typical behavior of −δk vs Ẽk is shown in Fig. 10.

The eigenvectors corresponding to the eigenvalues ±Ẽk −
iδk are |±〉 = ( ± exp(−iφ(k)), 1)/

√
2. with

φ̃(k) = arctan

(
w̃ sin k

ṽ + w̃ cos k

)
, (F5)

FIG. 10. Complex line-gapped energy spectrum obtained for
α = 0.1, in the case of intercell coupling with local baths.

where ṽ = −1/G12(z = 0) (ṽ = v) and w̃ = w (w̃ =
−1/G12(z = 0)) if the coupling with the bosonic field in-
volves the intra(inter)cell transfer integral.

In order to obtain the Hamiltonian in the k-space we
perform the matrix product H (k) = PkDkP−1

k , where Pk is
the matrix that has as columns the two eigenvectors, i.e.,
Pk = (|−〉 , |+〉), and Dk is the diagonal matrix with elements
±Ẽk − iδk . The result is

Heff (k) =
[

−iδk Ẽke−iφ(k)

Ẽkeiφ(k) −iδk

]
, (F6)

Heff =
∑

k

[a†
k b†

k]H (k)

[
ak

bk

]
. (F7)

One can show that the quasiparticle Hamiltonian (F6) is able
to reproduce the CPT Green’s function of Eq. (10) thanks to
the relation GCPT (k, z) = [z − H (k)]−1. Moreover, Eq. (F6)
reduces to Eq. (D3) in the noninteracting limit (δk −→ 0, Ẽk −→
Ek, Ẽk exp{−iφ̃(k)} −→ v + w exp{−ik}). Then, one can write
Eq. (F7) in the following explicit form:

H = −i
∑

k

δk[a†
kak + b†

kbk] +
∑

k

(e−iφ̃(k)Ẽka†
kbk + H.c.).

(F8)

The factor e−iφ̃(k) can be rewritten as

e−iφ̃(k) = ṽ + w̃e−ik

|ṽ + w̃e−ik| = ṽ + w̃e−ik

E ′
k

, (F9)

and, consequently, the total effective Hamiltonian turns out to
be the sum of three contributions,

H = −i
∑

k

δk[a†
kak + b†

kbk] + v
∑

k

Ẽk

E ′
k

(a†
kbk + H.c.)

+ w
∑

k

Ẽk

E ′
k

(e−ika†
kbk + H.c.). (F10)

Now we apply the inverse transformation of the quasiparticle
relation in order to write this effective Hamiltonian in the real
space, i.e., in terms of the cell operators cA,n, cB,n. Let us focus
for the moment on the first term of the Hamiltonian (F10),
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i.e., H1 = −i
∑

k δk[a†
kak + b†

kbk]. We can perform the reverse
transformation of (D2), obtaining

H1 = − i

N

∑
k

δk

∑
n,m

eik(m−n)(c†
A,mcA,n + c†

B,mcB,n). (F11)

Then, in the thermodynamic limit, i.e., N −→ ∞, it is con-
venient to pass from discrete sums in the wavevector k to
integrals, i.e.,

∑
k (...) −→ N/2π

∫ π

−π
dk(...),

H1 = −i
∑
n,m

(c†
A,mcA,n + c†

B,mcB,n)

(
1

2π

∫ π

−π

dkδkeik(m−n)

)
.

(F12)
Finally, since δk = δ−k , H1 assumes the final form

H1 = −i
∑
n,δn

μ(|δn|)[c†
A,n+δncA,n + c†

B,n+δncB,n + H.c.],

(F13)
with

μ(|δn|) = 1

2π

∫ π

0
dkδk cos[δnk]. (F14)

Then, we can consider the last two terms of Eq. (F10),

H2 = ṽ
∑

k

Ẽk

E ′
k

(a†
kbk + H.c.) (F15)

and

H3 = w̃
∑

k

Ẽk

E ′
k

(e−ika†
kbk + H.c.). (F16)

By repeating the same mathematical steps performed for H1,
we obtain

H2 =
∑
n,m

ṽ(|m − n|)[c†
A,mcB,n + c†

B,ncA,m], (F17)

H3 =
∑
n,m

w̃(|m − n| − 1)[c†
A,mcB,n + c†

B,ncA,m], (F18)

with

ṽ(δn) = ṽ

π

∫ π

0
dk

Ẽk

E ′
k

cos[δnk] (F19)

and

w̃(δn) = w̃

π

∫ π

0
dk

Ẽk

E ′
k

cos[δnk]. (F20)

Thanks to the CPT technique, we are able to discern the main
effects manifested in the effective non-Hermitian Hamilto-
nian. In particular, the fermion-boson interaction generates a
manifestly non-Hermitian sublattice hopping μ(m − n) that
gives rise also to an on-site potential when n = m. We empha-
size that the sublattice potential μ(m − n) and the generalized
intra- and intercell hopping ṽ(m − n), w̃(m − n) go to zero
naturally when the cells considered are very far from each
other, i.e., |(n − m)| −→ ∞.
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