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Wannier orbital theory and angle-resolved photoemission spectroscopy for the
quasi-one-dimensional conductor LiMo6O17. I. Six-band t2g Hamiltonian
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In this and the two following papers, we present the results of a combined study by density-functional band
theory and angle-resolved photoemission spectroscopy (ARPES) of lithium purple bronze, Li1xMo6O17. This
material is particularly notable for its unusually robust quasi-one-dimensional (quasi-1D) behavior. The band
structure, in a large energy window around the Fermi energy, is basically two-dimensional and formed by three
Mo t2g-like extended Wannier orbitals (WOs), each one giving rise to a 1D band running at a 120◦ angle to
the two others. A structural “dimerization” from c/2 to c gaps the xz and yz bands while leaving the xy bands
metallic in the gap but resonantly coupled to the gap edges and, hence, to the two other directions. The resulting
complex shape of the quasi-1D Fermi surface (FS), verified by our ARPES, thus depends strongly on the Fermi
energy position in the gap, implying a great sensitivity to Li stoichiometry of properties dependent on the FS,
such as FS nesting or superconductivity. The theory is verified in detail by the recognition and application of
an ARPES selection rule that enables the separation in ARPES spectra of the two barely split xy bands and the
observation of their complex split FS. The strong resonances prevent either a two-band tight-binding model or a
related real-space ladder picture from giving a valid description of the low-energy electronic structure. Down to a
temperature of 6 K we find no evidence for a theoretically expected downward renormalization of perpendicular
single-particle hopping due to LL fluctuations in the quasi-1D chains. This paper I introduces the material,
motivates our study, summarizes the N th-order muffin-tin orbital (NMTO) method that we use, analyzes the
crystal structure and the basic electronic structure, and presents our NMTO calculation of the t2g low-energy
WOs and the resulting tight-binding Hamiltonian for the six lowest energy bands, only the four lowest being
occupied. Thus this paper sets the theoretical framework and nomenclature for the following two papers.
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FIG. 1. Angle-integrated photoemission spectra of lithium pur-
ple bronze for T = 4 and 30 K taken with a resolution of 5 meV
with photon energy hν = 8.4 eV [5]. For reference, a gold spectrum
with the same settings is also shown. All the spectra are generally
well fitted by the TL-model lineshape, showing for LiMo6O17 a value
of α ≈ 0.7. In Ref. [5], it was deemed ambiguous whether a very
noisy feature around 5 meV in the fit residuals is intrinsic or arises
from some systematic experimental error. The gold spectrum fits well
with α essentially zero, corresponding mathematically to a Fermi
edge.

I. INTRODUCTION

The present paper I and its two companion papers II [1] and
III [2] are devoted to a detailed study of the band structure
of the lithium purple bronze (LiPB) LiMo6O17,1 combin-
ing angle-resolved photoemission spectroscopy (ARPES) and
Wannier function band theory using the N th-order muffin-tin
orbital method (NMTO). Since its discovery [3] and struc-
ture determination [4] LiPB has been heavily studied as
a quasi-one-dimensional (quasi-1D) material2 [6–13]. Thus,
it is notable as an unusually good and interesting exam-
ple of the non-Fermi liquid (non-FL) properties exhibited
by 1D interacting electron systems, such as in the exactly
solvable Tomonaga-Luttinger (TL) model [14,15] or in the
more generalized notion of the Luttinger liquid (LL) [16].
A highly nonintuitive example of such non-FL properties is
that the energy E dependence of the momentum κ integrated
single-particle spectral function, which would give simply the
one-electron density of states in a noninteracting system, goes
to zero upon approaching the Fermi-energy EF as a power law

1We do not use the conventional name, Li0.9Mo6O17, because the
highly accurate ARPES bands to be described here are filled corre-
sponding to the stoichiometry Li1.02Mo6O17 (see paper III [2]).

2Reference [5] summarizes and references prior work dating back
to Ref. [3].

(EF − E )α , with α interpreted as the anomalous exponent of
the TL model.3

Figure 1 reproduces angle-integrated data from a previ-
ous photoemission study [5], showing this unusual property
for LiPB for the spectral function below EF , as probed by
ARPES. The spectra for κ-integration along the quasi-1D
direction, for temperatures T = 4 and 30 K and resolution
5 meV, are well described by a power law with α = 0.7
over at least 40 meV, compared with the Fermi edge of a
T = 4 K gold reference spectrum. Also, scanning tunneling
spectroscopy [17], which probes the spectral function on both
sides of EF , shows the power law “V-shape” down to 4 K.4 It
is then equally nonintuitive in the TL model that, nonetheless,
the underlying band-structure Fermi momentum kF and thus,
the Fermi surface (FS) remains well defined [18]. Paper III
presents a detailed determination of the FS for LiPB.

The band structure and, in particular, the magnitude(s)
of the transverse hoppings (t⊥) between its 1D chains, and
the resulting FS, are especially interesting and important for
LiPB. The general theoretical expectation [16] is that, for T
decreasing below a scale set by t⊥, LL behavior is unstable
against dimensional crossover from 1D to some sort of three-
dimensional (3D) Fermi-liquid (FL) behavior, typically by a
phase transition to some 3D ordered state like a charge- or
spin-density wave (CDW or SDW). Band calculations to date
suggest values of t⊥ = 20 meV (232 K) and yet the data
of Fig. 1 indicate that its non-FL 1D properties likely last
until the material goes superconducting (SC) at TSC = 1.9 K.
Indeed, other properties of LiPB, albeit novel and interesting,
exhibit no clear evidence for dimensional crossover above TSC

[5]. However, theory [16] also suggests that LL fluctuations on
the chains can strongly suppress the single-particle hopping
and consequently the crossover T . For example, in the case of
one chain per primitive cell and hopping only to the nearest
chain, the suppression of t⊥ is by the factor (t⊥/t )α/(1−α),
where t � t⊥ is the hopping along the chains. For a typi-
cal band-theory value of |t | = 0.8 eV [19] and the value of
α = 0.7 cited above, one obtains teff⊥ = 4 μeV or 0.04 K,
even smaller than TSC .5 Such a small value might thus account
for the exceptional stability of 1D physics in this material
and should be manifest in the low-T single-particle electronic
structure. However, up to now, the transverse hopping and
resulting FS have never been measured experimentally or
characterized theoretically as fully as is needed and possible.

There is additional motivation for our study. As described
in detail further below, LiPB is complex in having two approx-
imately 1D bands associated with there being two equivalent
chains (and two formula units) per primitive cell, each half
filled for stoichiometric LiMo6O17. Thus most LiPB theories

3The power law is valid for T = 0. For nonzero T , the exact depen-
dence evolves to be quantitatively more complicated but qualitatively
similar.

4In Ref. [5], it was deemed ambiguous whether a very noisy feature
around 5 meV in the fit residuals is intrinsic or arises from some
systematic experimental error.

5Some measurements [20] have yielded a smaller α = 0.6, for
which the effective t⊥ is larger, 80 μeV or 0.9 K, still smaller than
TSC .

115143-2



WANNIER ORBITAL THEORY AND ANGLE-RESOLVED … PHYSICAL REVIEW B 109, 115143 (2024)

to date [6–9,11–13,19] have modeled the quasi-1D electrons
as a lattice of pairs of chains regarded as ladders, with simple
tight-binding (TB) t⊥ and t ′

⊥ parameters for nearest neighbor
intra- and interladder hopping, respectively. So it is of great
interest to check the validity of the ladder picture, which in-
volves the relative magnitudes of the perpendicular hoppings
within and between primitive cells. These hoppings determine
the perpendicular dispersion and splitting of the two bands
forming the FS. Of particular interest is the normal state FS
giving rise to SC. The FS also gives the clearest experimental
access to the details of the transverse hoppings.

Another motivation is to demonstrate the use of the
NMTO method for creating chemically meaningful Wan-
nier functions—in the present case Wannier orbitals (WOs)
centered on Mo1, the only octahedrally fully coordinated
molybdenum (Sec. III A)—and their TB Hamiltonian, and
to establish them as important tools for predicting and in-
terpreting the ARPES data. As summarized in more detail
below, like the study in Ref. [21], our theory uses the local
density-functional approximation (DFT-LDA) to derive a set
of localized Wannier functions, which, however, in our case, is
complete in the sense that it contains all three Mo1 4d t2g-like
orbitals per formula unit, and thereby spans the occupied as
well as the lowest empty bands. The two quasi-1D metallic
bands are xy like and situated in a 0.4 eV gap between valence
bands formed by the xz and yz WOs, bonding between the lad-
der rungs, and conduction bands formed by the same WOs, but
antibonding between rungs. After integrating out the xz and yz
degrees of freedom (in paper III [2]), our theory leads to the
conclusions that the effective transverse couplings between
the two quasi-1D bands cannot be described by a simple TB
model and also that they have very long range, making ladders
ill-defined. In this respect all previous TB ladder models are
very unrealistic.

The theory also leads to a selection rule (in paper II [1])
that enables the two barely split quasi-1D bands to be sep-
arated in the ARPES spectra near EF for the first time. The
split and warped FS obtained thereby in ARPES at 6 K is in
excellent agreement with the predicted FS, giving a detailed
confirmation of the theory (paper III [2]). This means that the
predicted LL renormalization of the perpendicular hoppings
with decreased temperature does not occur and so cannot be
the origin of the robustness of the LiPB 1D behavior. We can
also infer that the LDA FS is the normal state FS relevant for
theories [8,9,11,22,23] of the SC. We note that the occurrence
of SC is sample dependent [24], and, in this context, that the
details of the theoretical FS shape are extremely sensitive to
the position of EF , which is controlled by the Li content (or
the content of oxygen vacancies). For our samples, the EF

position indicates that they are very nearly stoichiometric,
which is the circumstance found in theory to give the most
1D FS. Although we have not explicitly verified SC for our
samples, these findings are consistent with the hypothesis that
SC has a 1D origin6 and that the absence of SC in some
samples may be linked to sample stoichiometry through the

6The SC upper critical field is much larger than the Pauli-limiting
value [25], suggesting unconventional pairing arising from an essen-
tially 1D normal state.

sensitivity of the FS. Finally, although T dependence was not
a particular focus of the experiments, we find the same FS
at 30 K, implying that a mysterious resistivity upturn below
TM ≈ 25 K is not likely to be associated with a gross change
in electronic structure [5].

Before proceeding we emphasize that our purpose is not
merely to present the numerical results of yet another DFT-
LDA calculation for LiPB. Rather, DFT-LDA is a tool to
implement the overall program described in the three papers.
We use it to obtain chemically meaningful NMTO WOs,
which, in turn, we use to gain new insight into how the
numerical results come about. The central theory result is a
portable six-band analytic TB Hamiltonian to describe the
low-energy band structure. The agreement of its eigenvalues
with the ARPES band structure is already generally good us-
ing LDA parameter values and can be made excellent by some
additional adjustments, showing that its functional forms are
faithful to the physics. Furthermore, along with its underly-
ing WOs, it can be used to understand the complex ARPES
intensity variations in unprecedented detail, in particular the
selection rule already mentioned. Ultimately, the combination
of theory insight and ARPES experiment yields knowledge of
the details of the Fermi surface and the magnitude and range
of the perpendicular hopping for the two metallic bands.

In the remainder of this introductory section, we give a
more detailed overview of the theory relative to previous work
and describe the division of content between the three papers.

The basic band structure in the vicinity of EF has been
known for many years from pioneering TB calculations based
on the semi-empirical extended Hückel method [26]. There
are two approximately 1D bands dispersing across EF , asso-
ciated with there being two equivalent chains of Mo atoms
having a zigzag arrangement (zig-Mo1-zag-Mo4-zig), and
two formula units per primitive cell. The two bands have Mo
4dxy character and for stoichiometric LiMo6O17 they are half
filled. There are also two filled bands not far below EF .

Quantitatively correct band structures require charge-
self-consistent DFT calculations, not a small task for a
transition-metal oxide with 48 atoms per cell, so it took nearly
twenty years for the first self-consistent DFT (LDA) band
structure to appear [27] and another six for the second [28].
Both calculations were performed with the linear muffin-tin
orbital method (LMTO) in the atomic-spheres approximation.
Such LDA-LMTO band structures provided guidance for the
TB band-structure parameters used in early many-body mod-
els [6,19]. Higher-resolution low-temperature ARPES data
and more accurate NMTO calculations show agreement even
on the details [29] of the filled bands.

An alternative TB model [21] has been derived by first us-
ing the highly accurate full-potential linear augmented-plane-
wave (LAPW) method to perform a charge self-consistent
DFT (LDA) calculation of the band structure over a wide en-
ergy range, and then projecting from it a set of four so-called
maximally localized Wannier functions, which describe the
two quasi-1D bands and the two valence bands. The Wannier
functions of this model are therefore not atomic but essentially
the bonding linear combination of those on Mo1 and Mo4, and
the integral for hopping between these xy-bond orbitals is only
about half the one for hopping between the atomic orbitals
considered in the TB models previously used [6,19]. The
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study of Nuss and Aichhorn [21] also provides a simplified
two-band TB Hamiltonian by folding the two occupied xz and
yz bands down into the two xy bands, thereby becoming x̃y
bands, and fitting their hybridization such as to modify the t⊥
parameters. The result is said to be in good agreement with
those discussed in Ref. [19].

For the theory of the present paper and its two companion
papers, early results of which were given in Ref. [29], we
need and provide an improved 3D visualization of the crystal
structure, with an associated wording (Sec. III of the present
paper): ribbons containing Mo1, Mo2, Mo4, and Mo5 for
zigzag chains and bi-ribbons for ladders, and an overview of
the electronic structure (Sec. IV below). In the theory, we
perform an LDA Wannier-function calculation with the new
full-potential version [30] of the NMTO method. We obtain
the set of all three (per formula unit) Mo1 4d t2g WOs, not
only the xy orbitals, but also the xz and yz orbitals. Also the
latter form 1D bands, but with primitive translations (c ± b)/2
until the dimerization to c ± b gaps them around EF . Indeed
(Sec. III A below), the structural reason why LiPB is 1D while
(most) other Mo bronzes are two dimensional (2D) [31–34]
is exactly this c/2 to c dimerization of the ribbons (zigzag
chains) into bi-ribbons (the two zigzag chains are not related
by translation). Note that this dimerization of the xz and yz
bands causing them to gap at 2kF is distinct from the b/2 to b
dimerization causing the xy bands to gap at 4kF —and which
we neglect, as did Nuss and Aichhorn (Sec. III B below).
Hybridization between the resulting valence and conduction
bands and the metallic xy bands7 induces striking k⊥ = kc-
dependent features [Fig. 7 below, Figs. II 10 (b) and 14 (c2),
and Figs. III 3 and 88]. These features depend strongly on
the energy position in the gap. Therefore the resulting FS
warping and splitting also has features that depend strongly on
the value of EF , as set by the effective Li stoichiometry. Fur-
thermore, this EF dependence of the perpendicular dispersion
cannot be captured with a Wannier basis which, in addition
to the metallic xy orbitals, contain only the occupied xz and
yz orbitals [21]. We, therefore, include WOs which account
not only for the valence but also for the conduction bands,
leading to a very accurate and yet portable (i.e., analytical)
t2g six-band TB Hamiltonian. Subsequent analytical Löwdin
downfolding to a two-band Hamiltonian, which has resonance
rather than TB form, enables a new and detailed understanding
of all the various microscopic contributions to the perpendic-
ular dispersion and their relation to the crystal structure and to
the FS.

The details of the theoretical method including all six
Mo1 t2g WOs and their TB Hamiltonian are presented in
Secs. II, V, and VI of this paper. The theory of the ARPES
intensity variations and its application to LiPB are presented
in Sec. II of the following paper II [1], and the details of the
downfolded two-band Hamiltonian and the resulting FS are
presented in paper III [2]. The theory is validated in detail by
new higher-resolution ARPES experiments for two different

7We call the xy band the metallic band and, like for semiconductors,
call the gapped xz and yz bands the valence and conduction bands.

8I, II, and III refer to sections, figures, and equations in papers I,
II [1], and III [2], respectively.

samples, down to temperatures of 6 and 30 K. The data and
the analysis results are presented at appropriate places in
the course of the presentation of the theory in the three pa-
pers. As found previously [21,29], there is very good general
agreement with LDA dispersions up to 150 meV below EF .
Refinement of the LDA-derived parameters of the six-band
Hamiltonian yields an accurate and detailed description of the
ARPES low-energy band structure (Sec. IV in paper II [1]),
including the striking features of the xy-like bands and the
associated distinctive FS features (Fig. 8 in paper III [2]). As
mentioned already, the direct observation of these features,
not identified in our previous ARPES studies, is enabled by
the recognition and application of a selection rule (Sec. II in
paper II [1]) according to which the c-axis dimerization gaps
the energy bands, but—for a range of photon energies—has
negligible effect on the ARPES intensities.

II. NTH-ORDER MUFFIN-TIN ORBITAL METHOD

The electronic-structure calculations were performed for
the stoichiometric crystal with the structure determined for
LiMo6O17 [4]. Doping—which is small due to the opposing
effects of Li intercalation and O deficiencies—was treated in
the rigid-band approximation.

For the DFT-LDA [35] calculations, including the gen-
eration of Wannier functions and their TB Hamiltonian,
for the Kohn-Sham [36] one-electron energies Ek

j and
eigenvectors, uk

Rlm, j , we used the recently developed self-
consistent full-potential version [30] of the N th-order—also
called third generation—muffin-tin orbital (NMTO) method
[37,38], a descendant [39] of the classical linear muffin-tin
orbital (LMTO) method [40,41]. Since NMTOs were hith-
erto generated for overlapping MT potentials imported from
self-consistent LMTO-ASA or linear augmented plane wave
(LAPW) calculations [42–52] rather than self-consistently in
full-potential calculations, and since NMTO Wannier orbitals
(WOs) are generated in a very different way than maximally
localized Wannier functions [53], making them useful for
many-body calculations also for d- and f -electron atoms at
low-symmetry positions,9 here follows a concise description
of our method as applied to LiPB. More complete and ped-
agogical accounts of the formalism may be found, e.g., in
Refs. [38,39] and [55].

As illustrated in Chart (1), we first generate the full po-
tential, V (r), by charge self-consistent LDA calculation using
a relatively large basis set χk

Rlm(r) consisting of the Bloch
sums of the two Li 2s NMTOs per primitive cell, of all 60
Mo 4d NMTOs, of all 136 O 2s and 2p NMTOs, plus 1381s

9For materials with d- or f -electron atoms exclusively at high-
symmetry positions, maximally localized and NMTO Wannier
functions (WFs) give similar results when the settings are similar
[45]. However, maximally localized WFs are usually not centered at
low-symmetry sites and, if forced to, they generally do not transform
according to the irreducible representations of the point group. As
a consequence, crystal fields depend strongly on the settings. The
software found on Ref. [54] interfaces several methods for generating
WFs and allows users to compare results.
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NMTOs on the interstitial sites (E) with MT radii exceeding
1 Bohr radius. The resulting number of 336 NMTOs/cell is
smaller than the number of LMTOs [27,28]—and an order of
magnitude smaller than the number of LAPWs [21] needed
for LiPB.

Calculating V (r) and vR(|r − R|) self-consistently using
the LDA with the basis of 336 NMTOs/cell:

Hk
Rlm,R′l′m′ & Ok

Rlm,R′l′m′ → Ek
j & uk

Rlm,j

↑ Rlm ↓
E0,.,N & χk

Rlm (r) ∈ ρ (r)
↑ 336 ↓

vR (|r − R|) ← V (r)
↓↓
)2()2( (1)

After each iteration towards self-consistency, V (r) is least-
squared fitted to an overlapping MT potential (OMTP) [56],
which is a constant, the MT zero, plus a superposition of
spherically symmetric potential wells,

∑
R vR(|r − R|), cen-

tered at the atoms and larger interstitials. The ranges of
the potential wells, the MT radii sR, were chosen to over-
lap by 25%. Specifically: sLi = 2.87, sMo = 2.34–2.55, sO =
1.72–1.89, and sE = 1.03–2.48 Bohr radii. The overlaps con-
siderably improve the fit to the full potential and reduce the
MT discontinuities of the potential and, hence, the curva-
tures of the basis functions.10 The OMTP is used to generate
the NMTO basis set for the next iteration towards charge
self-consistency and—this being reached—to generate the
massively downfolded basis set consisting of the six Bloch
sums of the Mo1 4d (t2g) NMTOs which—after symmetri-
cal orthonormalization and Fourier transformation (FT) (9)
back to real space [see Chart (2)]—becomes the set of WOs
describing the six bands around the Fermi level. The full
potential V (r) enables us to accurately include in the six-band
TB Hamiltonian crystal-field terms, such as the one between
the xy and the xz or the yz WOs which decisively influence the
resonance peak in the metallic xy-like band (see Sec. II B 6 in
paper III [2]).

Constructing the six WOs and their TB Hamiltonian:

(2)

We now describe the construction shown in Chart (3) of the
NMTOs, which is more complex than that of, e.g., LAPWs
but achieves order(s)-of-magnitude reduction in the size of
the basis set. Admittedly, some understanding of solid-state
chemistry is required to use NMTOs efficiently to generate
WO sets, but they can provide insights not usually obtained by

10The LMTOs of Methfessel and Schilfgaarde [57] are defined for a
conventional MT potential but are modified in the interstitial near the
MTs to avoid large discontinuities of the orbital curvatures. Also, the
LMTOs of Wills et al. [58–60] are defined for MTs without overlap
but are not modified. As a consequence, multiple-κ sets are needed.

use of plane-wave sets and projection of maximally localized
Wannier functions [53].

Constructing the NMTO set:

Hard − sphere sites and radii R, aR

OMTP wells and radii vR(r), sR ≈ 1.5aR

Energy E mesh E0,...,N

Radial wave functions ϕRl (E , r)

Phase shifts ηRl (E )

Partial waves [ϕRl (E , r) − ϕo
Rl (E , r)]Ylm(r̂)

Screened spherical waves ψRlm(E , r)

Screened structure (or slope) matrix SR′l ′m′,Rlm(E )

Kinked partial waves φRlm(E , r), Eq.(4)

Kink matrix KR′l ′m′,Rlm(E ), Eq.(5)

Downfolding from K336(E ) toK6(E ), Eq.(6)

Green matrix G(E ) = K (E )−1

Lagrange matrix LRlm,R′l ′m′ (Eν )

NMTOs χRlm(r), Eq.(7)

Overlap matrix 〈χk
Rlm | χk

R′l ′m′ 〉 ≡ Ok

Hamiltonian matrix 〈χk
Rlm| − 
 + V (r)|χk

R′l ′m′ 〉 ≡ Hk

(3)

For each MT well vR(r) and energy E on an (N + 1)point
mesh, the radial Schrödinger equations11 for l = 0, . . . , lR max

are integrated outwards from the origin to the MT radius,
sR, thus yielding the radial functions, ϕRl (E , r), and their
phase-shifts, ηRl (E ), which due to the centrifugal term van-
ish for all l � lmax(R). Continuing the integration smoothly
inwards—this time over the MT zero—yields the phase-
shifted free waves ϕo

Rl (E , r), which we truncate at and inside
the so-called hard sphere with radius aR ≈ 0.65sR. The dif-
ferences ϕRl (E , r) − ϕo

Rl (E , r), often referred to as tongues,
tend smoothly to zero when going outside the MT sphere
and jump discontinuously to ϕRl (E , r) when going inside the
hard sphere. After multiplication by the appropriate cubic
harmonic Ylm(r̂), these discontinuous and tongued partial
waves will be used together with the screened spherical waves
(SSWs) ψRlm(E , r), to be defined below, to form a set of
kinked partial waves (KPWs),12 φRlm(E , r), analogous to
Slater’s augmented plane waves (APWs), and—eventually—
of smooth and energy-independent NMTOs [see Eqs. (4) and
(7)]. Partial waves with the same Rlm as one of the NMTOs
in the basis set are called active (A) and the remaining partial
waves with nonzero phase shifts are called passive. Since
lmax(R) = 4, 3, 3, and 2 for R = Mo, O, Li, and E, the vast
majority of partial waves are passive.

11Actually, the scalar-relativistic Dirac equations.
12KPWs are also called exact, energy-dependent MTOs (EMTOs)

[61,62].
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To combine the many partial waves to the set of KPWs,
we first form the set of tail or envelope functions ψRlm(E , r),
also called screened spherical waves (SSWs): They are
wave-equation solutions that satisfy the boundary condi-
tions that any cubic-harmonic projection around any site,
P̂R′l ′m′ (rR′ )ψRlm(E , r), has a node at the hard-sphere radius
if R′l ′m′ is active and differs from Rlm, and has the proper
phase shift ηR′l ′ (E ) if R′l ′m′ is passive. This node condition
is what makes the SSW localized—and the more, the larger
the basis set, i.e., the number of active channels. The input to
a screening calculation (see Sec. 3.3 in Ref. [55] or Sec. II B
in Ref. [30]) is the energy, the hard-sphere structure, and the
passive phase shifts. The output is the screened structure or
slope matrix whose element SR′l ′m′,Rlm(E ) gives the slope of
ψRlm(E , r) at the hard sphere in the active R′l ′m′ channel.
The set of screened spherical waves is then augmented by
the partial waves to become the basis set of KPWs (see, e.g.,
Figs. 4–6 in Ref. [55]):

φRlm(E , r) = ψRlm(E , r) + [
ϕRl (E , r) − ϕo

Rl (E , r)
]
Ylm(r̂).

(4)
The KPW φRlm(E , r) has a head formed by the active partial
wave with the same Rlm, plus passive waves, and a tail which
inside the other MT spheres is formed solely by passive partial
waves. Hence, all active projections of φRlm(E , r), except its
own, vanish. Such a KPW is localized, everywhere continu-
ous, and everywhere a solution of Schrödinger’s equation for
the MT potential—except at all hard spheres where it has kinks
in the active channels. The kink, KR′l ′m′,Rlm(E ), at the hard
sphere in channel R′l ′m′ is

SR′l ′m′,Rlm(E ) − δR′l ′m′,Rlm
∂ ln ϕo

Rl (E , r)

∂ ln r

∣∣∣∣
aR

. (5)

This kink matrix also equals the MT Hamiltonian minus the
energy, i.e., the kinetic energy, in the KPW representation:
K (E ) = 〈φ(E )| − 
 + ∑

R vR − E |φ(E )〉. Any linear combi-
nation of KPWs with the property that the kinks from all
heads and tails cancel is smooth and therefore, by construc-
tion, a solution with energy E of Schrödinger’s equation for
the OMTP—except for the tongues sticking into neighboring
MT spheres and thereby causing errors of merely second and
higher order in the potential overlap. This kink-cancelation
condition gives rise to the screened Korringa-Kohn-Rostoker
(KKR) secular equations of band theory: K (E )u = 0.

Downfolding of a large to a small set of KPWs corresponds
to changing the phase shifts in the channels to be downfolded
(denoted I for “integrated out”) from those of hard spheres,
ηA(E ), to the proper phase shifts, ηRl (E ), and is performed on
the kink matrix (5). An example is the kink matrix for the set
of six KPWs in terms of the blocks of the kink matrix for the
336 set:

K6
AA(E ) = K336

AA (E ) − K336
AI (E )K336

II (E )−1K336
IA (E ). (6)

Note that this downfolding, which is done prior to N-ization
(7) (see Chart (3)), makes the resulting NMTO set far better
localized and far more accurate than the set obtained by stan-
dard Löwdin downfolding of a basis of energy-independent
orbitals, e.g., LMTOs [63], Slater type orbitals [64], or NM-
TOs, followed by linearization of the energy dependence of
the denominators [e.g. Eq. (4) in paper III [2]].

For a Hamiltonian formulation of the band-structure prob-
lem, we need a basis set of energy-independent smooth func-
tions analogous to the well-known linear APWs (LAPWs)
and MTOs (LMTOs) [40]. This set [37–39] is arrived at by
N th-order polynomial interpolation (Lagrange) in the Hilbert
space of KPWs with energies at a chosen mesh of N + 1
energies E0, . . . , EN :

χR′l ′m′ (r) =
N∑

ν=0

active∑
Rlm

φRlm(Eν, r)LRlm,R′l ′m′ (Eν ). (7)

Here, χR′l ′m′ (r) is a member of the active set of NMTOs
and L(Eν ) is the matrix of Lagrange coefficients, which is
given by the kink matrix (5) evaluated at the points of the
energy mesh. For an NMTO, the kinks at the hard spheres are
reduced to discontinuities of the (2N + 1)st derivatives and
for a quadratic (N = 2) MTO (QMTO), as used for LiPB, this
means that the four lowest radial derivatives are continuous,
i.e., the QMTO is “supersmooth.” Also the MT-Hamiltonian-
and overlap matrices in the NMTO representation, H = 〈χ | −

 + ∑

R vR|χ〉 and O = 〈χ | χ〉, are given by the kink matrix
and its first energy derivative evaluated at the energy mesh—
or more conveniently—as divided differences of its inverse,
the Green matrix G(E ) ≡ K (E )−1 [see Eqs. (91), (94), and
(95) in Ref. [39]].

The NMTO set may be arbitrarily small and, neverthe-
less, span the exact solutions at the N + 1 chosen energies
of Schrödinger’s equation for the MT potential to first order
in the potential overlap. Specifically, a set with n NMTOs
(per cell) yields n eigenfunctions and eigenvalues (energy
bands) E whose errors are proportional to, respectively, (E −
E0) × · · · × (E − EN ) and (E − E0)2 × · · · × (E − EN )2.
The choice of NMTO set, i.e., which orbitals to place on
which atoms, merely determines the prefactors of these errors
and the range of the orbitals. But only with chemically sound
choices will the delocalization of the KPWs caused by the
N-ization in Eq. (7) be negligible.

To explain this, we now consider the simple example of
NaCl-structured NiO: Placing the three p orbitals on every
O, the five d orbitals on every Ni, and letting the energy
mesh span the 10 eV region of the pd bands generates a
basis set of eight atomic-like NMTOs yielding the eight pd
bands and wave functions [see Figs. 2 and 4 in Ref. [52] and
Fig. 7 (top) in Ref. [55]]. Placing merely the three p orbitals
on every O and letting the mesh span the 5 eV region of
the O p bands generates a basis set consisting of O p-like
NMTOs with bonding d-like tails on the Ni neighbors, which
yields accurate p bands and wave functions [Fig. 7 (bottom)
in Ref. [55]]. Placing, instead, the five d orbitals on every
Ni and letting the mesh span the 4 eV region of the Ni d
bands generates a basis set of Ni d-like NMTOs which have
antibonding p-like tails on the O neighbors and yields accurate
d-bands and wave functions [Fig. 7 (center) in Ref. [55]]. With
the five d orbitals on Ni, but a mesh spanning the three O
p bands, we get three d (t2g)-like Ni NMTOs xy, xz, and yz
with large pdπ -bonding p tails on the four O neighbors in
the plane of the t2g orbital, plus the two d (eg)-like Ni NMTOs
with huge pdσ -bonding tails—on the two apical oxygens for
3z2 − 1, and on the four oxygens in the xy plane for x2 − y2.
These fairly delocalized Ni d NMTOs clearly exhibit the Ni-O

115143-6



WANNIER ORBITAL THEORY AND ANGLE-RESOLVED … PHYSICAL REVIEW B 109, 115143 (2024)

bonding, but they form a schizophrenic basis set which yields
the three O p bands connected across the pd gap to two of the
five Ni d bands by steep “ghost” bands.

This example indicates how the NMTO method can be
used to explore covalent interactions in complex materials.
Other examples may be found in Refs. [42–52]. Note that
the fewer the bands to be picked out of a manifold, i.e., the
more diluted the basis set, the more extended are its orbitals
because the set is required to solve Schrödinger’s equation in
all space. The increased extent leads to an (exponentially)
increased energy dependence of the KPWs and that requires
using NMTOs with a finer energy mesh. As a consequence,
the smaller the set, the more complicated its orbitals.

Generalized Wannier functions are finally obtained by or-
thonormalization of the corresponding NMTO set [see Chart
(2)]. Symmetrical orthonormalization yields the set of Wan-
nier functions, which we refer to as Wannier orbitals (WOs)
because they are atom-centered with specific orbital charac-
ters. The localization of these WOs hinges on the fact that
each KPW in the set vanishes (with a kink) inside the hard
sphere of any other KPW in the set. This condition essentially
maximizes the on-site and minimizes the off-site Coulomb
integrals and has the same spirit as the condition of minimiz-
ing the spread, 〈χ ||r − 
|2|χ〉, used to define the maximally
localized Wannier functions [53].

For LiPB, we used quadratic N(=2)MTOs and for the
large-basis-set calculation chose the three energies Eν = ±1
and 0 Ry with respect to the MT zero, i.e., −22, −8, and 6 eV
with respect to the center of the gap, which is approximately
the Fermi level (see Fig. 3). For the six-orbital calculation, we
took Eν = −0.8, −0.4, and 0.2 eV with respect to the center
of the gap (see Fig. 12 in paper II [1]).

For the low-energy electronic structure of LiMo6O17 we
need to pick from the sixty Mo 4d bands above the O 2p—Mo
4d gap (see Fig. 3) a conveniently small and yet separable
set of bands around the Fermi level. In this case, where no
visible gap separates such bands from the rest of an upwards-
extending continuum, the NMTO method is uniquely suited
for picking a subset of bands for which the Wannier set is
intelligible and as localized as possible. This direct generation
of WOs (through trial and error by inspecting the resulting
bands like we discussed above for NiO) differs from the
procedures for projecting localized Wannier functions from
the Bloch functions of the computed band structure by judi-
ciously choosing their phases [65,66] or by minimizing the
spread [21,53]. We shall return to it in Sec. V after the crystal
structure and the basic electronic structure of LiPB has been
discussed.

Since the resulting set of six NMTOs may have a fairly
long range, all LDA calculations were performed in the repre-
sentation of Bloch sums,

χRm(k, r) ≡
∑

T

χRm(r − T)e2π ik·T, (8)

of orbitals translated by the appropriate lattice vector T.
Specifically, the screening of the structure matrix was done
k-by-k. To obtain printable WOs—obtained by symmetrical
orthonormalization of the NMTOs—and a portable Hamil-
tonian whose HR′m′,R+T m element is the integral for hopping
between the WOs centered at, respectively, R′ and R + T, we

need to Fourier transform back to real space:

HR′m′,R+T m = |a · b × c|
∫

BZ
d3ke−2π ik·THR′m′,Rm(k). (9)

Here, the integral with its prefactor is the average over the
BZ, as is appropriate when the localized orbital is normal-
ized to unity. Moreover, HRm′,Rm is the energy of the orbital
when m = m′, and the crystal-field term when m �= m′. The
Hamiltonian (9), truncated after |R − R′ − T|, exceeds some
distance, the lattice constant a for LiPB, we shall refer to as
the tight-binding (TB) Hamiltonian (Sec. VI). This truncation
makes its energy-band eigenvalues more smooth and wavy
than those of HR′m′,Rm(k).

To the MT Hamiltonian, we finally add the second-
order correction for the tongue-overlap and the full-potential
perturbation [39,67]. Products of NMTOs—as needed for
evaluation of matrix elements and the charge density—are
evaluated as products of partial waves limited to their MT
spheres plus products of screened spherical waves [39,55].
The latter are smooth functions and are interpolated across the
interstitial from their first three radial derivatives at the hard
sphere [30]. To make it trivial to solve Poisson’s equation, this
interpolation uses spherical waves which—in order to make
the matching at the hard spheres explicit—are screened to
have all phase shifts with l � 4 equal to those of hard spheres.

The band structure obtained from our full-potential LDA
calculation with the large NMTO basis set agrees well with
LDA and GGA control calculations performed with the
LAPW method. We did not include the spin-orbit coupling
in the NMTO calculation, but did so with the LAPW method
and show the result in paper II [1], Fig. 13, together with the
LDA TB bands.

III. CRYSTAL STRUCTURE

The crystal structure of LiPB was determined at room tem-
perature and described by Onoda et al. [4]. As shown in Fig. 2,
there are two LiMo6O17 units in the primitive cell spanned by
the translations a, b, and c shown in Fig. 2(a). Whereas b is or-
thogonal to both c and a, the latter has a tiny component along
c. The relative lengths of the primitive translation vectors are
a/b ≈ 2.311 and c/b ≈ 1.720, with b = 5.523 Å. We note
that, in much of the literature, especially experimental papers,
an alternate axis labeling [3] is used13 with the definitions
of a and c interchanged. Here we follow Onoda et al. [4].
Since a, b, and c are nearly orthogonal, so are the primitive
translations, a∗, b∗, and c∗, of the reciprocal lattice. They are
defined by⎛

⎝a · a∗ a · b∗ a · c∗
b · a∗ b · b∗ b · c∗

c · a∗ c · b∗ c · c∗

⎞
⎠ ≡

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, (10)

where we use the crystallographic definition of the scale of
reciprocal space without the factor 2π on the right-hand side
used in the solid-state definition. The former is traditionally
used in diffraction and the latter in spectroscopy. In this paper,

13It is, therefore, essential to check any particular article for these
definitions.
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FIG. 2. Crystal structure of LiMo6O17. Li (not shown) is intercalated in the hollows near light-green Mo and light-yellow O atoms.
(a) Primitive cell spanned by the translation vectors a, b, and c. Whereas b is orthogonal to both c and a, the latter has a one-percent component
along c. The relative lengths of the translation vectors are a/b ≈ 2.31 and c/b ≈ √

3. The primitive cell contains two strings: (Mo3) - Mo2
- Mo1 - Mo4 - Mo5 - (Mo6) and the inverted one (MO6) - MO5 - MO4 - MO1 - MO2 - (MO3). When we need to distinguish between two
equivalent sites (related by inversion), we use upper-case letters for the one in the upper string. Together, the two strings form a bistring. (b) A
3 × 3 × 3 supercell showing bc slabs translated by ±a. The slabs are separated by Mo3 and Mo6 (light green). (c) A single slab, rotated such
that sixfold-coordinated Mo (green and dark green) have their bonds to O in the vertical z and two horizontal x and y directions Eq. (12).
Oriented this way, see also Chart (14), the slab forms a staircase running up the c direction, i.e., with the steps translated by c. A single step is
a bi-ribbon formed by translating a bistring infinitely many times by b. The midpoint between Mo1 and a nearest MO1 in the same bi-ribbon
is a center of inversion. The planes perpendicular to b containing Mo1 and Mo5, as well as those containing Mo4 and Mo2, are mirror planes.
The sequence along the vertical, almost straight lines along z is (MO6) - Mo5 - MO2 - Mo1 - MO4 - (Mo3) and Li intercalates between the
Mo3O4 tetrahedron and the MO3O4 tetrahedron right above it [4]. (d) Four primitive cells along b of a single ribbon. Along its center runs
the dark-green Mo1�

Mo4 zigzag chain. Parallel herewith and shifted by z [see panel (c) and Charts (14)–(15)] is the partner ribbon with its
MO4�

MO1 zigzag chain (see also Fig. 1 in Ref. [27]).

we use the crystallographic definition unless otherwise stated.
The top of Fig. 3 shows half the Brillouin-zone (BZ) with
origin at � and spanned by ±a∗/2 (B), ±b∗/2 (Y), and ±c∗/2
(Z). The Bloch vector,

k = kaa∗ + kbb∗ + kcc∗, (11)

is specified by its dimensionless (ka, kb, kc) components
which, according to Eqs. (10) and (11), are the projections of
k onto, respectively, a, b, and c, or, equivalently, they are the
projections onto the respective directions in units of a−1, b−1,
and c−1. Occasionally we shall use the solid-state definition
where the k components are the same but a∗, b∗, c∗, and k are
2π larger, e.g., the Fermi vector for stoichiometric LiPB has
length (π/2)b−1 = 0.2844 Å−1 instead of (1/4)b−1.

The most relevant symmetry points have ka = 0, and
are (kb, kc) = Z(0, 1

2 ), Y( 1
2 , 0), �(0, 0), C( 1

2 , 1
2 ), W( 1

2 , 1
4 ),

�(0, 1
4 ), plus their equivalents. Higher BZs are shifted by

reciprocal-lattice vectors G, which means that ka, kb, and kc

are shifted by integers, which we name, respectively, L, M,
and N and shall use in Sec. VI and in Secs. II B and III C in
paper II.

A simplifying approximate view of the complicated struc-
ture in Fig. 2 is that all Mo atoms are on a lattice spanned by
the primitive translations:

c + a
6

∓ b
2

≡ x
y

and
c
2
−c + a

6
≡ z. (12)

These are orthogonal to within a few degrees and their lengths
3.82 Å are equal to within 0.3%. This means that all 12 Mo

atoms approximately form a simple cubic lattice, 12 times
finer than the proper lattice. In Fig. 2(c), the structure is turned
to have z in the vertical direction and x and y in the horizontal
plane. This view is useful for understanding the structure, the
computed Wannier orbitals, and the measured ARPES, but
should not be overstretched. Using, for instance, the inverse
to the transformation (12),

a = 2(x + y − z), b = y − x, c = x + y + 2z, (13)

and assuming the xyz system to be orthonormal leads to a =
2
√

3, b = √
2, and c = √

6 times 3.82 Å, which are wrong by,
respectively, +3.7%, −2.2%, and −2.1%.

As specified in Fig. 2(a), of the twelve Mo sites in the
primitive cell, six are inequivalent. Four of these (dark-green
Mo1 and Mo4, and green Mo2 and Mo5) are sixfold coor-
dinated with oxygen (dark yellow and yellow) in the ±x,
±y, and ±z directions and form a network of corner-sharing
MoO6 octahedra. We call them octahedral molybdenums. The
remaining two types of Mo (light-green Mo3 and Mo6) are
fourfold coordinated with oxygen (yellow and light yellow).
The latter, tetrahedrally coordinated Mo atoms (light green,
set in parentheses in the following) form double layers, which
separate the network of corner-sharing MoO6 octahedra into
slabs. The crystals cleave between slabs.

Such a slab has the form of a staircase with steps of
bi-ribbons stacked with period c as seen in Fig. 2(c). Schemat-
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ically, this is

c ↗
a ↘
z ↑

2 1 4 5 2 1 4
1 2 5 4 1 2

4 5 2 1 4 5

5 4 1 2 5
2 1 4 5 2

5 4 1 2 5 4 1
2 1 4 5 2 1 4

,

(14)

where the octahedral molybdenums lying in the same ac plane
are either normal- or boldfaced. The distance between such
ac planes is b/2. A single ribbon is four octahedral molybde-
nums wide and, as seen here,

b ↑
c + a −→
y ↗
x ↘

Mo : MO :

2 4

1 5

2 4

1 5

2 4

1 5

5 1

4 2

5 1

4 2

5 1

4 2

,

(15)

and in Figs. 2(c) and 2(d) extends indefinitely in the b di-
rection and lies in the horizontal xy plane containing the
vectors b = y − x and c + a = 3(x + y). The lower half of a
bi-ribbon, seen in the left-hand panel of Chart (15), consist of
(Mo3) - Mo2 - Mo1 - Mo4 - Mo5 - (Mo6) strings separated by
b and can be taken either as a zigzag line changing translation
between y and x, and thus running along c + a, or as a nearly
straight line running along x, or as one running along y [see
Fig. 2(d) and Chart (15)]. In the following, we refer to these
as, respectively, (c + a) zigzags, x strings, and y strings.

The upper ribbon is shown to the right in Chart (15). Its
Mo sequence, (MO6) - MO5 - MO4 - MO1 - MO2 - (MO3),
is inverted such that, e.g., MO4 is on top of Mo1. When
we need to distinguish between two equivalent sites related
by inversion in their midpoint—a center of inversion for the
entire crystal—we use uppercase letters for the one in the
upper ribbon.

Note that the (c + a)-zigzag string is different from – and
perpendicular to – the �Mo1�

Mo4� zigzag chain along b, the
backbone of the electronic 1D xy band shown in Fig. 1 of
Ref. [27] together with its partner �MO4�

MO1� in the upper
ribbon.

A. c dimerization

The vectors from Mo1 to its two nearest MO1 neighbors
inside and outside the bi-ribbon are, respectively, (c ± b)/2 −
d and −[(c ± b)/2 + d], where

d = 0.012a + 0.033c (16)

is the displacement dimerization. Hence, the distances mea-
sured along c from a ribbon to its neighbors inside and outside
the bi-ribbon are, respectively, 6.6% smaller and 6.6% larger
than the average distance c/2.

Due to the stacking (14) into a staircase of bi-ribbons, Mo4
differs from Mo1, and Mo5 differs from Mo2, in having no
neighbor belonging to the next bi-ribbon, i.e., they have only
one octahedral Mo neighbor along z. As seen in Charts (14)

and (15), Mo1 has six, Mo4 five, Mo2 four, and Mo5 three
nearest Mo neighbors which are octahedrally coordinated
with oxygen.

In the next section, we shall explain—and later demon-
strate by computation and experiment—that the six lowest
energy bands are described by the six planar t2g Wannier
orbitals (WOs), wm(r) and Wm(r)(m = xy, xz, yz), centered14

on, respectively, Mo1 and on MO1. These sites, separated by
(c + b)/2 − d, are special in having a full nearest-neighbor
shell of octahedral molybdenums and therefore best preserve
the t2g symmetry of the WO and are least sensitive to the
steps of the staircase, the second cause for the dimerization.
Such a WO (Fig. 9) spreads substantially onto the four nearest
Mo neighbors in the orbital’s plane with amplitudes falling
in the same order as the above-mentioned Mo coordination
of those neighbors. As a result of this, and the smallness of
the displacement dimerization (16), the two t2g,m WOs are
approximately related by half a lattice translation:

Wm

(
r−c + b

2

)
≈ wm(r). (17)

However, the exact relation is

Wm

(
r−c + b

2
+ d

)
= wm(−r), (18)

and its differences, Wm(r− c+b
2 + d) − Wm(r− c+b

2 ) and
wm(−r) − wm(r), to the approximate relation (17), will be
referred to as, respectively, the displacement and the inversion
dimerization.

A consequence of the approximate translational equiva-
lence (17), which may be seen to hold far better for the xy
than for the xz and yz WOs, is that the low-energy band struc-
ture, Ej (k) with j = 1–6 (see, e.g., Fig. 6), approximately
consists of three bands Em(k), one with each m character, and
extending in a double zone of the sparse reciprocal sublattice
spanned by

(a∗, c∗ + b∗, c∗ − b∗). (19)

This is the reciprocal of the undimerized lattice spanned by(
a,

c + b
2

,
c − b

2

)
= (a, y + z, x + z), (20)

with only one LiMo6O17 unit per primitive cell. The two last
translations (20) we call pseudo translations. If expression
(17) were true, the Em(k) band would be equivalent to the
one translated by (any odd number of times) −c∗, e.g., with
Em(k + c∗), but the presence of the inversion and displace-
ment dimerizations, (18) and (16), cause these two bands to
gap where they cross, i.e., at the boundaries of the small zones.
The resulting band structure is periodic in the proper (small)
zone, corresponding to the proper primitive cell with two
LiMo6O17 units, and has six continuous bands, two for each
m, of which the lower is approximately Em(k) and the higher
is approximately Em(k + c∗) in the odd-numbered zones; and

14We use a notation according to which a function, e.g., φR(r),
w(r) ≡ wMo1(r), or W (r) ≡ WMO1(r), of the space vector r is cen-
tered at r = R ≡ RR, whereas a function such as ϕR(r)Ylm(r̂) of
r ≡ |r| and r̂ ≡ r/|r| is centered at the origin.
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the other way around in the even-numbered zones. As we
shall see in paper II [1], ARPES approximately sees only the
Em(k)-like band, i.e., both bands but separated in zones, and
this will allow us to resolve the splitting and the perpendicular
dispersion of the two quasi-1D bands in the gap.

The undimerized lattice has one LiMo6O17 unit per prim-
itive cell and is spanned by the primitive translations (20)
where, on the right-hand side, we have used the approxi-
mate relation (13). This shows that the undimerized lattice is
2D and hexagonal in the planes perpendicular to a. This is
the structure of the purple bronzes isoelectronic with LiPB,
NaMo6O17 and KMo6O17, where CDW fluctuations with
wave vector c∗ have been observed below 120 K and have
been explained as driven by the simultaneous gapping of the
1D xz and the yz Fermi-surface (FS) sheets by one and the
same nesting vector c∗ [32,68]. The lattice reciprocal to the
undimerized one is spanned by (19), and its BZ is the double
zone of the dimerized structure, i.e., that of LiPB shown in
Fig. 8. Hence, we may consider the structure of quasi-1D
LiPB as the CDW dimerization of quasi-2D Na or KPB,
whose electronic structure consists of the 1D xy, yz, and xz
bands dispersing at 120◦ relative to each other in the plane
perpendicular to a. The reason why the xy FS sheets do not
also gap away is that relation (17) holds much better for the
xy WOs than for the xz and yz WOs.

For comparison with Charts (14) and (15), the undimerized
slab is

c ↗
a ↘
z ↑

4 1 2 5 4 1 2
1 2 5 4 1 2

4 5 4 1 2
5 4 1 2 5

5 4 1 2 5 4
5 4 1 2 5 4 1
4 1 2 5 4 1 2

,

(21)

where the steps of the staircase are smoothed out to a ramp,
and the two ribbons are identical:

b ↑
c + a −→
y ↗
x ↘

Mo : MO :

4 2

5 1

4 2

5 1

4 2

5 1

5 1

4 2

5 1

4 2

5 1

4 2
(22)

B. b dimerization

An unrelated and different dimerization is the one known
from the description of the 1D band structure as two approx-
imately 4-eV-broad, 1/4-filled xy bands [Fig. 3 and Eqs. (23)
and (24)] running on zigzag chains along b [26,27] and with
the nearest-neighbor Mo1-Mo4 hopping integral t ≈ −1 eV.
In this view, Mo1 and Mo4 are inequivalent because of a
dimerization from b/2 to b. In reciprocal space, this dimeriza-
tion is from 2b∗ to b∗ and causes gaps at kb = ± 1

2 ≈ ±2kF ,
which separate the broad xy bands into two lower half-filled
and two higher empty bands. The two latter bands will not be
described by our set of six WOs, which are essentially Mo1-

FIG. 3. The top shows half (kc � 0) the (first) Brillouin-zone
of LiMo6O17 with the labeling of the symmetry points for P21/m
obtained from the Bilbao crystal server [69]. The most relevant
symmetry points have ka = 0 and are (kb, kc ) = �(0, 0), Y( 1

2 , 0),
W( 1

2 , 1
4 ), C( 1

2 , 1
2 ), Z(0, 1

2 ), �(0, 1
4 ), and their equivalents. Below

is the LDA band structure calculated with the large basis set of
336 NMTOs (left) and its partial densities of states (right) over a
wide energy range. The zero of energy is the Fermi level of the
stoichiometric compound.

Mo4 bonding orbitals (Fig. 9) but would require the inclusion
of also Mo1-Mo4 antibonding orbitals, thus leading to a basis
set unpractically large for our purpose of understanding the
photoemission from the occupied bands.

IV. BASIC ELECTRONIC STRUCTURE

Shortly after the structural determination, Whangbo and
Canadell [26] used the extended Hückel method to calculate
and explain the basic electronic structure, but it took almost
twenty years before a charge-self-consistent calculation could
be performed. This was done by Popović and Satpathy [27]
who used the LDA-DFT and the LMTO method. In the fol-
lowing, we explain and expand on these works using the
insights gained from the view of the structure given in the
previous section and from the results of the WO calculations
to be presented in Secs. V and VI.

In Fig. 3, we show the LDA energy bands over a range of
±9 eV around the Fermi level, together with their density of
states projected onto O (green) and onto tetrahedrally- (blue)
and octahedrally (red) coordinated Mo. The bands between
−8 and −2 eV have predominantly O 2p character and those
extending upwards from B ≈ −0.7 eV predominantly Mo 4d
character and, above +0.8 eV, also Mo 5s and 5p character.
The states in the O 2p band are bonding linear combinations
with Mo 5s, 5p, and 4d orbitals, the more bonding, the lower
their energy. The states in the Mo 4d band are antibonding
linear combinations with O 2s and 2p orbitals; the more anti-
bonding, the higher their energy.

The 2 eV gap between the O 2p-like and Mo 4d-like bands
is – for the purpose of counting – ionic with Li donating
one and Mo six electrons to and O acquiring two electrons
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FIG. 4. LDA t2g energy-band structure and Fermi level of LiPB
at half filling. Red and green colors indicate, respectively, xy and xz
or yz characters. The energy region is from 0.8 eV below to 1.2 eV
above EF (see Fig. 3) and the k-space region is the BZ (see Fig. 8).
The LDA TB parameters listed in Eqs. (43)–(47) were used, like in
Fig. 12(a) in paper II [1].

from the Mo 4d-like bands above the gap, which thereby hold
2(1 + 6 × 6 − 17 × 2) = 6 electrons per 2(LiMo6O17). Had
this charge been spread uniformly over all molybdenums, this
would correspond to a Mo d0.5 occupation.

The 4d orbitals forming the most antibonding and bonding
states with O are the eg orbitals, 3z2 − 1 and x2 − y2, on the
octahedrally coordinated Mo because their lobes point toward
the two O neighbors along z and the four O neighbors in
the xy plane, respectively, and thereby form pdσ bonds and
antibonds. Not only the eg orbitals on the octahedrally coor-
dinated Mo, but all 4d orbitals (t and e) on the tetrahedrally
coordinated Mo form filled bonding and empty antibonding
states with their O neighbors, and thereby contribute to the
stability of the crystal. However, as seen from the projected
densities of states in Fig. 3, none of them contribute to the
LDA bands within an eV around the Fermi level, which are
those of our primary interest. So as long as there are no addi-
tional perturbations or correlations with energies in excess of
this, which is assumed in the half-filled models, the Mo t and
e orbitals are uninteresting for the low-energy electronics, and
so are the Li 2s orbitals which contribute two bands several
eV above the Fermi level, mix a bit with the oxygen states
several eV below EF , and donate their two electrons to them.
Due to the Pauli principle, changing the Li content (doping)
will change the position of the Fermi level, which is inside the
Mo t2g bands.

Although the MoO4 tetrahedra do not contribute any
electrons near the Fermi level, their arrangement in double
layers perpendicular to a, separating the staircases of corner-
sharing octahedra, has an important impact on the low-energy
electronic structure: It suppresses the hopping between the

5

4
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5

1

1

1

2

2
2

5 4 1

12 4 5

4 1 2

12

4

FIG. 5. (Left) yz standing-wave state with kc + kb = ±1/2
which behaves like cos 2π 1

2 (rc + rb). View along b as in
Fig. 2(c) and Charts (14) and (33). (Right) xy standing-wave state
with |kb| = 1/4 ∼ kF which behaves like cos 2π 1

4 rb. View along
−z ∼ a − c as in Fig. 2(d) and Charts (15) and (34). The sign of
a lobe is indicated by its color. See also Fig. 9 with caption. As
explained in Sec. VI, these figures are identical with those shown
in Fig. 9 of the yz and xy Wannier orbitals (WOs) on site 1. The xy
WO has a halo consisting of xy partial waves on the four nearest
Mo neighbor sites, 4 and 2, plus a weaker one on the next-nearest
Mo-neighbor site 5. The yz WO has a halo consisting of yz partial
waves (of unequal magnitude) on the two nearest Mo neighbor sites
4, plus weaker ones on Mo2 and 5.

low-energy orbitals across the double layer to the extent that
we shall neglect it in our TB model for the six lowest bands.15

A. The t2g bands

The remaining 4d orbitals on octahedrally coordinated Mo
are the t2g orbitals, xy, xz, and yz, whose lobes point between
the four O neighbors in, respectively, the xy, xz, and yz planes
and therefore form relatively weak pdπ bonds and antibonds,
e.g., Mo xy ± O y on the x/2 bond. Whereas the bonds are
dominated by oxygen and form bands that are part of the O 2p
continuum below about −4 eV, the antibonds are dominated
by Mo and form 4 × 2 × 3 = 24 bands which extend from
+3.0 eV down to the bottom of the Mo 4d continuum at
−0.7 eV. This spread in energy is conventionally described
as due to hopping between dressed Mo t2g orbitals, where
the dressing consists of the pdπ antibonding tails on the four
oxygens in the plane of the orbital. Since the dressed orbitals
are planar, the strongest hoppings are between like t2g orbitals
which are nearest neighbors in the same plane, e.g., as seen in
the right-hand panel of Fig. 5 between the dressed xy orbital
on Mo1o and those on Mo4x, Mo4y, Mo2−x, and Mo2−y, or as
seen in the left-hand panel between the dressed yz orbital on

15As seen in Fig. 2(b) and Chart (14), the shortest path for hop-
ping of low-energy electrons across the double layer of tetrahedrally
coordinated molybdenums is Mo5 - (MO6) - MO5, i.e., from Mo5
in a bottom ribbon, along −z to (MO6) in the top ribbon of the
neighboring staircase, and then along −x or +y to MO5 in that top
ribbon. This zigzag path thus passes via merely one tetrahedrally
coordinated Mo atom and gives rise to the slight ka dispersion of
the two nearly degenerate xy bands seen most clearly in Fig. 3 along
CE and 1 eV above the Fermi level.
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Mo1o and those on Mo4y, Mo4z, Mo2−y, and Mo2−z. These
hoppings are ddπ -like and of magnitude t = −1 eV.

The main dispersion of the xy band is, therefore, in the
direction of the xy lobe pointing along y − x = b, that of
the yz band is in the direction of the yz lobe pointing along
y + z = c+b

2 (see left panel of Fig. 5), and that of the xz band is
in the direction of the xz lobe pointing along the x + z = c−b

2 ;
see Charts (14) and (15).

1. The four xy bands

The right-hand panel of Fig. 5 shows the xy
standing-wave state with |kb| = 1

4 ∼ kF which behaves
like cos 2πkbb∗·brb ≡ cos 2π 1

4 rb, i.e., is even around the
c + a line through Mo1 and Mo5 and has nodes at the
Mo1-Mo5 lines translated by ±b. Here, the orientation is like
in Fig. 2(d) with the Mo numbering given in the left-hand
panel of Chart (15). We see that the amplitudes of the dressed
xy orbitals are largest at Mo1 and decrease in the order
Mo4, Mo2, and Mo5, thus following the decrease of the Mo
coordination mentioned in Sec. III A. The dressed orbitals on
the four nearest neighbors (Mo4 at x and y, and Mo2 at −x
and −y) antibond to the central orbital, i.e., nearest-neighbor
lobes have different colors. This is the reason why the overlap
from the neighboring dressed xy orbital weakens the O y (or
x) amplitude on the common oxygen such that its contour
merges with that of the weaker Mo neighbor. Hence, O p is
pdπ antibonding with Mo1 xy and bonding with Mo4 xy and
Mo2 xy. The net result is pdπ nonbonding, essentially.

The xy band disperses almost exclusively in the b direction,
and now, we imagine going to the xy state with |kb| = 3

4 =
1
4 [mod 1

2 ] and energy ≈2.8 eV above EF , i.e., to the state in
the next xy band. Here, the signs (colors) of the dressed xy
orbitals on the four nearest neighbors (Mo4 and Mo2) will
have changed, whereby the overlaps on the common oxygens
shared with Mo1 will have their amplitudes enhanced and
the O y (or x) contour will be separated by a node, not only
from the stronger Mo1-xy contour, but also from the weaker
Mo4-xy (or Mo2-xy) contour. In the following, we refer to
the xy band with the lower (higher) energy as the Mo1-Mo4
bonding (antibonding) band, although both of these bands are
pdπ non- or antibonding; but the one with the lower energy
has fewer pdπ nodes.

The dressed xy orbitals lie in the plane of a ribbon, and

those along the infinite zigzag chain,
−x→ Mo1

y→ Mo4
−x→,

with pseudo translation (y − x)/2 = b/2 form the well-
known [19,26,27] quasi-1D band with dispersion:16

εxy(k) ∼ 2t cos

(
2πk · b

2

)
= 2t cos πkb, (23)

where t ≈ −1 eV. Since b, and not b/2, is the proper lat-
tice translation because Mo1 and Mo4 are not equivalent,
the band must be folded from the large BZ bound by the
midplanes (kb = ±1) of the reciprocal-lattice vectors ±2b∗,
into the proper, small BZ bound by the midplanes (kb =
± 1

2 ) of ±b∗ whereby it becomes −2t cos πkb. An equivalent

16We denote energy bands E (k) = ε(k) + E0 and their dispersions
ε(k). Here, E0 is the center of the band.

prescription—more useful than BZ folding, as we shall see
below for the bonding yz and xz bands,—is to say that if k
must be limited to the proper, small BZ, then we must also
consider the band

εxy(k + b∗) ∼ 2t cos [π (kb + 1)] = −2t cos πkb, (24)

translated by the proper reciprocal-lattice vector −b∗. Finally,
the inequivalence of—or “dimerization into”—Mo1 and Mo4
couples the xy(k) and xy(k + b∗) bands, and where they are
degenerate—which is for |kb| = 1/2, i.e., at the boundaries
of the proper BZ (YC)—they are gapped by ±0.3 eV. Since
this gap is relatively large, the xy(k) band is bonding and the
xy(k + b∗) band antibonding between Mo1 and Mo4 for k
inside the proper BZ. The latter empty xy band, which extends
from approximately 1.7 to 3.4 eV above EF , we neglect in
the bulk of the present papers, as was already mentioned in
Sec. III B.

Degenerate and parallel with the Mo1-Mo4 bonding and
antibonding xy bands running along the lower ribbon are
MO4-MO1 bonding and antibonding XY bands running along
the upper ribbon [see Fig. 2(d), Chart (14), and the right-hand
panel of Chart (15)]. Their |kb| = 1/4 ∼ kF standing-wave
state looks like the one shown on the right-hand side of Fig. 5,
but has MO1 on top of Mo4 and vice versa. Viewed along
b, the appearance of the xy and XY states is like that of
the xy and XY WOs in the first two columns on the top
row of Fig. 9. From there, we realize that these flat, parallel
states are well separated, each one on its own ribbon, with no
contribution of the oxygens in between. The ddδ-like hops
between the xy and XY orbitals inside the same bi-ribbon
(t⊥ ≡ t1 + u1 ≈ −14 meV) and between the XY and xy or-
bitals in different bi-ribbons (t ′

⊥ ≡ t1 − u1 ≈ −8 meV), give
the bands a perpendicular (kc) dispersion, which is two orders
of magnitude smaller than the kb dispersion given by Eq. (23).
If all ribbons were translationally equivalent, i.e., if the prim-
itive translations (neglecting a) were x + z = (c − b)/2 and
y + z =(c + b)/2 with reciprocal-lattice translations c∗−b∗
and c∗ + b∗, the ddδ hopping would add

2t1[cos π (kc − kb) + cos π (kc + kb)] = 4t1 cos πkb cos πkc

to Eq. (23). But since the primitive translations are really
b and c, we must—if we want to confine k to the proper
BZ—also add the equivalent term translated by the proper
reciprocal-lattice vector,17 −c∗. As a result, we get for the two
half-filled xy bands:

εxy

(
k

k + c∗

)
∼ 2t[1 ± (2t1/t ) cos πkc] cos πkb, (25)

where the distortion caused by the gap extending upwards
from ≈1.1 eV above EF has been neglected. As long as k
is inside the first BZ (|kc| � 1

2 ), the xy(k) band is bonding
and the xy(k + c∗) band is antibonding between ribbons, i.e.,
between xy and XY . In the second BZ (|kc − 1| � 1/2), the
opposite is true (see Fig. 6). The translational inequivalence
of the two ribbons—i.e., the dimerization into bi-ribbons –

17Substituting c∗ by −c∗ gives the same result because their differ-
ence 2c∗ is a translation of the reciprocal lattice spanned by c∗−b∗

and c∗+b∗.
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FIG. 6. The six pure-m t2g bands (m = yz green, xz blue, and
xy red) as functions of kc in the double zone (−1 < kc � 1) and
for kb = 0.225, i.e., along the brown dot-dashed line containing P
and Q in Fig. 8. 10% hole doping will place the Fermi level inside
the red bands. The m(k) and m(k + c∗) bands, whose dispersions
are described in Sec. IV A, have period 
kc = 2 and are shown in,
respectively, fat and normal dashed lines. The {m(k), m(k + c∗)}
hybridized bands have period 1 and are shown in full lines. Their
additional (vertical) fatness is proportional to the |k〉 character and
has period 2. The ARPES-refined TB parameters listed in Eqs. (43),
(44), (45), and (49) were used and, accordingly, the zero of energy is
the center of the gap, i.e., the common energy of the xz, XZ , yz, and
Y Z WOs. The Fermi level of samples G and H is at +75 meV.

finally splits the degeneracy of the xy(k) and xy(k + c∗)
bands at the BZ boundaries |kc| = 1/2 (the ZCED planes)
by ±2

√
2u1 cos πkb, which for kb = 1/4 ∼ kF is a mere

±8 meV.

2. The two yz and the two xz bands

In the planes perpendicular to the bi-ribbons [Fig. 2(c) and
Chart (14)] and cutting them along the y strings [Fig. 2(d) and
Chart (15)] lie the dressed yz orbitals, and in the planes cutting
along the x strings lie the dressed xz orbitals. The left-hand
panel of Fig. 5 shows that |kc + kb| = 1/2 standing-wave state
of the yz band which behaves like cos 2π 1

2 (rc + rb), i.e., is
even around the Mo1-containing planes which are perpendic-
ular to c∗ + b∗ and has nodes in the MO1-containing planes.
Like for xy state in the right-hand panel of Fig. 5, the dressed
yz orbitals on the four nearest neighbors in the plane of the
orbital (MO4 at z, Mo4 at y, Mo2 at −y, and MO2 at −z)
are ddπ antibonding with the dressed yz on the central Mo1,
which means pdπ nonbonding with the oxygen. Here again
the amplitudes of the dressed yz orbitals decrease like the Mo
coordination.

Whereas in the plane of the xy orbital, Mo4—like Mo1—
has four nearest neighbors of molybdenums coordinated
octahedrally with oxygen, in the plane of the yz orbital, Mo4
has only three neighbors, and so does Mo2, while Mo5 has
merely two. As noted in Sec. III A, this is due to the stacking
into a staircase of bi-ribbons (14). As a result, the yz orbitals
on the Mo1- and MO1-sharing zigzag double chain,

c ↗
a ↘
z ↑

5 → 4 ↑ 1 → 2 ↑
→ 2 ↑ 1→ ↑ 4 5

5 → 4 ↑ 1 → 2 ↑
→ 2 ↑ 1→ 4 ↑ 5

,

(26)

FIG. 7. Like Fig. 6 (kb = 0.225) but including the hybridiza-
tion of the x̃y band (dark red) with the xz (blue) and yz (green)
valence and conduction bands via Löwdin downfolding as ex-
plained in paper III [2]. This hybridization brings in the parameters
αn ± γn and an ± gn [Eqs. (39) and (46)]. Not included in this
figure are the xy hybridizations of the blue xz and the green yz
bands, as well as the hybridization between the xz and yz bands.

running up the staircase with pseudotranslation z + y =
(c + b)/2, form a quasi-1D band dispersing like

εyz(k) = 2A1 cos [2πk·(c + b)/2] = 2A1 cos π (kc + kb),
(27)

with an effective hopping integral, A1 ≈ −0.3 eV and band-
width 4|A1| ≈ 1.2 eV. Because the hopping between ribbons
proceeds via Mo4 inside the bi-ribbon, but via Mo2 between
bi-ribbons and because the former distance is shorter than the
latter, the hopping integrals are different, respectively A1 +
G1 ≈ −0.3 − 0.1 ≈ −0.4 eV and A1 − G1 ≈ −0.2 eV. This
dimerization into bi-ribbons causes c rather than (c + b)/2 to
be a primitive lattice translation whereby the yz(k + c∗) band
with dispersion

εyz(k + c∗) = −2A1 cos π (kc + kb) (28)

is equivalent to the yz(k) band (27). Where these bands are
degenerate, i.e., for |kc + kb| = 1/2, they gap by ±2|G1| ≈
±0.2eV whereby they become

εyz = ±
√

[2A1 cos π (kc + kb)]2 + [2G1 sin π (kc + kb)]2.

(29)
For k between the |kc + kb| = 1/2 planes, the yz(k) and
yz(k + c∗) bands are, respectively, bonding and antibonding
between neighboring ribbons. The two yz bands, decorated by
the k character (27), are shown in green in Fig. 6.

It should be noted that the gapping takes place for |kc +
kb| = 1/2, which is not at the boundary of the conventional
BZ, |kb| = 1/2 and |kc| = 1/2 shown in Figs. 3 and 8, but
where the εyz(k) and εyz(k + c∗) bands are degenerate. Nev-
ertheless, the zone centered at �(0, 0) and bound by the planes
|kb| = 1/2 and |kc + kb| = 1/2 (ZYAD) is a primitive cell of
the reciprocal lattice, and we call it a physical zone, useful for
understanding properties of the yz bands.

With the substitution: b → −b, everything said about the
yz bands holds for the xz bands (shown in blue in Fig. 6).

As regards choices of zones, we can either take

|kb| � 1
2 and |kc| � 1

2 , (30)

|kb| � 1
2 and |kc + kb| � 1

2 , (31)

or |kb| � 1
2 and |kc − kb| � 1

2 , (32)
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but not |kc + kb| � 1/2 and |kc − kb| � 1/2 whose volume
(area) is only half the BZ volume (see Fig. 8). Expressions
(30)–(32) thus define the physical zones for, respectively, the
xy, yz, and xz bands.

3. Lineup of the six lowest t2g bands

The bottoms of the xz and yz bands and those of the de-
generate xy bands are all at �(k = 0) and at the energy of that
linear combination of the dressed xz, yz, or xy orbitals which
is the least antibonding between all octahedral molybdenums
(Fig. 3). According to the LDA, these energies are Bxz/yz ∼
EF − 0.6 eV and Bxy ∼ EF − 0.7 eV. Since the 4|A1| width of
the xz and yz bands is only about one third the 4|t | width of
the xy bands, the 4|G1| gap halfway up in the xz and yz bands
extends between the energies Bxz/yz + 2|A1 ± G1| ≈ ±0.2 eV
with respect to the Fermi level set by the half-filled, lower
xy bands. In the following paper II [1] (see, e.g., Fig. 12
of paper II), we see that agreement with ARPES requires
a 0.1 eV downward shift of the xz or yz bands with respect
to the xy bands, whereby Bxz/yz ∼ EF − 0.7 eV ∼ Bxy ≡ B.
This low-energy t2g band structure is shown in Fig. 6 along
the line kb = 0.225 perpendicular to b, the direction of quasi
1D conductivity.

In summary, since the six lowest bands are t2g-like, the six
electrons would half fill them in case of weak Coulomb corre-
lations, thus corresponding to a t3

2g configuration. Covalency
between the xz and XZ orbitals, as well as between the yz
and Y Z orbitals, together with the availability of one xz and
one yz electron per string, result in the covalent bonds which
dimerize the ribbons into bi-ribbons and thereby gap the xz
and yz bands into filled bonding and empty antibonding bands.
The remaining one xy electron per string finally half fills the
quasi-1D band dispersing strongly along b.

The six t2g bands are illustrated in Fig. 4, from where it
is seen that the gaps in the green xz and yz bands are around
the center of the red, metallic xy bands and, hence, around the
gray, transparent Fermi level.

4. Constant-energy contours

Figure 8 shows the double zone, |kb| � 1/2 and |kc| � 1,
and—schematically and in weak lines—the constant-energy
contours (CECs) for the xz(k) bands in blue, the yz(k) bands
in green, and the (almost) degenerate, half-filled xy(k) and
xy(k + c∗) bands (25) in red. The bottoms of these four bands
are along, respectively the blue, green, and red lines passing
through �(0, 0). The tops of the xz(k) and yz(k) bands are
along the blue and green lines passing through �′(0,±1).
The top of the degenerate xy bands [which is a cusp because
Eq. (25) neglects the Mo1-Mo4 gap] is along the red, vertical
BZ boundary |kb| = 1/2.

For the degenerate xy bands, we also show the CECs for
three energies close to the Fermi level corresponding to half
filling (red dot-dashed), 10% hole (brown dot-dashed), and
10% electron (olive dot-dashed) doping. For the gapped xz(k)
and xz(k + c∗) bands we show the coinciding CECs for the
valence- and conduction-band edges (blue solid lines), and
similarly for the yz-band edges (green solid lines). The CECs
for the xz(k + c∗) and yz(k + c∗) bands of course equal those

FIG. 8. Double zone: −0.5 < kb � 0.5 and −1 < kc � 1. The
red, blue, and green solid lines show the physical zones for, respec-
tively the xy, xz, and yz pure bands; see Eq. (30), (32), and (31). The
red zone is the BZ, and its irreducible part is the one with 0 � kc �
0.5. The reciprocal-lattice points are G = Mb∗ + Nc∗, i.e., (kb, kc ) =
(M, N ), with M and N integers. Those (19) with M + N even, form
the lattice reciprocal of the un-dimerized lattice (20) whose BZ is the
double zone. Shifting this even reciprocal lattice by c∗ yields the odd
reciprocal lattice; see Sec. VI B. Weak lines indicate the positions
of pure-band maxima and minima (see Fig. 6). The red dot-dashed
lines indicate the positions of the left and the right, doubly degenerate
Fermi-surface sheets for stoichiometric 2(LiMo6O17). The brown and
olive dot-dashed lines correspond to 10%, respectively, hole and
electron doping. Because c/b = 1.720 ≈ √

3, the �C�′ triangles are
almost equilateral, and since this is so in the present figure, it is to
scale. The kb axis, has been turned by ≈90◦ with respect to b in the
real-space Figs. 2(d), and 5 (right).

for, respectively, the xz(k) and yz(k) bands but translated
along kc by an odd integer.

As seen in Fig. 7 for kb = 0.225, corresponding to 10%
hole doping, the xz and yz valence-band edges running along
|kc ∓ kb| = 1/2 (YZY′) and merely 0.2 eV below the xy bands
push resonance peaks up at |kc| = 0.725 and 0.275 in the
upper xy band. This gives rise to “notches” pointing towards
Z (Fig. 8) in the inner sheets of xy CECs with energies in
the lower half of the gap. Near kc = 0 (�Y) and kc = ±1
(�′Y′), hybridization with the xz and yz valence and conduc-
tion bands, which are now 0.5 eV away (Fig. 7), reduces the
ddδ-like splitting (25) between the xy bands seen Fig. 6 to
become almost a contact between the two xy bands and CECs.
Near the BZ boundaries, |kc| = 1/2 (�C), mixing of the xy(k)
and xy(k + c∗) bands and hybridization of the lower with the
xz and yz conduction bands 0.5 eV above, pushes down bulges
in the lower xy band, thus causing the outer CEC sheets to
bulge outwards. We shall search for these features using new
ARPES measurements in paper III [2], devoted to the detailed
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study and explanation of the splitting and perpendicular dis-
persion of the quasi-1D metallic bands in the gap.

V. LOW-ENERGY WANNIER ORBITALS

In the previous section, our view moved from the energy
scale of the Li 2s, Mo 5sp, 4d , and O 2p atomic shells to the
decreasing energy scales of the Li+, Mo6+, and O− − ions, to
the covalently bonded MoO4 tetrahedra and MoO6 octahedra
and, finally, to the low-energy bands of the MoO6 octahedra
condensed into strings, ribbons, and staircases of bi-ribbons
by sharing of the pdπ -bonded O corners. In this change of
focus from large to small energy scales and, concomitantly,
from small to large spatial scales, we have followed com-
putationally with the NMTO method in the LDA by using
increasingly narrow and fine energy meshes and increasingly
sparse basis sets as was described in Sec. II.

The six lowest Mo 4d bands, i.e., those within ±0.75 eV
around the Fermi level (see Figs. 3 and 4) were found to
be completely described by the basis set consisting of the
three xy, xz, and yz NMTOs centered on Mo1 plus the three
equivalent ones (18) centered on MO1, that is, of one t2g set
per string, which is per LiMo6O17. Symmetrical orthonor-
malization yielded the corresponding set of WOs whose xy
and yz orbitals are what was actually shown in Fig. 5. The
centers of the t2g WOs were chosen at Mo1 and MO1 because
those are the only octahedral molybdenums whose six near-
est molybdenum neighbors are also octahedrally surrounded
by O.

Each WO spreads out to the four nearest octahedral molyb-
denums in the plane of the orbital and, as explained in the
previous sections, this leads to almost half the WO charge
being on Mo1, slightly less on Mo4, considerably less on
Mo2, and much less on Mo5. There is no discrepancy between
the t3

2g configuration and the Mo d0.5 occupancy mentioned at
the beginning of Sec. IV: The latter is an average over all six
molybdenums in a string of which only four carry t2g partial
waves, which are combined into one set of t2g WOs, each
one being effectively spread onto three molybdenums. So the
occupation is perhaps more like Mo d1.

What localizes a t2g,m WO in the set of all three t2g WOs on
all Mo1 and MO1 atoms, is the condition that its projections
onto all t2g partial waves on all Mo1 and MO1 atoms, except
the t2g,m partial wave on the own site, must vanish.18 On the
other hand, the WO spreads onto any other site and partial
wave in the crystal in such a way that the WO set spans the
solutions of Schrödinger’s equation at the N + 1 = 3 chosen
energies. For the view (14), this is schematically

c ↗
a ↘
z ↑

4 5 2 ◦ 4
5 4 ◦ 2

2 4 5

5 4 ◦ 2 5
2 ◦ 4 5 2

,

(33)

18Strictly speaking, this holds for the set of KPWs rather than of
NMTOs and of WOs (see Sec. II).

with indicating the site (here Mo1) of the WO, and ◦ the
sites where all t2g characters are required to vanish, i.e., the
sites of the other WOs in the t2g set. For the view (15), the
Mo1-centered WO is

b ↑
c + a −→
x ↘
y ↗

Mo : MO :

◦ 5

2 4

5

2 4

◦ 5

4 2

5 ◦
4 2

5 ◦
4 2

.

(34)

Our t2g WOs are insensitive to the exact orientation chosen
for the xyz system—we took the one given by Eq. (12)—
because they have all partial waves other than xy, xz, and yz
on Mo1 and MO1 downfolded.19 The contents of these partial
waves are thus determined uniquely by the requirement that
the WO basis set solves Schrödinger’s equation exactly at the
chosen energies for the LDA potential used to construct the
WOs. In this way, the downfolding procedure ensures that the
shape of t2g orbitals is given by the chemistry rather than by
the choice of directions. Specifically, the downfolded content
of partial waves with eg character rotates the directions of the
t2g lobes into the proper “chemical” directions [42]. Moreover,
the downfolded partial-wave contents on the remaining Mo2,
Mo4, and Mo5 atoms in the string ensure that their relative
phases are the proper ones for the energies chosen. Also, a
WO on the upper string is correctly inverted with respect
to the one on the lower string [see Eq. (18)]. Similarly, the
downfolded partial waves on all oxygens give the proper O 2p
dressing.

The WOs are obtained by symmetrical orthonormalization
of the NMTO set and this causes a delocalization which,
however, for our t2g set is small and invisible in Fig. 5. What
we do see and is noted in the previous section is that each t2g

WO has tails with the same t2g character as that of the head
on the four nearest molybdenums in the plane of the orbital.
These tails are connected to the head via pdπ tails on the four
connecting oxygens such that the sign is antibonding with the
t2g head and bonding with the t2g tail. In effect, this results
in a ddπ antibond between the oxygen-dressed t2g orbitals
forming the WO head and tail.

Since the xy WO lies in the plane of its ribbon, it only
spreads onto a neighboring ribbon via a weak covalent inter-
action of symmetry ddδ causing no visible tails in the upper
rows of Fig. 9. This is in contrast with the strong inter-ribbon
ddπ spread of the xz and yz WOs. The consequence for the
six-band Hamiltonian to be presented in the next section is
that the xy-XY inter-ribbon hopping integral t1 in Eq. (25)
and its dimerization u1 are about 30 times smaller than the
respective xz-XZ and yz-Y Z inter-ribbon integrals A1 and G1

19For the XY Z system located on MO1 in the upper ribbon, we
merely translate the xyz system from Mo1 to MO1. These two
parallel, local coordinate systems do not follow the space-group
symmetry, specifically the center of inversion between the nearest
Mo1-MO1 neighbors. But the t2g projections on the Mo1 and MO1
hard spheres do, because they are even, and this is all that matters for
the WOs.
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FIG. 9. The six Mo1- and MO1-centered t2g WOs spanning the six lowest energy bands of 2(LiMo6O17) shown in Fig. 4. The orientation is
as in Fig. 2(c) and 2(d), with the numbering of the octahedrally coordinated molybdenums given in, respectively Charts (14) and (15). Shown
are the WO’s constant-density surfaces containing 70% of the WO’s charge with the color giving the sign of the lobe. With the usual 90%
cutoff, as e.g., used for the t2g WOs in NiO [52]), the overlaps would have been obscurely large. This more diffuse character of the LiPB
WOs is needed in order that they accurately describe bands that are not visibly separated from the higher, more antibonding bands [see Fig. 3,
and the long-range of the hopping integrals in (43), (46), and (47)]. The slices shown in Fig. 5 of standing-wave yz and xy states equal the
corresponding WO, because for the values of |k| chosen, the overlap from the neighbor WOs in (52) is invisible.

in Eq. (29). For the same reason, the selection rule derived in
Sec. II B of paper II [1] that ARPES sees the lower band in the
first and the higher band in the second zone is better obeyed
for the xy bands than for the (occupied) lower xz and yz bands
(compare Figs. 2 and 3 in paper II).

With the knowledge that the right-hand panel of Fig. 5
shows the WO xy(r), let us now imagine building the 1D
Bloch sum xy(kbb∗, r) of WOs (8) through integer trans-
lations by nb, multiplication by e2π inkb , and superposition:
Around Mo1 and Mo5, only xy(r) contributes (neglecting
the tail outside the 70% contour), but around Mo2 and Mo4,
xy(r + b)e−2π ikb and xy(r − b)e2π ikb also contribute. As a re-
sult, at the bottom of the band (kb = 0) the amplitudes around
Mo1 and Mo4 are nearly equal, and antibonding between Mo1
and Mo4, whereas the amplitude around Mo2 is smaller, but
also antibonding to Mo1 so that the pπ character on all four
oxygens vanishes. At the Fermi level, |kb| = 1/4, whereby
the sum of the Bloch waves with positive and negative kb

has the same shape as xy(r) near Mo1 and Mo5, and a node
at the neighboring Mo1 and Mo5 (i.e., those translated by
±b). This is the standing-wave state described in the previous
section. The shape of the difference between the waves with
kb positive and negative is the same, but shifted by b. At
the top of the band, |kb| = 1/2, whereby the Bloch waves
change sign upon translation by b so that there is a node
through Mo2 and Mo4 for one of the linear combinations, and
through Mo1 and Mo5 for the other. If we finally build the
Bloch sums with |kb| = 3/4, we find that they are identical

with those for |kb| = 1/4, because in order to form both the
low-energy Mo1-Mo4 bonding and the high-energy antibond-
ing states, we would need a set containing two xy WOs, one
centered at Mo1 and the other at Mo4. In order for a single
WO to describe the lower bonding part of a 4-eV-wide band,
gapped in the middle by merely 0.6 eV, it must in order to
reproduce the strong curvature at the top of the lower band at
|kb| = 1/2 have the zone boundary (ZB) here (rather than at
1), as well as long-range in the direction (b) of the dispersion.
That the latter is not seen in the first panel on the bottom
row of Fig. 9 is due to our contour cutoff at 70%. But in
the Hamiltonian [Eqs. (35), (37), and (43)], it gives rise to
xy-xy hopping integrals τn, which we need to carry as far as
to n = 12.

For future first-principles studies enabling Mott localiza-
tion onto Mo1 or Mo4, WO sets larger than the one of six
used in the present papers will be needed.

In a similar way, we can imagine building the states of
the two 1D yz bands (27)–(29) from pseudo-Bloch sums
of the yz and Y Z WOs (Figs. 5 and 9) through pseudo
translations by n(c + b)/2, multiplication by eπ in(kc+kb), and
superposition. These WOs have their proper positions, i.e.,
at, respectively Mo1 and MO1,14 and we use yz(r−n c+b

2 ) for
n even and Y Z[r−(n − 1) c+b

2 ] for n odd; see Eq. (17) and
also Eq. (52) to which we shall return. These WOs are so
localized that each one spills over only to its neighboring
y string. The integrals for intra- and inter-bi-ribbon hops,
A1 ± G1, whose complicated hopping paths between elemen-
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tary, dressed yz orbitals were shown in (26), are simply those
between nearest-neighbor yz and Y Z WOs. All farther-ranged
hopping integrals, An>1 and Gn>1, are negligible.

The square of a WO, summed over all lattice transla-
tions yields the charge density obtained by filling that band,
provided that we neglect its hybridization with the other
bands. Summing this charge density over all six WOs yields
the charge density obtained by filling all six t2g bands, hy-
bridizations now included. As an example, squaring the xy
WO in Fig. 5 will remove the colors and enhance the den-
sity on Mo1 with respect to that on the two Mo4 atoms,
and even more with respect to that on the two Mo2 atoms,
and mostly with respect to that on Mo5. Translating this
charge density by ±b and summing, doubles the charge den-
sity on Mo4 and on Mo2 due to overlap. As a result, the
charge density on Mo1 and Mo4 will be nearly equal and
larger than that on Mo2, while the one on Mo5 will be the
smallest.

This charge density compares well with the one ob-
tained by Popovic and Satpathy [27] for the quasi-1D
band by filling it in a narrow range around the Fermi
level and shown in the plane of the lower ribbon in their
Fig. 5.20

Nuss and Aichhorn [21] described the four lowest bands,
i.e., the two valence bands and the two metallic bands,
with a set of maximally localized Wannier functions ob-
tained numerically by minimizing the spread 〈χ ||r − 
|2|χ〉.

20That their [27] density on Mo2 is smaller than the one on Mo5
is presumably due to an erroneous exchange of the labels Mo1 and
Mo4.

Their WFs are bond centered and are essentially our
yz(r) + Y Z (r), our xz(r) + XZ (r), and a WF along each
�Mo1�

Mo4�Mo1 �Mo4� chain with xy-like, similar-sized
contours on all four sites, smaller contours on the Mo2 and
Mo5 sites closest to the bond, and even smaller contours on
the next Mo2 and Mo5 sites. This WF is extended along the
chain, but appears from their Fig. 4 to have about the same
degree of localization as our disk-shaped WO seen in the first
column of Fig. 9.

VI. SIX-BAND t2g TIGHT-BINDING HAMILTONIAN

Since our TB Hamiltonian is considerably more detailed
than those previously published [6,19,27,28], we have been
forced to change notation. The relation between the earlier
notation and ours is, first of all, t⊥ = t1 + u1 and t ′

⊥ = t1 − u1.
The integral t ≈ −1 eV for the Mo1-Mo4 hopping used in
the earlier work—as well as in the previous sections—is the
coefficient of cos πkb, whereas τn to be used in Eq. (36) and in
the following is the coefficient of cos 2πnkb. The symbol t will
from now on—unless with explicit reference to Eq. (23)—
denote the function of kb and kc which is defined in terms of
the perpendicular first- and second-nearest hopping integrals
t1 and t2 in Eq. (37).

A. Sublattice {w,W } representation

In the representation of the six Bloch sums (8) of
the three Mo1-centered t2g WOs,14 wm(k, r) = xy(k, r),
xz(k, r), and yz(k, r), as well as of the three MO1-centered
WOs times a common phase factor, Wm(k, r)eπ i(kc+kb) =
XY (k, r)eπ i(kc+kb), XZ (k, r)eπ i(kc+kb), and Y Z (k, r)eπ i(kc+kb),
the TB Hamiltonian (9) is

H xy XY xz XZ yz Y Z

xy τ t − iu α + iγ a − ig ᾱ + iγ̄ ā − iḡ
XY t + iu τ a + ig α − iγ ā + iḡ ᾱ − iγ̄
xz α − iγ a − ig 0 A − iG λ − iμ l − im
XZ a + ig α + iγ A + iG 0 l + im λ + iμ
yz ᾱ − iγ̄ ā − iḡ λ + iμ l − im 0 Ā − iḠ

Y Z ā + iḡ ᾱ + iγ̄ l + im λ − iμ Ā + iḠ 0

, (35)

using simplified labeling of the rows and columns. The six
WOs are real-valued and shown in Fig. 9. The common k-
dependent phase factor eπ i(kc+kb) multiplying the Bloch sums
of the upper-string WOs has been included in order that matrix
elements between the two different sublattices take the simple
form (35) where the asymmetry between integrals for hopping
inside and outside a bi-ribbon (electronic dimerization) is
given by the imaginary part.

The zero of energy is chosen as the common energy of the
xz, XZ , yz, and Y Z WOs.

The quantities in (35) named by Greek and Latin letters are
real-valued functions of the Bloch vector (11). Specifically,

τ (kb) = τ0 +
12∑

n=1

2τn cos 2πnkb, (36)

t (k) = (2t1 cos πkb + 2t2 cos 3πkb)2 cos πkc,
(37)

u(k) = (2u1 cos πkb + 2u2 cos 3πkb)2 sin πkc,

describe the xy and XY bands,

A(k) = 2A1 cos π (kc − kb), (38)

G(k) = 2G1 sin π (kc − kb)

describe the xz and XZ bands, and Ā and Ḡ describe the
yz and Y Z bands. An overbar is generally used when switch-
ing from an xz to a yz orbital and indicates the mirror operation
kb ↔ −kb, e.g., ā(kb, kc) ≡ a(−kb, kc). The hybridizations
between the xy/XY and the xz/XZ bands are given by the
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Bloch sums:

α(k) = α0 + 2α1 cos 2πkb + 2α2 cos 2πkc

+ 2α3 cos 2π (kc + kb) + 2α′
3 cos 2π (kc − kb),

a(k) = 2a1 cos π (kc − kb) + 2a′
1 cos π (kc + kb)

+ 2a2 cos π (kc − 3kb) + 2a′
2 cos π (kc + 3kb),

γ (k) = 2γ1 sin 2πkb + 2γ2 sin 2πkc

+ 2γ3 sin 2π (kc + kb) + 2γ ′
3 sin 2π (kc − kb),

g(k) = 2g1 sin π (kc − kb) + 2g′
1 sin π (kc + kb)

+ 2g2 sin π (kc − 3kb) + 2g′
2 sin π (kc + 3kb), (39)

and the hybridizations between the xz/XZ and the yz/Y Z
bands by

λ(k) = λ0 + 2λ1 cos 2πkb + 2λ2 cos 2πkc + 2λ3 cos 2π2kb,

l (k) = (2l1 cos πkb)2 cos πkc,

μ(k) = 2μ1 sin 2πkb + 2μ3 sin 2π2kb,

m(k) = (2m1 cos πkb)2 sin πkc. (40)

The dispersion along a∗ is neglected, and the Bloch sums
are truncated for distances exceeding the lattice constant a,
which means after the third-nearest neighbors. The long-
ranged τ (kb) is an exception and will be discussed below. Due
to the truncation of hops longer than a, the effective value of
ka is not zero, but the one for which cos 2πka = 0, i.e., 1/4.
The truncation also means that our LDA TB bands are a bit
more wavy and smoother than those obtained from the origi-
nal LDA NMTO Hamiltonian downfolded in k space. The A
and G sums (38) are converged already after the first-nearest
neighbors.

The Greek-lettered Bloch sums are over hops on the same
sublattice whereby their k dependence is periodic in the recip-
rocal lattice spanned by b∗ and c∗, e.g.,

α(kb, kc) = α(kb + M, kc + N ), (41)

with M and N being any integer. The Latin-lettered Bloch
sums are over hops between the Mo1- and MO1-centered
sublattices and averaged such that these Bloch sums are pe-
riodic in the double zone spanned by c∗+b∗ and c∗ − b∗
(see Sec. VI B), but change sign upon odd reciprocal-lattice
translations, e.g.,

a(kb, kc) = (−)M+N a(kb + M, kc + N ). (42)

Note the difference between α and a.
The number of parameters entering Eqs. (36)–(40) and

whose values are given in Eqs. (43)–(47) below are far more
numerous than those few (t , t⊥, t ′

⊥, A1, G1, and B) used in the
simplified description given in Sec. IV; a description which,
nevertheless, suffices to understand the CECs and bands mea-
sured by ARPES and shown in, respectively, Figs. 10 and
11 in paper II [1]. The LDA low-energy TB bands shown
in Fig. 12(a) of paper II together with the occupied bands
measured by ARPES (gray circles and black dots) have much
more detail, and the surprisingly good agreement between
them proves this detail to be real. This is emphasized by
the nearly perfect agreement seen in Fig. 12(b) of paper II
and obtained by shifting merely the on-site energy τ0 of the
degenerate xy and XY WOs upwards by 100 meV with respect

to the energy of the degenerate xz, XZ , yz, and Y Z WOs. In
Sec. III E of paper II we shall describe the details of the energy
bands while the differences between LDA and ARPES will be
in focus of Sec. IV of paper II.

Below, we give the values in meV of the on-site ener-
gies and hopping integrals obtained from the first-principles
LDA full-potential NMTO calculation (9) together with
the (shifted) values and the [ARPES refined] values (see
Secs. IV A and IV B in paper II) in those cases where they
differ:

τ0 = 47 (147) [203],
τ1 = −422 [−477], τ5 = −11, τ9 = −2,

τ2 = 47 [87], τ6 = 8, τ10 = 1,

τ3 = −31, τ7 = −4, τ11 = −1,

τ4 = 17, τ8 = 3, τ12 = 1,

(43)

t1 = −11, u1 = −3,

t2 = −5, u2 = 1,
(44)

A1 = −319, G1 = −98 [−109], (45)

α0 = 31,

α1 = 20, a1 = −49, γ1 = 8, g1 = 1,

α2 = −5, a′
1 = −8, γ2 = −6, g′

1 = 5,

α3 = 10, a2 = −6, γ3 = 2, g2 = −3,

α′
3 = −4, a′

2 = −11, γ ′
3 = −4, g′

2 = −11,

(46)

λ0 = −61, μ1 = 7,

λ1 = 7, μ3 = −11,

λ2 = 22 [15], l1 = 20,

λ3 = −11 [−5], m1 = 12 [6].

(47)

Subscript 0 indicates an on-site energy which is the energy of
the WO in case the two WOs are identical, and an anisotropy
energy in case they are different. Further subscripts indicate
first-, second-, and third-nearest-neighbor hops.

As mentioned above, the zero of energy is chosen as the
common energy of the xz, XZ , yz, and Y Z WOs. This is the
center of the gap in the approximation that the hybridizations
(40) between the xz/XZ and the yz/Y Z bands are neglected.
In Sec. IV and in footnote 16 this energy was named E0 ∼
B + 2|A1|. The common energy of the xy and XY WOs, i.e.,
the center of the unhybridized xy bands, is τ0 with respect to
that of the xz, XZ , yz, and Y Z WOs.

For our basis containing merely one Mo1- and one MO1
WO, the Fourier series (36) for the dominating kb dependence
of the two half-filled xy bands converges slowly, as explained
in Sec. V. For many purposes, it suffices to linearize τ (kb)
around kb = 1/4 ≈ kF or −1/4:

τ (kb) ≈ τ0 + 2
∑
n=1

(−1)nτ2n

−
(

|kb| − 1

4

)
4π

∑
n=0

(−1)n(2n + 1)τ2n+1. (48)
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With the values given in (43), the upper line of Eq. (48) says
that—neglecting FS warping and splitting, i.e., the perpendic-
ular (44) and hybridization (46) integrals—the Fermi level at
half filling is

EF ≈ τ
(

1
4

) = −23(77) [53] meV (49)

above the center of the gap. According to Eq. (48), this dif-
fers from the on-site xy energy, τ0 = 47 (147) [203] by the
alternating sum 2(−τ2 + τ4 − · · · ). Hence, the reason why
the ARPES-refined value of the Fermi level for half filling
is 150 meV below τ0—and thereby closer to the center of the
gap than the LDA value shifted by 100 meV—is caused by the
refinement of the τ2 value. In Sec. III B of paper III [2], the
average kFb value measured by ARPES at 33 eV is 0.254. The
Fermi level is thus approximately τ (0.254) = 75 meV rather
than 53 meV above the center of the gap.

The value of the coefficient of |kb| − 1/4 in the lower line
of Eq. (48), times b, yields the Fermi velocity at half filling:

vF = 4.0 (4.0) [4.6] eV Å. (50)

This LDA value is a bit larger than those of Satpathy and
Popovic (3.72 eV Å) [27] and of Nuss and Aichhorn (0.93 ×
105 m/s = 3.8 eV Å) [21]. Our ARPES-refined value, which
is consistent with Fig. 14(c2) of paper II [1], exceeds the LDA
value by 15%. The reasons for this velocity enhancement will
be discussed in Sec. III B 2 of paper III. The dimensionless
coupling constant used in Ref. [70] has the value

e2/(π h̄vF) = 1.14 [0.99]. (51)

The splitting-and-warping effects neglected above are con-
sidered in detail in Secs. II A, II B, and III B in paper III.

Of the matrix elements, 〈xy0|H |xzn〉 = αn ± γn,
determining the xz and yz hybridization of the xy bands, α0 is
the crystal-field term, and αn ± γn and αn ± γ n are integrals
for hopping between nth-nearest neighbors with the upper
sign for forward hopping and the lower sign for backward
hopping. Although these Greek-lettered hops are between
WOs on the same sublattice, forward and backward hoppings
differ because there is no inversion symmetry around Mo1.
These energies, except α0 and α1, are small but significant
for the detailed kc dispersion of the xy band near the Fermi
level, especially the resonance behavior. The same holds for
the Latin-lettered hopping integrals, 〈xy0|H |XZn〉 = an ± gn,
between WOs on different sublattices, except for a1. In paper
III, Sec. II B 6 in particular, we shall see that the crystal-field
term α0 and the integral for hopping from xy to an XZ or Y Z
nearest-neighbor, a1, are of major importance.

The matrix elements 〈xz0|H |yzn〉 = λn ± μn and
〈xz0|H |Y Zn〉 = ln ± mn are larger than these, but of minor
importance for the xy band near EF , and we shall neglect them
in the two-band Hamiltonian derived in paper III, Sec. II A.
They are decisive for the levels near Z where the valence (V)
and conduction (C) bands come closest. Since the Bloch sums
(40) are badly converged, we found it necessary to truncate
the sum and then refine the hopping values, as shown in
square brackets in Eqs. (47). This refinement was enabled by
the fact that the six-band Hamiltonian (35) simplifies at the
points of high symmetry such as Z.

B. Reciprocal sublattice {k, k + c∗} representation

In connection with Eqs. (25) and (29), we note that the
numerical values of the most important inter-ribbon hoppings
have smaller dimerizations than mean values, i.e., t1 ± u1 ≈
−11 ∓ 3 meV for the xy band and A1 ± G1 ≈ −0.3 ∓ 0.1 eV
for the xz and yz bands. If such electronic c-axis dimerizations
(Sec. III A) are neglected, the energy bands are the dashed
bands in Fig. 6 and correspond to all strings being related
by primitive translations (c + b)/2 and (c − b)/2, rather than
there being two translationally inequivalent strings per prim-
itive cell whose primitive translations are c and b. A natural
way of describing the proper electronic structure is therefore
in terms of basis functions which are pseudo-Bloch sums
of WOs with respect to this—too short—lattice periodicity.
Specifically, in LiPB, a pseudo-Bloch sum is

|w; k〉 ≡ 1√
2

∑
T

e2π ik·T[w(r − T) + e2π ik·(c+b)/2W (r − T)],

(52)

where the T sum is over the proper lattice translations, w(r) is
the WO centered on Mo1, taken as the origin of the primitive
cell, and W (r) is the WO on MO1, which is at (c + b)/2 −
d. Both

∑
T e2π ik·Tw(r − T) and

∑
T e2π ik·TW (r − T) are

proper Bloch sums (8) and, hence, periodic functions of k in a
single zone. However, the k-dependent phase factor, eπ i(kc+kb),
multiplying the second Bloch sum makes this—and herewith
the entire pseudo-Bloch sum (52)—a function of k which
is merely periodic in the double zone, i.e., on the sparse
reciprocal lattice spanned by c∗ + b∗ and c∗ − b∗, that is,

|w; k〉 = |w; k + M ′(c∗ + b∗) + N ′(c∗ − b∗)〉
≡ |w; k + Mb∗ + Nc∗〉, (53)

with M ′ and N ′ being any integers, which means with M +
Neven. Had W (r) not been displaced and inverted as de-
scribed in Sec. III A, the pseudo-Bloch sum (52) would have
been a proper Bloch sum for the undimerized crystal. In
Fig. 6, the energy bands of the even pseudo-Bloch sums
are the dashed blue, green, and red bands with bottoms
near kc = 0.

The correct long periodicity in real space—and single-zone
periodicity in reciprocal space—can now be described by
including in the basis set the pseudo-Bloch sum with k trans-
lated to the other sparse sublattice (we may think of reciprocal
space as a checkerboard consisting of first and second zones).
This second set of Bloch waves17 is thus |w; k + c∗〉, for
which M + N + 1 is even, i.e., M + N is odd. Their energy
bands are the dashed ones with bottoms near kc = ±1 (and
tops near kc = 0) in Fig. 6. Finally, in order to diagonalize the
Hamiltonian (56), the even and odd pseudo-Bloch sums with
the same value of k are allowed to mix and the bands to gap.
In absence of dimerization, the even and odd pseudo-Bloch
functions are identical, apart from a phase factor, and so are
the even and odd energy bands which are merely separated by
c∗ and cross without gapping (Fig. 6).

The basis set (|w; k〉, |w; k + c∗〉) of pseudo-Bloch sums
is simply the unitary transformation:

|w; k〉 = [w(k, r) + eπ i(kc+kb)W (k, r)]/
√

2,

|w; k + c∗〉 = [w(k, r) − eπ i(kc+kb)W (k, r)]/
√

2, (54)
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of the set (w(k, r), W (k, r)) of proper Bloch sums (8) of the
two WOs w(r) and W (r). We may check that translation of
k by c∗ exchanges the functions on the left-hand side, leaves
the proper Bloch functions on the right-hand side invariant,
and—by adding one to kc—changes sign for the second row
of the matrix, which correctly exchanges its columns. With
the common phase factor eπ i(kc+kb) included in the definition
of W (k, r) as done for the Hamiltonian (35) in the {w,W }
representation, the transformation (54) is simply the bonding-

antibonding transformation for each of the three t2g Bloch
orbitals, and the inverse transformation is

w(k, r) = [|w; k〉 + |w; k + c∗〉]/
√

2,

eπ i(kc+kb)W (k, r) = [|w; k〉 − |w; k + c∗〉]/
√

2. (55)

Transformed to this {k, k + c∗} representation, the six-
band Hamiltonian (35) becomes

H |xy; k〉 |xy; k + c∗〉 |xz; k〉 |xz; k + c∗〉 |yz; k〉 |yz; k + c∗〉

〈xy; k| τ + t iu α + a i(γ + g) ᾱ + ā i(γ̄ + ḡ)
〈xy; k + c∗| −iu τ − t i(γ − g) α − a i(γ̄ − ḡ) ᾱ − ā

〈xz; k| α + a −i(γ − g) A iG λ + l −i(μ − m)
〈xz; k + c∗| −i(γ + g) α − a −iG −A −i(μ + m) λ − l

〈yz; k| ᾱ + ā −i(γ̄ − g) λ + l i(μ + m) Ā iḠ
〈yz; k + c∗| −i(γ̄ + ḡ) ᾱ − ā i(μ − m) λ − l −iḠ −Ā

, (56)

where |m; k〉 ≡ |wm; k〉.
The 3 × 3 blocks 〈k|H |k〉 and 〈k + c∗|H |k + c∗〉 are real-

valued, symmetric, and periodic in, respectively, the even and
the odd sublattice. This means that 〈k + c∗|H |k + c∗〉 equals
〈k|H |k〉 with the sign in front of the Latin-lettered Bloch sum
flipped [see Eq. (42)]. The off-diagonal blocks 〈k|H |k + c∗〉
are caused by the c-axis dimerizations and are purely imagi-
nary.

The band structure with the c-axis dimerizations neglected,
consists of the three eigenvalues of the 〈k|H |k〉 block in
the double zone (|kc| � 1). The dimerization effects may be
included by translating these three undimerized bands (dashed
in Fig. 6) by −1 along kc, whereby the second BZ (1/2 �
kc � 3/2) falls on top of the first (−1/2 � kc � 1/2), and
finally split them by 〈k|H |k + c∗〉.

In the following, we shall keep the c-axis dimerizations but
often neglect the mm′ hybridizations.

C. Pure-m bands

The xy (red), xz (blue), and yz (green) bands drawn in
full lines in Fig. 6 have the hybridizations between them ne-
glected. They are the so-called pure-m bands, the eigenvalues
of the three 2 × 2 blocks Hm along the diagonal in Eq. (35)
or (56), with elements given as functions of kb and kc in
Eqs. (36)–(38) and numerical values in Eqs. (44) and (45). The
pure-yz band we already met in Eq. (29). Note that t , A, and Ā
are negative in the first zone and that u, G, and Ḡ are negative
in the positive half of the first zone because nearest-neighbor
hopping integrals are negative. After subtraction from Hxy of
the diagonal τ (kb) term, all three blocks have the same form
(traceless and Hermitian) and so do, therefore, their upper
( j = 2) and lower ( j = 1) eigenvalues:

±
√

A2 + G2, ±
√

Ā2 + Ḡ2, and ±
√

t2 + u2, (57)

for m = xz, yz, and xy, respectively. Similarly for the or-
thonormal eigenfunctions expressed in terms of the WO Bloch
sums used as a basis in Eq. (35), or of the WO pseudo-Bloch

sums used in Eq. (56):

w 2
1
(k, r) = 1√

2

[
w(k, r)e−iφ(k) ∓ W (k, r)eπ i(kc+kb)] (58)

= 1

2

[|w; k〉(e−iφ(k) ∓ 1)+
|w; k + c∗〉(e−iφ(k) ± 1)

]
, (59)

where

eiφ ≡ −A − iG√
A2 + G2

,
−Ā − iḠ√

Ā2 + Ḡ2
, and

−t − iu√
t2 + iu2

. (60)

For quasi-1D structures such as LiPB, the band-structure
phase φ(k) varies from zero at the center of the physical
zone (see Sec. VI D) to +π/2 (−π/2) at the right (left) zone
boundaries (ZBs), and to ±π at the centers of the second
zones.

From Eq. (59) we see that the |k〉characters of the upper
and lower m bands—shown in Fig. 6 as fatness added to the
respective band dispersions and computed by perturbing the
〈m; k|H |m; k〉 element in the matrix (56) by a small constant
energy—are∣∣∣∣e−iφ(k) ∓ 1

2

∣∣∣∣
2

= 1 ∓ cos φ(k)

2
≡ f 2

1
(k), (61)

and these are the same as the |k + c∗〉 characters of the other
bands. In Fig. 10, the solid dark and light curves give the |k〉
character of, respectively, the lower and upper xy bands as
function of kc in the double zone and along the same line (kb =
0.225) as in Fig. 6. We see the dominant |k〉 character switch
from the lower band in the first zone to the upper band in
the second zone over a range of kc around the zone boundary
(ZB), |kc| = 1/2. On φ scale (60), the switching behavior is
independent of m and is given by Eq. (61), which says that the
interval around the ZB, |φ| = π/2, where the |k〉 character of
both bands exceeds, e.g., 1/7 ≈ 14%, is φ = (0.5 ± 0.253)π .
For the two xy bands and kb = 0.225, this “overlap interval”
obtained from the third Eq. (60) with Eqs. (37) and (44) is
kc = (0.35|0.65). Had there been no electronic dimerization,
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i.e., if u or G = 0, the switching curves (Fig. 10) would
have been meandering with vertical steps of size 1 at the
zone boundaries where the two m bands would have crossed
without gapping and could have been folded out to a single m
band in the double zone.

The switching curves for the two xy bands along lines of
constant kb are the same for both signs of kb, and while they
always cross at the zone boundary, the steepness of their steps
decreases with increasing |kb| [see Eqs. (37) and (38), and the
second column of Chart (1) of paper II for κa = 6.4 and |kb| =
0.225, 0.250, and 0.275].

In contrast with the complementarity of the |k〉 and
|k + c∗〉 characters exhibited by Eq. (59), the w and W char-
acters are 50% for both bands and all k, as seen from Eq. (58).

Bands with different m do hybridize with each other: the
xy(k) band with the xz(k) and yz(k) bands due to the α and a
hops, and with the xz(k + c∗) and yz(k + c∗) due to the γ and
g hops. The xz(k) band hybridizes with the yz(k) band due to
the λ and l hops, and with the yz(k + c∗) band due to the μ

and m hops.
When |kb| ≈ 1/4 ≈ kF , the xy bands are situated in the gap

between the xz valence and conduction bands and between the
yz valence and conduction bands. The hybridization caused
by the (α, a) hops in the |k〉-conserving part and by the (γ , g)
hops in the |k〉-|k + c∗〉 mixing part of the Hamiltonian (56)
makes the difference between the red pure xy bands in Fig. 6
and the dark-red hybridized x̃y bands in Fig. 7. The (γ , g)
hops modify the shape of the x̃y bands but do not significantly
extend the switching region around the BZ boundary, |kc| =
1/2, in which the |k〉-|k + c∗〉 mixing occurs.

D. Brillouin and physical zones

Bloch functions are characterized by their translational
symmetry in reciprocal space and the choice of the primitive
cell (zone) is arbitrary as long as it contains each k point

FIG. 10. |k〉 character (or relative intensity), [1 ∓ cos φ(k)]/2, of
the upper (light) and lower (dark) pure xy bands as functions of kc for
kb = 0.225 in the double zone (Fig. 8); from Eqs. (59), (61), (37), and
(44). The dominant (or most intensive) |k〉 character switches from
the lower band in the odd-numbered zones, |kc − 2n| < 1/2, to the
upper band in the even-numbered zones, |kc − (2n + 1)| < 1/2. The
gapped bands (57) have single-zone periodicity; their |k〉 characters
are periodic in the double zone. In Figs. 6 and 7 the |k〉 character is
shown as fatness added to (i.e., decorating) the band.

once and only once. As we mentioned after Eqs. (29) and
(30)–(32), it may be possible and convenient to choose the
zone compatible with the electronic structure, i.e., such that
gaps occur at the zone boundaries.

For the familiar free-electron model, where |k〉 ∼ e2π ik·r
and ε(k) increases isotropically and monotonically with the
distance k from �(0, 0, 0), one chooses that zone which is
closer to � than to any other point G of the reciprocal lattice.
This is the Brillouin zone (BZ). Application of a weak pseu-
dopotential with crystalline symmetry will couple the basis
functions |k〉, |k − G1〉, . . ., and |k − Gn〉, where G1, . . . , Gn

are the reciprocal-lattice points closest to �, and thereby gap
bands where they cross, i.e., where k = |k − Gn|, which is at
the boundaries of the BZ.

For LiPB, the situation is different: Rather than being
isotropic, the low-energy electronic structure consists of three
pairs of quasi-1D bands. For each, we have only two in-
equivalent pseudo-Bloch sums, |wm; k〉 and |wm; k + c∗〉. As
described in the previous section and already in the intro-
ductory Sec. IV A, and as seen in Figs. 6, 7, and 8 the
lower (bonding) m band has |k〉 character inside its zone and
|k + c∗〉 character outside, while the upper (antibonding) band
has |k + c∗〉 character inside and |k〉 character outside. Here,
“inside” means around a point, such as �(kb = 0, kc = 0),
of the even reciprocal sublattice (confusingly called an odd-
numbered BZ), and “outside” means around a point, such as
�(0, 1) or �(0,−1), of the odd reciprocal sublattice (called an
even-numbered BZ).

The xz (blue) and yz (green) bands are functions with
period two of, respectively, kc − kb and kc + kb whereby the
k and k + c∗ bands cross—and gap by ±2G1—along, respec-
tively |kc − kb| = 1/2 and |kc + kb| = 1/2, which are then
“physical” zone boundaries of the xz and yz bands [Eqs. (32)
and (31) and Fig. 8].

The xy bands (red) disperse strongly with kb, which is nor-
mal to the plane of Fig. 6, but since the gap at |kb|=1/2 caused
by b-axis dimerization is far above EF , we merely consider the
two lowest of the four xy bands (see Sec. III B) and their strong
kb dependence is described merely by τ (kb). The small ±2u
gap near EF is due to the c-axis dimerization (Sec. III A) and
occurs at the |kc| = 1/2 zone boundary. Hence, the physical
zone for the xy bands is the rectangular one, [|kb| � 1/2 and
|kc| � 1

2 , Eq. (30)] which is—actually—the Brillouin zone
(BZ).

While the nearly degenerate xy bands are half full (metal-
lic), the lower xz and yz bands are full and the upper bands are
empty.

For the purpose of calculating the electronic structure, i.e.,
when diagonalizing the 6 × 6 Hamiltonian or the Löwdin
downfolded 2 × 2 Hamiltonian in paper III, we normally use
the rectangular BZ.

VII. SUMMARY

In this paper, we have developed the single-particle frame-
work on the basis of which we shall discuss and refine the
new ARPES measurements of the band structure and Fermi
surface of LiPB to be presented in papers II [1] and III [2].

In the introduction, we gave an overview of the properties
and current theories of this intriguing quasi-1D metal and laid
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out the plan for—and gave the main results of—our three
papers.

In Sec. II, our DFT method for direct computation of Wan-
nier functions and their TB Hamiltonian, the full-potential
NMTO method, was explained. Its unique ability to pro-
duce physically and chemically meaningful Wannier orbitals
(WOs)—multicenter Mo1 4d t2g,m orbitals in the present
case—is crucial for our understanding of LiPB whose crystal
structure (Fig. 2) consists of MoO6 octahedra connected via
corners into slabs perpendicular to a∗. Each slab consists
of ribbons, four molybdenums wide in the a + c direction
and extending indefinitely in the perpendicular direction, the
direction of quasi-1D conductivity [Charts (14) and (15)]. The
well-known zigzag chains, �Mo1�

Mo4�Mo1�
Mo4�, with

primitive translation b, are the spines of the ribbons. The rib-
bons, with every second displaced from the position (c + b)/2
by a vector −d (16) and inverted [Eq. (18) and Chart (14)],
are stacked on top of each other into bi-ribbons, whereby
the slab forms a staircase with steps of bi-ribbons and
primitive translations c. Without this c-axis dimerization,
the staircase would have been a smooth ramp [Charts (21)
and (22)] with the undimerized crystal lattice spanned by
(a, (c + b)/2, (c − b)/2) and its reciprocal lattice spanned by
(a∗, c∗+b∗, c∗−b∗), as compared with the primitive transla-
tions (a, b, c) and (a∗, b∗, c∗) of real LiPB. The staircase is
terminated by insulating MoO4 tetrahedra and Li intercalates
between staircases, which is also where the crystal cleaves.
All eight octahedral and four tetrahedral molybdenums ap-
proximately form a simple cubic lattice [Eq. (12)].

Anticipating the results of the more technical Secs. V and
VI – as well as the band structures and Fermi surface in papers
II and III – in Sec. IV we gave an elementary description of the
electronic structure inside the slab, from the 10 to the 0.1 eV
scale around the Fermi level seen in, respectively, Figs. 3, 4,
and 7. The double zone, which is the BZ of the undimerized
lattice, was shown in Fig. 8. The boundary between the first
and second physical zones, which is where in the absence of
dimerization the m(k) and m(k + c∗) bands cross, is shown
in solid red, blue, and green lines for m = xy, xz, and yz,
respectively. The minimum and maximum of the pure-m(k)
band—as well as of the pure-m(k + c∗) band—are at the weak
lines. The brown dot-dashed line has kb = 0.9kF and is the one
along which the pure-m bands in Fig. 6 were shown.

The DFT-LDA full-potential NMTO calculations in Sec. V
showed that the six lowest-energy bands – half of them occu-
pied – are described by a set of six t2g WOs per 2LiMo6O17,
namely, wm(r) centered on Mo1 in the lower ribbon and
Wm(r) on the equivalent MO1 in the upper ribbon. These
sites, separated by (c + b)/2 − d, are special in having a
full nearest-neighbor shell of octahedral molybdenums and
therefore best preserve the t2g symmetry of the WO and are
least sensitive to the steps of the staircase. As seen in Figs. 5
and 9, the WOs have t2g symmetry around Mo1 (or MO1),
and spill over into neighboring atoms which carry no WO
[see Charts (33) and (34)]. This spillover is necessitated by
the requirement that the six Mo1- and MO1-centered t2g WOs
completely span the wave functions of the six lowest bands
and causes what we call a halo on the near atoms.

The xy WOs lie inside their respective ribbon and have
strong, long-ranged ddπ intraribbon hopping integrals τn

along b, very weak ddδ inter-ribbon xy-XY hopping in-
tegrals tn + un between partner ribbons, and even weaker
tn − un hopping integrals between bi-ribbons [Eqs. (35)–
(37), (43), and (44)]. Between slabs, the xy hopping is
negligible.15

The equivalent xz and yz WOs stand perpendicular to the
ribbons and the ddπ nearest-neighbor xz-XZ hopping inte-
gral, A1 + G1, between partner ribbons is as strong as the ddπ
intraribbon hopping integral τ1 between xy orbitals, twice as
strong as the hopping integral A1 − G1 between bi-ribbons
[Eqs. (35), (38), and (45)] and 30 times stronger than the ddδ
integrals t1 ± u1 for xy-XY hopping. The A1 ± G1 integrals
are for hopping up or down the staircase with steps (c − b)/2
for xz-XZ and (c + b)/2 for yz-Y Z . The two xz bands are
gapped by the hopping dimerization ±2G1 ≈ ±0.2 eV and
so are the two yz bands (Figs. 6 and 7).

The six-band TB Hamiltonian was given in Eq. (35) in
terms of these and further hopping integrals, Bloch summed as
in Eq. (8). The basis functions were the Bloch-summed WOs,
wm(k, r) and eπ i(kc+kb)Wm(k, r) on, respectively, the lower and
the upper ribbon, and the k-dependent phase factor in front of
Wm(k, r) was included to make the electronic dimerizations
purely imaginary. Further insight was gained in Sec. VI B by
transforming from this basis set—which for each m consists
of two Bloch sums, one over the Mo1 positions and the other
over the MO1 positions,—to one with two pseudo-Bloch sums
(52), |m; k〉 ≡ |wm, k〉 and |m; k + c∗〉, each of which is a
Bloch sum over both Mo1 and MO1 with every second phase
factor along c chosen as e2π ik·[T+(c+b)/2], i.e., as if there were
no displacement dimerization, d = 0. The transformation is
(54). Considered as a function of k, the pseudo-Bloch sum |k〉
is a periodic function on the sparse, so-called even reciprocal
lattice spanned by (a∗, c∗+b∗, c∗−b∗) whose BZ is the dou-
ble zone shown in Fig. 8. Together with the function |k + c∗〉,
periodic on the odd reciprocal lattice, they form a complete,
orthonormal basis set for the proper, dimerized crystal. In the
absence of dimerization, |k〉 and |k + c∗〉 are identical apart
from a phase factor, but they become linearly independent in
the presence of dimerization and will mix near the boundaries
of the appropriate physical zone. The six-band TB Hamil-
tonian (56) in this so-called {k, k + c∗} representation was
used to visualize the |k〉 characters of the band structures
in Figs. 6 and 7 as their (additional) fatness (61). Figure 10
shows how the |k〉 characters of the lower and upper m bands
switch between zero and one, and back again, as the Bloch
vector crosses the boundaries of the physical (m dependent)
zone.

In the following paper II [1], we shall find the important
result that this interesting |k〉-character variation is experi-
mentally manifested as an ARPES intensity selection rule.
As mentioned already in the introduction, when this selection
rule is combined with our new ARPES data, it enables the
separation of the two bands that disperse to define the FS. In
paper III, we will also use the selection rule to reveal the FS
features that are peculiar to each of the two bands. Thereby
our new ARPES results both confirm and are greatly aided
by our theory. But first, at the beginning of paper II, we shall
give the complete theory, which includes the distortion of the
ARPES intensity variations caused by the c-axis displacement
and inversion dimerizations. The latter depends on the pho-
ton energy, which we have chosen such that they basically
cancel.
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