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Wannier orbital theory and angle-resolved photoemission spectroscopy for the
quasi-one-dimensional conductor LiMo6O17. II. Intensity variations and the six t2g bands
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This is the second paper of a series of three papers presenting a combined study by band theory and
angle-resolved photoemission spectroscopy (ARPES) of lithium purple bronze. The t2g Wannier orbitals (WOs)
and resulting six-band tight-binding (TB) Hamiltonian found in paper I are used here to develop a theory of
the ARPES intensity variations, including a selection rule whose validity relies on the smallness of and the
cancellation between the displacement- and inversion-dimerizations of the zigzag chains (ribbons) in regions of
the final-state wave vector κ. We then present the ARPES results for the band structure of the four occupied t2g

bands (gapped xz, yz, and split metallic xy). A detailed comparison to the theory validates the selection rule.
We present the Fermi surface as seen directly in the raw ARPES data, both parallel and perpendicular (using
photon-energy dependence) to the sample surface, and show that the selection rule can enable separation of the
barely split and highly quasi-one-dimensional xy bands. We adjust the energy of the xy WO energy by 0.1 eV
(≈1/4 of the gap) with respect to that of the gapped xz and yz WOs and, in a second step, fine-tune merely seven
out of the more than 40 TB parameters to achieve an excellent fit to the ARPES bands lying more than 0.15 eV
below the Fermi level. So doing then also gives nearly perfect agreement closer to the Fermi level.

DOI: 10.1103/PhysRevB.109.115144

I. INTRODUCTION

This is the second paper in a series of three presenting a de-
tailed study of the band structure of the quasi-one-dimensional
(quasi-1D) lithium purple bronze (LiPB) combining the
local density approximation N th-order muffin-tin orbital
(LDA-NMTO) band theory and angle-resolved photoemission
spectroscopy (ARPES).

*Deceased.

In paper I [1] we explained the NMTO method (Sec. II)
and used it to derive, for the occupied and lowest unoccupied
bands of LiPB (Sec. IV), a chemically meaningful set of Wan-
nier functions (Sec. V)—called Wannier orbitals (WO)—and
their tight-binding (TB) Hamiltonian in portable, i.e., analyti-
cal, form (Sec. VI).

The monoclinic crystal structure of LiMo6O17 (Sec. III
of paper I) consists of MoO6 octahedra connected by
corners into slabs perpendicular to the reciprocal-lattice
vector a∗. Each slab consists of bi-ribbons, four molyb-
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denums wide in the a + c direction, Mo2�Mo1�
Mo4�Mo5

and MO5�MO4�
MO1�MO2 [using lowercase/uppercase let-

ters for the lower/upper string], and extending indefinitely
along the direction b of quasi-1D conductivity [See Fig. I 2
together with Charts I (14) and (15)].1 The spines of
the ribbons are the well-known Mo1�

Mo4�Mo1�
Mo4 and

MO4�
MO1�MO4�

MO1 zigzag chains along b. The upper string
is related to the lower by translation of Mo1 to MO1 by
the vector (c + b)/2 − d, followed by inversion around their
midpoint, 1

2 [(c + b)/2 − d]. Had there been no displace-
ment (d = 0) and no inversion, i.e., no c-axis dimerization
(Sec. I III A), all ribbons would have been related by a
primitive translation vector (c + b)/2, and thus stacked into
a ramp [Chart I (21)]. With displacement and inversion dimer-
izations, the slab forms a staircase [Chart I (14)] with steps of
bi-ribbons and running up and down along ±c. A staircase is
terminated by insulating MoO4 tetrahedra, and Li intercalates
between staircases which is also where the crystal cleaves.

We found that the six lowest-energy bands (Figs. I 3 and
I 4)—half occupied—are accurately described by the set of
six, real-valued t2g WOs,I 14 wm = xy, xz, yz centered on Mo1,
and Wm = XY , XZ , Y Z , centered on MO1, and with x, y, and
z directions as indicated in Charts I (14) and I (15). Such a t2g

WO has tails with the same m on the nearest Mo neighbors in
its plane which contribute to the halo of the WO (Figs. I 5 and
I 9).

The xy WOs lie well inside their respective ribbon and
have strong, long-ranged ddπ xy-xy or XY -XY hopping in-
tegrals τn, with Bloch sum τ (kb) along the ribbon, very weak
ddδ xy-XY hopping integrals tn + un between partner rib-
bons, and even weaker hopping integrals tn − un between
bi-ribbons [Eqs. I (36), I (37), I (43), and I (44)]. Be-
tween slabs, the hopping is negligible. The xz and yz WOs,
which are equivalent, stand perpendicular to the ribbons
and the ddπ nearest-neighbor hopping integral A1 + G1, be-
tween partner ribbons—up or down the staircase with steps
(c − b)/2 for xz-XZ and (c + b)/2 for yz-Y Z—is twice as
strong as the hopping integral A1 − G1 between bi-ribbons.
The two xz bands are gapped by the hopping dimerization,
±2G1≈ ∓0.2 eV, and so are the two yz bands [Eqs. I (38) and
I (45)].

In our notation, greek-lettered Bloch sums, e.g., τ , are over
hops on the ribbon, whereby they are real and single-zone
periodic in k. Latin-lettered Bloch sums, such as t , u, A, and
G, are over hops between ribbons and are therefore real and
double-zone periodic [Eqs. I (41) and I (42)].

In Eq. I (35) we gave the six-band TB Hamiltonian in
the representation of the Bloch-summed WOs, wm(r, k) ≡∑

T e2π ik·Twm(r − T) and Wm(r, k) ≡ ∑
T e2π ik·TWm(r − T),

with the latter multiplied by e2π ik·(c+b)/2 = eπ i(kc+kb) so that
the hopping dimerizations are purely imaginary; numerically,
they are about 30% of the corresponding hopping integral.
Further insight was gained by transforming from this sub-
lattice {w,W } representation (Sec. I VI A) to the reciprocal
sublattice {k, k + c∗} representation (Sec. I VI B), i.e., from

1I, II, and III refer to sections, figures, equations, and footnotes in
papers I [1], II, and III [2], respectively.

a basis with two sets of Bloch sums wm(r, k) and Wm(r, k),
each a periodic function of k in the single zone, to a set of
pseudo Bloch sums,∣∣∣∣m;

k
k + c∗

〉
= 1√

2

∑
T

e2π ik·T[
wm(r − T)

± eπ i(kc+kb)Wm(r − T)
]

I (52),

which are periodic functions of k in the double zone (Fig. I 8,
repeated here as Fig. II 1) and evaluated in two different
single zones, i.e. at k and k + c∗. Each pseudo-Bloch sum is
over both ribbons with the phase factor multiplying W (r − T)
chosen as if there were no displacement dimerization, d [see
Eqs. I (17) and I (18)], i.e., as e2π ik·(c+b)/2. In this representa-
tion, the six-band Hamiltonian is I (56). It is now conceivable
that the ARPES intensity from an occupied band follows its
|k〉 character, i.e., what we called its fatness in Sec. I VI C
and showed in Fig. I 10 for the two xy bands at kb = 0.225
and as functions of kc. In the absence of dimerization, the two
pseudo Bloch sums are linearly dependent, and the |k〉- and
|k + c∗〉-projected bands are double-zone periodic and trans-
lated by c∗ with respect to each other. With dimerization, the
pseudo Bloch sums become linearly independent and mix near
the crossings of the undimerized k and (k + c∗) bands, where
the dimerized bands will gap and thus restore the single-zone
periodicity. Correspondingly, the |k〉 projection follows the
undimerized k band except near its crossing with the undimer-
ized (k + c∗) band, where it looses half its intensity to the
|k + c∗〉-projected band (see Fig. I 6).

The first task of the present paper II is to derive an ex-
pression for the variation of ARPES intensity with k which
includes its distortion caused by c-axis displacement and
inversion dimerizations. To do so, we neglect the coupling
between t2g WOs with different m, a good approximation
near the FS (|kb| ≈ 1/4), and in fact everywhere, except near
the �Z-line (kb = 0). In this the pure-m-band approximation
introduced in Sec. I VI C, the six-band Hamiltonian factorizes
in three 2 × 2 Hamiltonians Hm with eigenvalues

±
√

A2 + G2, ±
√

Ā2 + Ḡ2, and τ ±
√

t2 + u2, I (57)

for m = xz, yz, or xy, respectively, and with k dependencies
given by Eqs. I (38), I (37), and I (36). The crossings I (32), I
(31), and I (30) of these pure-m bands define the boundaries of
the so-called physical zones shown in Fig. 1. The eigenfunc-
tions of the pure-m bands were given by

w 2
1
(k, r) = 1√

2

[
w(k, r)e−iφ(k) ∓ W (k, r)eπ i(kc+kb)] I (58)

= 1

2

[|w; k〉(e−iφ(k) ∓ 1)
+|w; k + c∗〉(e−iφ(k) ± 1)

]
, I (59)

where the band-structure phase φ(k) is the phase of the
complex Bloch-summed inter-ribbon hopping integral whose
imaginary part gives the asymmetry between the hopping in-
and outside the bi-ribbon, i.e., the initial-state dimerization:

eiφ ≡ −A − iG√
A2 + G2

,
−Ā − iḠ√

Ā2 + Ḡ2
, and

−t − iu√
t2 + u2

. I (60)

For quasi-1D structures, the band-structure phase φ(k) varies
from zero for k at the center of the physical zone to +π

2 (−π
2 )
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FIG. 1. Double zone, same as Fig. 8 in paper I. The first (second)
physical zones shown in solid lines for the xy (red), xz (blue), and
yz (green) pure bands are, respectively, |kc| ≶ 1

2 , |kc + kb| ≶ 1
2 , and

|kc − kb| ≶ 1
2 . The red zone is the BZ, and its irreducible part is the

one with 0 � kc � 0.5. Weak lines indicate the positions of pure-
band maxima and minima (see Fig. I 6). The red dot-dashed lines
indicate the positions of the left and the right, doubly degenerate
Fermi-surface sheets for stoichiometric 2(LiMo6O17). The brown
and olive dot-dashed lines respectively correspond to 10% hole and
electron doping. See Sec. I IV A and Sec. III D. The figure is to scale
because the triangles are almost equilateral.

at right (left) zone boundaries (ZBs), and to ±π at the centers
of the second zones.

According to Eq. I (59), the |k〉 character [fatness, f 2
1
(k)]

of the upper (lower) m band illustrated in Fig. I 10 is [1 ∓
cos φm(k)]/2. In Sec. II B 1, we shall show that the intensity of
photoemission from the upper (lower) m band is simply [1 ∓
cos{φm(k) − ηm(κ)}]/2, which means that the band-structure
phase is shifted by ηm(κ), the phase shift (9) experienced by an
electron emitted with momentum κ and caused by the c-axis
inversion- and displacement dimerizations (see Sec. I III A).
This phase shift distorts the switching curves in Fig. I 10 to
what is shown in the middle panel of Fig. 2.

On top of these fine-grained intensity variations caused by
the near-translational equivalence Eq. I (17) of the WOs on the
upper and lower ribbons, there are coarse-grained variations
due to the approximate translational equivalence Eq. I (12)
of the tails on the Mo neighbors in the plane of the WO
(see Fig. I 5) and therefore described by the WO form factor
(Sec. II B 2).

The understanding of the ARPES intensity variations
gained in Sec. II enabled us to obtain the new, detailed ARPES
results for the occupied part of the t2g bands which we present
in Sec. III, compare with the WO band theory (Secs. III D
and III E), and in Sec. IV use to adjust the parameters of the
six-band TB Hamiltonian presented in Sec. VI of paper I [1].
Important information on the technical experimental details

are given in Secs. III A and III B. The ARPES FS mea-
surements turned out to have a rather strong photon-energy
dependence (Sec. III C) whose origin seems to be the nar-
rowness along κc of the form factor for the x̃y WO, i.e., the
widening along c of wx̃y(r) caused by the hybridization with
the valence band (see Sec. II A in paper III).

II. THEORY OF ARPES INTENSITY VARIATIONS IN LiPB

Our ARPES data to be presented in Sec. III show (fine-
grained) intensity variations between equivalent zones, similar
to the BZ-selection effects observed in graphite and explained
by Shirley et al. [3]. The primitive cell of LiPB, Li2Mo12O34,
is, however, much larger than that of graphite, C2, and its
ARPES intensity exhibits not only fine-grained zone selection
but also coarse-grained structures in reciprocal space. On the
other hand, like in graphite, there are only four occupied bands
in LiPB, and this together with the reduction of the dimension-
ality from two dimensions (2D) to quasi-1D enables a simple
description for LiPB in terms of WOs. As we explain, it is
the tails of the Mo1 and MO1-centered t2g WOs, wm(r) and
Wm(r) seen in Fig. I 9, which give rise to the coarse-grained
structure,2 and it is the approximate equivalence I (17) by
half a lattice translation which gives rise to the fine-grained
structure. This zone-selection effect is simpler than the one
found for the π band in graphite because it is due to the
existence of a hypothetical, undimerized form [LiMo6O17 in
Charts I (21) and (22)] of LiPB, which cannot exist for C2

where the two carbons are far from being separated by half a
lattice vector.

A. Preliminaries

We first follow the treatment of Shirley et al. [3], but in
the next section switch from their representation of the initial
states in terms of atomic orbitals (AOs) to one in terms of
WOs. Hence, we start from the one-step (Fermi’s golden rule)
expression:

I (κ, ω) ∝ θ (ω)
zone∑

jk

δ[Ej (k) + ω]

× |〈e2π iκ·r|p · E|ψ j (k, r)〉|2, (1)

for the photoemission intensity as functions of the electrons
binding energy ω and momentum (2π )κ inside the sample.
Surface effects are neglected. We have used the one-electron
approximation with initial-state Bloch functions ψ j (k, r) and
energy bands Ej (k) with respect to the Fermi level. The sum in
(1) is over all occupied states jk with k in a (single) zone and∑
k

denoting the average over this zone. For simplicity—and

lack of knowledge—the final state inside the sample is taken
as the plane wave e2π iκ·r, the least specific choice possible. For
our purpose, it suffices to express the matrix element as

〈e2π iκ·r|p · E|ψ j (k, r)〉 ∝ (κ · ê) 〈e2π iκ·r|ψ j (k, r)〉 (2)

2This effect is not included in the recent Experimentalist’s Guide
to the Matrix Element in ARPES [4] because the WOs used there did
not extend over several atoms per primitive cell.
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as obtained by, first of all, operating with the dipole operator
p · E to the left, that is on the plane wave, and then by pulling
the polarization-dependent factor from Eq. (23) outside the
integral, exploiting the fact that the photon wavelength is
long compared with interatomic distances. The proportional-
ity constants in (1) and (2) are independent of the initial states.

Hence, photoemission at energy ω occurs for κ at the
constant-energy contours ω = −Ej (κ[mod zone]) with an in-
tensity which, contrary to Ej (k), is aperiodic in the reciprocal
lattice and depends on the polarization of the photons and on
the initial states ψ j (k, r) of the electrons.

The initial states may be expanded in Bloch sums I (8) of
localized orbitals χRL(r), e.g., AOs, NMTOs, or WOs:

ψ j (k, r) =
cell∑
RL

χRL(k, r) uRL, j (k)

=
cell∑
RL

∑
T

χRL(r − T)e2π ik·TuRL, j (k). (3)

Since for a Bloch sum I (8) of orbitals, χR(r) centeredI 14 at
r = R,

〈e2π iκ·r|χR(k, r)〉
= e−2π iκ·R

∫
χR(r)e−2π iκ·(r−R)d3r

∑
T

e−2π i(κ−k)·T

= e−2π iκ·Rχ̃R(κ)
∑

G

δ(κ − k − G), (4)

where the sum is over all points G of the reciprocal lattice and

χ̃R(κ) ≡
∫

χR(r)e−2π iκ·(r−R)d3r (5)

is the Fourier transform (FT)3 of χR(r). Note that we use
a notation according to which real-space functions such as
χR(r) are centered at r = R, but their Fourier transforms,
χ̃R(κ), defined by (5), only depend on their shape and not on
where they are centered.

The second factor of the matrix element (2) thus factorizes
as

〈e2π iκ·r|ψ j (k, r)〉 =
cell∑
RL

e−2π iκ·Rχ̃RL(κ)uRL, j (k)

×
∑

G

δ(κ − k − G),

whereby expression (1) for the photoemission intensity be-
comes

I (κ, ω) ∝ (κ · ê)2θ (ω)
zone∑

jk

δ[Ej (k) + ω]

×
∣∣∣∣∣

cell∑
RL

e−2π iκ·Rχ̃RL(κ)uRL, j (k)
∑

G

δ(κ − k − G)

∣∣∣∣∣
2

,

(6)

3The small tilde denoting the FT has nothing to do with the large
tilde denoting the downfolding of the xz and yz characters into the x̃y
states in the gap.

which vanishes unless the wave vector κ of the final electronic
state inside the sample (see Sec. III A) equals the Bloch vector
k of the initial electronic state, plus an arbitrary reciprocal-
lattice vector G. In (6),

∑
G is a periodic function of κ − k in

the G lattice, but the other factors are not.
An AO factorizes as χRL(r) ≡ YL(r̂R)ϕRl (rR), whereby its

FT (5), which depends on its shape L, including its orientation,
but not on its center R, can be taken outside the sum over
translationally equivalent AOs:

cell∑
R∈eq

e−2π iκ·Rχ̃RL(κ)uRL, j (k)

= ỸL(κ̂ )
∫

jl (2πκr)ϕRl (r)r2dr
cell∑

R∈eq

e−2π ik·RuRL, j (k),

(7)

thus leaving the sums
∑cell

R/∈eq L over the translationally
inequivalent AOs to be performed later. Hence, the sum
(7) over translationally equivalent AOs factorizes into a κ-
dependent AO form factor, times a so-called (Refs. [5–7])
photoemission structure factor (PSF). The latter is similar
to the geometrical structure factor in x-ray diffraction but
depends on the initial-state wave function [via its linear com-
bination of atomic orbitals (LCAO) coefficients uRL, j (k)].
This factorization holds for the π band in C2 because this band
is singly degenerate and contains only one type of orbital,
Y10 = pz, so that the entire sum,

∑cell
RL e−2π iκ·Rχ̃RL(κ)uRL, j (k),

reduces to the factorized form (7). The PSF for the graphene π

band thus depends merely on the k-dependent phase between
the pz orbitals on the two atoms [3]. However, to the three σ

bands in graphene, three translationally inequivalent AOs on
each of the two C atoms (s, px, and py, or the three equivalent
sp2 orbitals directed toward the three nearest neighbors) con-
tribute, so that, for the σ bands,

∑cell
RL e−2π iκ·Rχ̃RL(κ)uRL, j (k)

does not factorize into an orbital form factor and a geometrical
structure factor.

Whereas eight AOs are needed to describe the occupied
bands in graphene, LiPB needs more than 300 atomically
localized AOs (see Sec. I II) but, by virtue of its quasi-1D
structure, needs merely the six t2g WOs shown in Fig. I 9.
Using those in expression (6) for the ARPES intensity and
neglecting inter-m mixing leads to great simplification, as we
shall now see.

B. Using the six t2g Wannier orbitals

For LiPB, we predict, and in Sec. III E confirm, that
the near-translational equivalence of the t2g WOs wm(r) and
Wm(r) by half a lattice translation causes the ARPES to have
double-period fine-grained intensity variations which approx-
imately follow the |k〉 character I (61), shown as fatness in
Figs. I 6, I 7, and I 10, of the occupied bands. This implies that
the m band with the lower energy appears in the first physical
zone and is extinguished near the center of the second physical
zone, and conversely for the m band with higher energy. On
top of this comes the fact that the upper xz and yz bands are
unoccupied and therefore cause no intensity in their respective
second physical zones. The metallic xy band with the lower
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FIG. 2. (a) Photoemission from the xy bands (red in Fig. 4)
for |κb| = |kb| = 0.225 and as functions of κc = kc in the dou-
ble zone, i.e., along a brown dot-dashed line in Fig. 1. See also
Fig. I 10. (column 1) Inversion-[2 arg w̃(κ), dashed], displacement-
(2πκ · d, dotted), and total-[η(κ), full] dimerization phase shift
for κa = 6.0–7.6. (column 2) Relative intensities of photoemission,
[1 ∓ cos{φ(k) − η(κ)}]/2, from the upper (light) and lower (dark)
bands. These intensities exhibit the fine-grained structure. (column
3) Absolute photoemission intensities, i.e., the relative intensities in
column 2 times the polarization- and WO form factors (κ · ê)2|w̃(κ)|2
evaluated in Sec. II B 2 and shown in the top panel of Fig. 4. These
polarization and WO form factors provide the coarse-grained struc-
ture. (b) Same as panel (a) but along |κb| = |kb| = 0.250, a red
dot-dashed line in Fig. 1 (top), and along |κb| = |kb| = 0.275, an
olive dot-dashed line (bottom), and only for κa = 6.4. The boundaries
of the first zone are indicated by vertical, dotted lines.

energy should best be seen in the 1st BZ and the xy band
with the higher energy in the 2nd BZ. This zone-selection
effect will allow us to resolve the perpendicular dispersion
and splitting of the quasi-1D x̃y bands predicted in the bottom
panel of Fig. 4. We shall see that the deviations from the

FIG. 3. Same as in Fig. 2, but for the yz bands (green in Fig. 4)
and for κa = 4.8–6.4. The green zone boundaries in Fig. 1 inter-
sect the brown dot-dashed near-FS line, κb = 0.225, at κc = 0.275
and at 0.275 − 1 = −0.725, which is where the switching curves
would have crossed had there been no dimerization distortion, i.e.,
if ηyz(κ) = 0. Since the upper yz band is empty, the light switching
curves should have been deleted.

translational equivalence of wm(r) and Wm(r), i.e., the
inversion- and displacement dimerizations expressed after
Eq. I (18), will distort the ARPES intensity variation from
that of the initial-state |k〉 character, 1

2 [1 ∓ cos φ(k)], to 1
2 [1 ∓

cos{φ(k) − η(κ)}], where η(κ) is the dimerization phase shift
(9) of the emitted electron with momentum κ. By suitable
choice of κa, via control of the photon energy [see, e.g.,
Eq. (27)], this distortion can be negligible for the xy bands
in a large part of the double zone and may also be so for the
occupied xz and yz bands.

In addition to the fine-grained zone-selection effect
(Sec. II B 1), well known from the geometrical structure factor
in x-ray crystallography, we predict (Sec. II B 2) and find
(Sec. III) that the internal structure of the wm(r) t2g WO,
spreading out to about the four nearest molybdenums in its
plane (see Fig. I 5), makes the form factor of the WO ap-
proximately factorize into a coarse-grained structure factor,
times the form factor of the local partial-wave projection
Y2m(r̂)ϕ2(r) of the WO tail.

1. Zone selection: The fine-grained structure

The DFT calculation resulting in the low-energy six-band
t2g TB Hamiltonian and in the band structures in Figs. 10(b)
and 12 shows that—except near band crossings such as those
below −0.5 eV and those near the top of the valence bands
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near Z—each band is dominated by one m character. For
describing the ARPES matrix elements, but not the bands,
we shall neglect by-mixing of WOs with other m values, i.e.,
use the pure-m approximation (Sec. I VI C). Therefore, in the
general expression (3) for the initial-state wave function, L

takes one value (m), R takes two values (Mo1 and MO1), and
expression (3) becomes Eq. I (58), which is repeated in the
introduction to the present paper.

Hence, the second factor of the matrix element (2) for pho-
toemission from the upper ( j = 2) or lower ( j = 1) m-band
state is the FT of the respective eigenfunction I (58):

〈e2π iκ·r|w 2
1
(k, r)〉 = 1√

2

∑
G

δ(κ − k − G)[w̃(κ)e−iφ(k) ∓ W̃ (κ)e2π iκ·d]

= 1√
2

∑
G

δ(κ − k − G)w̃(κ)[e−iφ(k) ∓ e−iη(κ)]. (8)

For the FTs of w(k, r) and W (k, r) we have used Eq. (4)
with the sum being over all points G of the reciprocal lattice.4

Inside this sum, the product of the phase factors, eπ i(kc+kb) and
exp[−2π iκ · ( c+b

2 − d)], from, respectively Eqs. I (58) and
(4) is simply e2π iκ·d with d being the displacement dimer-
ization I (16) and κ the momentum of the emitted electron.
On the second line of Eq. (8) we have used that, due to
the inversion dimerization I (18), W̃ (κ) = w̃(−κ) and that
w̃(−κ) = w̃(κ)∗ = |w̃(κ )|e−i arg w̃(κ) because w(r) is a real-
valued t2g function. As a consequence, e2π iκ·dW̃ (κ)/w̃(κ) =
e−iη(κ), where

ηm(κ) ≡ 2 arg w̃m(κ) − 2πκ · d (9)

is the dimerization phase shift whose first term is due to the
inversion dimerization and the second to the displacement
dimerization. The latter, 2π (0.012κa + 0.033κc), is a weak
function of κc, a very weak function of κa, and is independent
of κb and m. It is the dotted, linear curves shown in the first
columns of Figs. 2 and 3. The first term in expression (9),
the phase shift due to inversion dimerization, is the dashed
curves in the first columns which we have evaluated as will be
explained in the next section II B 2 using the rough digitaliza-
tions (12) and (13) of Figs. I 5 and I 9.

The intensity (6) of photoemission from two dimerized m
bands ( j = 1, 2) in LiPB is thus

I (κ, ω) ∝ (κ · ê)2θ (ω)
2∑

j=1

zone∑
k

δ[Ej (k) − EF + ω]

∣∣∣∣∣
∑

G

δ(κ − k − G)w̃(κ)[e−iφ(k) ∓ e−iη(κ)]

∣∣∣∣∣
2

∝ ∼ (κ · ê)2|w̃(κ)|2θ (ω)
2∑

j=1

zone∑
k

δ[Ej (k) − EF + ω] δ[κ − (6, 0, 0) − k]
1 ∓ cos[φ(k) − η(κ)]

2
, (10)

where the second line holds when—hinging on the coarse-
grained structure of w̃(κ) and the experimental setup—the G
sum is dominated by one term, the one for G = (6, 0, 0) in
our case, as we shall see in the following section, Figs. 5
and 6 in particular. We can then use that 1

4 |e−iφ ∓ e−iη|2 =
[1 ∓ cos(φ − η)]/2, which is like in Eq. I (61) and illustrated
in Fig. I 10, but shifted by η, and obtain the simple result that
the intensity of photoemission from two dimerized m bands
( j = 1, 2) in LiPB follows the |k〉 character (fatness), but with
the band-structure phase φ(kb, kc) [Eq. I (60) in the introduc-
tion] shifted by the dimerization phase shift η(ka + 6, kb, kc).
Remembering that φ is independent of ka due to the long
paths for hopping between slabsI 15 and varies from −π/2
to +π/2 across the first zone, we realize that dimerization
phase shift shown by the full curves in the first columns of
Figs. 2 and 3 can merely distort the switching curves, and less
so for the xy bands than for the equivalent yz and xz bands.

4The reciprocal-lattice points G and the Bloch sum of hopping
integrals G should not be confused.

This is seen in the middle panels of Figs. 2 and 3. For the
xy bands along the κb = 0.225 line slightly inside the FS, the
distortions increase with the deviation of κa from the value
6.8. Similarly for switching curves for the yz bands in Fig. 3,
the distortions increase with the deviation of κa from the
value 5.3.

As seen in the first columns of Figs. 2 and 3, the in-
version (dash) and displacement (dots) phase shifts tend to
cancel out: For the xy bands along κb = 0.225, a zero of η(κ)
(full) increases through the first xy zone (−1/2|1/2) for κa

decreasing from 7.4 to 6.4, and for the yz bands along the
same line, the zero decreases through the first yz zone for
κa decreasing from 5.5 to 4.5. In these intervals of κa, the
c-axis dimerization hardly distorts the zone selection, as seen
in the second column. That the distortions due to displacement
and inversion dimerizations tend to cancel over a κa region
of order 1 for both the xy and yz bands is surprising consid-
ering the fact that the ddδ coupling between the xy(r) and
XY [r−(c + b)/2 + d] WOs is much smaller than the ddπ

coupling between yz(r) and Y Z[r−(c + b)/2 + d], but for the
latter, the distortions are of course larger.
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FIG. 4. Top: Polarization and form factor intensities
(κ · ê)2|w̃m(κ)|2 for m = xy (red), xz (blue), and yz (green) along the
P′QPQP′ line, κb = 0.225, in the double zone −1 < κc � 1. These
aperiodic coarse-grained intensities depend on κa—chosen here to
be 6.4—as explained in Sec. III B. (middle and bottom) Band-factor
intensities according to Eq. (10) without dimerization, i.e., with
ηm(κ) = 0. They are the |k〉-projected bands [see Eq. I (61)] and
give rise to the fine-grained intensity distributions with period two
in κc. Their dependence on κa is negligible. Like in Figs. I 6 and
I 7 the red xy bands in the middle are pure, while the dark-red x̃y
bands at the bottom are perturbed by the xz and yz valence and
conduction bands. The (k, k + c∗) hybridization of the x̃y bands
is seen to effectively extend over a kc region of width 0.3 around
the BZ boundaries, kc = 1/2 + integer. The zero of energy is the
center of the gap in the xz and yz bands, whereby EF = 75 meV
(see Sec. I VI). The occupation factor θ (ω) in Eq. (10) removes the
intensity from the bands with E > EF .

As mentioned already in connection with Fig. I 10, the xy
switching curves are even functions of κb whose sharpness
decreases with increasing |κb|. That this holds also when
dimerization distortion is included may be seen from Fig. 2
for κa = 6.4 by comparison of the switching curves for κb =
0.225, 0.250 and 0.275.

In Secs. III B and III C we shall explain how κa is deduced
and how it is controlled by the photon energy, hν. From all
Figs. 2–9, we thus conclude that, with proper m-dependent
choice of the photon energy, the selection rule works well for

each of the three {k, k + c∗} pairs of quasi-1D t2g bands in
LiPB.

In paper III [2], we shall study the dispersion of the two
quasi-1D bands in the gap and—as demonstrated by compar-
ison of the red and dark-red bands in, respectively, the middle
and bottom parts of Fig. 4—this requires that we take the
weak hybridization of these xy-like bands with the xz and yz
valence and conduction bands into account. This we do by
downfolding those characters into the tails of the xy WOs,
which thereby attain longer range and become what we call x̃y
WOs. The concomitant modification of the WO form factor—
and, hence, dimerization phase shift—we neglect. What the
weak hybridization primarily changes is the dispersion of the
x̃y energy bands. As mentioned before, a main goal of the
present and the following paper III is to detect with ARPES
the predicted dispersion in the perpendicular (kc) direction,
most noticeably the resonance peaks in the upper x̃y band
caused by the weak hybridization with the yz and xz bands
and expected to be seen near, respectively, κc = −0.75 and
0.75. To see both the former resonance peak and its cause,
the lower yz band, in the same ARPES experiment like in the
theoretical Fig. 4 is, however, impossible because the former
requires using κa ≈ 7.2 and the latter κa ≈ 4.5.

The Brillouin-zone-dependent photoemission intensity de-
rived and discussed here based on a structure- and a form
factor should be generally applicable to different materials.
The main approximation made is in Eq. (1), where we ap-
proximate the wave-function of the photo-emitted electron
by a plane wave. The free-electron state should in principle
be a Bloch wave with an additional modification due to the
sample surface. The approximation can become noticeable if
the k vector of the free electron is close to a zone boundary,
where small periodic potentials are expected to gap degenerate
free-electron states. A full understanding of the importance
of describing the state of the photoelectron beyond a plane
wave and including surface effects can be investigated with
multiple-scattering techniques [8], but a simple intuitive pic-
ture is currently missing and should be further investigated.
At the same time, calculations for graphene [3] or Bi2Se3

[9,10] assuming the photoelectron to be a plane wave seem to
capture a large part of the Brillouin-zone-dependent intensity
and agree well with experiment.

2. Wannier orbitals form factor w̃m(κ), inversion dimerization,
and the coarse-grained structure

A t2g WO wm(r) has a halo with contributions (tails) on
the near Mo neighbors in the plane of this flat WO with the
same m character as that of its head (see Figs. 5 and 9 in
Paper I). For the present purpose, we neglect the hybridiza-
tion between WOs with different values of m, as well as the
details of the oxygens which pdπ antibond with the WO
head and bond with the tail. What is important is that the
head has a partial-wave shape,Ym(r̂)ϕ2(r), which is translated
to the Mo n neighbors and multiplied by a factor, cn < 1.
This makes the FT w̃m(κ) of the WO factorize approximately
into an orbital-dependent structure factor Sm(κ) times the FT
of Ym(r̂)ϕ2(r):

w̃m(κ) ∝ Sm(κ)Ỹm(κ̂ )
∫ 0.55

0
j2(2πκr)ϕMo d (r)r2dr. (11)
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FIG. 5. Form-factor intensities |w̃m(κ )|2, i.e., the coarse-grained structure. Top row: xy form-factor intensities in the κz = 0 plane. (bottom
row) yz form-factor intensities in the κx = 0 plane. w̃xz(κx, κy, κz ) = w̃yz(κy, κx, κz ). (columns 1–3) Turning on factors following Eq. (11) with
Sm(κ ) given by Eqs. (12) and (13). The little white lines are the projections onto the κz = 0 plane or the κx = 0 plane of the near-FS lines
|κb| ≈ 1/4, limited to the double zone −1 � κc � 1, along which the bands and fine-grained intensities for κa = 6.4 were plotted in Fig. 4.
The κa, κb, and κc directions are those of, respectively, κx + κy − κz, κy − κx , and κx + κy + 2κz, see Eq. (15).

We have not computed the form factor by accurate, numerical
FT of the WO,5 but shall use the factorization (11) together
with the real-space figures to provide a qualitative under-
standing of the ARPES data to be presented in the following
section.

Whereas the radial and angular factors∫ 0.55
0 j2(2πκr)ϕMo d (r)r2dr and Ỹm(κ̂ ) are even, real functions

of κ, the structure factor Sm(κ) is a complex function whose
real and imaginary parts, like those of w̃m(κ), are respectively
even and odd. From the WO figures I 5, with the xyz directions
given by Charts I (14) and I (15), or Charts I (33) and I (34),
we estimate these structure factors (the cn coefficients) to be

Sxy(κ) ∼

⎡
⎢⎣ + 1

2 e2π iκy + 1
6 e2π i(κx+κy )

+ 1
4 e−2π iκx 1 + 1

2 e2π iκx

+ 1
4 e−2π iκy

⎤
⎥⎦

/(
1 + 1

2
+ 1

2
+ 1

4
+ 1

4
+ 1

6

)
, (12)

5It may be kept in mind [see text after Eq. I (34)] that our t2g WOs
are given by the exact crystal structure and are insensitive to the
orientation of the xyz system I (12), which is only approximately
Cartesian.

Syz(κ) ∼
⎡
⎣+ 1

8 e2π i(κz−κy ) +1e2π iκz 0
+ 1

3 e−2π iκy 1 + 1
2 e2π iκy

0 + 1
4 e−2π iκz 0

⎤
⎦

/(
1 + 1 + 1

2
+ 1

3
+ 1

4
+ 1

8

)
, (13)

and Sxz[κx, κz] = Syz[κy, κz].
In Fig. I 5 we clearly see that the inversion symmetry of

the xy WO around its center Mo1 is far better preserved than
that of the yz WO. The inversion dimerization is wm(−r) −
wm(r), and the phase shift (9) due to inversion dimerization
is 2 arg w̃(κ ) = 2 arg S(κ). The latter function is easily found
from Eq. (12) for xy and from (13) for yz and was used to
produce Figs. 2 and 3. Since Sxz[κx, κz] = Syz[κy, κz], we have
ηxz[κx, κz] = ηyz[κy, κz].

The structure factors Sxy, Syz, and Sxz peak—with value
one if the normalizations are as above—along the respec-
tive lines [κx, κy, κz] = [L,M, κz], =[κx, M,N], and =[L,κy, N]
passing through the respective points Lx∗+My∗+Nz∗ of the
lattice reciprocal to the lattice I (12) with 1 Mo per primitive
cell. In other words, |Sxy|2, |Syz|2, and |Sxz|2 form 2D square
lattices of “beams” running in, respectively the κz, κx, and
κy directions (see Fig. 5). This gives rise to intensity patterns
that are coarser than the zone-selection patterns (M + N even
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or odd) whose origin is the smallness of the dimerization
which increases the size of the primitive cell from 6 to 12
molybdenums.

The relation between the [κx, κy, κz] and the (κa, κb, κc)
components—used to describe, respectively, the WO and the
band structure and, hence, the coarse and the fine-grained
structure—is

κx

κy
= κa + κc

6
∓ κb

2
and − κz = κa + κc

6
− κc

2
, (14)

which is the same as the transformation I (12) between the
primitive translations of the approximately cubic Mo1 and the
exact Mo12 lattice [see also Charts I (14) and I (15)]. The
inverse transformation—the same as I (13)—is

κa = 2(κx + κy − κz ),

κb = κy − κx, and κc = κx + κy + 2κz. (15)

Since exchange of κx and κy merely causes κb to change sign,
Sxz(κa, κb, κc) = Syz(κa,−κb, κc).

The angular factors Ỹm(κ) in expression (11) have the same
orientation with respect to the a∗b∗c∗ system as Ym(r̂) has with
respect to the abc system seen in Fig. I 5 and Charts I (14)–
(15). This is so because the abc system is (almost) orthogonal
(Sec. I III), whereby a is parallel with a∗, b with b∗, and c
with c∗. As a result,

Ỹxy ∝ −κxκy

κ2
=

( κb

2κ

)2
−

(
κc + κa

6κ

)2

, (16)

where

κ2 ≡ κ2
x + κ2

y + κ2
z = 1

12κ2
a + 1

2κ2
b + 1

6κ2
c , (17)

and similarly for Ỹyz and Ỹxz. The angular factor extinguishes
the intensity around the [0, 0, κz], [κx, 0, 0], or [0, κy, 0] lines,
as is clearly seen when proceeding from the first to the second
column in Fig. 5.

The last, radial factor in Eq. (11) is independent of m and
merely gives the overall shape of the ARPES intensity. We
found it sufficient to mimic the main part of the Mo 4d radial
function, continued for r > 0.5 (in units of 3.82 Å) as the
t2g,m average of the neighboring pdπ antibonds, by ϕ2(r) ∝
(e−14r − e−7)r2. This function peaks at r ≈ 0.14, has at node
at 0.5, and is truncated at 0.55. The negative part mimics the
contribution from the pdπ antibonds. The last factor in (11)
thus rises quadratically from κ = 0 and peaks at κ ≈ √

3,
which is at the sphere passing through [1, 1,−1]. For larger
values of κ , the radial factor decreases monotonically and for
κ � 3, i.e., outside the sphere passing through [1, 2,−2] and
[2, 1,−2], it has fallen to below one third its value at the peak.
The radial factor has been included in the two last columns of
Fig. 5.

We thus realize that the angular and radial factors leave
intensity in only small parts of reciprocal space.

The xy form-factor intensity |w̃xy(κ )|2 shown in the first
row and third column in Fig. 5, has one dominant peak; its
position is at [κx, κy] = (1 + ε

6 )[1, 1], where the small shift
away from [1,1], proportional to ε ≈ 0.4, is mainly due to
the angular factor. In three dimensions (3D), and according
to Eq. (15), this peak becomes a beam centered on the line

1.
0

0.
0

κ c
1.

0
0.

0
κ c

1.00.50.0-0.5
κb

1.00.50.0
κb

xy yz

κ a
=6

.8
κ a

=6
.0

FIG. 6. Theoretical xy (left) and yz (right) coarse-grained
ARPES intensity distributions κ2

a |w̃m(κ )|2 in the κbκc planes with
κa = 6.0 (bottom) and 6.8 (top) planes. The xz intensities equal the
yz intensities mirrored around κb = 0. See the top part of Fig. 4 and
Eqs. (10) and (18)–(22). The contours go from 0 to 400 in steps of
20. The black lines extending where the intensity exceeds 40 indicate
xy and yz CECs with energy respectively 0.1 and 0.5 eV below the
Fermi level (see Fig. 10) and in the periodic zone scheme.

given by

κa + κc = 6 + ε and κb = 0. (18)

This holds as long as the κz dependence from the radial
factor can be neglected. There are two less-intensive peaks
near [κx, κy] = [1, 2] and [2, 1], which in 3D become beams
around the lines given by

κa + κc = 9 and κb = ±1. (19)

In Fig. 6 we show the intensity distributions6 κ2
a |w̃m(κ)|2

in the planes with κa = 6.0 and 6.8 in the region −0.5 �
(κb, κc) � 1.5. In the left-hand panel, we see the xy beam (18)
form spots around the points (κb, κc) = (0, ε) and (0, ε − 0.8)
when hitting the κa = 6.0 and 6.8 planes. In the latter plane,
the less intensive spot centered near (κb, κc) = (1, 2.2) and
formed by the positive-κb beam (19) can be barely seen.

The yz form-factor intensity of zone selection, shown in
the second row and third column in Fig. 5, has its dominant
peak near [κy, κz] = [1,−1]. In 3D, this peak becomes a beam
centered on the line given by

κa − 2κc = 6 and κb + κc = 0. (20)

There are two weaker peaks at [κy, κz] = [2,−1] and [1,−2],
which in 3D become beams centered along the lines given by,
respectively,

κa − 2κc = 6 and κb + κc = 2, (21)

and

κa − 2κc = 12 and κb + κc = −2. (22)

In the right-hand panel of Fig. 6 we see the yz beam (20) form
spots around (κb, κc) = (0, 0) and (−0.4, 0.4) upon hitting the

6We take the polarization factor κ · ê as κa because this is about
six times larger than κb and κc, and because the ea component of the
polarization (23) is much larger than eb and ec.
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κa = 6.0 and 6.8 planes, as well as the beam (21) hitting these
two planes at, respectively, (κb, κc) = (2, 0) and (1.6, 0.4).

The vertical and diagonal black lines, periodically repeated
but limited to the regions where the intensity exceeds 40 in
the units used in Fig. 4, indicate the constant energy contours
(CECs) with binding energy 0.1 eV for xy and 0.5 eV for yz.
The CECs will be discussed in the experimental section III D.

Since the xz form-factor intensity is related to the one
shown for yz in Fig. 6 by a sign change of κb, we can see that,
only for κa ≈ 6.4 do the zx and yz intensities along, e.g., the
P′QPQP′ (0.225, κc) line, reach roughly the same maximum
value. This is the maximum at ≈250 seen in the top part of
Fig. 4 and in the third column of Fig. 3.

Our ARPES measurements, to be presented and discussed
in the following section, were mainly performed in the neigh-
borhood of the point [κx, κy, κz] = [1, 1,−1] which is close
to the peaks of all three form factors and which is the � point
(κa, κb, κc) = (6, 0, 0). It may be noted that, upon going from
the first to the second column in the first row of Fig. 5, the an-
gular factor sharpens up the [1,1] peak of the xy intensity. The
traces of the two FS sheets, |κb| = 1/4, on the κa = 6.4 plane
and bound between the κc = ±1 planes are the little white
lines in Fig. 5, when projected onto the κz = 0 plane in the
first row and onto the κx = 0 plane in second row. These are
the P′QPQP′ lines along which the intensity distributions were
shown in Fig. 4. Since the xy band disperses in the direction
of the κb lobe of its WO, this direction is perpendicular to the
little white lines.

At the end of this long section II, we emphasize the follow-
ing two points:

Whereas the ka dependence of the |k〉-projected bands, i.e.,
of the fine-grained structure, is negligible compared with the
kb and kc dependencies, the κa dependence of the aperiodic
form factors, |w̃m(κ)|2, i.e., of the coarse-grained structure, is
strong, as strong as the dependence on κc for xy, and half as
strong for yz/xz, see Eqs. (18)–(20). This is due to the form
factors being 2D ∝κxκy, κyκz, or κxκz, and to the orientation of
the t2g orbitals with respect to the crystallographic axes I (13).

Since the low-energy WOs in LiPB are relatively extended
(covering several atoms), the radial part of the WO form
factors make the beams narrow and thus cause the ARPES
intensity to depend rather strongly on the photon energy hν,
as we shall see in Sec. III C.

III. PRESENTATION AND DISCUSSION
OF THE ARPES DATA

From the basics of the electronic structure in Sec. I IV
we expect the two x̃y bands crossing the Fermi level to have
by far the largest dispersion with kb, i.e., along the ribbon,
weak dispersion with kc, i.e., up and down the staircase, weak
kc-dependent splitting caused by direct inter-ribbon hopping
and by hybridization with the gapped xz and yz bands, and
essentially no dispersion with ka due to the lack of hopping
between staircases. In the following, we want to demonstrate
that this strong one dimensionality is indeed confirmed by our
ARPES experiment. We also pay attention to the aperiodic
variations of the ARPES intensity between equivalent zones
and compare them with the coarse-grained intensity variations
predicted in the preceding Sec. II B 2. The fine-grained inten-

sity variations (zone selection) predicted in Sec. II B 1 will be
observed in Secs. III D and III E where, most importantly, we
also compare the band dispersions in detail with those pre-
dicted by the LDA as parametrized by the t2g TB Hamiltonian
(Sec. I VI).

Intensity variations and one dimensionality are also fea-
tures of the ARPES yz and xz bands, but of course not near
the Fermi level where they are gapped. Moreover, their one
dimensionality is with kc + kb or kc − kb rather than with kb.

A. ARPES method

We measured several samples for the conclusions pre-
sented in this work. The samples came from two different
crystal growers and were all prepared by a temperature gra-
dient flux growth technique [11]. In the text, we refer to two
samples G (Greenblatt) and H (He) representing the variation
detectable in our experiments.

Photoemission measurements were performed at the MER-
LIN endstation (BL 4.0.3) of the Advanced Light Source with
a Scienta R4000 electron detector. The polarization was set to
linear vertical, i.e., in Fig. 10 the vector of the electric field is
horizontal. The temperature was set to T = 26 K for sample
G and T = 6 K for sample H and the samples were cleaved
while attached to the cold manipulator at p ≈ 4 × 10−11 torr.
The overall energy resolution was set to around 16 meV at
photon energy hν = 30 eV going up to around 40 meV at
hν = 100 eV. At hν = 30 eV, the momentum resolution in
the b∗ direction is 2% of kFb at half filling (i.e., at nominal Li1

stoichiometry), i.e., 0.005. With the solid-state definition of
reciprocal space [see Paper I, Sec. III below Eq. (11)], this is
0.006 Å−1. The polarization vector in sample coordinates is

E
|E| =

⎛
⎝ea

eb

ec

⎞
⎠ =

⎛
⎝sin (65◦ − φ) cos θ

sin (65◦ − φ) sin θ

cos (65◦ − φ)

⎞
⎠. (23)

Here, φ is the polar rotation, and the θ is the tilt angle. In
our measurements, |φ| � 5◦ and |θ | � 5◦, resulting overall in
a strong component along the a axis, normal to the cleavage
plane, a weak component along the c axis, and a very weak
component along the b axis.

LiMo6O17 is susceptible to oxygen loss caused by in-
tense ultraviolet light where the desorption is due to the
Knotek-Feibelman mechanism including a core-level excited
resonant Auger decay [12]. It shares this behavior with, e.g.,
NaMo6O17 [13], K0.3MoO3 [14], or oxides like TiO2 [15] and
SrTiO3 [16,17]. We were not able to prevent this damage by
oxygen dosing (which is possible, for example, for SrTiO3

[17]). The reason might be the existence of both tetrahedral-
and octahedral-coordinated molybdenums. A small oxygen
loss causes a slight electron doping but, as time progresses,
the ARPES signal eventually blurs. To prevent the loss, one
concept might be to keep the photon energy below that of the
lowest-energy core level resonance. However, often there is
higher-order light that still causes a slow degradation (with the
timescale in the hours instead of minutes) and therefore our
concept is to use a large homogenous area and slightly alter
the position of the beam spot when the sample degradation
begins.

115144-10



WANNIER ORBITAL THEORY AND ANGLE-RESOLVED … PHYSICAL REVIEW B 109, 115144 (2024)

Even though the ARPES lineshapes have the general 1D
holon-peak and spinon-edge features [18], they were ana-
lyzed by a model-free method described in detail in paper
III Sec. III B [2]. This procedure was necessitated because
the low-T ARPES lineshape is not sharp enough to agree
in detail with the low-T transform-limited lineshape [19]. If
the transform-limited lineshape is broadened ad hoc it can
be made to fit [18], but we did not want to use that ad hoc
procedure in the current work.

B. Ansatz for deducing κa

We repeat here some basics of ARPES, cf. Refs. [20,21] As
in Sec. II A we use a notation according to which k denotes
the Bloch vector in a (periodically repeated) single zone of
an initial state, and κ is the momentum of the final plane-wave
state inside the crystal. According to Eq. (10), κ [mod zone] =
k. Upon leaving the crystal, the photoelectron is diffracted
in the direction away from the surface, whereby the normal
momentum component κ⊥ = κaa∗ jumps discontinuously to
a smaller value κ⊥o. Parallel to the surface, the momentum is
conserved:

κ� ≡ κbb∗ + κcc∗ = κ�o.

What is measured in ARPES is, for a given photon energy
hν, the yield I , the angle of exit θ , and the kinetic energy
T = h2

2m |κo|2 of the photoelectrons in the analyzer outside the
crystal. The value of κa inside the sample is deduced from
the two latter quantities by assuming that, inside the crystal,
the energy of the final state is V + h2

2m |κ|2, i.e., the energy of
an electron, free with respect to a potential floor V , and that
outside the crystal, the momentum is

κo = (κ⊥o, κ�
) =

√
2mT

h
(cos θ, sin θ ), (24)

and the energy is � + T . Here, � is the work function of the
sample. It should not be confused with �� which is a con-
stant given by the apparatus and is essentially the difference
between the work function of the sample and analyzer. ��

allows us to relate the measured kinetic energy to the binding
energy ω within the sample,

ω ≡ −Ej (k) = hν − (�� + T ). (25)

Equating the inside and outside energies yields the desired
relation for κa:

κa

a
= |κ⊥| =

√
2m

h

√
T cos2 θ + V0, (26)

where V0 ≡ � − V is the so-called inner potential. Taking V
and � with respect to the Fermi level, which is common for
the crystal and the analyzer, V is negative and � is positive,
whereby V0 is positive. Its value is determined empirically.

C. Photon energy dependence

1. Fermi surface intersection with a∗b∗ planes

We begin by showing ARPES for photoelectrons coming
from slightly below the Fermi level, i.e., from the x̃y electrons.
Figure 7 shows for sample H at T = 6 K the photoelectron
yield as a gray-scale intensity, a so-called FS map, in the three

κaκb planes with κc = 0, 1/4, and 1/2, colored respectively
blue, red, and green. In the κc = 0 plane, the scan covers
many BZs. We see the traces of the two FS sheets separat-
ing the occupied states, |kb| < kF , between the sheets from
the empty states, |kb| > kF , outside the sheets. These traces
appear as straight lines and are thus consistent with being
the intersections with a κaκb plane of a 1D nearly-half-filled
FS, |kb| = kF ≈ 1/4. This FS is seen to be periodic in the
a∗b∗c∗ lattice and to have aperiodic, coarse-grained intensity
variations.

Since the κa direction is perpendicular to the plane of the
sample, it must be accessed by variation of the photon energy.
For presenting these measurements, we converted our raw
yield I and kinetic-energy T data as functions of angle θ

and photon energy hν, as explained above, to binding energy
ω and momentum vector κ using the value V0 = 11 eV for
the inner potential. With the work function of the sample
being � = 4 eV, the potential floor is thus 7 eV below the
Fermi level, i.e., V = −7 eV. The dotted constant-hν circles
in Fig. 7 are the cross sections of the sphere V + h2

2m |κ|2 = hν

with the constant-κc planes. For a given hν, normal emission
(θ = 0 = κb = κc) from the Fermi level7 thus has the κa value

κa(0, 0, hν) = a
√

2m

h

√
hν − V ≈ 7.0

√
hν + 7 eV

40 + 7 eV
, (27)

which, as expressed on the right-hand side, is 7.0 for
hν = 40 eV.

Figure 7(a) shows intensity variations in central
(κc = 0) plane: Strong intensity in the region (κa, κb) =
(5.5–7.5, ±kF ) and weak intensity in the regions
(8.0–10.5, ±(1 ± kF )). In the former, we see an intensity
variation with minimum at the zone boundary (κa = 6.5). In
the last-mentioned regions, the intensity along the FS is weak
and fairly constant. In Fig. 7(b), the κc = 1/4 plane, which
contains the resonance peak (see bottom part of Fig. 4), the
intensity variation seems to be shifted a bit, and again in
Fig. 7(c) to be in register with the variation in Fig. 7(a).

The qualitative theory of the coarse-grained intensity vari-
ations presented in Sec. II B 2 associate them with the form
factor of the xy WO in the present case. The theory yields
the result shown in Fig. 8 which compares quite well with
the experimental Fig. 7(a). We thus realize that the region of
strong intensity is due to the beam (18) whose center hits the
κc = 0 plane at (κa, κb) = (6.4, 0), and that the two regions of
weak intensity are due to the beams (19) causing the spots at
(κa, κb) = (9,±1).

Apart from the observed coarse-grained intensity varia-
tions, we confirm that, slightly below the Fermi level there
is no dispersion along κa, i.e., there is strongly reduced di-
mensionality in the a∗ direction.I 15 The intensity variation
seen as a function of κa in Fig. 7 has period one in κa and
is, therefore, not the fine-grained intensity variation (zone
selection) described in Sec. II B 1, which has period two in
κc and is due to emission from one of the two xy bands. The

7For finite binding energy, hν should be substituted by hν − ω

in Eq. (27). But even going to the bottom of the band, where ω =
0.7 eV, this lowers κa by merely ≈0.06.
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FIG. 7. Photon energy scan of sample H at T = 6 K for κ in
three a∗b∗ planes: (a) FS map through κc = 0 (�BY) (b) κc =
1/4 (�WV), and (c) κc = 1/2 (ZDC). The full colored lines along
a∗ and b∗ are the intersections with the BZs. The blue dotted lines
intersect at the reciprocal-lattice points �LMN . The high-intensity
traces represent the 1D FS showing no dispersion in the a∗ direction.
There are coarse-grained intensity variations whose origin is the
structure factor of the form factor for the xy WOs, see Sec. II B 2
and Fig. 8. This figure and the following are approximately to scale,
i.e., consistent with a/b = 2.31.

intensity seen could, in principle, be due to ka dispersion,I 15

but this, we judge, is far too weak, so we currently have no
explanation.

In the c∗ direction, i.e., from Figs. 7(a)–7(c), the dispersion
is very weak. That there are two bands at the Fermi level and
the FS therefore has two close-lying Fermi vectors, kFu = kF2

and kFl = kF1 along κb, cannot be seen in these figures, but
might, in principle, be resolved because the resolution is
16 meV when hν = 30 eV (and decreases to 40 meV when
hν = 100 eV).

2. Fermi surface intersection with b∗c∗ planes; hν = 30, 33,
and 37 eV

Like in Fig. 7, the intensity for photoelectrons coming
from slightly below the Fermi level is shown in Fig. 9, but
now in the κbκc plane, over two BZs (|κb| � 1/2, |κc| � 1),
and for hν = 30, 33, and 37 eV. The coarse-grained in-
tensity is seen to change significantly over this range of
photon energies, and only for 33 eV does it extend over both

FIG. 8. Theoretical ARPES intensity distribution
κ2

a |w̃xy(κa, κb, κc = 0)|2 to be compared with the coarse-grained part
of the experimental intensity distribution in Fig. 7. The contours
go from 0 to 400 in steps of 20. The black lines indicate the traces
of the near-FS sheets, |κb| ≈ 1/4, in the periodic zone scheme and
extend where the intensity exceeds 40.

BZs. This we can partly understand from the hν dependence
of κa.

For the three photon energies, Eq. (27) yields, respec-
tively, κa(0, 0, hν) = 5.9, 6.2, and 6.5, which according to
the simplest prediction (18) of the κc position of the intensity
maximum (seen on the left-hand side of Fig. 6 for κa = 6.0
and 6.8) for the xy beam gives: κc = 0.5, 0.2, and −0.1, as
compared with 0.2, ≈0, and −0.6 estimated from the exper-
imental Fig. 9. The latter κc values correspond via Eq. (18)

FIG. 9. FS map at different photon energies hν = 30, 33, 37 eV.
For κb = κc = 0, this is at κa = 6.3, 6.6, and 6.9, as indicated. These
figures have been stretched along κc by a factor 1.7 [compare with
Figs. 1 and 10(b), which are to scale].
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to the somewhat larger κa values: 6.2, 6.4, and 7.0, whose
intensity distributions can easily be imagined from those for
κa = 0 and 6.8 shown on the left-hand side of Fig. 6. These
do exhibit the remarkable contraction along κc of the exper-
imental intensity distribution seen in Fig. 9 for the highest
energy. On top of this comes the narrowing of the beam
due the delocalization of the x̃y WO caused by the down-
folding of the valence- and conduction-band orbitals [see
Eq. III (4)].

D. Constant-energy contours in the b∗c∗ plane

In Fig. 10 we present ARPES results for binding energies,
ω, which takes us from the Fermi level to the bottom of the Mo
4d bands so that we also get to see the xz and yz valence bands.
The results are shown in the 2D region (0 � κb � 1/2, 0 �
κc � 1) which with reference to Figs. 1 and 10(a) includes
the upper half of the BZ centered at �00 ≡ � plus the lower
half of the one centered at �01 ≡ �′, We refer to these BZs as,
respectively, the first and the second. Together, they form the
upper part of the double zone centered at �. Here, “upper”
and “lower” refer to the orientation which has κc pointing
upward.

The rightmost panel in Fig. 10(b) shows ARPES as
measured and the leftmost panel shows ARPES with the fine-
grained (plus some of the coarse-grained) intensity variations
symmetrized away by adding the intensities from both sides of
the BZ boundary (CZC, κc = 1

2 ), exploiting the equivalence8

of xz and yz. This corresponds to adding the intensities at k
and k + c∗.

The middle panel of Fig. 10 shows the CECs from the
LDA-TB bands with the common energy of the four xz and
yz WOs shifted downwards by 100 meV with respect to
the energy of the two xy WOs [see Figs. 12(a) and 12(b)]
in order to improve the agreement with the symmetrized
ARPES in the rightmost panel. This agreement—down
to every detail—is astonishing, and so is the straight-
ness of the three sets of lines, even close to where
they cross. The theoretical CECs have been colored red,
blue, and green according to their respective xy, xz, or
yz character, and in order to mimic the spectral-function
broadening of the dispersion, the shifted LDA-TB bands
were broadened by a Lorentzian with energy-independent
width.

The CECs from the symmetrized ARPES and the shifted
LDA-TB bands behave as described in paper I [1], Sec. IV A
together with Figs. I 4, 6, 7, and 8. The upper part of the
double zone is shown also in Fig. 1 of the present paper.

In Fig. 10 we recognize the CECs of the quasi-1D degen-
erate xy(k) and xy(k + c∗) bands (red) dispersing in the kb

direction with the distance 2kb(E ) between the two sheets
increasing like ≈(2/π )

√
(E − B)/|t | with t ≈ −1 eV [see

8Note that, whereas the band structure is invariant to the individual
mirror operations kb → −kb and kc → −kc, the eigenfunctions are
merely invariant to the inversion (kb, kc ) → −(kb, kc ). As a conse-
quence, the above-mentioned even/odd symmetries around kc = −1,
0, 1 and kc = 1/2 do not hold for the blue and green curves individ-
ually, but only for their sums.

FIG. 10. (a) Orientation in the zone of the κbκc plane with κa =
6. The CECs are shown in the upper part of the first BZ and the
lower part of the second BZ: |κb| � 1/2, 0 � κc < 1. See also Fig. 1.
(b) Comparison of the CECs computed using the LDA-TB parame-
ters, listed in Eqs. I (43)–(47) including the 100 meV shift, with those
measured by ARPES for sample H (T = 6 K, hν = 30 eV). Red,
blue, and green indicate dominating xy, xz, and yz character. The
red dashed line (kb = 0.225) is the one along which we often show
bands, such as the |k〉-projected ones in Fig. 4. The match with the
symmetrized ARPES is nearly perfect, and so is the prediction that
in ARPES as measured, the xz and yz CECs are extinguished in the
respective second zone, i.e., above the respective ZY′ line. Indicated
on the right are the energies with respect to the Fermi level.

Sec. I IV, Eq. I (23)] and heading towards ≈1/2 at the Fermi
energy.

The quasi-1D xz(k) (blue) and yz(k) (green) bands dispers-
ing with, respectively, kc − kb and kc + kb [see Eq. I (27)],
are degenerate at their common bottom at � where they are
also nearly degenerate and hybridize with the two xy bands,
thus giving rise to CECs which are complicated near �. For
energies a bit above the common bottom of all three t2g

bands, B ≈ EF − 0.75 eV, the blue and green pair of CECs
are parallel with and lie on either side of, respectively, the
kc − kb = 0 and kc + kb = 0 lines. As the energy increases, so
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does the distance ≈(2/π )
√

(E − B)/|A1| between each pair
of parallel blue or green CECs. This distance is approximately√

t/A1 ≈ 1.8 times the one between the red xy CECs.
The blue and the green k + c∗ bands are shifted by �kc =

1 and thus behave in the same way as the respective blue
and green k bands. For energies above ≈ − 0.5 eV, the
closest CEC pairs are those on either side of the respec-
tive zone boundary, |kc + kb| = 1/2 or |kc − kb| = 1/2, onto
which they coalesce when E ∼ EF − 2|G1| = EF − 0.2 eV.
Here, 2G1 is the electronic dimerization causing a gap of
±2G1 [see Eq. I (29) and Fig. I 6 for kb = 0.225].

We are particularly interested in the hybridization of the xy
bands inside the gap around EF . It can be seen in theory by
comparison of the light and the dark red bands in Figs. I 6 and
I 7, respectively, or in the middle and bottom parts of Fig. 4 of
the present paper II, and we study it in detail in paper III [2].
Although bands—and not CECs—hybridize, we can see the
effect of this hybridization in the LDA-TB part of Fig. 10 at
0.1 and 0.2 eV below EF as four “notches” pointing inward,
toward Z, and we can follow them as the energy is lowered
into the valence bands. The origin of the notches is clearly the
energy repulsion between the hybridizing valence-band edge
and one of the two degenerate xy bands; the other band is
unaffected. Since the notch is sharp, it can only come from
an edge of a nearby yz or xz band (but not from a far-away
yz or xz band) with a weak matrix element, and as long as
the notch points toward Z rather than Y, it comes mainly from
the edge of the valence (V) rather than from the edge of the
conduction (C) band. The corresponding peak is in the upper
x̃y band (Fig. I 7) and we call it a resonance peak. (If we take
the nearly dispersionless ka dimension into account, the peak
is a “mountain ridge” extending along a∗).

According to the selection rules derived in Sec. II B 1 and
illustrated in Fig. 4, ARPES as measured in Fig. 10(b) should
see the occupied |k〉-projected bands in the first physical
zone and the occupied |k + c∗〉-projected bands in the second
physical zone. With the blue xz and green yz bands gapped
around the Fermi level, these bands should be seen in the first
physical zone only, and comparison with Fig. 1 shows this
to be the case. Specifically, the blue and green bands with
E < EF − 0.2 eV are extinguished in their respective second
zone. The dimerization distortion of the yz (and xz) intensities
for negative κc predicted in Fig. 3 for κa = 6.4, specifically
the intensity enhancement near κc = −0.4 for the upper band
was seen in the data; but this is outside the range of positive
κc shown in Fig. 10(b).

For the red metallic xy bands, the Fermi sea inside the outer
sheet should be seen in the first BZ and the sea inside the inner
sheet should be seen in the second BZ, with a switch near the
BZ boundary, kc = 1/2. This means that the notches should be
seen only in the second BZ, but the drop of intensity for κc >

0.5 in ARPES as measured with hν = 30 eV (Fig. 9) makes
this observation difficult. We shall return to it in Sec. III B in
paper III.

Herewith, we have arrived at the influence of the yz and
xz form factors. In Fig. 10(b) we see that the intensity as
measured for given binding energy (deep inside the valence
bands) is slightly stronger for (green) yz(k) than for xz(k)
(blue) and increases with κc in the range (0|1). As may be seen

from the theoretical Fig. 6, the former property is consistent
with the behavior of κ2

a |wyz(κ)|2 for κa ≈ 6.4, but the latter
requires κa ≈ 7.

E. Energy bands Ej (kb, kc)

In the preceding section, the CECs as measured were
shown in the right-hand panel of Fig. 10(b) and were ex-
plained as the fine-grained, double-periodic |k〉 projection of
the occupied part of the lower m band in the first and of the
upper m band in the second physical zone (see Sec. II B 1 ), on
the background of the coarse-grained, aperiodic polarization
and WO form-factor intensity κ2

a |w̃m(κ )|2 (see Sec. II B 2).
Hence, the xz and yz bands were seen only in the respective
first physical zone because their upper bands are empty and so
were the metallic xy bands due to the drop of their polarization
and form-factor intensity for hν = 30 eV (κa = 6.3) in the
second BZ.

Figure 11(b) now displays the ARPES band structure as
measured on the faces of a box with the basal (kb, kc) plane
extending over the upper half of the double zone, like in
Figs. 1 and 10. On the top face, i.e., for E ∼ EF , we recognize
the 1D xy FS, (kb, kc) ∼ (±1/4, kc), with its intensity drop in
the second BZ. Not only the xy bands are quasi 1D, but so
are the xz and the yz bands: Had the box been cut at the top
of the valence bands, we would—like in the rightmost panel
of Fig. 10(b)—have seen their ridges follow the boundaries of
their physical zones (Fig. 1).

The band structures shown in Figs. 11(d) and 11(e) are ob-
tained by cutting the data along the lines colored in Fig. 11(a).
To avoid the fine-grained intensity variations, we show in
Fig. 11(c)—like in the leftmost panel of Fig. 10(b)—the band
structure symmetrized over the first and second zones; the
benefit of this symmetrization is evident! Had there been
no coarse-grained intensity variations, this band structure
would have been periodic in the BZ and have the rectangle
�ZCY (0 � kb � 1/2, 0 � kc � 1/2) as its irreducible part.
The symmetrized bands in Fig. 11(c) will be compared with
the LDA band structure (Fig. 12) in the following Sec. IV and,
subsequently, its TB parameters will be fine-tuned to achieve
almost perfect agreement with the occupied ARPES bands.

The fine-grained intensity variations, on the other hand,
hold the key to resolving the thus-far elusive splitting and
warping of the nearly degenerate quasi-1D xy-like FS. But let
us first test our understanding of the intensity variations by
using it to explain the band structure as measured along the
lines colored in Fig. 11(a) and shown in Figs. 11(b), 11(d),
and 11(e).

Along �Z�′(kb = 0) we see the rise of the degenerate
xz(k) and yz(k) valence bands from their bottom at EF −
0.75 eV at � to their highest point, EF − 0.25 eV, where the
blue and green valence-band ridges cross at Z. Here, half their
|k〉 characters—and hence ARPES intensities—have been
lost. On the downturn in the second zones, to �′, the |k + c∗〉
characters take over and the intensities drop accordingly. At
EF − 0.75 eV we also see the dispersionless bottom of the
two degenerate xy bands and expect the intensity to shift from
the lower to the upper band as we pass from the first to the
second BZ. That the measured total xy intensity nevertheless
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FIG. 11. ARPES band structure. (a) Orientation of half the first BZ in κaκbκc space and, in the κbκc plane, half the first BZ (0 � κc � 1/2)
centered at �, and half the second BZ (1/2 � κc � 1) centered at �′. The BZ is the physical zone for the xy bands, and the physical zones for
all three t2g bands were shown in Fig. 1. (b) Data as measured from sample H (T = 6 K, hν = 30 eV) presented in an E (κb, κc ) box where cuts
along the κ paths colored in panel (a) produce the band structures shown in panels (c)–(e). (d) Some features can be better seen in the first BZ,
(e) while others are more pronounced in the second BZ, and vice versa. This is so because band selection follows the physical rather than the
Brillouin zone (see Sec. VI D in paper I [1]). (c) The symmetrized band structure shows all spectral features.

drops, we ascribe to the above-mentioned drop of the form
factor in the second BZ.

When going inside the first zone from � to Y, the other
crossing point of the blue xz and green yz valence band
ridges (see Fig. 1), the xz(k) and yz(k) valence bands are
seen to rise and lose intensity in a similar same way as they
did toward Z, except that there—due to spin-orbit splitting
(see Fig. 13)—the maximum was higher. The �Y cut in the
band structure is also shown on the front face of the box in
Fig. 11(b). Intensity is prominently seen from the (lower) xy
band rising parabolically from its bottom along �Z to the FS
along kb ≈ 1/4. The aforementioned drop of xy intensity in
the second BZ is clearly seen on the top face of the box. If we
go inside the second zones from �′ to Y′ at the zone boundary,
this is the only place where intensity from the valence bands
is seen.

Along the green diagonal from Y′ to Z, where the gapped
yz(k) and yz(k + c∗) bands form the valence-band ridge, this
ridge is clearly seen; in fact far better than the blue ridge from
Y to Z formed by the gapped xz(k) and xz(k + c∗) bands.
A similar intensity difference between yz and xz was also
observed in Fig. 10 and was explained at the end of Sec. III D
as due to different form factors. The xz band gives no intensity
along the green Y′Z line because it is in the second yz zone,
which is empty. Returning now to the blue valence-band ridge
along YZ, we see the yz band fall, reach its bottom halfway
toward Z, and then rise again to the highest point on the ridge
at Z. Here, the yz band not only attains |k + c∗〉 character, but
also hybridizes with the xz band via spin-orbit coupling. We
also see the parabolic rise of the lower xy band from its bottom
at Z toward Y, reaching EF at half the way. Toward Y′, the xy
intensity is reduced by the form factor.

Going along the BZ boundary from Z to C for kb positive,
the nearly degenerate xy bands rise and cross the Fermi level
near (1/4, 1/2) and the xz valence band falls from the highest
point on the ridge to its bottom at C. At Z, the green yz band
is degenerate with the blue xz valence band and has intensity
there, which, however, vanishes after leaving the first green
zone.

Upon going from C to Y′ (kb = 1/2) inside the blue xz
zone, we see the xz band increase to the blue ridge at Y′.
Going instead to Y, we see the other branch of the xz band
increase to the blue ridge at Y.

Along �W (kc = 1/4), the lowest band—with minimum
at (1/4, 1/4)—is the blue xz(k) band. The yz(k) band is de-
generate with xz(k) at � but then increases until at (1/4, 1/4)
it reaches the top of the green ZY ridge where it mixes with
the yz(k + c∗) band coming from W and thereby looses its
intensity. Going instead from �′ toward W′( kc = 3/4), it
is the blue xz(k + c∗) band which—with weak intensity—
increases until at (1/4, 3/4) it reaches the top of the blue
ZY′ ridge where the |k〉 character takes over and the xz(k)
band continues with full intensity downhill. The lower xy band
disperses parabolically upward from � and reaches the Fermi
level half the way to W, and the same is seen—with reduced
intensity—along �′W′ (kc = 3/4) for the higher xy band. The
nonvanishing hopping integrals I (46) between an xy WO and
an xz or yz WO causes the corresponding bands to repel where
they run close. This is the case for the two xy bands and the
yz(k) band between � and (1/4, 1/4), and for the two xy
bands and the xz(k) band between �′ and (1/4, 3/4). It is
remarkable that of the three close bands, two repel around the
third band, which remains unaffected and thereby ends up as
the band of intermediate energy, the lowest of the two xy bands
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FIG. 12. ARPES (black dots and gray circles) and LDA (xy red, xz and yz green) band structures. The line P1Q1 has kb = 0.225 and kc = 0
to 0.5, see Figs. 1, 10, and 11(a). The experimental bands come from the symmetrized ARPES measurements (T = 6K, hν = 30 eV) on sample
H whose metallic bands are 51% filled (see Sec. III B 1 in paper III [2]) and displayed in Fig. 11(c). They were determined by searching the
intensity maximum along the direction of either energy (EDC, black dots) or momentum (MDC, gray circles). (a) The LDA bands are the
eigenvalues of the six-band TB Hamiltonian defined in Sec. I VI with the parameters listed in Tables I (43)–I (47) and I (49). (b) As above, but
with the energy of the xy WOs shifted 100 meV upwards. The blow-up along P1Q1 in panel (b2) compares the shifted LDA-TB theory with the
experimental band (black dots with uncertainty in gray). The diamonds, labeled “MDC2,” indicate the band determined from the maximum
along the momentum direction b∗ perpendicular to P1Q1, where the band disperses strongly.

in the present case. This can be seen in Figs. 11(c)–11(e) and
will be referred to often in the following.

The P1Q1P′
1 line (kb = 0.225) is perpendicular to the �W

and �′W′ lines and is parallel to but slightly inside the FS
so that the trace of the xy bands is ≈170 meV below the
Fermi level and thereby clearly visible in ARPES—albeit with
the usual xy form-factor reduction of the intensity toward
P′

1. Starting from P1, we see the blue xz(k) band reaching
its bottom midways to Q1 and—above it, with slightly less
intensity,—the green yz(k) band rising toward the top of the
green ridge where 50% of its character and intensity are lost
and losing even more on the downhill side toward Q1. Pro-
ceeding from here toward P′

1 in the second green zone, we
vaguely see the green yz band—now |k + c∗〉-like—reach its
bottom midways to P′

1. From Q1 in the blue first zone, we
see the blue xz band rise to the ZY′ ridge, where it—like the
green yz band at the green ridge—has lost half its intensity
and thereafter vanish on the downhill side toward P′

1. All of
this agrees with the |k〉 characters of the four lowest LDA-TB
bands shown at the bottom of Fig. 4 and, at the top, with the
xy form factor dropping in the second BZ, thus hiding the
resonance peak predicted to exist in the upper x̃y band.

Before attempting to extract ARPES data beyond the
100 meV scale, we need to assess the degree of agreement
between the LDA and the ARPES dispersions.

IV. AGREEMENT BETWEEN ARPES AND THE LOCAL
DENSITY APPROXIMATION

The band structure derived from the symmetrized ARPES
data is shown in Figs. 12(a) and 12(b). The points indicated
by gray circles were extracted from the peak locations in the
momentum distribution curves (MDCs), I (|k| in a specified
direction, fixed energy E ), and the points indicated by black
dots were extracted from peak locations in energy distribution
curves (EDCs), I (fixed k, E ). The peak maxima in these
curves were found from the zeros in the smoothed first deriva-
tive with respect to |k| for an MDC, or E for an EDC, under
the condition that the smoothed second derivative is smaller
than zero.

The bands resulting from the first-principles LDA calcula-
tion (in the TB representation of the six t2g WOs; see Secs. V
and VI in paper I [1]) are shown in 12(a), with the sum of the
xz and yz characters in green and the xy character in red. Note
the strong hybridization of the nearly degenerate bottoms of
the two xy and the xz and yz valence bands near �. Note also
the hybridizations between Z and Y and between W and �.

Near the middle of the latter line where the two degenerate
xy bands in the gap come close to the valence and conduction
(V and C) bands, and their repulsion is therefore strong—but
in opposite directions—one of the xy states stays unaffected
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FIG. 13. Relativistic linearized augmented plane wave general-
ized gradient approximation (LAPW GGA) control calculation of
the LiPB band structure using the Perdew-Burke-Ernzerhof (PBE)
functional [22]. We show the bands along the same lines in the BZ as
shown at the top of Fig. I 3 whose bottom shows the 336 NMTO LDA
band structure. The 6 NMTO TB band structure in the Y�ZC plane is
shown in Fig. I 4. LAPW band energies are in eV with respect to EF .
Red bands are with and gray bands are without spin-orbit coupling.
We see that the crossings between the third and fourth bands along
�Z and ZC and between the first and second bands between Y� and
AB are spin-orbit split by about 80 meV.

and the other is pushed up or down in energy, depending on
whether the repulsion from the valence or the conduction band
is stronger. Since this balance tips as we move up through the
gap, the hybridization shifts from the upper to the lower xy
band and causes the resonance peak to shift from upwards
pointing in the upper band, to downwards pointing in the
lower band. The fact that the matrix element α(k) + a(k) for
hybridization of the xy and xz/yz bands decreases with in-
creasing kb causes the rather strange-looking dispersion of the
two xy bands along �W. This asymmetry will be explained
in Sec. II B 5 in paper III [2]. Along P1Q1, we clearly see the
resonance peak in the upper x̃y band.

A. Shifting the local density approximation xz and yz bands
downwards with respect to the xy bands

Overall in Fig. 12(a), there is good agreement with the
occupied ARPES bands, the main discrepancy being that the
LDA valence bands lie 100 meV too high with respect to
the xy bands and therefore with respect to the Fermi level.
This may be partly a surface effect: The xz and yz WOs
reach farther into the vacuum and therefore feel a higher
LDA potential than the xy WOs which are well inside the
staircase. In addition, there is undoubtedly an LDA error; for
instance, LDA band gaps in semiconductors are too small,
and FS measurements for bulk 4d metals indicate that the
accuracy with which the LDA describes the energy separation

between inequivalent t2g levels is ≈50 meV.9 For LiPB, we
therefore correct the bulk LDA bands by shifting the energy
of the green V and C bands downwards by 100 meV [more
precisely, we shift the on-site energy τ0 of the xy and XY WOs
100 meV upwards, i.e., from 47 to 147 meV in Eq. I (43) with
respect to the common on-site energy of the xz, XZ , yz, and
Y Z WOs, and subsequently recalculate the Fermi level]. The
result shown in 12(b) agrees very well with ARPES, as was
seen already in Fig. 10(b) for the CECs. An exception is near
Z, where the splitting of the valence band is too small and the
lowest conduction band nearly touches the Fermi level, thus
asking for a fine adjustment of the TB parameters.

The LDA and ARPES band structures in Figs. 12(a) and
12(b) are lined up with respect to the Fermi level, which
for the LDA calculation for stoichiometric LiMo6O17 corre-
sponds to 50% filling of the metallic bands. In the experiment,
Li and O vacancies make the filling uncertain and is estimated
from the measured kFb value (Sec. III B in paper III) to be
51 ± 1%, i.e., to have the effective stoichiometry Li1.02±0.02.
Using the measured Fermi-velocity, this then gives a Fermi
level which with respect to the band structure is between
50 and 0 meV above the level for the stoichiometric crystal
assumed in the calculation, which means that the metallic
ARPES bands could lie 50 to 0 meV below the LDA bands
in Fig. 12(b). But this can only account for the ≈40 meV
distance to the lower LDA x̃y band seen in a direction perpen-
dicular to b∗, such as along P1Q1, in particular in the blowup
in Fig. 12(b2).

The black dots in Fig. 12(b2) were obtained as the posi-
tion of the EDC maxima (one for each k) and the gray area
indicates the uncertainty of the experiment, as well as the
uncertainty in determining the position of the one EDC max-
imum. The three purple diamonds labeled MDC2 are from
MDCs along, respectively, �Y,�W, and ZC, perpendicular
to P1Q1.

The upper x̃y band predicted by the LDA seems to be
missing in the symmetrized ARPES data of Fig. 12(b2). This
we can understand by going back to the ARPES bands “as-
measured” along P1Q1P′

1 in Figs. 11(d) and 11(e), where
intensity just below the Fermi level was seen in the first BZ
but hardly in the second BZ. As illustrated in Fig. 4, the
lower xy band is selected in the first and the upper band in
the second BZ. Since for kb = 0.225, the xy bands are closer
to the valence than to the conduction bands, the repulsion
from the former dominates and pushes a resonance peak up
in the upper band. This peak thus has ARPES intensity in the
second zone where it gets strongly reduced by the xy form
factor. The symmetrization of the P1Q1 and Q1P′

1 ARPES data
finally adds to hiding the band in the second BZ behind the
one seen in the first BZ, and that is why, in Fig. 12(b2), only
the lower ARPES band is seen. From the ARPES data, we
can therefore only uncover the upper x̃y band if we avoid the
symmetrization.

9For elemental transition metals, 100 meV is the typical size of the
s-to-d energy shift needed to bring the LDA and experimental (de
Haas–van Alphen) Fermi surfaces into agreement, see Ref. [23].
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FIG. 14. Band structure obtained as the eigenvalues of the six-band TB Hamiltonian, Eqs. I (35) or I (56), with parameter values fine-tuned
to improve the fit to the ARPES bands and given in the square parentheses in Eqs. I (43)–I (47). The Fermi level is ≈0.1 eV above the center of
the gap [see text following Eq. I (49)]. The ARPES data here are those already shown in Fig. 12, except for those in the blowup (c2) along P1Q1

(kb = 0.225), which are non-symmetrized EDC data from, respectively, the first (black) and second (blue) BZ. The latter data are subsequently
mirrored around the kc = 0.5 zone boundary into the first BZ.

B. Fine tuning the tight-binding Hamiltonian and extracting
both quasi-one-dimensional bands from ARPES as measured

Our first-principles LDA TB description of the six lowest
energy bands given in Sec. I VI has about 40 TB parameters
(WO energies and hopping integrals). Their LDA values, de-
rived as described in Sec. I II, are given in Tables I (43)–I (47)
and yield the band structure shown in Fig. 12(a). As explained
above, the improved agreement with ARPES seen in panel
12(b) was achieved by merely shifting the value of τ0, the
energy of the degenerate xy and XY WOs, up with respect to
that of the degenerate xz, XZ , yz, and Y Z WOs. The latter is
the energy at the center of the gap and is taken as the zero
of energy in the TB Hamiltonian. Still, the Fermi velocity
is too small and the resonance peak along P1Q1 is too high.
Moreover, the levels near Z , where the V and C bands come
closest, remain inaccurate: the splitting of the valence-band
levels is too small while that of the conduction-band levels is
too large. This is due to bad convergence and truncation of
the xz-yz hybridizations I (40), to our neglect of the spin-orbit
coupling in the NMTO—but not in the linearized augmented
plane wave (LAPW) (Fig. 13)—calculation, and to the LDA
yielding too small a gap.

We therefore refined the parameter values, with the results
given in square parentheses in Tables I (43)–(47). Specifically,
we found it necessary to modify the values of the intra-ribbon
hopping integrals, first of all, between, respectively, the on-
site, first-, and second-nearest xy WOs τ0, τ1, and τ2. This
increases the Fermi velocity by about 15%, increases the
upward curvature of the bands near half filling, and lowers the
half-filling Fermi level to 53 meV above the center of the gap.
Second, we refined the values of the xz-yz hopping integrals
m1, λ2, and λ3 in Table I (47). In addition, the value of the
gap parameter G1 originating in the asymmetry (dimeriza-
tion) between the forward and backward hoppings, xz ↔ XZ
(yx ↔ Y Z ), as explained after Eq. I (27) and given in Eq. I
(45), was increased by 10%. The resulting band structure is
displayed in Fig. 14 and is seen to agree almost perfectly with
the experiment.

Most importantly, we have succeeded in extracting both
metallic bands by using the ARPES data as measured along
P1Q1P′

1 (kb = 0.225) for the EDCs. These ARPES bands are
displayed in the blowup of Fig. 14(c2) where the band ob-
tained in the first zone from P1 to Q1 has been plotted in black
squares with the uncertainty in gray, and the band obtained
in the second zone from Q1 to P′

1 has been plotted in reverse
order, from Q1 to P1 in the first zone, and in blue. Even though
the second BZ emission is relatively weak in this hν = 30 eV
data (recall from Sec. III C 2), nonetheless, we now see at
midzone the resonance peak in the blue upper band, well
separated from the gray lower band, while near kc = 0, 0.5,
and 1, the splitting of the two bands is less clear. The reasons
for the latter are technical:

(1) The extraction was done by assuming only one (possi-
bly broad) maximum per EDC whereby in the zone-boundary
(ZB) region (0.4 < kc < 0.6) where both bands have a signif-
icant |k〉 projection, only one band is found (see red bands in
the middle and bottom parts of Fig. 4). In Fig. III 8 we see
an example of how the one-peak extraction method switches
between the two bands when the ZB is crossed.

(2) With the ARPES intensity fading away upon ap-
proaching kc = 1 (P′

1), smoothing the EDCs before taking the
derivative (to locate the maximum) pushes the intensity to
increasingly higher binding energies ω and thereby causes the
band near P′

1, which is the (blue) upper band, to fall below the
one near P1, which is the (gray) lower band.10

Figure 14 thus demonstrates that the refinement of merely
seven out of the more than 40 TB parameters to fit the
ARPES bands, lying more than 0.15 eV below the Fermi level,
achieves nearly perfect agreement also for the kc dispersion
of the quasi-1D bands closer to the Fermi level. This includes
agreement with the size and shape of the resonance peak in the
upper band, without having modified any of the 17 (a, g, α, γ )

10The uncertainty of this is not included in the blue uncertainty
interval.
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parameters I (46) describing hybridization between the xy and
the xz and yz bands. This clearly shows the decisive role
that resonant coupling to the gapped xz and yz bands plays
in determining the splitting and dispersion of the metallic xy
bands.

Besides the above-mentioned peculiarities and experimen-
tal uncertainties, the agreement between ARPES and the
refined TB bands is astonishingly good. In both cases, the
peak caused by the resonance with the xz valence band at
(kb, kc) = (0.225, 0.725)—mirrored around the kc = 0.5 line
to the resonance with the yz valence band at (0.225, 0.275)—
comes out clearly in the upper x̃y band, and so does the lack
of a visible resonance peak in the lower band at (0.225,0.275).

C. True value of the fine-tuning fit

While it is intrinsically very satisfying to obtain a good fit
to the ARPES data, the true value of the fit is the very fact
that it was possible to do. Thus we know that our analytic TB
representation of the bands, as inferred from the LDA results,
is fundamentally correct at the qualitative level, and is not
missing any essential underlying physics. Otherwise, merely
varying the magnitudes of parameters could not achieve a
good fit. In particular, as emphasized already, obtaining a good
description of the low-energy FS features by fitting only the
high-energy features serves to validate our essential insight
that the details of these FS features do indeed result from their
couplings to the higher-energy valence and conduction bands.

Therefore we proceed to use the refined TB model in the
following paper III to focus on the metallic x̃y bands in the
gap, the origins of their observed kc dispersion on the 10 meV
scale, and their kc dispersion as a function of their position in
the gap, i.e., of the kb value. This will enable us to study the
details of the FS. We see that the theoretical splitting between
the two metallic bands near the |kc| = 0.5 zone boundary
increases as the energy moves away from the valence band
and toward the conduction band. With the hν = 33 eV data
(see Fig. 9) the zone-selection rule, and a detailed analysis of
our high-resolution data, we shall be able also with ARPES to
separate the two FS sheets.

V. SUMMARY AND OUTLOOK

In Sec. II of this paper II we derived a one-electron theory
of the ARPES intensity variations in LiPB, which was then
used in Sec. III to understand and analyze the extensive data
presented there.

For the intensity of photoemission with momentum κ and
binding energy ω (� 0), we used the one-step expression
(1) with the least specific choice, plane waves e2π iκ·r, for
the final states, and approximation (2) for the matrix ele-
ment. As a basis for the initial states, we used the six t2g

WOs, wm(r) and Wm(r), centered on, respectively Mo1 and
MO1, the most central molybdenums of the lower and the
upper strings, Mo2�Mo1�

Mo4�Mo5 and MO5�MO4�
MO1�MO2,

shown in Fig. I 2(a). Due to the approximate translational
equivalence [see Eqs. I (17) and I (18)] of wm(r) and Wm(r),
the photoemission intensity is essentially the projection of
the initial-state band with energy E (k) = EF − ω onto the
pseudo Bloch sum |w; k〉 in Eq. I (52) with k = κ − G in the

double zone [see Figs. 1 and 4 (bottom)]. This would have
been the initial-state band had the vector distance between
Mo1 and MO1 been (c + b)/2 rather than (c + b)/2 − d,

and had W (r) been equal to w(r) rather than inverted around
(c + b)/2 − d. For a band with dominant m character, we thus
expected that ARPES will see the lower band if κ is in the
first physical zone, and the upper band if κ is in the second
physical zone and the band is occupied. Specifically, that the
relative intensity of emission from the upper (lower) m band is
1
2 [1 ∓ cos φ], where φm(k) is given by the m-band structure in
Eq. I (60). Taking now the c-axis dimerization into account,
we found that this expression is modified to 1

2 [1 ∓ cos(φ −
η)], where ηm(κ) ≡ 2 arg w̃m(κ) − 2πκ · d is the difference
between the phase shifts due to the inversion and displace-
ment dimerizations. These phase shifts were shown in the first
column of Figs. 2 and 3 for, respectively, the xy and yz bands.
Whereas the inversion phase shift depends more strongly on κ

for the yz WO than for the more structurally protected xy WO,
the displacement phase shift is independent of m and rather
constant. We had therefore expected the selection rule to hold
better for the xy bands. However, in both cases and with κa

(which does not influence the band structure) suitably chosen
via the photon energy, the inversion and displacement phase
shifts tend to cancel with the result that the selection rule holds
surprisingly well, provided that κa is properly chosen. This
was seen in the second column of Figs. 2 and 3.

On top of this fine-grained structure of the photoemission
intensity, there is a coarse-grained aperiodic structure given
by the WO form factor |w̃m(κ)|2. Since in real space the t2g

WO (Fig. I 9) spreads with the same m character onto the four
to five nearest Mo sites in its plane and on the simple cubic
xyz lattice I (12) with 1 Mo per cell, its FT (11) factorizes
approximately into a structure factor Sm(κ) times the FT of
the “atomic” part of the t2g orbital, factorizing into an angular
and a radial part. As explained in Sec. II B 2, the structure
factors |Sxy|2, |Syz|2, and |Sxz|2 form 2D square lattices of
beams running in, respectively, the κz, κx, and κy directions in
reciprocal space, thus giving rise to intensity patterns which
are roughly six times coarser than the zone-selection patterns.
The square lattices formed by the beams from |w̃xy(κ)|2 and
|w̃yz(κ)|2 were shown in column 1 of Fig. 5 and the fol-
lowing columns showed how the angular and radial factors
limit the intensities to the extent that only the beams passing
through [κx, κy, κz] = [1, 1, 1] should be useful for ARPES
investigation of all three WOs. A closer look—and in the
crystallographic (κa, κb, κc) space—was given in Fig. 6. The
central parts of the three form factors were shown in the top
part of Fig. 4 along the line (κa, κb) = (6.4, 0.225). As seen
in the last columns of Figs. 2 and 3, the narrowness of the
form factors (�κc ≈ 1) washes out details of the dimerization
distortions of the zone selection, except near the suitably
chosen values of κa.

Our extensive ARPES data confirmed the LDA-based WO
theory of the energy bands and the ARPES intensity varia-
tions. The agreement between the band structures obtained
by ARPES and by the LDA is already good (Fig. 12) and
refinement of the LDA-TB parameters can make the fit almost
perfect for the large energy features (Fig. 14, main panel). So
doing automatically improves the results for the small-energy
features such as the resonance peaks in the upper metallic
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x̃y band, which are caused by repulsion from the top of the
xz or yz valence bands (Fig. 4, bottom). Taking advantage of
the BZ selection rule enabled observation of the upper metal-
lic x̃y band resonance peak [second-BZ data, Fig. 14(c2)].
Although the resonance peak is quite weak in this ARPES
data measured at hν = 30 eV, we understood this difficulty
(Sec. III C 2) to stem from the rapid falloff of the form factor
of the x̃y WO (see Fig. 4, top and Fig. 6, left) when moving
away from the center of the beam given by Eq. (18). The latter
depends on κa which is controlled by hν [Fig. 7 and Eq. (27)],
causing the intensity distribution along the Fermi surface (FS)
to depend sensitively on the photon energy (Fig. 9). To ob-
serve both metallic x̃y bands equally well, we need strong
emission in both the first and second BZs, and this occurs only
for our hν = 33 eV data.

Our trust in the t2g Hamiltonian with the refined parameter
values has thus been strengthened to the extent that, in the
following paper III [2], we shall go on using it together with
ARPES data taken at hν = 33 eV to study the splitting and
warping of the FS. Such deviations from one dimensionality,

crucial for the physical properties, are tiny and can in Fig. 10
only be seen in the theoretical bands. Moreover, since these
deviations are largely induced by the xz and yz bands, as may
be realized by comparing the red with the dark-red bands in
Fig. 4, they depend sensitively on the Fermi level’s distances
from these V and C bands and, hence, on the doping.

The resonance peaks are pushed up/down in the up-
per/lower x̃y band by the V (C) band edge, whose character
is 50% mixed |k〉 and |k + c∗〉. It was therefore not obvious
to what extent the character of the original xy bands (the
red ones in the middle panel of Fig. 4) near kc = ±0.75 or
±0.25 are retained in the x̃y bands, and, hence, how strong
the ARPES intensity, proportional to the |k〉 character, should
be. We therefore needed to compute the |k〉 characters of the
x̃y bands, the dark-red ones in the bottom panel of Fig. 4. This
was done using a two-band Hamiltonian obtained by Löwdin
downfolding of the V and C blocks of the six-band Hamilto-
nian I (56) in the {k, k + c∗} representation. The derivation
of this two-band Hamiltonian will be our first task in the
following paper III [2].
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