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Higher rank chiral fermions in three-dimensional Weyl semimetals
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We report on exotic response properties in 3D time-reversal invariant Weyl semimetals with mirror symmetry.
Despite having a vanishing anomalous Hall coefficient, we find that the momentum-space quadrupole moment
formed by four Weyl nodes determines the coefficient of a mixed electromagnetic charge-stress response, in
which momentum flows perpendicular to an applied electric field, and electric charge accumulates on certain
types of lattice defects. This response is described by a mixed Chern-Simons-like term in 3 spatial dimensions,
which couples a rank-2 gauge field to the usual electromagnetic gauge field. On certain 2D surfaces of the bulk
3D Weyl semimetal, we find what we will call rank-2 chiral fermions, with ω = kxky dispersion. Such fermion
states have a mixed charge-momentum anomaly which is canceled by the bulk of the 3D system.
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I. INTRODUCTION

Chiral fermions have had a remarkable impact across a
variety of fields of physics in the past few decades. Whether
it is in the context of the weak interactions in particle-physics
[1,2], or as low-energy edge or bulk excitations of topologi-
cal insulators [3,4] and semimetals [5–7], or even as heralds
of nonreciprocal light transport in photonic crystal analogs
[8–10], there is no denying their broad relevance to a number
of physical platforms. From their origin in Lorentz-invariant
field theories it is known that these massless, linearly dis-
persing fermions can intrinsically appear in any odd spatial
dimension. Additionally, in a condensed matter context, the
famous Nielsen-Ninomiya no-go theorem [11] dictates that
local, time-independent lattice Hamiltonians must harbor an
even number of chiral fermions, such that the total chirality
vanishes. Hence, these restrictions allow 1D chiral fermions
to either appear as right/left-mover pairs in a 1D metal, or
as isolated chiral edge states of a Chern insulator [4], while
3D chiral (Weyl) fermions appear in nodal pairs in Weyl
semimetal materials [5].

Recent developments in the condensed matter and high-
energy literature have opened the door to the discovery of
new types of massless fermions and bosons in a non-Lorentz
invariant, crystalline environment [12–17]. In this work we
propose a generalization of chiral fermions for 2-dimensional
systems with crystalline symmetry; we call these rank-2 chiral
fermions. We present a 2D lattice model exhibiting rank-
2 chiral fermions, but where the total higher rank chirality
vanishes. Then we present a 3D model in which the rank-2
chiral fermions appear as surface states with an associated
anomalous response. We find the anomalous response can be
mapped onto a bulk rank-2 Chern-Simons term (in analogy
with the dipole Chern-Simons term from Ref. [18]) represent-
ing a mixed charge-geometric response, and has a coefficient
related to the Berry curvature quadrupole moment of the bulk
Fermi surface.

II. CHIRAL FERMIONS AND THE CHIRAL ANOMALY

We begin by reviewing chiral fermions in 1D. For gap-
less fermions in 1D, the chirality is given by χ1 = sgn(v),
where v is a characteristic velocity that fixes the dispersion
relation E (k) = h̄vk − μ. Superficially, this chirality allows
us to define two currents that are conserved by the classical
equations of motion of a general 1D system: the usual charge
current jμ (where j0 = ∑

c†
αcα), and the axial current jμχ

(where j0
χ = ∑

α χαc†
αcα), and α runs over all fermion chan-

nels. Evidently, j0
χ is associated with the conservation of the

difference in the number of right-movers (with positive chiral-
ity) and the number of left-movers (with negative chirality).

However, it is well known that these two currents cannot
be simultaneously conserved [19–21]. Indeed, in the presence
of an electric field Ex, the axial current obeys the anomalous
conservation law

∂μ jμχ = n
eEx

π h̄
, (1)

where n is the number of channels. This anomalous re-
sponse reflects the fact that during a process in which one
adiabatically shifts the vector potential Ax → Ax + h

eL , the
number of right-moving (left-moving) particles changes by
δNχ1=+1 = +1 (δNχ1=−1 = −1). Strikingly, if

∑
α χα �= 0, the

axial anomaly (1) also implies an anomaly in the U(1) charge
current. Thus a net chirality is impossible in a 1D lattice
system that conserves the electric charge. However, chiral
fermions can appear on the 1D edges of 2D integer quan-
tum Hall [3,22] or quantum anomalous Hall [4,23] systems.
Moreover, a whole family of quasi-1D chiral edge states exists
on the boundary of 3D, T-breaking Weyl semimetals, and
forms a so-called Fermi arc having chiral dispersion in the
surface Brillouin zone [6,7]. In these cases, the anomalous
conservation law on one boundary is balanced by a current
flow through the bulk (possibly from the other boundary) [24],
and is a signature of a Hall effect.
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FIG. 1. (a) Dispersion relation and Fermi surface contours for
Eq. (2). Note that when μ = 0, the Fermi surface consists of two
intersecting lines. (b) Dispersion relation of Eq. (2) but with guides
to illustrate the chirality χ

ŷ
Kx

in the ky direction for fixed values of kx.

The yellow line represents the collection of k‖ Fermi points at a fixed
Fermi level represented by the blue plane. (c) Fermi-level contours
for the 2D tight-binding dispersion E (k) = sin kx sin ky. Orange and
blue points are rank-2 chiral fermions having χ2 = ±1, respectively.
Thick red/blue lines indicate regions of the μ = 0 Fermi surface that
gain/lose particles when an electric field Ex is turned on. Globally
there is no momentum anomaly as each fixed kx slice has a positive
and negative chirality.

III. RANK 2 CHIRAL FERMIONS AND THE
MOMENTUM ANOMALY

We now discuss a generalization of chiral fermions to 2D.
Consider a portion of a 2D Fermi surface, described locally
by the dispersion relation:

E (k) = h̄vξkxky − μ, (2)

where v is a velocity and ξ has units of length. Such lo-
cal Fermi-surface patches are not uncommon and indeed are
guaranteed in 2D bands by Morse theory [25]. The dispersion
relation and Fermi surface contours are depicted in Fig. 1(a).
To look for a charge anomaly we can consider the current
ji = ∂H/∂ki = h̄vξσ i jk j where σ xy = σ yx = 1, σ xx = σ yy =
0. We see that upon adiabatically turning on a constant electric
field Ex or Ey, the total number of charged particles below the
Fermi surface does not change: for every extra fermion that is
added at momentum σ i jk j in the presence of the electric field
Ei, there is a partner at the opposite momentum −σ i jk j that
is removed. This should be contrasted with the response for
a 1D chiral fermion above where inserting a single flux of Ex

generates an extra particle, leading to an anomaly in the U(1)
charge current; such an anomaly is not present in our rank-2
chiral system. However, we will now show that the dispersion
relation (2) does exhibit a 2D variant of the axial anomaly,
which leads to a violation of momentum conservation in the
presence of external electric fields, and a violation of charge
conservation in the presence of certain strain fields.

To motivate this anomaly, let us first choose a direction k̂0

in momentum space, and consider a generic Fermi line that
satisfies (vkF · k̂0) �= 0, where vkF is the Fermi velocity at
momentum kF on the Fermi line. We can associate an axial
current to each quasi-1D system at constant k‖ ≡ (k × k̂0) · ẑ,

via a momentum-resolved chirality χ
k̂0
k‖ = ∑

kF
sgn(vkF · k̂0),

where the sum runs over momenta on the constant k‖ sec-
tion of the Fermi line. For example, if we fix k̂0 = ŷ, then
at fixed kx = Kx, we can define an axial current j0

χ,y(Kx ) =∑
ky,FS

χ
ŷ
Kx

n̂(Kx,ky,FS ).

From a global perspective, any closed Fermi surface will
intersect each slice at fixed k‖ an even number of times along
the k̂0 direction, with equal numbers of positive and negative
chirality intersections. Thus for closed Fermi surfaces the total
chirality of each fixed k‖ slice vanishes. In contrast, Eq. (2)
describes open Fermi surfaces which have well-defined,
nonvanishing chiralities χ x̂

Ky
= sgn(vξKy) for slices at fixed

ky = Ky, and similarly for fixed kx = Kx. These values are
nonvanishing on each hyperbolic branch of the Fermi surface,
since there is only one value of ki on the Fermi surface at
which there is an intersection with each constant σ i jk j slice
[see Fig. 1(b)]. Thus, each fixed momentum slice is chiral.
Despite this chirality, Eq. (2) has time-reversal symmetry,
which implies χ

k̂0
−k‖ = −χ

k̂0
k‖ , and hence the net axial charge

of the entire Fermi surface vanishes, since each branch of the
hyperbola has an opposite chirality. This confirms our claim
above about the lack of a conventional axial anomaly in this
system.

Interestingly, this failure points the way to the actual
anomaly of interest since the product χ

k̂0
k‖ · k‖ does take the

same sign on the two hyperbolic Fermi surface branches, and
will also do so in general for a Fermi surface interval and its
time-reversed partner. Hence, let us specialize to time-reversal
invariant systems, and focus on anomalies in the momentum
densities/currents

Ĵ 0
a = 1

A2D

∑
k

h̄kan̂k, (3)

where A2D is the area of the 2D system. More precisely,
given an interval of the Fermi surface with a nonvanishing
chirality χ

k̂0
k‖ , and its time-reversed partner, we can apply a

uniform electric field in the k̂0 direction, and consider the
change in the k‖ momentum, i.e., the component of Ĵ 0

a per-
pendicular to the applied field. Physically we expect that an
electric field acting on a Fermi surface with a nonvanishing
χ

k̂0
k‖ generates electrons with one sign of k‖ momentum, and

its time-reversed partner will remove electrons with the op-
posite sign of k‖ momentum, such that the particle number
stays fixed, but there is a net change in momentum. For the
hyperbolic Fermi surfaces of Eq. (2) we find that, for any
value of μ, turning on Ex by adiabatically shifting Ax by
h

eL generates a change in the y-momentum density equal to


J 0
y = −sgn(vξ )h̄

∑�y

ky=−�y
|ky|, where �y is a wave vector

cutoff. If we repeat the experiment with Ey we find 
J 0
x =

−sgn(vξ )h̄
∑�x

kx=−�x
|kx|. In the thermodynamic limit, we find


J a
0 = −sgn(vξ ) 2�a

2π
h̄�a

2 when an electric field σ abEb is ap-
plied by inserting one flux quantum.

Naively we would like to associate the sign of the momen-
tum anomaly response sgn(vξ ) to a notion of two-dimensional
chirality. However, without additional symmetry, this chirality
is not well defined since by simply rotating the coordinate
system one can transform kxky → −kxky, hence flipping the
sign of the chirality. Thus, to formulate a robust notion of a
rank-2 chirality we need to impose symmetry. Let us impose
mirror symmetry about the line x = y. This accomplishes
several things: (i) it forces kxky and k2

x − k2
y to lie in differ-

ent symmetry representations such that one can no longer
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continuously deform kxky → −kxky without breaking sym-
metry [26]; (ii) it establishes a natural pair of directions (up
to a sign) in which to consider the anomalous momentum
response; these directions are exchanged by the mirror sym-
metry, and orthogonal to each other, e.g., x̂, ŷ for this mirror
symmetry; (iii) it requires �x = �y ≡ �. Hence, with mirror
symmetry the anomalous momentum response is character-
ized by

∂μJ μ
a = χ2σab

e�2

4π2
Eb, a, b = x, y, (4)

where χ2 is the rank-2 chirality, which is equal to sgn(vξ ) for
the dispersion in Eq. (2).

With mirror symmetry we now have a well-defined notion
of a chirality, but we still have not indicated a link to a rank-2
structure. The rank-2 nature is more clearly expressed at this
level through a reciprocal anomalous response where a gauge
field ea

μ, which couples canonically to the momentum current
J μ

a , can produce an anomaly in the ordinary charge current.
Equation (3) implies that each electron couples to ea

μ with
a charge equal to its a momentum. Adiabatically shifting ea

j
produces opposite electric fields applied to opposite-chirality
Fermi surface branches of the rank-2 chiral fermions. Hence
we expect such a shift will generate an excess of charge
in this case. We note in passing that while it is tempting
to identify the fields ea

μ as frame fields, we only consider
fields that couple to momenta along translationally invariant
lattice directions, which has the effect of limiting the gauge
transformations to δλe

a
μ = ∂μλa.

To see the anomaly explicitly, let us shift ey
x by Ly/Lx in

a system with periodic boundary conditions. Physically, this
describes a process in which a dislocation with Burgers vector
Lyŷ is threaded adiabatically through the hole spanned by the
periodic x direction [27]. Mathematically, for an electron hav-
ing a fixed ky, this shift is equivalent to a shift in Ax by h̄

e kye
y
x

[27–29]. Hence an electron with momentum ky = 2πsy/Ly

(sy ∈ Z) will experience a shift kx → kx + 2πsy/Lx. If the
states at this ky have χ x̂

ky,FS
> 0 then this will generate sy parti-

cles at ky. The states at −ky have the opposite chirality, but also
the opposite shift, and thus also contribute sy (−sy) particles.
In total the change in the charge for positive chirality is 
Q =
e
∑�y

ky=−�y

Ly

2π
ky = e( Ly�y

2π
)2. In the presence of mirror symme-

try there is a symmetric effect for a shift in ex
y → ex

y + Lx/Ly

that will produce a 
Q = e( Lx�x
2π

)2, and these effects can be
summarized by an anomalous conservation law

∂μ jμ = χ2
e�2

4π2
Exy, (5)

where mirror-fixed Lx = Ly = L,�x = �y = �, and
Exy = ∂xe

y
0 + ∂ye

x
0 − ∂texy is an effective rank-2 electric field

(with a vector charge Gauss law [30–32]). Here, the mirror
symmetry allows us to combine exy ≡ e

y
x + ex

y to form a sym-
metric rank-2 gauge field with gauge transformations exy →
exy + ∂xλy + ∂yλx which match those of a vector-charge rank-
2 gauge field where the vector charge is crystal momentum.
Hence, our mirror-symmetric rank-2 chiral fermions have an
anomalous rank-2 response, which is the origin of their name.

Before moving on to lattice models with rank-2 chiral
fermions, a few remarks are in order. First, for more generic

dispersion relations E = gi jkik j, where gi j is a Lorentzian
metric, a rank-2 chirality can be defined by choosing a mirror
line M through the origin of momentum space, i.e., Mγ1,γ2 :
γxkx = γyky, that exchanges the principal axes x̂1, x̂2 of the
quadratic form gi j . These axes are unique up to a sign,
which separates the two chiralities. The resulting rank-2 chiral
fermions exhibit anomalies described by Eqs. (4) and (5), but
with the replacement Exy → Ex1x2 , etc. A second comment
concerns the cutoff dependence of the response action. We
emphasize that this is a momentum cutoff, not an energy
cutoff: it describes the range of k values over which we have
included states on the Fermi surface [33]. Below, we con-
sider a 3D model where these cutoffs have a natural physical
origin.

In 2D, where the Fermi surface must be closed, the net
anomalous response necessarily vanishes when we extend
the momentum cutoff to include the entire Brillouin zone.
To illustrate this, consider a 1-band, 2D lattice model on a
square lattice with only next-nearest neighbor hopping such
that the dispersion relation is given by E (k) = sin kx sin ky.

This model has M1,1 mirror symmetry; hence we evaluate
the kx and ky momentum anomalies. If one expands around
(kx, ky) = (0, 0) the dispersion is E (k) ∼ χ2kxky with χ2 =
+1, while around (kx, ky) = (π, 0) the dispersion is E (k) ∼
χ ′

2kxky, with χ ′
2 = −1 [see Fig. 1(c)]. Hence, we find an equal

number of chiral and antichiral modes transverse to kx (and to
ky), which make opposite contributions in Eq. (4).

IV. RANK 2 CHIRAL FERMIONS ON THE SURFACE
OF A WEYL SEMIMETAL

A net rank-2 chirality can be realized, however, at the
surface of a 3D system. Let us consider a 2-band Bloch
Hamiltonian for a Weyl semimetal:

H (k) = sin kx sin ky�
x + sin kz�

y

+ [m + t (cos kx + cos ky + cos kz )]�z, (6)

where if �a = τ a Pauli matrices the model has time-reversal
symmetry with T = K , Cz

2 = I, and M1,1 = I, or if �x =
τ y ⊗ σ y, �y = τ x ⊗ σ y, �z = τ z ⊗ I the model has spinful
time-reversal symmetry T = iI ⊗ σ yK. We focus on the two-
band model for simplicity, as the four-band model behaves
just as two copies of the former.

In this model we find several Weyl semimetal regimes
summarized in Figs. 2(a), 2(b), and 2(c). In particular, let
us focus on the range −3t < m < −t , where the system
has four gapless Weyl points in the kz = 0 plane located at
k = ( ± arccos(−m/t − 2), 0, 0)T and (0,± arccos(−m/t −
2), 0)T . One can establish the existence of rank-2 chiral
fermions on the z surfaces via numerical diagonalization, or
with analytical lattice methods to solve for surface states
shown in, for example, Refs. [35–37] to find surface states
that have a dispersion relation E (k) = ±kxky centered around
the � point, with zero-energy lines that terminate at the four
Weyl nodes.

From our continuum calculations we expect the rank-2
surface states to be anomalous, with the momentum locations
of the Weyl nodes serving as natural momentum cutoffs in
the x and y directions. The remaining question is, can we
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FIG. 2. (a)–(c) Weyl node positions in the 3D bulk Brillouin zone and surface state structure on the (0,0,1) surface for different values of
the parameters t and m. Red (blue) dots depict Weyl nodes with chirality χ = +1 (−1). Red lines in the 2D surface BZ depict the surface
zero modes. (d) Distribution of the kx momentum density J 0

x weighted by the Weyl quadrupole moment Qxx = π 2/2 in units of e/8π 2 for a
lattice with Ny × Nz = 40 × 40 and m = −2t in the presence of two opposite magnetic flux lines. (e) Dependence of the momentum density
localized in the vicinity of one of flux lines on the amount of magnetic flux �x . Red line is linear fit of the numerical data (blue dots) with the
slope ≈ 0.988. We find the same dependence for the charge density j0 localized on a torsional magnetic flux Bx

x (see [34] for details).

describe the anomalous surface response as a bulk response in
analogy to how the anomalous response of chiral Fermi arcs
encode the bulk anomalous Hall effect [6,38–40]? To this end,
let us consider the momentum space locations of the Weyl
nodes K(α). We find that the pair of nodes lying on the kx

axis have Weyl chirality +1, while the pair of nodes on the
ky axis both have Weyl chirality −1. Hence, the total chirality
and Weyl momentum dipole moment (i.e., the anomalous
Hall coefficients) vanish:

∑4
α=1 χ(α) = 0,

∑4
α=1 K(α)χ(α) =

0. However, we note that the Weyl momentum quadrupole
moment is nonvanishing:

Qxx =
4∑

α=1

χ(α)
(
K (α)

x

)2 = −
4∑

α=1

χ(α)
(
K (α)

y

)2 = −Qyy. (7)

Indeed since the mirror symmetry M(1,1) also flips the sign of
the Weyl chiralities it enforces Qxx = −Qyy, and Qxy = 0. We
will see below that the anomalous rank-2 surface response is
determined by exactly this Weyl quadrupole moment.

V. RANK 2 CHERN SIMONS RESPONSE THEORY

To determine the bulk response we calculate a charge-
current–momentum-current correlation function using the
Kubo formula (see Refs. [34,41] within for details). We find a
bulk linear response:

J μ
a = e

8π2
εμνρσ Qνa∂ρAσ , jμ = e

8π2
εμνρσ Qνa∂ρe

a
σ , (8)

where (when μ = 0) the response coefficients are

Qia = − 1

2π

∫
d3k εi jkkaF jk, (9)

where F i j is the Berry curvature. We show in [34] that for
a gapless system, Qia can be reduced to an integral over the
Fermi surface analogous to the arguments in Ref. [42]:

Qia = 1

2π

∫
FS

kakiFμν dsμ ∧ dsν, (10)

where {s1, s2} are the coordinates that parametrize the Fermi
surface. For a Weyl semimetal, the Fermi surface splits into
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disjoint Fermi surfaces FSα, each enclosing an individual
Weyl node carrying a Weyl chirality χ(α). Hence, the integral
over the Fermi surface simplifies to a sum over a discrete set
of Weyl nodes: Qia = ∑NNodes

α=1 χ(α)K (α)
a K (α)

i , and is exactly the
Weyl momentum space quadrupole moment mentioned above.
We note that recent work has shown that the Hall viscosity
can be determined by the momentum space quadrupole of
the occupied states [43], while our work shows that a similar
quantity, calculated on only the Fermi surface, describes a
mixed charge-momentum response.

The bulk responses in Eq. (8) are described by the action

S[A, e] = − e

8π2

∫
d4xεiνρσ QiaAν∂ρe

a
σ . (11)

For our model, and any Weyl quadrupole model having
time-reversal and M(1,1) mirror symmetry, we find a sin-
gle nonvanishing response coefficient: Q̄ = Qxx = −Qyy (note
Qxy = 0 from the mirror symmetry), and we can simplify the
response theory to find

S = − eQ̄

8π2

∫
d4x

[
AzExy − AyEx

z − AxEy
z − A0

(
By

y − Bx
x

)]
,

(12)

where Ea
z = ∂ze

a
0 − ∂te

z
z, and Ba

i = εi jk∂ je
a
k . We write the ac-

tion in this suggestive form to make a direct comparison to the
rank-2 scalar charge dipole Chern-Simons theory of Ref. [18].
Indeed we see Eq. (12) is just a vector-charge version of that
Chern-Simons theory; i.e., instead of a rank-2 scalar dipole
charge we have a rank-2 vector momentum charge. Interest-
ingly, unlike the scalar charge case which was shown to be a
pure boundary term [18], this theory gives the bulk responses
in Eq. (8). This action should be contrasted with previous
work on geometric response in Weyl semimetals which focus
on the terms induced by a Weyl dipole [44–47].

Let us now try to understand the physical meaning of the
bulk response. Consider responses

J 0
a = eQ̄

8π2
Ba(δax − δay), j0 = eQ̄

8π2
Ba

i (δixδax − δiyδay),

(13)

which indicate a momentum density attached to magnetic
flux and a charge density attached to a torsional magnetic
field Ba

i parallel to the ith direction and having the Burgers
vector in the ath direction. For our model, the second response
requires the torsional flux and Burgers vector to be parallel,
which is naturally represented by a screw dislocation. Hence,
on screw dislocations in the x or y directions we should
find a bound charge density. We numerically confirm both
of these responses by inserting localized magnetic (torsional)

flux tubes in the x direction and calculating the localized
momentum (charge) density. Our numerical results exactly
match the response equations as shown in Figs. 2(c) and 2(d).

To see how this bulk response is connected to the surface
states, we observe that the response action Eq. (12) is not
gauge invariant in the presence of a boundary. As a model for
the surface we can let Q̄(z) be a domain wall in the z direction
[40]. If we put such a domain wall configuration into Eq. (12)
and integrate by parts, then the action localized on the domain
wall is

S∂z = eQ̄

8π2

∫
dx dy dt

[
A0exy − Aye

x
0 − Axe

y
0

]
. (14)

If we treat the Weyl points as momentum cutoffs in the x
and y directions then we can make the replacement Q̄ = 2�2.

The end result has response equations that exactly match
the anomalous conservation laws in Eqs. (4) and (5). Thus the
rank-2 chiral fermions are the boundary manifestation for the
bulk vector-charge Chern-Simons response action.

VI. CONCLUSION

This work has shown that rank-2 chiral fermions, asso-
ciated with 2D time-reversal and mirror-symmetric systems,
exhibit a new type of anomaly, in which momentum transverse
to the direction of an applied electric field is not conserved,
and where certain lattice defects also lead to violations of
charge conservation. We expect that rank-2 chiral fermions
can naturally appear in time-reversal invariant Weyl semimet-
als having nonvanishing Weyl quadrupoles. Some recent work
in strongly correlated systems has shown that time-reversal
invariant Kondo semimetals may have a Weyl quadrupole
moment [48,49]. Furthermore, in a recent joint theory-
experimental work including one of us, a rank-2 chiral mode
was generated in a non-Hermitian metamaterial built from
a topolectric circuit array [50]. One can identify the rank-2
modes and response by looking at spectroscopy (e.g., ARPES)
and identifying charge bound to crystal defects or crystal
momentum bound to magnetic field lines. These results rep-
resent the first in a family of higher-dimensional systems with
various notions of higher-rank chirality. We elaborate on other
members of this family in a forthcoming work.
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