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Wannier orbital theory and angle-resolved photoemission spectroscopy
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L. Dudy
Randall Laboratory, University of Michigan, Ann Arbor, Michigan 48109, USA;

Physikalisches Institut und Röntgen Center for Complex Material Systems, Universität Würzburg, D-97074 Würzburg, Germany;
and Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France

J. W. Allen
Randall Laboratory, University of Michigan, Ann Arbor, Michigan 48109, USA

J. D. Denlinger
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94270, USA

J. He*

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29534, USA

M. Greenblatt
Department of Chemistry & Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Jersey 08854, USA

M. W. Haverkort
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany;

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, D-01187 Dresden, Germany;
and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany

Y. Nohara and O. K. Andersen
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Received 27 March 2023; revised 4 December 2023; accepted 13 December 2023; published 21 March 2024)

This is the third paper of a series of three papers presenting a combined study by band theory and angle-
resolved photoemission spectroscopy (ARPES) of lithium purple bronze. The first paper laid the foundation for
the theory, and the second paper discussed a general comparison between theory and experiment, including deriv-
ing an ARPES selection rule. The present paper III focuses in detail on the two metallic, quasi-one-dimensional
(quasi-1D) xy-like bands left in the 0.4 eV dimerization gap between the xz and yz valence and conduction (V&C)
bands. The hybridizations with the latter change the perpendicular dispersions of — and splitting between —
the resulting x̃y bands. The edges of the V (C) bands, in particular, push resonance peaks up (down) in the x̃y
bands which are now described by a two-band Hamiltonian whose two first terms consist of the pure xy block
of the six-band tight-binding (TB) Hamiltonian and whose four following terms describe the resonant coupling
to (i.e., indirect hopping via) the V&C bands. The two-band Hamiltonian extends the selection rule derived in
the previous paper to the hybridized x̃y bands, which enables extracting the split quasi-1D Fermi surface (FS)
from the raw ARPES data. The complex shape of the FS, verified in detail by our ARPES, depends strongly on
the Fermi-energy position in the gap, implying a great sensitivity to Li stoichiometry of properties dependent on
the FS, such as FS nesting or superconductivity. The strong resonances prevent either a two-band TB model or a
related real-space ladder picture from giving a valid description of the low-energy electronic structure. Down to a
temperature of 6 K, we find no evidence for a theoretically expected downward renormalization of perpendicular
single-particle hopping due to LL fluctuations in the quasi-1D chains.
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I. INTRODUCTION

This last paper in a series of three about angle-resolved
photoemission spectroscopy (ARPES) and Wannier or-
bital (WO) theory of the quasi-one-dimensional (quasi-1D)

*Deceased.

conductor LiMo6O17 deals with the Fermi surface (FS)
formed by the two metallic xy-like bands (the x̃y bands) in the
gap caused by the c-axis dimerization [Sec. I III A]1 between

1I and II refers to sections, figures, and equations in papers I [1]
and II [2], respectively.
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FIG. 1. The two quasi-1D metallic bands in the gap between the valence (V) and conduction (C) bands as functions of the perpendicular
kc in the irreducible BZ, 0 � kc < 0.5, and for kb fixed at 0.225, 0.250, and 0.275. The red bands are the pure xy bands and the dark-red x̃y
bands include the hybridization with the four V&C bands. The extra fatness (band decoration) is proportional to the |k〉 character, which for
the dark-red bands was obtained from the two-band Hamiltonian (4). The red and the dark-red fat bands for kb = 0.225 were already shown
in, respectively, Figs. I 6 and I 7, and their |k〉 characters in the middle and bottom parts of Fig. II 4. The upper and lower x̃y bands as functions
of (kb, kc ) are shown on the left-hand side of Fig. 3. The ARPES-refined tight-binding (TB) parameter values I (43)–I (46) were used and the
xz-yz hybridization [parameters I (40)] was neglected.2 The value of E in the denominators of Eq. (4) were iteratively adjusted to equal the
eigenvalue in question of the two-band Hamiltonian whereby it equals the appropriate eigenvalue of the six-band Hamiltonian [with the values
I (47) of the xz-yz parameters set to zero]. The energy is in meV with respect to the center of the gap. The top of the valence band and the
bottom of the conduction band are ±2G1 = ∓218 meV and the ARPES samples had EF = 75 meV.

the xz- and yz-like valence and conduction (V&C) bands.
All six t2g bands, half of them filled in the stoichiometric
compound, were studied by band theory in paper I [1]. In
paper II [2], we compared the theory with the experiment (by
ARPES) for the filled bands. There, also a WO theory of the
experimentally found ARPES intensity variations was derived
and applied.

As a basis for the initial states we used the six t2g WOs,
wm(r), and Wm(r) with m = xy, xz, and yz, centered respec-
tively on Mo1 and MO1, the most central molybdenums
of the lower and the upper strings, Mo2�Mo1�

Mo4�Mo5 and
MO5�MO4�

MO1�MO2, wiggling around the c + a direction
perpendicular to b, the direction of the quasi-1D conductivity
[see Chart I (15), and Figs. I 2 and I 9]. Due to the approximate
translational equivalence of wm(r) and Wm(r) [see Eqs. I (17)
and I (18)], the photoemission intensity is essentially the pro-
jection of the initial-state band onto the pseudo Bloch sum |k〉,
defined by Eq. I (52). Such a pseudo Bloch sum is a periodic
function of k in the double zone [see Fig. I 8 or II 1], i.e., the
zone of the undimerized lattice [the one with primitive transla-
tions a, (c + b)/2, and (c − b)/2, and reciprocal translations
a∗, c∗+b∗, and c∗−b∗]. The other basis function is simply
|k + c∗〉. In the absence of c-axis dimerization, wm(r) and
Wm(r) are identical, apart from a phase factor, and the |k〉 and
the |k + c∗〉 band structures are each periodic in the double
zone and translated by c∗, i.e., by �kc = 1, with respect to
each other. In the presence of dimerization, the basis functions
become linearly independent and will mix near the crossings
of the |k〉 and |k + c∗〉 band structures, which will now gap

and thereby restore the single-zone periodicity [see Figs. I 6,
I 7, and I 4].

This description of the band structure in paper I, followed
by the theory of the ARPES intensity variations in paper II, ex-
plains our comprehensive set of ARPES data for the occupied
bands (Figs. II 10, II 11, II 12, and II 14), including the obser-
vations that the intensity follows the |k〉 character (Fig. II 4)
and of a surprisingly strong photon-energy dependence of the
photoelectron intensity from the FS (Fig. II 9). The former
means that the ARPES intensity is enhanced for the lower-
energy band in the first- and is extinguished in the second
physical zone; conversely for the higher-energy band, if oc-
cupied [Fig. II 4]. The latter leads us to use hν = 33 eV for
the FS studies to be described in the present paper III, Sec. III.

Figure II 14 demonstrated that refinement of merely 7 of
the over 40 local density approximation tight-binding (LDA-
TB) parameters in our detailed six-band t2g Hamiltonian
[Sec. I (VI)] to fit the ARPES bands lying more than 0.15 eV
below the Fermi level, achieves nearly perfect agreement also
for the kc-dispersion of the quasi-1D bands closer to the Fermi
level. This includes agreement with the size and shape of
the resonance peak in the upper band—blue in panel (c2)—
without having modified any of the 17 (a, g, α, γ ) parameters
I (46) describing the hybridization between the xy and the xz
and yz V&C bands, parameters which, we shall see, decisively
influence the structure of the metallic x̃y bands via the second-
order terms (8) and (9) in the two-band Hamiltonian (4).

The resonance peaks are pushed up (down) in the upper
(lower) x̃y band by the edges of V (C) bands, whose characters
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before hybridization with the xy band are 50% mixed |xz; k〉
and |xz; k + c∗〉 or |yz; k〉 and |yz; k + c∗〉; it is therefore not
obvious to what extent the character (fatness) of the origi-
nal xy bands (the red ones in the middle panel of Fig. II 4)
near kc = ±0.75 or ±0.25 are retained in the hybridized x̃y
bands, and, hence, how strong the ARPES intensity should
be. The selection rule that the ARPES intensity follows the |k〉
character holds also for the two weakly hybridized x̃y bands,
because—to lowest order—the effect of weak hybridization
is to distort the bands. The |k〉 character we then compute
by expressing the two bands in the {k, k + c∗} representation
and add to the diagonal elements, 〈k|H |k〉, of the two-band
Hamiltonian a few small, equidistant energies. This produces
fat bands which include the effects of weak hybridization with
the V&C bands [but neglects the relatively small effects of
dimerization distortion, η(κ), Eq. II (9)].

We therefore need to compute the |k〉 character of the x̃y
bands. This we do by using the Hamiltonian (4) obtained by
downfolding [3] of the V&C blocks of the six-band Hamil-
tonian I (56) in the {k, k + c∗} representation. For simplicity
of the formalism, we neglect the mixing between the xz and
yz WOs, which is a good approximation near the FS, |kb| ≈
0.25, far from the Y and Z points (see Fig. I 8 or II 1). The
derivation of this two-band Hamiltonian will be our first task
in the theoretical Sec. II of the present paper.

The two-band Hamiltonian is also the one from which
we can best understand the origin of the splitting and per-
pendicular dispersion of the two metallic bands shown in
Fig. 1, including their development with increasing kb, which
is surprisingly nonsymmetric around half filling, kb = 0.25.
Having discussed the two bands in great detail in Sec. II B
and understood that merely the light-red xy—but not the
dark-red x̃y—bands can be described by a 2 × 2 TB Hamil-
tonian, we shall, in the final theoretical Sec. II C, present
and discuss their constant-energy contours (CECs); the FS in
particular.

The second part of this paper, starting from Sec. III, is
devoted to the demanding task of using ARPES to determine
the FS and its velocities. First, the challenges, issues, and
methods are discussed in Sec. III A. The results of the FS
and velocity extraction are then shown in Sec. III B. They
are compared with the TB theory using the ARPES-refined
parameters and are finally presented in Fig. 8.

In theory, the (fine-grained) ARPES intensity from each
metallic band is periodic in the double zone (|κc| � 1) with the
intensity from the lower band (outer sheet) dominating in the
first zone (|κc| � 0.5) and the intensity from the upper band
(inner sheet) dominating in the second zone (|κc| � 0.5). Be-
tween zone centers (κc integer), the origin of the dominating
intensity thus switches from one band (sheet) to the other, with
the intensities being equal at the zone boundary (see Fig. 5).
Since the measured spectra of the sheets possess a finite width
in momentum, which is much larger than the splitting of the
sheets, we can only detect the center of gravity of the sum
of intensities from the occupied bands. By taking this into
account, the experimentally obtained FS fits the theoretical
one very well. At the zone boundary, we determined an upper
bound for the splitting, which is, in that sense, in agreement
with the theory, that it is larger than the theoretical value.
Comparing the experimentally extracted velocities with the
theoretical ones, we reach a similar perfect fit as for the FS.
Interestingly, the velocities are generally greater than those for
pure LDA by about 15%, as we discuss in detail in Sec. III B 2.

II. THEORETICAL SPLITTING AND PERPENDICULAR
DISPERSION OF THE TWO METALLIC BANDS

IN THE GAP

A. Hamiltonian for the two metallic bands in the {k, k + c∗}
representation and of resonance form

We start from the six-band Hamiltonian I (56) in the
{k, k + c∗} representation:

H |xy; k〉 |xy; k + c∗〉 |xz; k〉 |xz; k + c∗〉 |yz; k〉 |yz; k + c∗〉

〈xy; k| τ + t iu α + a i(γ + g) ᾱ + ā i(γ̄ + ḡ)
〈xy; k + c∗| −iu τ − t i(γ − g) α − a i(γ̄ − ḡ) ᾱ − ā

〈xz; k| α + a −i(γ − g) A iG λ + l −i(μ − m)
〈xz; k + c∗| −i(γ + g) α − a −iG −A −i(μ + m) λ − l

〈yz; k| ᾱ + ā −i(γ̄ − g) λ + l i(μ + m) Ā iḠ
〈yz; k + c∗| −i(γ̄ + ḡ) ᾱ − ā i(μ − m) λ − l −iḠ −Ā

. (I (56))

Like in Eq. I (35), the argument k of the Bloch sums of
hopping integrals I (36)–I (40) is omitted for brevity and
an overbar, used when switching from an xz to a yz orbital,
indicates the mirror operation kb ↔ −kb.

1. Six-band Hamiltonian in the V&C subband representation

Since the largest off-diagonal elements I (43)–I (47) are
Ḡ and G, which gap the yz bands as in Eq. I (29) and the xz
bands in the same way, but with kb substituted by −kb, we now
turn to a representation in which the xz-xz and yz-yz blocks

are diagonal. This mixed representation is the natural one to
use for downfolding these blocks of the six-band Hamilto-
nian to a two-band Hamiltonian which then describes merely
the two x̃y bands in the gap and—provided that we neglect
the hybridization I (40) between the xz and yz bands—has
the simple resonance form (4). As said above, this approxi-
mation of using the (m, m′)-unhybridized, so-called pure xz
and yz bands [Sec. I (VI C)] is a good one far from Y and
Z, especially near the FS, |kb| ≈ 0.25 (Fig. I 8 or II 1). The
eigenvalues, ±(Ā2 + Ḡ2)1/2, of the yz-yz 2 × 2 diagonal block
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of the six-band Hamiltonian, Eq. I (56), are the yz conduction-
and valence-band (C- and V-band) energies I (29), and so are
±(A2 + G2)1/2 for the xz C

V -band energies. The structure of the
six bands for kb = 0.225, 0.250, and 0.275 as a function of kc

may be seen on the 3rd line to the left in Fig. 2 and we describe
it in Sec. II B.

The orthonormal xz C&V-band orbitals are

(|xzC(k)〉 |xzV(k)〉) = (|xz; k〉 |xz; k + c∗〉)

× 1

2

(
e−iφ − 1 e−iφ + 1
e−iφ + 1 e−iφ − 1

)
,

(I (59))

where the xz band-structure phase φ(k) is that of −A(k) −
iG(k). The |k〉(= 1 − |k + c∗〉) characters—or fatnesses—of
the C

V bands are

f C
V

(k) =
∣∣∣∣e−iφ ∓ 1

2

∣∣∣∣2

= 1 ∓ cos φ

2
, (I (61))

and they are shown on the 3rd line to the right in Fig. 2
in light (dark) blue. While the (C and V) bands are peri-
odic, their fatnesses are periodic in the double zone (see
Fig. I 6).

Using the unitary matrix I (59) to transform the six-band Hamiltonian I (56) to the pure-xz representation in which the V&C
block is diagonal yields:

H |xy; k〉 |xy; k + c∗〉 |xzC(k)〉 |xzV(k)〉
〈xy; k| τ + t iu cc cc

〈xy; k + c∗| −iu τ − t cc cc

〈xzC(k)| (α + a) eiφ−1
2 − i(γ + g) eiφ+1

2 (α − a) eiφ+1
2 − i(γ − g) eiφ−1

2

√
A2 + G2 0

〈xzV(k)| (α + a) eiφ+1
2 − i(γ + g) eiφ−1

2 (α − a) eiφ−1
2 − i(γ − g) eiφ+1

2 0 −√
A2 + G2

(1)

for the first four rows and columns. The last two (yzC and yzV )
rows and columns obtained by transformation to the pure-yz
representation equal those given above for xzC and xzV but
with kb substituted by −kb or A and G substituted by Ā and Ḡ.

2. Löwdin-downfolded two-band Hamiltonian

The WOs for the two x̃y bands in the gap have much longer
range than the xy-WOs shown in Figs. I 5 and I 9, and simi-
larly for the elements in the effective two-band Hamiltonian
compared with the range of the Bloch sums in the six-band
Hamiltonian. For this reason, we do not perform the down-
folding of the xz, XZ , yz, and Y Z WOs into the “tails” of the x̃y
and X̃Y WOs in real space, but in reciprocal space. Real-space
pictures of these downfolded orbitals would be unwieldy and

would crucially depend on the position of the energies E of
the bands in the gap. For the same reason, tables of hopping
integrals would be unwieldy and energy dependent. For the
downfolding from six to two narrow bands near the center of
the gap, we can use simple, analytical Löwdin [3] rather than
numerical (order-N muffin tin orbital) downfolding because
the splitting of the two x̃y bands is far less than their distance
to the C&V-band edges (see the left-hand panels on the 3rd
line in Fig. 2). Hence, the explicit dependence of the two-
band Hamiltonian (4) on the TB parameters I (43)–I (47) is
preserved.

With the hybridization between the xz and yz orbitals ne-
glected, the xz and yz downfoldings are additive:

(|x̃y; E , k〉 |x̃y; E , k + c∗〉) = (|xy; k〉 |xy; k + c∗〉) + δxz;E (|xy; k〉 |xy; k + c∗〉) + δyz;E (|xy; k〉 |xy; k + c∗〉). (2)

Here, the δxz;E and δyz;E perturbations involve the Green’s function for the xz-xz or yz-yz block of the six-band Hamiltonian I (56)
times the corresponding xz-xy or yz-xy hybridization matrix. The representation chosen for the xz and yz states to be downfolded
(integrated out) matters for the formalism, but not for the resulting two-band Hamiltonian. Choosing the pure-m representation
(1) in which the xz-xz and the yz-yz blocks of the Hamiltonian are diagonal we get

δxz;E (|xy; k〉 |xy; k + c∗〉) = |xzC〉
E − √

A2 + G2
(〈xzC|H |xy; k〉 〈xzC|H |xy; k + c∗〉)

+ |xzV〉
E + √

A2 + G2
(〈xzV|H |xy; k〉 〈xzV|H |xy; k + c∗〉), (3)

and similarly for δyz;E . It is by virtue of this choice that the E dependence of the downfolded orbitals enters solely through the
denominators in (3).
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In the {x̃y; E , k, k + c∗} representation (2), the two-band Hamiltonian is finally seen to be(〈x̃y; E , k|H |x̃y; E , k〉 〈x̃y; E , k|H |x̃y; E , k + c∗〉
c.c. 〈x̃y; E , k + c∗|H |x̃y; E , k + c∗〉

)
= τ (kb)

(
1 0

0 1

)
+

(
t (k) iu(k)

−iu(k) −t (k)

)

+ �C(k)

E −
√

A2(k) + G2(k)
+ �V(k)

E +
√

A2(k) + G2(k)
+ �C(k)

E −
√

Ā2(k) + Ḡ2(k)
+ �V(k)

E +
√

Ā2(k) + Ḡ2(k)
, (4)

with the directly coupled terms on the 1st line and the resonance terms for the coupling via the C&V bands on the 2nd line.
The poles at the C&V xz and yz bands, ±[A2(k) + G2(k)]1/2 and ±[Ā2(k) + Ḡ2(k)]1/2, are numbers while the residues, �C (k).
�V (k), �C (k), and �V (k), are 2 × 2 matrices of the following form for the perturbation by the xz C band:

�C(k) =
(|〈xzC(k)|H |xy; k〉|2 〈xy; k|H |xzC(k)〉〈xzC(k)|H |xy; k + c∗〉

c.c. |〈xzC(k)|H |xy; k + c∗〉|2
)

, (5)

and similarly for the perturbation by the xz V band. Since translation of k by c∗ yields

ĉ∗〈k|�|k〉 = 〈k + c∗|�|k + c∗〉, (6)

the two diagonal elements with k in the single zone reduce to one real-valued function of k, periodic in the double zone. For the
purely imaginary off-diagonal element:

ĉ∗〈k|�|k + c∗〉 = 〈k + c∗|�|k〉 = 〈k|�|k + c∗〉∗ = −〈k|�|k + c∗〉, (7)

i.e., it is an antiperiodic function of k in the single zone.
The elements of the matrix (5) are given by those of Eq. (1) in terms of the xz-band phase φ(k) [I (60)] and the Bloch sums

of the xy-xz intra- and inter-ribbon hopping integrals α ± a and γ ± g [I (39)], and may be expressed as

〈k|� C
V

(k)|k〉 = |〈xz C
V

(k)|H |xy; k〉|2 =
[

(α + a) f C
V

∓ (γ + g)
sin φ

2

]2

+
[

(γ + g) f V
C

∓ (α + a)
sin φ

2

]2

(8)

for the diagonal elements, and as

〈k|� C
V

(k)|k + c∗〉 = 〈xy; k|H |xz C
V

(k)〉〈xz C
V

(k)|H |xy; k + c∗〉

= i

[
− (α + a)(γ − g) f C

V
+ (γ + g)(α − a) f V

C
±

(
(α + a)(α − a) + (γ + g)(γ − g)

sin φ

2

)]
(9)

for the off-diagonal elements, which are purely imaginary.
They are shown on the 4th line of Fig. 2 as functions of
kc for kb = 0.225, 0.250, and 0.275 and will be discussed
in Sec. II B 5. On the 5th line, we show the xy-xz intra and
inter-ribbon hopping integrals: to the left α + a in purple and
α − a in gray, and to the right γ + g in turquoise and γ − g in
gray. These Bloch sums are periodic in the double zone and
each gray Bloch sum equals the colored one inside the same
frame, but translated by c∗. This follows from Eqs. I (41) and
(42). Together with the |k〉 characters of the C and V bands,
fC and fV , in respectively light and dark blue on the 3rd line
to the right, 1

2 sin φ is shown in gray.
The residues for the perturbations by the yz C&V bands are

respectively �C (k) and �V (k) with the overbar indicating the
mirror operation kb ↔ −kb.

E is the energy of the x̃y state that we are seeking, i.e.,
the upper or lower eigenvalue of the two-band Hamiltonian
(4), and should therefore be found self-consistently. For states
deep inside the gap, we may substitute E by τ (kb) from Eq. I
(36) because the splitting of the two x̃y bands is far less than
half the gap. Note that E is with respect to the center of the gap
and that it enters the two-band Hamiltonian (4) only through
the denominators of the four resonance terms. Keeping E
as a free parameter therefore provides insight to study how

the perpendicular dispersion of the x̃y bands depend on their
placement in the gap and on the k dependence of the four
residues.

The simplest way to understand the energy dependence of a
Löwdin-downfolded Hamiltonian H̃ (E ) is to consider down-
folding of a 2 × 2 Hamiltonian H : Its exact E eigenvalues
are the roots of the secular determinant |H − E1| = (H11 −
E )(H22 − E ) − |H12|2, which satisfy E = H11 + |H12|2/(E −
H22). ≡ H̃ (E ), showing that H̃ (H11) is the well-known
second-order estimate of the eigenvalue closest to H11 and
that H̃ (E ) has a pole at the energy H22. It should now be
obvious that the six-band Hamiltonian (1) can be downfolded
to a two-band Hamiltonian with the form (4).

B. Origin of the splitting and perpendicular dispersion

Having derived a Hamiltonian (4) for the two metallic x̃y
bands in the gap (Fig. 1) consisting of TB plus resonance
terms, we now take up the thread and trace the nontrivial
features of the bands back to the Bloch sums I (36) and I
(37), τ (kb), t (k), and u(k), of the xy-xy hopping integrals,
to the Bloch sums I (38), A(kc ∓ kb) and G(kc ∓ kb), of the
xz-xz or yz-yz hopping integrals, and to the Bloch sums I (39),
α(k) ± a(k) and γ (k) ± g(k), of the xy-xz hopping integrals.
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FIG. 2. The following caption is for each of the three kb panels: (1st line) The two metallic xy (red) and x̃y (black) bands, decorated with
their |k〉 character, as fct.s of kc in the double zone. (k, k + c∗) unhybridized (left) and hybridized (right). The latter are as in Fig. 1 but
extended to the double zone. As functions of (kb, kc ), the six bands were shown on a 2 eV scale in Fig. I 4 and the two metallic bands are
shown on a 0.3 eV scale in Figs. 3(a)–3(c). (2nd line) Diagonal 〈x̃y; k|H |x̃y; k〉 − τ (kb) (left), and off-diagonal 〈x̃y; k|H |x̃y; k + c∗〉/i (right),
elements of the two-band Hamiltonian (4). In black, the sum of the contributions from the direct, inter-ribbon xy-XY hops (red) and from the
indirect hops via the xz (blue) and yz (green) valence (V) and conduction (C) bands. [Not shown are the xy(k + c∗) and x̃y(k + c∗) bands
minus τ (kb) in thin black]. (3rd line, left) The black x̃y bands in the gap between the blue xz and green yz V (dark) and C (light) bands; the
hybridizations of the two latter with the xy bands were neglected, i.e., εxz = ∓(A2 + G2)1/2, but not vice versa. (3rd line, right) Light (dark)
blue: the probability that at k, the |xz; k〉 character is in the C (V) band is f C

V
≡ (1 ∓ cos φ)/2, Eq. I (61). Gray: (sin φ)/2. (4th line) Diagonal

(blue) and off-diagonal (gray) matrix elements, (8) and (9), in meV2 of the residue for the perturbation of the two-band Hamiltonian via the
xz V band (left) or C band (right). (5th line, left) Bloch sums of xy-xz hopping integrals I (39): α + a(purple), α − a (gray); (right) γ + g
(turquoise), γ − g (gray). These four Bloch sums are periodic in the double zone and each gray Bloch sum equals the colored one inside the
same frame, but translated by c∗. Energies are in meV with respect to the center of the gap. The ARPES-refined parameter values were used.
E in the resonance terms was approximated by τ (kb). See Secs. I (VI) and II A.

This is a long route and the essence may be extracted from the
synthesis in Sec. II B 7.

We start by extending Fig. 1 from the irreducible (0 � kc �
0.5) to the double (−1 < kc � 1) zone in which all Bloch
sums are periodic (the Greek- and Latin-lettered Bloch sums
are periodic in respectively the single and the double zone).
This is done in Fig. 2 on the top line to the right (the figure to
the left will be described in the last paragraph of this section),
in each of three panels, for kb = 0.225, 0.250, and 0.275, i.e.,
along the brown, red, and olive dot-dashed lines in Fig. I 8 or
II 1. For clarity, the color of the x̃y bands has been changed
from dark-red to black in Fig. 2.

Upon increasing kb from 0.225 to 0.275, we see the x̃y
bands develop from having strong upward-pointing peaks in
the upper band near kc = ±0.75 and ±0.25, plus small down-
ward bulges in the lower band around kc = ±0.5, over having
reduced peaks and increased bulges—and thus minimal to-
tal width—near midgap, to having large downward-pointing
peaks connected pairwise by large bulges in the lower band,

plus reminiscences of the upward-pointing peaks in the up-
per band. This development is far from symmetric around
the midgap energy (≡0), despite the fact that the V and C
bands on either side of the direct gap have the same character,
apart from being respectively xz-XZ (or yz-Y Z) bonding and
antibonding. In the present section we show in didactic detail
that the origin lies in the complicated bi-products (5) forming
the residues �(k) of the matrix elements for the resonant
couplings.

On lines 2–5 in Fig. 2, we identify and analyze the indi-
vidual contributions from the direct xy-xy hops (red) and the
indirect hops via the xz (blue) and yz (green) V&C bands to
the diagonal and off-diagonal elements 〈x̃y; k|H |x̃y; k〉 and
〈x̃y; k|H |x̃y; k + c∗〉, of the two-band Hamiltonian (4). We
end on line 5 with α(k) ± a(k) in purple (gray) and γ (k) ±
g(k) in turquoise (gray).

For simplicity in Fig. 2, we have substituted E in the
denominators of the resonance terms (4) by τ (kb) and
shall use a notation in which we drop this argument from,
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e.g., 〈x̃y; τ (kb), k| H |x̃y; τ (kb), k + c∗〉. This approximation
slightly enhances the peak features, as may be seen by com-
parison of Figs. 1 and 2.

The bands—but not their |k〉 decoration (extra fatness)—
have the proper single-zone period 1 in kc. Where one band is
fat and the other not, those bands have respectively pure |k〉
and pure |k + c∗〉 character. This is the case for integer values
of kc, whereas for half-integer values, the two bands are of
50% mixed character.

To the left on the 1st line, we show in respectively
fat and thin lines the unhybridized x̃y(k) and x̃y(k + c∗)
bands. These are the diagonal elements 〈x̃y; k|H |x̃y; k〉 and
〈x̃y; k + c∗|H |x̃y; k + c∗〉 of the two-band Hamiltonian (4)
and have the double-zone period 2 in kc.

1. Peak, bulge, and contact features

The primary feature of the x̃y bands in the gap, the res-
onance peaks, originate from either an xz-band edge, which
runs along a blue YZY′ line in Fig. I 8 and II 1, or from a
yz-band edge, which runs along a green YZY′ line in the same
figure, and are therefore located at the crossings between such
a line and the two red x̃y-band CECs seen in the uppermost
panels of Fig. II 10(b). In the CECs, the resonance peaks
appear as notches. With reference to the bands for fixed values
of kb in Fig. 1, a resonance peak is located where a band edge
crosses the appropriate constant kb line (dot-dashed in Fig. I 8
and II 1). The resonance features are therefore well separated
in kc as seen in Fig. 2 on the 1st line to the right.

From the fatnesses of the bands we see that the resonance
peaks have almost pure |x̃y; k〉 or |x̃y; k + c∗〉 character, al-
though the V&C-band edges have ≈50% mixed |xz; k〉 and
|xz; k + c∗〉 (or |yz; k〉 and |yz; k + c∗〉) characteristics, as we
saw along �W ( kc = 1

4 ) and �′W′ (kc = 3
4 ) in Figs. II 11(d)

and II 11(e). The strong |k〉 character is what enabled us, in
Sec. IV B of paper II [2], to detect with ARPES the large peak
in the upper x̃y band from the resonance with the blue xz va-
lence band at k = (0.225, 0.725), mirrored (“symmetrized”)
around kc = 0.5 to (0.225, 0.275). That the lower x̃y band
merely exhibits a shoulder at (0.225, 0.725) will be explained
later, at the beginning of Sec. II B 5.

The understanding is quite different for the secondary fea-
ture, seen around the BZ boundaries (kc = ±0.5) on the 1st
line in Fig. 2 to the right (but absent to the left). This feature
consists of a bulge in the lower band and the concomitant
filling-in of the valleys between the neighboring resonance
peaks repelled by the xz and yz V or C bands, whichever
is closer in energy. These neighboring resonance peaks are
therefore in the upper x̃y band when kb = 0.225 and 0.250 and
in the lower x̃y band when kb = 0.275. The bulge is caused by
the hybridization between the x̃y(k) and x̃y(k + c∗) bands—
displayed to the left—which cross at kc = ±0.5 and split by
±|〈x̃y; k|H |x̃y; k + c∗〉|. The latter, off-diagonal matrix ele-
ment of the two-band Hamiltonian (4) is shown in black on
the 2nd line to the right. This element is seen to attain its
largest absolute value near kc = ±0.5 and, here, to have equal
contributions from the indirect hops via the xz (blue) and yz
(green) bands, and to be amplified by the direct xy-xy (red)
contribution. To the left, and in the same colors, are shown the
diagonal element 〈x̃y; k|H |x̃y; k〉 and its three contributions.

Also the third characteristic feature of the x̃y bands, the
near contact between the two bands—and in particular be-
tween their CECs [Fig. 3(d)]—on the �Y and �′Y′ lines
(kc = integer), is connected with the hybridization between
the x̃y(k) and x̃y(k + c∗) bands, albeit with its zero rather
than its maximum (Fig. 2, black curve on the 2nd line to
the right). In ARPES [Fig. II 14(c2)], as well as in previous
calculations [4], an apparent crossing on the �Y line (kc =
0) was noted and a TB description attempted [5]. With our
improved resolution, this peculiarity is now seen [Fig. 3(d)]
as a splitting between the two CECs, which along �Y is
anomalously small2 and even decreases with energy. This is
in contrast with the relatively large splitting along ZC (kc =
1/2 + integer) which is caused by (k, k + c∗) hybridization
and increases with energy. The splitting at integer kc is even
smaller than that of the directly coupled, red bands. This
is simple to understand: First of all, the splitting, 2t (k) =
8(t1 cos πkb + t2 cos 3πkb), of the red bands decreases from
46 meV for kb = 0.225 to 24 meV for kb = 0.275. Second,
along �Y (kc = 0) the pure xy(k), xz(k), and yz(k) bands are
all bonding between ribbons while the xy(k + c∗), xz(k + c∗),
and yz(k + c∗) bands are all antibonding [see Fig. I 6]. Since
both xy bands in the gap lie above the xz(k) and yz(k) bands,
but below the xz(k + c∗) and yz(k + c∗) bands, the valence
bands will push the bonding xy(k) band up, and the conduc-
tion bands will push the antibonding xy(k + c∗) band down
in energy. Hence, the hybridization with the xz and yz V&C
bands will diminish the separation between the xy bands.3

It is remarkable that, in a region around kc = integer, the
lower x̃y band runs parallel to the red xy band and that the kc

region over which this happens, as well as the distance above
the xy band, decreases with increasing kb.

We emphasize that neither of the three characteristic fea-
tures of the two metallic bands in the gap can be described
by merely a 2 × 2 TB Hamiltonian, but need the resonance
terms. The three characteristic features are seen as functions
of (kb, kc) on the left-hand side of Fig. 3 in Sec. II C, to which
we shall return.

2. Directly coupled terms

We now systematically identify the different terms of the
two-band Hamiltonian (4).

Its first term, the energy τ (kb) of the two degenerate 1D
intraribbon xy bands, is included only on the 1st line of Fig. 2,
where it is the average of the two red, directly coupled xy
bands, xy(k) and xy(k + c∗) to the left, or of the (k, k + c∗)-
hybridized bands to the right. This average is independent of
kc. On the 2nd line to the left, τ (kb) is neither included in the
red, directly coupled xy(k) band, nor in the black, directly plus
indirectly coupled x̃y(k) band.

The second term in Eq. (4) is the xy block of the six-band
Hamiltonian I (56) and it gives the perpendicular dispersions

2Including the xz-yz hybridization, i.e., the (λ, l, μ, m) hopping
integrals, as was done in Figs. I 14(c2) and 3(d) but was neglected
in the two-band Hamiltonian and, hence, in Figs. 2 and 1, decreases
the splitting between the x̃y bands for integer kc by a factor ≈2.

3The result along �′Y′ (kc = ±1) is of course the same although,
there, the |k〉 bands are antibonding and the |k + c∗〉 bands bonding.
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FIG. 3. (a)–(c) The two x̃y quasi-1D bands in the gap for the six-band Hamiltonian I (56) with the ARPES-refined parameter values I (43)–I
(47). The k-space region considered is the stripe ±10% around kFb in the upper half of the 1st and the lower half of the 2nd BZ, 0 � kc � 1.
The energies of (a) the upper, (b) the lower, and (c) both metallic bands, relative to the center of the gap, defined as 0. EF = 75 meV above
the center. (d) CECs calculated by tracing the roots of the secular determinant |H (kb, kc ) − E |. The colors indicate the orbital characters of the
bands. The notches in the inner sheet point to Z and those in the outer sheet to Y and Y′ (see Figs. 1 and 10 in paper II [2]). The CECs have
been compressed by a factor 3.3 along kc in order to make their warping visible. The ratio between the warping δk i

o Fb of each (inner or outer)
FS sheet and kFb ≈ 0.25 is ≈0.02. This is ≈5 times more than without the resonant coupling to the V&C bands (see red bands for kb = 0.25
in Figs. 1 and 2).

and splitting of the red xy bands shown on the 1st line in
Fig. 2. The corresponding diagonal and off-diagonal matrix
elements, t (k) and iu(k), are the Bloch sums of respectively
the average xy-XY hoppings and their dimerizations. They are
given in Eq. I (37) and are shown in red on the 2nd line to,
respectively, the left and the right. These Bloch sums of direct
hoppings are seen to depend little on kb in the ±10% interval
around kF .

Also the TB model [5] upon which current Tomonaga—
Luttinger-liquid (TLL) theories [6,7] are based, includes first-
and second-nearest-neighbor terms. But in the attempt to fit
the peak, bulk, and band-crossing features of the LDA FS [4]
without recognizing their resonant nature, the resulting TB
model had an unphysical form (containing, e.g., sin πkc and
sin 2πkc terms) and, as a consequence, its parameter values
are incompatible with ours. That the magnitude of its FS warp-
ing is several times ours is partly because the stoichiometry
was taken to be Li0.90 rather than Li1.02.

3. Symmetries

The red directly coupled and the black directly plus indi-
rectly coupled |k〉 bands shown to the left on the 2nd line are
even around kc = integer. The red and black matrix elements
shown to the right couple each of these bands to itself after a
translation of kc by one. These off-diagonal elements, divided
by i, are odd around kc = integer and even around kc = ±0.5.
The indirect couplings alone, i.e., the perturbations of the
x̃y-band Hamiltonian by the xz or yz V&C bands, are shown
in, respectively, blue and green. They are related to each other
by a sign changeII8 of kb, and those blue and red curves to the
left (right) are related to each other by a mirror (antimirror)
operation around kc = integer. Moreover, each of the blue and
green curves to the right change sign upon kc translation by
one, i.e., they are antiperiodic, Eq. (7).

4. Indirectly coupled terms; role of the denominators

The indirect couplings via the xz and yz bands are additive
and given by respectively the third and fourth and the fifth and
sixth terms in expression (4), provided that the hybridization
between the xz and yz bands is neglected.2 The perturbations
via the xz and yz bands have been subdivided into V and
C bands whereby each of them takes the form of a single
resonance (pole) with the denominator being the distance
between the narrow x̃y band and one of the four xz or yz V or
C bands. The energy of the former is E [∼τ (kb)], the energy
of an yz band is given by expression I (29), and that of an
xz band by the same expression with kb substituted by −kb.
While each denominator is a single-periodic scalar function of
k, each nominator (residue) is a double-periodic 2 × 2 matrix
function given by Eqs. (5)–(9).

From now on, we shall take advantage of the symmetries
mentioned in the previous Sec. II B 3 between the blue xz
and the green yz perturbations of the two-band Hamiltonian
to consider merely the blue xz perturbation, which we shall
trace back from the 2nd line in Fig. 2 to the Bloch sums A
and G (of respectively the symmetric and asymmetric xz-xz
integrals for hopping inside and outside a biribbon), giving the
xz C&V-band energies to the left and their characters, fC , to
the right on the 3rd line, and to the Bloch sums of the integrals
for hopping between the xy and xz WOs on the 5th line.

The most important factor influencing the shapes of the
diagonal and off-diagonal matrix elements shown in blue on
the 2nd line to the left and the right, and given by the third and
fourth terms in Eq. (4), is their common energy denominator.
This is the distance seen on the 3rd line to the left between the
x̃y bands in black and the xz V or C bands in, respectively, dark
and light blue. Also shown are the yz V and C bands in, re-
spectively, dark and light green. The edges, ∓2|G1|, of the xz
bands (blue in Fig. I 8 and II 1) are along kc = kb ∓ 1/2 + 2n,
which for the three chosen values of kb, and for kc in the
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(−1|1) double-zone are at kc ≈ −0.25 and 0.75. This is where
the xz-band edges may cause resonance peaks in the x̃y bands.
The |k〉 characters of the xz V and C bands, fV and fC , are
given by respectively the dark- and light-blue curves to the
right on the 3rd line in Fig. 2.

When kb = 0.225, there is a large peak in the |k + c∗〉
unhybridized x̃y(k) band on the 1st line to the left near 0.75
and a small one near −0.25. On the 2nd line, both peaks
are blue and point upward, i.e., are caused by repulsion from
the xz valence band. Their sizes decrease strongly as—with
kb increasing—the x̃y bands move upward, away from the
valence band. For kb = 0.250, the peaks can still be seen in the
unhybridized x̃y(k) bands, as well as in the fully hybridized x̃y
band on the 1st line to the right. But for kb = 0.275, when the
upper x̃y band is touching the bottom of the C-band edge, only
the peak from the xz V-band resonance near 0.75 has survived.
The small peak near −0.25 has been overpowered by a large,
downward pointing C-band resonance, shaped like a canine
tooth. Going back to kb = 0.250, this tooth is reduced to a
“hole” on the low-kc side of the small, blue V-band peak near
kc = −0.25.

The contribution from the xz V&C bands to the hybridiza-
tion between the x̃y(k) and x̃y(k + c∗) bands is shown in
blue (and divided by i) on the 2nd line to the right. Whereas
the diagonal element (8) of the residue matrix (5) is never
negative, its (k, k + c∗)-mixing off-diagonal elements (9) are
purely imaginary and antiperiodic, i.e., they change sign upon
translation of kc by one. For kb = 0.225 the blue peak pointing
downward near 0.75 is similar to that of the diagonal element
pointing upward, but its magnitude is reduced by roughly a
factor of two. For kb increasing, this peak decreases further
and it gets superposed by the growing antiperiodic canine-
tooth structure. At the zone boundaries (ZBs), kc = ±0.5,
and the x̃y(k) and x̃y(k + c∗) bands are degenerate but get
split by ± the numerical value of the off-diagonal element
of the two-band Hamiltonian (4), which is seen to increase
strongly with kb. The reason is—as we shall see below—that
the contribution from the V band nearly vanishes at the zone
boundaries. The uncompensated repulsion from the C band is
then what causes the development of the bulge in the lower x̃y
band.

The V band thus causes peaks in the upper x̃y band, and the
C band causes merging canine teeth plus ZB-centered bulges
in the lower x̃y band. The peaks and the teeth are resonance
features occurring where the FS, |kb| ≈ 1/4, crosses between
the edges, |kc ± kb| = 1/2, of xz- and yz-like V&C bands.

5. Indirectly coupled terms; role of the residues

The sign of a resonance term is that of its denominator, i.e.,
it is repulsive. As a consequence, if the Hamiltonian minus
τ (kb) is dominated by one of the resonance terms, e.g., due
to a small denominator, that term will repel one of the two
xy bands, and leave the other band unperturbed. Examples are
seen on the 1st line to the right in Fig. 2: Where a resonance
peak exists in one of the x̃y bands, there is merely a tiny peak
or shoulder in the other band. Taking, first, the resonance peak
as the one caused by the blue xz valence band near kc = 0.75
for kb = 0.225 or 0.250, the resonance terms parts relevant for

the blue δxz perturbation on the 2nd line to the left,

〈k|�V |k〉
τ (kb) +

√
A2(k) + G2(k)

and

〈k + c∗|�V |k + c∗〉
τ (kb) +

√
A2(k) + G2(k)

,

are those near kc = 0.75 and −0.25. The closeness of the
black and blue curves confirms that the Hamiltonian is, in
fact, dominated by this one resonance term. Next, we go to
kb = 0.275 where the x̃y bands are located just below the
bottom of the C bands. The peak in the upper band caused
by the repulsion from the V-band edge can still be seen on
the top line to the right near kc = 0.75, but the nearby C-band
edge repels the lower band much further. In fact, it is now
the upper band which is the flatter and has an energy near the
upper red, pure xy band. The closeness of the black and blue
curves on the 2nd line to the left confirms that the Hamiltonian
is dominated by the xz-band resonances, with a minor, peak-
shaped contribution from the V band near kc = 0.75 and a
major, contribution with the shape of a canine tooth from the
C band near kc = −0.25. This behavior is also clearly seen
in the band structures, Figs. II 12 and II 14, along the ZY and
W� lines as was described in Sec. IV of paper II [2]. This
could be another reason for the “nonlinearity” seen in Fig. 7.

The residues �(k) of the four resonance terms in expres-
sion (4) are 2 × 2 matrices (5) with diagonal elements forming
a real-valued, non-negative function of k which is periodic
in the double zone (6) and imaginary off-diagonal elements
forming an antiperiodic function of k in the single zone (7).
These properties are clearly exhibited by the plots of expres-
sions (8) and (9) on the 4th line of Fig. 2 showing �C (k)
on the right-hand sides with the diagonal element 〈k|�C |k〉
in light blue and the off-diagonal element 〈k|�C |k + c∗〉/i in
gray. Similarly on the left-hand sides: �V (k) with the diagonal
element 〈k|�V |k〉 in dark blue and the off-diagonal element
〈k|�V |k + c∗〉/i in gray. Whereas the light blue conduction
band residue follows |k〉 character of the conduction band, fC
(3rd line to the right), as expected, the dark blue valence-band
residue drops to zero near kc = 0.5, which is in the middle
of the region where the |k〉 character of the valence band
dominates, and the same happens near −0.1. Expression (8)
together with the plots of α ± a and γ ± g on the 5th line
show that the reason for the unexpected behavior of �V is
the U shape with two zeros of α(k) + a(k). The zero of �V

near −0.85 is caused by the zero of γ (k) + g(k) shown in
turquoise on the bottom line to the right.

The peaks due to resonances with the xz bands occur near
the xz-band edges. Exactly at the edges, fC = fV = 1/2 and
sin φ = ±1. The k-conserving part of the residues therefore
takes the values

〈k|� C
V
|k〉 = 1

2 [(α + a) ± (γ + g) sin φ]2. (10)

The magnitudes and signs of α + α and γ + g shown in re-
spectively purple and turquoise on the 5th line, cause the �V

coupling at the kc = 0.75 edge (where sin φ = −1) and the
�C coupling at the kc = −0.25 edge (where sin φ = 1) to be
much stronger than the two others, i.e., than the �V coupling
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at −0.25 and the �C coupling at 0.75, which even has a “hole”
here. This is exactly the behavior of the blue peaks seen on the
2nd line to the left.

We finally come to the gray, off-diagonal elements,
〈k|�|k + c∗〉, on the 4th line. They are—roughly speaking—
antiperiodic (7) versions of the double-periodic blue, diagonal
elements. The reason why the gray 〈k|�V |k + c∗〉 to the left
is far more wiggly than the gray 〈k|�C |k + c∗〉 to the right,
is that not only does the former possess the two “extra” zeros
from α + a near −0.1 and 0.5, as well as the one from γ + g
at −0.85, but also those translated by 1, i.e., those near −0.5,
0.9, and 0.15.

These very different kc dependencies seen on the 4th
line of the blue 〈k|�C |k〉 and 〈k|�V |k〉 curves, and of the
gray 〈k|�C |k + c∗〉 and 〈k|�V |k + c∗〉 curves, i.e., of the
conduction- and valence-band residues, are the causes of the
strong asymmetry of the perpendicular dispersion and split-
ting of the metallic bands around the center of the gap.

6. xy-xz and xy-yz hopping integrals

The purple α ± a and turquoise γ ± g Bloch sums I (39)
shown on the bottom line are determined by the hopping
integrals, an, gn, αn, and γn, computed as matrix elements
I (9) of the LDA Hamiltonian between nth-nearest-neighbor
xy and xz (or XZ ) WOs (see Fig. I 9) with the results given
in Eq. I (46). Specifically, the integrals for hopping be-
tween xy and XZ WOs on different sublattices are an ± gn.
Here, a1 is the average of and g1 half the difference be-
tween the integrals for hopping from xy at the origin to XZ
on the neighboring ribbon, inside or outside the same bi-
ribbon, i.e., to XZ at respectively −0.012a − 0.5b+0.467c
and −(0.012a−0.5b+0.533c); similarly for a′

1 and g′
1, except

that the XZ orbital is translated by b. For a2 and g2, the XZ
WO is translated by −2b, and for a′

2 and g′
2, by 2b. For the

Greek-lettered hopping integrals, the two orbitals are on the
same sublattice. Specifically, the integrals for hopping from
xy at the origin to xz at ±b are α1 ± γ1, to xz at ±c are
α2 ± γ2, to xz at ±(c + b) are α3 ± γ3, and to xz at ±(c − b)
are α′

3 ± γ ′
3. Calling γ an electronic dimerization is really a

misnomer, because the reason for its existence is simply the
difference of relative orientation of the two orbitals. Finally,
α0 is the xy-xz on-site (crystal-field) term.

The parameters dominating the behavior of the α + a
Bloch sum are the integral for hopping between the xy and XZ
nearest-neighbor WOs, a1 = −49 meV, and the crystal-field
term, α0 = 31 meV. Had the former been the only nonvan-
ishing parameter in the α + a Bloch sum, the corresponding
term, 2a1 cos π (kc − kb), would have killed the peak from
the valence-band resonance at |kc − kb|=1/2. So, clearly, this
peak—convincingly observed with ARPES—is sensitive to
the value of the crystal-field term caused by the ribbon-
inversion (see Sec. IIIA in Paper I) and to the details of the
xy-XZ and xy-xz hoppings. Note that none of these parameter
values were adjusted to fit the ARPES.

7. Synthesis

From the bottom three lines in Fig. 2 we have seen that the
kc-dependencies of the A, G, α + a, and γ + g Bloch sums of

the xz-xz and xy-xz hopping integrals change relatively little
for kb in the ±10% range around kF = 1/4.

By far the strongest kb-variation of the black x̃y bands
displayed on the top two lines is the one coming from the
denominators of the 3rd resonance terms via E ≈ τ (kb), to be
seen on the 3rd line to the left, in combination with the very
different shapes of the V- and C-band residues seen on the 4th
line to respectively the left and the right.

What makes the blue resonance peak caused by the edge
of the xz V band—seen on the 2nd line to the left near kc =
0.75—differ in shape from the (unhybridized) blue canine-
tooth resonance near kc = −0.25 caused by the edge of the
xz C band, is the zero of the purple α + a near kc = 0.5 seen
on the bottom line. This zero is a bit inside the frame of
the dark blue fV window (−0.25|0.75) and therefore “cuts
a hole” in �V on the low-kc side of the resonance, which is
thereby sharpened up. Nothing like this happens for �C near
kc = −0.25, because the zero of α + a near −0.1 is outside
the fC window (−1.25| − 0.25). Hence, it is the shape of the
canine tooth which is the simpler!

On the other hand, as seen for kb = 0.275 on the 1st line
to the left, the backside of the tooth at kc = −0.25 reaches
across the ZB at −0.5, where it is crossed symmetrically by
the backside of the x̃y(k + c∗)-band tooth caused by the reso-
nance with the yz C band at −0.75. To the right and in black,
we now see that strong (k, k + c∗)-hybridization around −0.5
merges the canine teeth in the lower band at −0.75 and −0.25,
thus resulting in a 60-meV splitting of the two x̃y bands.

We can go back and compare with what happens for kb =
0.225. Here, we see on the 2nd line to the left that the blue
resonance peak at 0.75 is so sharp that it hardly reaches the
ZB at 0.5 and therefore hardly overlaps the peak at 0.25 in the
x̃y(k + c∗) band (seen above on the 1st line) from the yz va-
lence band. Moreover, the hybridization at the zone boundary
ZB is much weaker than for kb = 0.275 (black curves to the
right on the 2nd line) so that it merely leads to the formation
of a bulge in the lower band, 35 meV below the minimum in
the upper band between its resonance peaks (1st line to the
right).

The zero of the purple α + a near kc = 0.5 which sharp-
ens the peaks from the V bands, also makes the V bands
(dark blue and dark green on line 3) contribute nothing to
the (k, k + c∗) hybridization at the ZB. The hybridization,
therefore, comes exclusively from the C bands and from the
dimerization u of the direct, perpendicular hops (red curves to
the right on the 2nd line). The blue and the green—equally
large—contributions each have a residue given by the value
at kc = 0.5 of the gray curve to the right on line 4. For kb

increasing from 0.225 to 0.275, this value increases from 2500
to 3500 meV2 and thereby enhances the dominating effect of
the decreasing denominator.

Finally, we explain why, around kc = 0, the lower band is
so flat, more than the upper band, and why with increasing kb

this flatness increases and its range decreases.
But first, we explain why the repulsion of the upper x̃y

band by the C band increases far less with kb than expected
from the decrease of the denominators (3rd line, left). The
reason is found on lines 4 and 5: For the upper band near
kc = 0—which is the x̃y(k + c∗) band and, hence, the x̃y(k)
band near ±1—the light-blue C-band residue �C (kb, kc ∼
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±1) decreases by nearly a factor four for kb increasing from
0.225 to 0.275, mainly because α + a decreases by almost a
factor two. This trend is furthermore enhanced by a nonva-
nishing repulsion from the V band whose dark-blue residue
near kc = ±1 hardly changes with kb and thus becomes more
important when �C (kb,±1) is small.

The reason why around kc = 0 the black lower x̃y band
runs parallel to the red xy band is (see line 2 to the left) that the
repulsions from the blue xz and the green yz V bands disperse
in opposite directions away from kc = 0, whereby their effects
on the dispersion cancel. The reason why the distance of the
black band above the red band as well as the kc extent of
its flat part decreases with increasing kb, is the same as the
reason why the blue resonance peak near kc = −0.25 is much
smaller than the one near 0.75, namely: that for the dark-blue
V-band residues on the 4th line �V (kb,−0.25) is much less
than �V (kb, 0.75), and this—in itself—is because the zero
of α + a at kc = −0.1 is closer to −0.25 than the zero at
0.5 is to 0.75 (purple curves on line 5). As we now—with
kb increasing—move up in the metallic bands, the V-band
perturbation decreases due to the increasing energy denomina-
tor and—as the C band is approached—canine teeth growing
near kc = −0.25 and 0.25 limit the region over which the
lower band is flat.

We conclude that the remarkable asymmetry between the
contributions from the V&C bands to the kc dispersion and
splitting of the x̃y bands in the gap is mainly due to the dif-
ference between the positions of the V&C bands with respect
to the structure in the k-conserving α + a Bloch sum of the
xy-xz hopping integrals. Specifically, the zero of α + a near
kc = 0.5 is inside the region where the V band is formed by
the xz(k) band—and the C band by the xz(k + c∗) band (see
dark- and light-blue curves in the figures to the right on line
3)—and not the other way around.

C. Constant-energy contours

On the left-hand side of Fig. 3, we show the upper
[Fig. 3(a)], the lower [Fig. 3(b)], and both [Fig. 3(c)] metal-
lic x̃y bands in the gap, which extends from −218 meV to
+218 meV, as functions of (kb, kc) in the stripe 0.225 � kb �
0.275 and 0 � kc � 1. From the description at the beginning
of Sec. II B, we recognize the development of the bands—for
kb increasing—from having strong, upward-pointing reso-
nance peaks near kc = 0.75 and 0.25 in the upper band
[Fig. 3(a)], plus a small downward bulge around kc = 0.5 in
the lower band [Fig. 3(b)], over having reduced peaks plus
a wider and deeper bulge—and minimal width—near midgap,
to having strong, downward-pointing resonance peaks (canine
teeth) connected by a large bulge in the lower band, plus
reminiscences of the upward-pointing resonance peaks in the
upper band. The splitting between the two bands [Fig. 3(c)] is
smallest at kc = integer where the |k〉 and |k + c∗〉 characters
cannot mix and where the direct and indirect hoppings work
in opposite directions.

In Fig. 3(d), we show the constant energy contours (CECs)
for kb positive and energies ranging from 100 meV below
to 100 meV above the Fermi level which is, itself, 75 meV
above the center of the gap. For E − EF = −100 meV, we
recognize from the LDA-TB part of Fig. II 10, two notches

-0.4 0.0 0.4
κb

-0.4 0.0 0.4
κb

-1.0

-0.5

0.0

0.5

1.0

c

-0.4 0.0 0.4
κb

min.
max.

Sample H 
T=6K, hv=30eV

Sample H 
T=6K, hv=33eV

Sample G 
T=30K, hv=30eV

FIG. 4. Three Fermi surfaces out of the data which we use in
the following analysis. The two first (similar to Fig. II 9) are from a
sample H at T = 6 K measured at two photon energies, hν = 30 eV
and 33 eV, corresponding to κa = 6.3 and 6.6, respectively. The last
is from a sample G with hν = 30 eV, κa = 6.3. The figures have
been stretched along κc by a factor 1.7; compare with Figs. II 1 and
II 10(b), which are to scale.

pointing toward Z in the inner sheet and, in the outer sheet, a
bulge centered at the ZB, kc = 0.5. As the energy increases,
so does the distance between the bulge and the inner sheet, the
notches shrink, and new notches develop in the outer sheet,
on either side of the bulge, and pointing toward Y and Y′. It is
obviously the resonance peaks pointing upward (downward)
in the upper (lower) band which give rise to the notches
pointing toward Z (Y and Y′) in the inner (outer) sheets.
Along �Y (kc = integer), the two sheets are in near contact.

Since the quasi-1D bands disperse far more along kb than
along kc, the shape of two CECs in [Fig. 3(d)] resembles
that of the two energy bands in Fig. 1 or in Fig. 2 on the
1st line, to the right. The E ↔ kb scaling is approximately:
dE = −τ ′(kb)dkb, with τ ′(kb) being the dominating part of
the Fermi velocity [I (48)]. This resemblance is less good
close to the edge of the C or V band where the hybridization
with the edge makes the two bands and the two CECs behave
differently: Whereas one band remains undistorted, the other
gets repelled and, eventually, fuses with the CECs of the edge
(see Fig. II 10).

If we interpret a CEC as a doped FS, an energy increase of
50 meV corresponds to a 4% increase of the electron doping,
and the undoped FS is the CEC whose kb averaged over kc

equals 1/4.
We now analyze the ARPES data for energies closer to

the Fermi level than the 0.15 eV studied in paper II [2] and
identify further features of the theory discussed above.

III. EXPERIMENTAL FERMI SURFACE AND VELOCITIES
AND COMPARISON WITH THEORY

In this section we describe our analysis of the ARPES data
taken from the intensity cube I (E , κb, κc). Figure 4 shows the
FS obtained from sample H at T = 6 K measured at the two
photon energies hν = 30 eV and 33 eV, which correspond to
κa = 6.3 and 6.6, respectively, and from sample G with hν =
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30 eV, κa = 6.3. We know from theory that the FS consists of
the four values (left and right, inner and outer sheets) of the
Fermi-momentum κFb as a function of κc when the dispersion
with κa is neglected.

At first glance the experimental FS does not appear to have
inner and outer sheets. However, one can clearly see by eye
in Fig. 4 that the black vertical lines (representing the FS) are
not exactly straight, but are slightly “breathing” inward and
outward in a regular pattern. In the following, we examine
this breathing more meticulously. We find that it is the result
of our selection rule causing the observed FS to switch from
one sheet to the other. Furthermore, the shape of each sheet
is found to be consistent with our theory. Nonetheless, as
we have shown in past work [8–10] and as discussed further
below, we emphasize that the FS is defined by dispersing
lineshapes with non-Fermi-liquid features that are generic
to the Tomonaga–Luttinger (TL) model. The selection rule
explains a puzzle from this past work, that we were able to
analyze the lineshapes with a one-band TL spectral theory,
even though there are actually two bands. We now understand
that for most of k space, ARPES sees only one band at a time.
Before presenting and discussing the data in relation to our
theory, we discuss the challenges and issues we are facing and
explain the method we are using. This method also enables
the κb-projected Fermi velocity to be extracted as a function
of κc.

A. Challenges, issues, and methods used
for the Fermi-surface determination

1. LiPB-specific issues

As explained in detail in paper II Sec. II [2], the ARPES
intensities from the six t2g(m = yz, xz, xy) bands in lithium
purple bronze (LiPB) display fine- and coarse-grained varia-
tions.

While the two subbands of a given m are periodic in the
single zone, the fine-grained intensity modulation considered
in paper II Sec. II B1 follows the |k〉 character, apart from
the nearly canceling phase shifts from the inversion and dis-
placement dimerizations. It is therefore almost periodic in the
double zone (Figs. II 1, II 2, and II 3), as if the ribbons had
been translationally equivalent (paper I [1], Sec. III A) with
the intensity from the lower m band in the first zone and the
intensity from the upper m band in the second zone. Due to
the dimerization of the ribbons, the m-band is gapped at the
physical zone boundary and the shift from one subband to the
other of the dominating |k〉 character takes place over a region
around this boundary. This was illustrated in the bottom part
of Fig. II 4 for kb = 0.225 and we now repeat this in Fig. 5,
but only for kb = 0.245 and the two x̃y bands, i.e., those with
energies less than ≈100 meV below EF . The tilde and the
dark-red color indicate that these xy-like bands are hybridized
with the valence (V) and conduction (C) xz and yz bands
which give rise to the peak-, bulge-, and near-contact features
first mentioned in Sec. II B 1. The second zone extends from
kc = −1 to −0.5 and from 0.5 to 1, with the first zone in-
serted between them from −0.5 to 0.5. Only near the zone
boundaries kc = ±0.5 does ARPES see both bands of which
the lower has a large bulge whose minimum is split from the
upper minimum by as much as 50 meV. The near contact

between the two bands [sheets in Fig. 3(d)] at kc integer is
not directly seen in ARPES, because here, one of the bands
(sheets) is extinguished, the upper band (inner sheet) at even
kc and the lower band (outer sheet) at odd kc. The resonance
peaks in the upper band are clearly seen at |kc| = 0.76.

Since without the fine-grained ARPES intensity modula-
tion, each band is periodic in the single zone (see Figs. 1
and 2 top line to the right), symmetrization of the ARPES
bands around the zone boundaries enabled us in paper II [2]
to reconstruct the dispersions continuously (Figs. II 10 and II
11). However, with hν = 30 eV, the coarse-grained intensity
of the x̃y bands falls off rapidly for κc > 0.5, and this made
it difficult, but—thanks to the fine-grained modulations—not
impossible to detect the resonance peaks in the upper band
[see Fig. II 14(c2)]. Later, we realized that the spread of the
Wannier orbital onto several molybdenums makes the coarse-
grained intensity sensitive to the photon energy, which can
therefore be chosen to yield good visibility over a sufficiently
wide range of κc and to produce cancellation between the
inversion and displacement phase shifts.

The ARPES intensity from the inner and outer sheets of
the FS behaves like the intensity for respectively the upper and
lower x̃y bands, as we shall see in Fig. 8. For extracting the FS,
our present method to be described below, however fails near
the zone boundaries because we have no good symmetrization
scheme unlike for the bands. We can merely estimate the
splitting at the boundary from the so-called Sparrow criterion
used in astronomy [11].

To set the scale, we first recall from the theoretical FS in
Fig. 3(d) that even at kc = 0.5, the kb splitting between the
inner and outer sheets amounts to merely 0.01b∗, i.e., to 2%
of the distance between the left- and right-hand FS sheets.
The experimental Fig. 4 shows both left- and right-hand sheets
and, here, the inner and outer sheets cannot be distinguished
because the momentum-distribution widths of the two spectral
functions of the bands are larger than their splitting (see paper
II, Sec. III B). However, already in the data, we see a slight
wrinkle around κc = ±0.5 caused by the shift of intensity
from one band to the other.

There is a second issue specific to LiPB; it is a quasi-1D
material and, at high enough temperatures, manifests a TL-
like spectral function with a broad spinon edge feature and a
somewhat sharper holon peak feature [9,10,12]. For the data
here, the momentum integrated energy distribution curves
(EDCs) around kFb gave a power-law like lineshape (see
Fig. 9). Although the LiPB ARPES lineshape is well described
by the TL spectral function at high temperature, the spectra
do not sharpen as much as expected in the theory [12] at
low temperature.4 Although a phenomenological description
[12] of this low-T deviation can be made,5 we deemed that
this description offers no special benefit for the data analysis
at hand. Therefore our specific procedure, described below,
follows a route in which no theoretical spectral function is
forced onto the experimental data.

4It might be important here to remind again that, in the TL model,
the Fermi momentum kF remains well defined.

5Reference [7] presents a novel and creative microscopic derivation
of the phenomenology.
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FIG. 5. The x̃y bands in the double zone for the two-band Hamil-
tonian (4) with ARPES-refined TB parameters, like in the bottom
panel of Fig. II 4, but only for the dark-red x̃y bands, for kb = 0.245,
and on an extended energy scale with the upper frame at the Fermi
level (75 meV). The fatness is proportional to the fine-grained band-
factor ARPES intensity because, for our particular case of κa = 6.6,
the dimerization phase shift η [II (9)] is negligible in the kc region of
interest (see Fig. II 2).

2. General issues

Note that the change of momentum in κb, visible in Fig. 4,
is small—we see that it is in the range of 0.01, which translates
to the experimentally very demanding range of 0.012 Å−1

using the solid-state definition (ssd) of reciprocal space [see
Sec. I (III)]. For our measurements, that is about the size
of two detector pixels. We see that it is very possible to
extract such a relative change from the ARPES data by our
method. The determination of the absolute value of the Fermi-
momentum and the filling is limited to a systematic error of
about 1%.

To obtain the value of the Fermi momentum, one may
think that it suffices to determine the peak maximum of the
momentum distribution curve (MDC) at EF . In reality, the
exact determination of the Fermi momentum is an im-
portant issue warranting discussions to be found in, e.g.,
Refs. [13–17]. There are many intrinsic and extrinsic reasons
not to determine the correct kFb. Particularly important for us
is a masking effect in extracting the Fermi momentum, which
occurs rather generally and does not depend much on whether
the sample is a Fermi liquid, marginal Fermi liquid, or a TL
liquid. This effect is sketched in Fig. 6: Even if the ARPES

FIG. 6. Sketch to explain a masking effect hindering the Fermi-
momentum determination when only considering the maximum of
the MDC at EF . (a) Shown are three MDCs for different energies
as indicated around EF . In panel (a), the spectral function give per-
fectly symmetric and Lorentzian-like MDCs. The combined effect of
(b) the distribution function f (E ) and (c) convolution with the energy
resolution R(�E ) results in an asymmetric lineshape for the MDC at
EF [dark red in panel (c)].

spectral function is perfectly symmetric and Lorentzian-like
in the momentum direction [Fig. 6(a)], the combined effects of
the distribution function (e.g., the Fermi function) [Fig. 6(b)]
and the convolution with the experimental energy resolution
[Fig. 6(c)], results in an asymmetric lineshape for MDCs
for energies near EF ± �E . Here, �E represents the exper-
imental energy resolution, which for hν = 30 eV is 16 meV
(Sec. III B). Hence, the asymmetry causes the peak momen-
tum to be inside the FS.

3. Method

With these considerations in mind, we now explain our
methods. It is important to mention again that theory dictates
that we cannot distinguish the two bands but obtain an average
dispersion weighted by the ARPES band-factor intensity, the
|k〉 character shown in Fig. 5. This means that, for |κc| < 0.35,
we are mainly extracting the outer FS sheet (lower band),
while for 0.65 < |κc|, we mainly extract the inner sheet (upper
band). Thus, like for the bands, the selection rule allows us to
distinguish the two FS sheets, except near the zone boundary,
|κc| = 0.5, where the intensity shifts from one band to the
other. We first discuss, in Sec. III A 3 a, what can be deduced
for the zone-boundary situation, using the Sparrow criterion
[11] to analyze the MDC widths. This exercise will bring out
the fact that the experimental MDC widths greatly exceed the
splitting that we wish to determine and thereby make clear
the crucial role of the selection rule, which we exploit in
Sec. III A 3 b using a so-called dispersion analysis to deter-
mine the Fermi momentum as well as the Fermi velocity of
separate branches.

Sparrow MDC peak-width analysis. At the zone bound-
aries, |κc| = 0.5, although we have no way to separate the
inner and outer FS sheets, we can nonetheless estimate their
possible splitting, as we now describe. As follows from the
fine-grained intensity modulation of the two x̃y bands dis-
cussed in Sec. II (II B 1) and displayed in Fig. 5, the MDC
at EF for κc = 0.5 (or −0.5) is an equally weighted combi-
nation of the Lorentzian-like6 MDCs of both sheets and, as
the combination, has the measured total width �

κc=0.5
MDC . With

this, we can use the so-called Sparrow criterion [11], which
states that two identical, separated Lorentzians of the same
width �

j=1
MDC = �

j=2
MDC are indistinguishable if they add up to

give a flat top with zero slope and curvature at their center
of mass. These conditions allow computing a splitting (�κb)
as well as the width of the two Lorentzians (�1/2

MDC) from the
measured total width (�κc=0.5

MDC ). In fact, it will be an upper limit
for the splitting and reads �κ

κc=0.5
b = �

κc=0.5
MDC /

√
3. The two

Lorentzians have a width of �
j
MDC = �

κc=0.5
MDC

√
3/(1 + √

3).
The results of this Sparrow analysis are given in Table I and
also indicated by the diamonds in Fig. 8. From the table, by
seeing that the measured MDC-widths at the zone boundary
(�κc=±0.5

MDC ) and zone center (�κc=0
MDC) are almost the same, we

can already see that there is a limit to the determination of
the splitting. The MDCs are obviously broad. This broad-
ening is much more than the momentum resolution of the

6Here, we use the standard definition of the Lorentzian with I =
A
π

�/2
(κ−κF )2+(�/2)2 .
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TABLE I. Result of the MDC peak-width analysis (compare also
with Fig. 4). The first column gives the individual dataset, the second
indicates whether κc = +0.5 or κc = −0.5 was measured. Column 3
gives the Lorentzian width � obtained by a line fit and is averaged
over both branches, at positive and negative κb. Column 4 gives the
width of the two Lorentzians (� j

MDC) at κc = ±0.5 according to the
Sparrow criterion. The fifth is the Lorentzian width at κc = 0. The
last column, finally, shows the upper limit for the separation in κb

momentum (�κκc=0.5
b ) according to the Sparrow criterion.

Sample �
|κc |=0.5
MDC �

j
MDC �κc=0

MDC �κ
|κc |=0.5
b

H 6 K, 30 eV + 0.030 0.0191 0.031 0.017
H 6 K, 33 eV + 0.047 0.030 0.051 0.028

− 0.044 0.028 0.051 0.025
G 30 K, 30 eV + 0.060 0.038 0.052 0.035

− 0.051 0.033 0.052 0.030

apparatus [�κb ≈ 0.005, see Sec. II (III A)]. The broadening
can be for different reasons. There is an intrinsic component
by the spectral function of the corresponding electron liquid.
In the case of a Luttinger-liquid, it is well known (see, e.g.,
Ref. [18]) that the MDCs are typically sharper, and the EDCs
are broader (when compared with a Fermi-liquid). However,
there can also be an extrinsic component—by an experimental
momentum resolution which is not produced by the apparatus
alone but, for example, can be caused by the quality of the
sample surfaces and the so-called kz broadening [19,20] that
arises from the limited probing depth of the photoelectron.
In general, it is hard and requires multiple experiments to
distinguish the intrinsic and extrinsic components with full
certainty. Looking at the widths for different samples, dis-
played in Table I, we can believe that there is a larger intrinsic
component but also some extrinsic component.

We reiterate that the resulting separation estimate by the
Sparrow criterion is an upper limit and the actual splitting has
to be below the smallest splitting listed in Table I, resulting in
�κ

κc=0.5
b < 0.017. By taking advantage of the selection rule,

we see that this is indeed the case, and we note now that even
this upper limit is considerably less than the magnitude of the
experimental MDC width at κc = 0, where the selection rule
applies and only one branch contributes.

Dispersion analysis. The method used to extract the Fermi
momentum κFb as a function of κc is basically to extrapolate
the metallic ARPES band along κb for fixed κc to the Fermi
level (Fig. II 11). The details are sketched in Fig. 7. The
experimental dataset is sliced along the κc direction; see the
slices on the lower part of the figure. Each slice can be seen
as a set of so-called momentum distribution curves (MDCs).
An MDC [see also Sec. II (IV)] is the photoelectron-intensity
at fixed energy, here only dependent on κb (see the magenta
curves in the upper right of Fig. 7 as examples for MDCs). For
the analysis, we choose now to use all MDCs with energies be-
tween EF − 50 meV and EF (the separation �E was typically
5 meV). We then fit each MDC (on each dispersion branch)
with a Lorentzian. The maximum position of the Lorentzians
defines the dispersion (indicated by the purple lines in the
upper left of Fig. 7). We interpolated the Fermi-momentum
κFb by a line fit with the linear function κb = (E − EF )/vF +
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FIG. 7. Method used for the extraction of the Fermi momentum.
The experimental dataset is sliced along the κc direction (bottom).
Each κc slice can then be viewed as containing multiple so-called
MDCs. The MDCs are intensity curves at fixed energy, dependent
only on κb (see the magenta curves in the upper right as examples).
Then, a line fit with a Lorentzian for all the MDCs between EF −
50 meV and EF was performed. The maximum of the Lorentzian
defines the dispersion E (κb, κc = const) (upper left). The Fermi mo-
mentum κFb is found by linear extrapolation in this interval between
EF − 50 meV and EF (see red extrapolation line and red circle at kFb

in upper left).

κFb (see red line in upper left of Fig. 7). By this line fit we
remove the error arising from the masking effect discussed
above (see Fig. 6), which appears as a “kink” near the value
of the energy resolution.7 In accordance with the energy res-
olution of about 16 meV, the kink sets in at (see blue arrow)
E − EF ≈ 13 meV in Fig. 7.

The dispersion analysis offers a notable advantage in terms
of statistical certainty, primarily due to the utilization of a
broader data range spanning 50 meV. For the analysis of
TL-liquid performed here, this holds particular significance
because the density of states exhibits a power-law decay as
it approaches EF . Furthermore, the dispersion analysis also
gives naturally an estimate of the κc dependence of the Fermi
velocities projected onto the κb direction,

vF j (kc) · b∗/b∗ ≡ ∂Ej (kb, kc)
/

(∂kbb∗)|
EF

. (11)

7This “kink” should not be confused with the “kink” resulting from
an interaction of a bosonic mode (for an example, see Ref. [21]).
Such a bosonic kink for energies lower than the energy of the bosonic
mode is bending to the momentum on the unoccupied side because
the Fermi velocity is renormalized to smaller values.
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FIG. 8. Results of the Fermi-momentum extraction (black points with error bars, see Sec. III A 3) in the double zone and for each individual
dataset, as indicated. For each set, the larger panel shows the four FS sheets (left and right, outer and inner), while the smaller panel shows
the kb-projected velocity (11) averaged using the left and right kb-projected velocity. Underlayed in dark red with an intensity proportional to
the |k〉 character [Eq. II (10) with η = 0, i.e., Eq. I (61)] are the theoretical FS [Fig. 3(d)] and its kb-projected Fermi velocity. Also included
in the graphs for the FS are the results (Table I) of the Sparrow analysis for the maximum splitting at the zone boundary. κa = 6.3, 6.6, 6.3 in
respectively panels (a), (b) and (c). Each theoretical and experimental FS has been compressed by a factor 11 along κc.

The result of this extraction method is displayed in Fig. 8
and Table II.

B. Results of the Fermi-surface determination
and comparison with theory

1. Fermi surface

The result of the Fermi-momentum extraction is displayed
in Fig. 8. It compares the experimental FS (black points with
error bars) with the theoretical FS (dark-red) calculated us-
ing the two-band Hamiltonian (4) with the ARPES-refined
parameter values and drawn with the fine-grained intensity
proportional to the |k〉 character I (60) because, for κa = 6.3
and 6.6, the dimerization phase shift η(κ ) is negligible [see
Sec. II (IIB1), Eq. II (10), and Fig. II 2].

We see that the Fermi-momentum extracted from ARPES
fits beautifully with the theoretical FS sheet of dominating
intensity: In all three measurements, it aligns with the outer
sheet for |κc| < 0.35 and with the inner sheet for |κc| > 0.65.
Near the zone boundaries, |κc| = 0.5, where the dominating
intensity shifts from one sheet to the other, so does the ex-
perimentally extracted κFb. Also, the general shape of the
experimental FS fits nicely with the prediction by theory. This
is, on the one hand, not astonishing because we use ARPES-
refined parameter values, but on the other hand, the refinement
was done for features well away from the Fermi energy, and
yet, all details of the theoretical FS [seen in Fig. 3(d) and
described in Sec. II C] are seen in the experiment, with the ex-
ception of the near contact between the inner and outer sheets,
which does require interpolation of the former to kc = 0 or
extrapolation of the latter to kc = 1. Later on, we discuss this
also for the Fermi velocities.

The experimental upper bound given by the Sparrow cri-
terion on the splitting between the inner and outer sheets at
the ZB, |κc| = 0.5, is indicated by the black diamonds. It is

consistent with, but considerably larger than, the theoretical
splitting.

As can be seen from Table II, for all three samples, kFb

averaged over kc gives a Luttinger volume which corresponds
to an effective Li1.02±0.02 stoichiometry, i.e., an electron filling
of 0.51 ± 0.01. This places the Fermi level 75 meV above the
center of the gap in the calculation.

We note that the procedure of refining the values of the
TB parameters to fit the ARPES dispersions for energies more
than 0.15 eV below EF in one sample does well in describing
the dispersions for energies closer to EF than 0.15 eV in all
three samples. This is a testimonial both to the reproducibility
of our findings for samples from different sources and to
the essential role that resonant coupling to the higher-energy
gapped xz and yz bands plays in determining the dispersion
and splitting of the metallic x̃y bands.

Finally, we take notice of a very recent publication
[22] reporting transport data interpreted as showing a FS
reconstruction resulting in a semimetal FS below 100 K. The

TABLE II. Extracted absolute average Fermi momentum kavg
Fb

(third column) and the Li-stoichiometry from the electron filling (last
column). The first column identifies the dataset used, the second
column the span of κc over which the average was taken (cf. Fig. 8).
The error given here is the error of determining the average and does
not include the variation of kFb(κc ) with κc. The last column gives
the Li stoichiometry from the Luttinger count of the FS, including its
error in determination.

Used Li
Sample κc range kavg

Fb stoichiometry

H 6 K, 30 eV 0; 0.995 0.255 ± 0.006 1.02 ± 0.02
H 6 K, 33 eV −0.785; 0.905 0.254 ± 0.005 1.02 ± 0.02
G 30 K, 30 eV −0.824; 0.777 0.255 ± 0.008 1.02 ± 0.02
Average 0.255 ± 0.006 1.02 ± 0.02
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modeling for this very interesting proposal was based on our
analysis, reported in Ref. [23] (Sec. VI E),8 of possible nesting
and gapping of the metallic FS, which, however, concluded
that complete spin-density wave gapping requires an effective
exchange interaction about three times the value given by
the local spin-density approximation (LSDA) and is therefore
unlikely.

We point out, as is also acknowledged in Ref. [22], that
the 6 K ARPES data reported here and in Ref. [23] do not
show any evidence for such a FS reconstruction and that our
measured Fermi velocity (≈4.6 eV Å ≈ 7 × 105 m/s) which
was shown as the slope of the unreconstructed, weak bands in
Fig. 15 of Ref. [23] and of the dashed bands in Fig. S10(c) of
Ref. [22], is several times larger than those (≈2 × 105 m/s ≈
1.3 eV Å) for the gapped bands at the Fermi level in Figs. 15
and S10(c).

2. Fermi velocity

To the right of each FS in Fig. 8, we show the kc depen-
dence of the kb-projected Fermi velocity, defined by Eq. (11):
in black, as extracted from ARPES, and in red, as calculated
with the two-band Hamiltonian.9

Overall, we see a good qualitative correspondence between
the theoretical and the experimentally extracted values. For
those kc values where the kb direction is normal to the FS,
the velocity projection (11) has extrema. At the zone centers
(kc = integer) and zone boundaries (|kc| = 0.5) – indicated
by blue arrows in Fig. 8 – these extrema are flat maxima.
For the inner-sheet (upper-band) notches (long green arrows
at |kc| ≈ 0.75), the extrema are deep minima. Also the outer
sheet (lower band) has velocity minima (short green arrows
at |kc| ≈ 0.30). Their origins are the weak resonance peaks
at |kc| ≈ 0.25 [see Fig. 5 and Eq. (10)], combined with the
increase of |k〉-|k + c∗〉 hybridization and the concomitant
formation of bulges as the zone boundaries at |kc| = 0.5 are
approached.

The velocity of the outer sheet (lower band) decreases from
4.5 eV Å at the zone center (kc = 0) to the 4.0 eV Å deep min-
ima near |kc| = 0.30 and rises again to the 4.6 eV Å maxima
at the centers of the bulges, |kc| = 0.5. For the inner sheet
(outer band), the velocity decreases from 4.7 eV Å at the zone
centers (|kc| = 1), to 3.9 eV Å deep minima near the notches
and rises again to 4.3 eV Å maxima at the zone boundaries.
These sheet- and kc-dependent values may be compared with
the dominating value 4.6 eV Å of bτ ′(kb) in Eqs. I (50) and
I (48) from the direct hopping along the ribbon. Due to the
indirect hops via the valence and conduction bands giving rise
to the resonance terms in Eq. (4), the band and kc average of
the velocity projections is smaller than bτ ′(kb). The velocities
extracted from the ARPES data (black) clearly show both the
qualitative behavior and the general magnitude implied by the
theory (dark red). To a small extent, this is expected since,
as explained in Sec. I (IV) and specified in Eqs. I (43) and I

8This section was deleted before resubmission to Phys. Rev. B at
the insistence of one of two referees.

9The velocity projections of Eq. (11) were calculated as differences
between the bands for kb = 0.2505 and 0.2495.

(45), a few of the many LDA TB parameters were refined to
make the bands agree with the large- but not the small-energy
features of the ARPES bands.

It is also interesting for the many-body physics of LiPB to
compare the experimental velocities to those for the TB bands
based on the LDA parameters. The LDA dominant velocity
value is10 4.0 eV Å. The experimental velocities (and those
for the ARPES-refined TB) are generally greater than those
for the LDA11 by about 15%.

There are two points to be made. First, for a three-
dimensional (3D) quasiparticle material the increase of the
experimental velocity relative to the LDA value would seem
surprising since the usual effect [24], arising from an energy-
dependent single-particle self-energy, e.g., caused by e-e or
e-phonon interactions, is an increase of the Fermi mass,
i.e., a decrease of the Fermi velocity.12 Indeed, such was
found in the single-site dynamical mean-field theory (DMFT)
quasiparticle treatment of LiPB [27]. However, LiPB is
a quasi-1D material whose ARPES k-averaged lineshapes
show TL-model properties, i.e., quasiparticle suppression
and spin-charge separation. Specifically, the holon-peak and
spinon-edge features disperse with different velocities, vρ and
vσ , respectively [18,28,29]. Our model-independent ARPES
analysis procedure, if performed on a TL-lineshape, would
yield a dispersion intermediate between vρ and vσ , but tending
mostly to that of the holon peak. Within one-dimensional (1D)
theory, vρ and vσ can just as well be either larger or smaller
than the underlying vF of a noninteracting system, as can be
seen, for example from formulas within the framework of the
“g-ology” formulation [18,30]. So if we identify the LDA
value of vF = 4.0 eV Å as “noninteracting,” which ignores
the difficulty of disentangling any many-body contribution
already present in LDA, and think of our ARPES lineshape
in a TL context, it is well within general theoretical expec-
tations that our experimental velocity is larger than the LDA
value. In this view, it may well be that our ARPES-refined TB
description is modifying the entire kb dispersion somewhat in
order to reproduce the experimental low-energy scale velocity
near EF .

Second, combining our results with a previous ARPES
lineshape analysis [8], we can be somewhat more precise
about the velocity renormalizations for LiPB. At high temper-
atures, where the LiPB ARPES lineshapes are well described
by TL lineshape theory [29] for nonzero T , the best TL

10Calculated from bτ ′(kb) and also given in Eq. I (50).
11The band- and kc-resolved velocities which result from using the

shifted and the straight LDA parameters (see Fig. 12) have averages
more than 15% below that of the experimental velocities in Fig. 8,
and they have much larger variations: Near kc = 0 and 0.5 the LDA
velocities do lie around the 15% lower LDA value, 4.0 eV Å, but for
intermediate values of kc, they vary much more, reaching minima at
3.4 and 3.0 eV Å for respectively the upper and lower bands (inner
and outer sheets) in the shifted LDA and, in the straight LDA, minima
at 2.5 eV Å and 3.3 eV Å% with the deeper minimum now for the
upper band.

12For quasiparticles, one would invoke a very strong k dependence
of the self-energy to understand a decrease of the mass, as discussed,
e.g., in Refs. [25] and [26].
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description [8] for the �-Y (kc = 0) ARPES lineshapes was
achieved for vρ/vσ = 2. At that time no definitive LDA value
of vF was available. If we now think of our ARPES velocity as
being nearly that of vρ and take our LDA velocity as an under-
lying noninteracting vF , then—at least for �Y—we conclude
that vρ is roughly 1.15vF , and that vσ is roughly 0.6vF .13 A
1D Hubbard-model analysis [5] estimated vσ /vF ≈ J/2τ with
J ≈ 0.2 eV being an effective superexchange interaction,
and τ ≈ 0.8 eV being the primary kb hopping, implying
vσ /vF ≈ 1/8.

3. Connecting to the Tomonaga-Luttinger critical exponent α

As already stated in the introduction of paper I [1], LiPB
displays Luttinger-liquid properties. Most remarkably, al-
though the FS is well defined and could be extracted above,
the lineshapes are better described by a TL spectral func-
tion. Nevertheless, there are also substantial T -dependent
departures from the TL model. The ARPES lineshapes at tem-
peratures 250 to 300 K are well described by the TL spectral
function, showing both spinon and holon features (broadened
by temperature and experimental resolution). With decreasing
T the exponent varies with T , from α = 0.9 at 250 K to 0.6
at 50 K, and also, the ARPES lineshape no longer agrees
with the TL lineshape, although it does continue to display
quantum critical scaling, a characteristic 1D property [9]. The
spectra for k integration along the quasi-1D direction, for
temperatures T = 4 K and 30 K and resolution 5 meV are
well described by a power law with α = 0.7 [10].

In the following, we repeat the analysis of Ref. [10] with
our recent datasets used to determine the FS above. However,
in the course of the present study, we found that (i) all previous
TB ladder models are very unrealistic, and (ii) the detectable
bands of ARPES vary with fine-grained intensity proportional
to the |k〉 character. In principle, these findings should inform
the choice of a particular TL model. For the phenomenolog-
ical extraction of the α value, however, we still use the same
procedure as in Ref. [10] to obtain its value. As before, we use
the κ-integrated spectral weight of a one-band, spin-rotational
invariant TL model [29] with vρ/vσ = 2. The theoretical spec-
trum was broadened by the experimental energy resolution of
16 meV.

The data displayed in Fig. 9 are integrated over κb and κc

(cf. Fig. 4). For the κc direction, the data are integrated over
two intervals, according to whether the dominant character is
|k〉 or |k + c∗〉. As visible in Fig. 9, sample G (T = 30 K)
shows a typical value of α = 0.70 for both intervals. The data
for sample H (T = 6 K) vary a bit more on the two inter-
vals but are still within the error range, yielding on average

13We take cognizance that the previous high-T , �-Y, TL lineshape
analysis [8] found vρ = 4.0 eV Å, coincidentally, we think, the same
as our LDA value. That our present value of roughly 4.6 eV Å
along �-Y (kc = 0) is somewhat larger could perhaps be due to the
considerable temperature difference (250 K vs 6 K), the considerable
difference in the analyzer angle resolutions along kb (0.016 Å−1 in the
early work vs 0.006 Å −1 in the present work), or perhaps some small
sample dependence. In any case the ratio vρ/vσ ≈ 2 is essentially
the same for the present lineshapes and the text conclusion that vρ is
nontrivially larger than vF is unaltered.

FIG. 9. Analysis of the TL exponent of the data for sample G
(T = 30 K) and H (T = 6 K). The FSs are presented in Fig. 4. Here
the data are momentum-integrated over two intervals, where the
dominating band character is either |k〉 or |k + c〉∗.

α = 0.58. Connecting to the study of Ref. [9], despite a con-
siderable difference in the determined α values for samples
G and H, these values are within the α ranges of former
studies. To shed light on more details, temperature-dependent
measurements in the full range of relevant momenta would be
required as well as the usage of a more realistic TL model
than the one-band, spin-rotational invariant TL model for the
line fit.

IV. INTERACTIONS AND CORRELATIONS

As described in the first paragraph of paper I [1], for
interacting electrons that can only propagate in one spatial
dimension, Landaus Fermi-liquid (FL) theory does not hold
[28,31,32]. Instead one finds a correlated Luttinger-liquid
(LL) system with a zero density of states at the Fermi energy.
Furthermore, the density of states increases at finite energy
away from the Fermi energy following a Tomonaga-Luttinger
(TL) model lineshape characterized by an anomalous expo-
nent α. As shown in Figs. I 1 and 9, we indeed observe such
a lineshape of the density of states below the Fermi energy
in LiMo6O17. Although this LL behavior occurs for even
an infinitesimally small Coulomb interaction, nonetheless the
actual magnitude—and also the range—of the interaction is
important because these determine the values of correlation
function power laws such as α, as well as other possible
properties of the actual interacting state in any particular ma-
terial. Thus it is generally important to try to make an estimate
of the interaction strength and range.
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Using constrained density-functional theory (DFT),
Popovic and Satpathy [4] showed that the Coulomb
interaction U between two electrons in atomic d-like
orbitals of Mo in LiPB is UMo-d = 6.4 eV. Constrained
RPA calculations for a dense fcc lattice of atomic Mo yield a
value of UMo-t2g = 3.7 eV for the atomic-like t2g orbitals of a
single Mo atom [33]. However, it is important to realize that
the Wannier orbitals that build the one-dimensional bands are
far from being atomic and localized on a single Mo atom.
As we showed, the smallest tight-binding model one can
make for LiMo6O17 considers six bands per unit cell, and
the resulting Wannier orbitals spread over several unit cells
(see Figs. I 5 and I 9). Thus, the parameter determining the
Coulomb interaction strength for the Wannier orbitals will
be smaller than the Coulomb parameter for a single atomic
Mo orbital, due both to the dilution of the charge density to
several Mo atoms and to screening. Calculating the screened
Coulomb interaction between such large Wannier orbitals for
a material with many atoms per unit cell is a daunting task.
Neither accurate constrained random-phase approximation
nor constrained density-functional theory calculations seem
feasible with the currently available codes.

While it is computationally difficult to reliably calculate
the screened Coulomb interaction of such large Wannier
orbitals, one can very well calculate the bare Coulomb in-
teraction. We have made this calculation and the result is
U Bare

Mo-Wxy
= 2 eV. We can easily rationalize this result by noting

that the bare Coulomb interaction (F0) for the atomic 4d or-
bitals in Mo is U Bare

Mo-d = 12.5 eV and that the Wannier orbitals
in LiPB are spread over several (5+) Mo atoms. Due to the
large spread of the Wannier function, the bare value of the
nearest-neighbor Coulomb interaction V (and also those for
even further distant neighbors) will be smaller but still sizable
compared with U . Noting that the bare value of U Bare

Cu-d = 25 eV
for strongly correlated cuprates and is U Bare

C-p = 14 eV for
graphene gives a useful perspective on the much smaller value
of the bare U in LiPB. We should warn the reader here that
this value U Bare

Mo-Wxy
= 2 eV is not the value one should use in

a model calculation. The bare interaction sets a clear upper
limit but should be greatly reduced in the material due to
solid-state screening. As a guide to the possible magnitude of
the screening effect, we note again that Popovic and Satpathy
calculated a screened value of 6.4 eV for atomic Mo in LiPB,
roughly half the bare atomic value U Bare

Mo-d = 12.5 eV. A similar
screening reduction down from the bare 2 eV value for our
Wannier orbitals is expected.

The small value of the Coulomb interaction between the
extended Wannier orbitals also explains why we experimen-
tally find that the xz (yz) and XZ (Y Z) bonding orbitals are
doubly occupied forming an S = 0 state instead of favoring
a Hund’s rule ground-state triplet state with S = 1 where one
electron is in the xz (XZ) orbital and one electron in the yz
(Y Z) orbital with parallel spin. One should not compare the
gap 4G1 ≈ 400 meV [Eqs. I (29), I (35), and I (45)] to the
bare atomic interaction strength, but to the greatly reduced
interaction strength of the Wannier functions due to the spread
of the Wannier function over several Mo atoms within the unit
cell.

For LiPB there are a number of previous theoretical studies
aimed at understanding its various interesting strongly corre-
lated quasi-1D properties [5–7,34–39]. Some of the various
studies take specific values for U - and V -type interactions, for
U in a range from the Popovic-Satpathy value of 6.4 eV down
to 1 eV, and for V -type interactions in the range 0.5 to 1 eV.
It is not our purpose here to give any critique of these various
models, which are elegant and creative, but the magnitude of
the Coulomb interaction for our Wannier orbitals is supportive
of the models which take U at the low end of the range.
The experimental α > 1/2 can be rationalized with both large
and small values of U [6,35], but in so doing, a role for
V -type neighbor interactions is essential, because for a simple
single-chain Hubbard model the maximum value of α = 1/8
is obtained only for infinite U . The V -type values used are all
generally consistent with our findings.

We note that Ref. [27], using the variational cluster approx-
imation (VCA) and dynamical mean-field theory (DMFT),
found that, for values of UMott exceeding 0.7 and 2.5 eV,
respectively, a Mott-Hubbard gap opens in their LDA bands,
glaringly inconsistent with experiment, and therefore giving
a clear upper limit. They note that the DMFT (VCA) overes-
timates (underestimates) UMott, so the two methods provide
a range for an upper limit on U for the four-orbital set of
Ref. [27]. Roughly, we expect that a set reduced in size by
a factor of n will be n times less localized, with U about n
times smaller, implying for our final two-orbital set a general
reduction in Coulomb energies by a factor of 2/4 = 1/2, rel-
ative to the four-orbital set of Ref. [27]. Thus our conclusion
on the smallness of U is generally consistent with the findings
of Ref. [27].

Reference [27] also emphasized that the two metallic bands
are half filled. This question is important because most of the
theories cited above assume no b dimerization, i.e., assume
that Mo(1) and Mo(4) are equivalent, and thereby view the
two metallic bands as being quarter-filled. We agree with this
emphasis in Ref. [27], in the sense that the dimerization gap is
0.7 eV, nearly 20% of the entire bandwidth [see Sec. I (III B)].
But there is some nuance. The motivation in the theoretical
models is to make contact with a property of the quarter-filled
Hubbard model, that of so-called 4kF charge fluctuations, or
even charge ordering, resulting from the V -type interactions.
Dimerization is known to greatly diminish the tendency to
such charge fluctuations [40], i.e., the two compete. The fact
that the estimated magnitudes of the V -type interactions are
in fact comparable to the dimerization gap implies that the
relevance of the quarter-filling scenarios is not ruled out, pre-
sumably depending on details. So on the theory side, further
assessment using more realistic modeling is essential. On the
experimental side, Ref. [6] proposes measurements to directly
search for the 4kF charge fluctuations.

V. CONCLUSION AND IMPLICATIONS

In conclusion, we have presented in great detail the
electronic structure of LiMo6O17 that is experimentally
obtainable using ARPES, emphasizing the degree of one-
dimensional behavior of the bands in the vicinity of EF and the
excellent overall agreement with the LDA band structure.

115145-18



WANNIER ORBITAL THEORY AND ANGLE-RESOLVED … PHYSICAL REVIEW B 109, 115145 (2024)

With the aim of fully describing and understanding the metal-
lic bands found in the ARPES experiment, especially the
details of FS splitting and warping, the LDA electronic struc-
ture was downfolded to a tight-binding description with the
three Mo1-centered t2g Wannier orbitals (WOs) per formula
unit [Sec. I (VI)] using the newly developed full-potential ver-
sion of the order-N muffin tin orbital method [Sec. I (II)]. This
description is based on analyzing the LiPB crystal structure as
built from corner-sharing MoO6 octahedra forming a staircase
running along c of biribbons extending along b [Sec. I (III)].

The six t2g WOs per primitive cell accurately describe not
only the four bands seen by ARPES, but all six bands in
the 1 eV neighborhood of EF . This band structure [Sec. I
(IV) and Fig. I 4] is basically two-dimensional and formed
by the xy, xz, and yz WOs (Fig. I 9) giving rise to three 1D
bands running along, respectively, b, c+b, and c−b, i.e., at
a 120◦ angle to the two other bands (Figs. I 8 and II 10).
The dimerization from c/2 to c of the ribbons into biribbons
gaps the xz and yz bands and leaves the xy band metallic
in the gap, but resonantly coupled to its edges and, hence,
to the c+b and c−b directions. Inclusion of the xz and yz
bands are indispensable in describing the strong indirect con-
tributions to the kc dispersion and splitting of the metallic xy
bands. These are most prominent (see Figs. I 8, II 10, and 8)
at the crossing of the xy-band CECs running parallel to the
P1Q1P′

1-line (kb = 0.225) in reciprocal space with those of
the xz and yz V&C-band edges along, respectively, ZY′ and
ZY. All the ARPES-measured dispersions, as well as the FS,
indeed confirm the resonant indirect couplings and thus the
essential need for the six-band picture. The TB bands are very
well described by an analytic 6 × 6 Hamiltonian I (35) or
I (56) with parameters optimized to match the ARPES data
for energies more than 0.15 eV below EF . Finally, the mix of
direct and resonant indirect couplings along the c direction
can be explicitly displayed by further analytical downfold-
ing to the effective 2 × 2 Hamiltonian (4). This and direct
observation by ARPES is compelling evidence for the exis-
tence of pronounced resonance structures near EF in LiPB.

In Sec. IV, we have presented some implications of our
results specifically regarding interactions and correlations. In
addition, there are four important implications for the general
questions posed in the introduction of paper I [1]. These impli-
cations follow directly from the central content of the paper,
our new knowledge, and understanding of the size of the
splitting and perpendicular dispersions of the quasi-1D bands
in the gap (Figs. 1 and 2), especially the indirect resonance
contributions. They have been stated already in the flow of the
presentation, and we merely summarize them here.

First, the reality of the resonance contributions casts se-
rious doubts on theoretical descriptions based on TB bands,
which are featureless like the red ones in Figs. 1 and 2, i.e.,
casts doubt on all previous TB and TL models. Furthermore,
in constructing an appropriate many-body Hamiltonian, it

should be taken into serious consideration that, with ARPES,
we have now been able to follow the resonance peak induced
by the valence band to energies nearly 150 meV below the
Fermi level (Fig. II 10) and, there, find the peak to have a
magnitude of about 50 meV, as predicted by the LDA, cf.
Fig. II 14(c2).

Second, the general magnitude of the t⊥ hoppings would
suggest that 1D-to-3D crossover should occur for T as
high as at least 150 K, unless thwarted by the theoretically
expected strong downward low-T renormalization due to LL
fluctuations on the chains, as pointed out in the introduction.
However, the good agreement between LDA and ARPES
data at T = 6 K implies that this renormalization does not
take place. This circumstance is not only puzzling, given
the evidence for LL effects on the chains at high T , but
eliminates one very attractive explanation for the exceptional
stability of quasi-1D behavior in this material. Our new quan-
titative knowledge of the t⊥ hoppings further emphasizes this
puzzle.

Third, the coupling of the quasi-1D bands to the V&C
bands causes the details of the FS splitting and warping
(Figs. 3 and 8) to depend strongly on the position of EF ,
which in turn depends on the Li concentration. This implies
that any property sensitive to the details of the FS will be very
sensitive to the stoichiometry. One can then speculate that this
FS sensitivity is connected to the sample dependence of the
superconductor (SC), especially if the SC is the product of
the quasi-1D nature of the FS. We have already noted that
the actual position of EF in LiPB is such as to maximize the
quasi-1D nature of the FS. This could be an important addition
to the various previous theories of the SC [35–39].

Fourth, the spatial dependence of the t⊥ hoppings argues
strongly against coupled ladder models of the chains. At the
simplest level, the magnitude of the direct terms for hoppings
within and between biribbons [Sec. I (IV)] differ by less than
a factor of two, respectively, t⊥,1 ≡ −(t1 + u1) = 14 meV and
t⊥,2 ≡ −(t1 − u1) = 8 meV. Just this would leave the ladders
not very well defined as separable objects. But, much more
importantly, the range of the indirect contributions is at least
an order of magnitude longer and even depends crucially on
the position of the x̃y bands in the gap (Sec. II). We conclude
that modeling the chains as separable, weakly coupled ladders
is very unrealistic.

To conclude, our results offer both a strong motivation
and a concrete framework for a serious reappraisal of the
extent to which the various past many-body models capture
the actual measured one-electron electronic structure of LiPB
sufficiently well to be trusted for rationalizing its fascinating
quasi-1D, many-body, coupled-chain physics. The efforts to
understand the resulting behavior are still ongoing, and we
hope that our new knowledge and highly portable description
of the one-electron electronic structure will contribute to this
effort.
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