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Proposal for realizing Majorana fermions without external magnetic
field in strongly correlated nanowires
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We show that one-dimensional topological superconductivity can be placed in the context of phenomena
associated with strongly correlated electron systems. Here we propose a system consisting of a one-dimensional
chain of strongly correlated fermions placed on a superconducting (SC) substrate that exhibits a spin-singlet
extended s-wave pairing. Strong electron correlation is shown to transform an extended s-wave SC into a
topological SC that hosts Majorana fermions. In contrast to the approaches based on mean-field treatments,
no Zeeman or exchange magnetic field is needed to produce such an effect.
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I. INTRODUCTION

The topological superconductivity with Majorana zero
modes (MZMs) is of fundamental scientific importance due to
its proposed application in braiding-based quantum comput-
ing [1]. The first theoretical proposal for the realization of the
one-dimensional (1D) MZM involved placing a 1D quantum
wire with spinless electrons on a p-wave superconductor [2].
However, from a materials science point of view, this con-
ceptually simple model is hard to realize because a spinless
electron does not exist in nature by default, and p-wave su-
perconductors are, at best, rare to find. Later several proposals
were put forward to eliminate these difficulties by ingeniously
combining the proximity-induced s-wave superconductivity,
the Rashba spin-orbit coupling (RSOC), and the breaking of
time reversal (TR) symmetry [3]. In these proposed systems,
RSOC was needed for the spin-momentum locking [4], and
TR symmetry breaking was needed to create, in effect, the
spinless electrons. Using the aforementioned ideas, broadly
three types of platforms have been engineered up to now,
by placing [5] (i) topological insulators on a superconductor
[6,7], (ii) semiconductors with strong spin-orbit coupling on
a superconductor [8], or (iii) chains of magnetic atoms on a
superconductor [9,10].

In heterostructures, where the topological insulator is
placed over the superconductor, the 1D helical edge states
provide the needed spin-momentum locking [7]. The 1D edge
states occur due to RSOC. The TR symmetry in these het-
erostructures can be broken, either by applying a magnetic
field [11–13], or by either doping with magnetic atoms [14]
or placing the magnetic materials in the vicinity of the topo-
logical insulators [15,16]. In the case of a semiconductor on
superconductor heterostructure, usually a semiconductor wire
with strong RSOC and magnetic field are used to satisfy the
aforementioned requirements to generate MZMs [8,17]. For
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devices with a magnetic adatom chain on a superconductor,
the Yu-Shiba-Rusinov (YSR) states induce a spin-polarized
subgap in the parent superconductors [9,10]. If the magnetic
adatoms are placed very close to each other, the YSR states
hybridize, and the hopping between neighboring adatoms
broadens the particle-hole symmetric YSR pair states into
bands. Once the bands formed by the positive and negative
energies overlap at the center of the superconducting gap, the
p-wave pairing correlations will reopen the gap and turn the
adatom chain into a 1D topological superconductor with an
MZM. The p-wave correlation can be induced either by RSOC
in the parent superconductor, or by the helical spin states on
the magnetic adatom chain [18].

From the experimental side, claims of MZM in topological
insulators (Bi/Nb [19], Bi2Te3 [11,20], Bi2Se3 [21,22], and
Bi2Te3−xSex [14]) have been made. For semiconductors on
superconductor platforms, usually InAs and InSb on super-
conductors have been extensively used in the experiments
[8]. Regarding the magnetic adatoms on superconductors, the
chain of Fe atoms on Pb [10], Re [23], or Ta [24] substrates
has shown signs of the MZM. Despite these experimental
successes, several concerns still remain, which have to do
mainly with the requirements of the strong RSOC and the
external magnetic field. The former limits the candidate mate-
rials which can be placed over the superconductor, while the
latter limits the possible superconducting substrates. In addi-
tion, the crystal symmetry consideration greatly shrinks the
possible superconductors supporting topological phases [25].
The external magnetic field is the principal hindrance, because
most experiments use s-wave superconductors for which their
superconductivity might be destroyed in a strong enough mag-
netic field. Hence, the following question naturally arises: Can
we get rid of the constraint imposed by the magnetic field? It is
the goal of this article to suggest a different route to realizing
the MZM without making use of an external magnetic field.

In a strong magnetic field, the spins of the electrons are
aligned along the direction of the applied field. The Pauli
constraint prohibits the occupation of more than one fermion
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in a single quantum state. Hence no more than one electron
with the same spin can occupy a single site. Physically, it is
the same as having spinless fermions. Therefore, one way of
realizing the spinless fermions is through the application of
a magnetic field. Another way to produce such an effect is
to rely on the presence of a large on-site Coulomb repulsion.
In such a strong correlation regime, each lattice site becomes
at most singly occupied, and the charge and spin degrees of
freedom separate from each other. The resulting fermion is
effectively spinless, and this is precisely what we need. The
prototype model for such a behavior is the U → ∞ Hubbard
model [26–28]. The main reason why such an approach was
not used before was probably the inadequacy of the mean-field
methods to treat strong correlation. In this paper, we show that
strong electron correlation can indeed drive the 1D system
of lattice electrons into the topological phase as Kitaev’s toy
model suggests [2]. This consideration is based on the rep-
resentation of the underlying dynamics in terms of Hubbard
operators that encode strong electron correlation effects. The
basic requirement of no local double occupancy is taken into
account rigorously prior to any mean-field treatments. To this
end, the su(2|1) coherent-state action is employed, where
the su(2|1) superalgebra incorporates the full set of Hubbard
operators [29]. We propose a device in which a strongly
correlated nanowire is placed over an extended s-wave su-
perconductor. Usually iron-based superconductors fulfill this
requirement [30–32]. The details of experimental realization
are discussed in Sec. VII.

It should be mentioned that an analogous idea was pre-
sented before [33]. However, instead of a strongly correlated
nanowire, a semiconducting nanowire with strong RSOC on
an extended s-wave superconductor was proposed in its place.
Hence, the problem of using a magnetic field still persisted (al-
though a critical magnetic field of iron-based superconductors
is quite high at ∼50 T [34]). In another analogous work, it was
predicted that a semiconducting nanowire with Cn (n > 4) ro-
tational symmetry and nonzero electronic angular momentum
(l �= 0) develops an MZM when Coulomb repulsion is high
enough [35]. In this case, a magnetic field, RSOC, and even
superconductivity are not needed either. Another interesting
idea is to use profiled topological insulators [36], which do
not require the RSOC or magnetic field.

A system similar to ours was considered in Ref. [37] nu-
merically. Using DMRG, they showed that the mean-field
approximation is not valid in a strong correlation regime
(U/t � 2), and also MZMs can be produced in this regime.
Analogous work in Ref. [38] showed that, due to strong cor-
relation, the parameter space of a chemical potential magnetic
field for the generation of the MZM increases. In fact, they
even predicted that the MZM can be created only due to strong
correlation—without a magnetic field. Our article differs from
all the above works in the sense that we solve explicitly the
corresponding Hamiltonian analytically using a su(2) coher-
ent state representation of the Hubbard X pq operators, and we
show the presence of the MZM. In the same framework, we
discuss the effect of RSOC on the system.

This article is structured as follows. In Sec. II we find the
effective Hamiltonian for the physical system shown in Fig. 1.
In Sec. III we derive the expression of the Hamiltonian when
the spiral spin field is present in the wire. In Secs. IV and V

FIG. 1. A schematic of the system under consideration. A
strongly correlated 1D nanowire is placed over a superconductor with
an extended s-wave order parameter. Superconductivity is induced in
the nanowire due to the proximity effect. The radius of the wire (r)
is assumed to be smaller than the Cooper pair coherence length in
the wire (ξwire): r � ξwire. The Majorana fermions appear at the end
of the nanowire (stars) if a noncollinear spin texture is present in the
wire.

we discuss the case when RSOC in the wire is both absent
and present, respectively. In Sec. VI we calculate the thermo-
dynamic free energy of the nanowire as a function of system
parameters, and we discuss its consequences. In Sec. VII we
propose experiments to observe the Majorana fermions and
the schematics for device design. In Sec. VIII we summarize
our results.

II. MODEL

The schematics of the system under consideration is shown
in Fig. 1. Here, a strongly correlated 1D nanowire with RSOC
is placed on a superconducting substrate. Due to the proximity
of the wire to the superconductor, we assume tunneling of
the Cooper pair into the wire (tunneling of a single electron
is neglected due to the reasons discussed later). Under these
assumptions, the total Hamiltonian of the wire will be

H = H1D + Hα + H�,

where

H1D = −t
∑
i,σ

X σ0
i X 0σ

i+1 + H.c. + μ
∑

i

X 00
i ,

Hα = −ıα
∑

i

X σ ′0
i X 0σ

i+1 − X σ0
i X 0σ ′

i+1 + H.c.,

H� = �
∑
i,σ

X σ0
i diσ + H.c. (1)

Here, t is the electron hopping factor and μ is the chemical
potential. σ is the electron spin, which can have only two
quantum states ↑ and ↓. X pq

i = 〈p|q〉 is the Hubbard operator,
which represents the transition from the |q〉 state to the |p〉
state at the ith site. In the strong correlation regime, i.e., when
Coulomb repulsion between electrons is infinitely large, only
three states are allowed at each atomic site: |↑〉, |↓〉, or |0〉.
For example, X ↑0

i represent the transition from the empty state
to the up-spin state at the ith site. In terms of usual electron
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creation (c†
iσ ), annihilation (ciσ ), and number (niσ = c†

iσ ciσ )
operators, the Hubbard operators are represented as

X 0σ
i = ciσ (1 − niσ ′ ), X σ0

i = (1 − niσ ′ )c†
iσ ,

X 00
i = X 0σ

i X σ0
i = ciσ (1 − niσ ′ )(1 − niσ ′ )c†

iσ . (2)

The above definition of Hubbard operators shows that the no
double occupancy condition is satisfied. X 00

i gives the occu-
pation number of the ith site. It should be remembered that
the electron is created only if the ith site was empty initially.
In the total Hamiltonian H , the H1D part contains the kinetic
energy and chemical potential of the wire.

Hα represents the RSOC in the wire. α is the Rashba
parameter, which depends on the crystal electric field gen-
erated due to the breaking of the inversion symmetry [39];
quantitatively, α ∼ 1 eV [4]. H� corresponds to the tunneling
of electrons from the superconducting substrate to the wire
with amplitude �. diσ is the electron annihilation operator
with spin σ at the ith site of the superconducting substrate.
X σ0

i diσ means the annihilation of the electron in the substrate
and creation of the same in the wire. It is important to note
that the Hubbard operators X σ0

i transform themselves in the
lowest (fundamental) representation of the SU(2) group [40],
so that Eq. (1) represents a rotationally invariant interaction.

As the dimension and physical size of the wire are smaller
than the substrate, it is natural to assume that the Fermi
level of the superconductor greatly exceeds that of the wire,
kSC

F � kwire
F . The large difference in Fermi levels allows the

hybridization between them to be controlled mainly by the
superconducting energy gap (�SC) and �. For small �, i.e.,
for �kSC

F � �SC, we can treat H� perturbatively [3]. The
first-order perturbation terms can be neglected, due to the
suppression of the single-electron tunneling [41]. The second-
order perturbation generates an effective Cooper pair hopping
[42,43]. Due to the presence of strong correlation, one can
discard the single-site spin-singlet s-wave pairing (�↑↓

i,i ) con-
tribution [44]. Therefore, on neighboring sites two types of
spin pairing are possible: (i) spin-singlet extended s-wave
pairing, and (ii) spin-triplet p-wave pairing. The correspond-
ing second-order perturbed Hamiltonian is

δH� ∝
∑

i

�σσ ′
i,i+1

(
X σ0

i X σ ′0
i+1 − X σ ′0

i X σ0
i+1

)
+

∑
i

Dσσ ′
i,i+1

(
X σ0

i X σ ′0
i+1 + X σ ′0

i X σ0
i+1

)
+

∑
i,σ

Dσσ
i,i+1 X σ0

i X σ0
i+1 + H.c. (3)

Here, Dσσ
i,i+1, Dσσ ′

i,i+1 are the p-wave order parameters, and
�σσ ′

i,i+1 is the extended s-wave order parameter. In the low-
energy limit we can approximate the order parameters through
ground-state expectation values:

Dσσ
i,i+1 = 〈di,σ di+1,σ 〉,

Dσσ ′
i,i+1 = 〈di,σ di+1,σ ′ + di,σ ′di+1,σ 〉,

�σσ ′
i,i+1 = 〈di,σ di+1,σ ′ − di,σ ′di+1,σ 〉. (4)

In Eq. (4) the spin-triplet p-wave order parameters are
symmetric in spin (Dσσ ′

i,i+1 = Dσ ′σ
i,i+1), but antisymmetric in

space (Dσσ ′
i,i+1 = −Dσσ ′

i+1,i ). On the other hand, the extended
s-wave order parameters are antisymmetric in spin (�σσ ′

i,i+1 =
−�σ ′σ

i,i+1), but symmetric in space (�σσ ′
i,i+1 = �σσ ′

i+1,i ). Usually
p-wave pairing in superconductors is quite rare and unstable.
On the other hand, the extended s-wave pairing is predicted
in high Tc iron-based superconductors [32,45]. Hence, from
now on we assume that the substrate develops only extended
s-wave pairing. Considering the above discussion, we can
approximate

δH� = �
∑

i

X σ0
i X σ ′0

i+1 − X σ ′0
i X σ0

i+1 + H.c. (5)

Here � is the induced superconducting gap in the wire. Its
value can be estimated through � ≈ �2/kSC

F �SC. We have as-
sumed a spatially independent order parameter �σσ ′

i,i+1 ≡ �SC.
Combining Eqs. (1) and (5), we write the effective Hamilto-
nian of the wire:

Heff = − t
∑
i,σ

X σ0
i X 0σ

i+1 − ıα
∑

i

X σ ′0
i X 0σ

i+1 − X σ0
i X 0σ ′

i+1

+ �
∑

i

X σ0
i X σ ′0

i+1 − X σ ′0
i X σ0

i+1 + H.c. + μ
∑

i

X 00
i .

(6)

To solve the Hamiltonian, Eq. (6), the su(2|1) path in-
tegral representation of the partition function will be used.
This is possible due to the existence of an injective mapping
between Hubbard operators X σσ ′

and their su(2|1) coherent-
state symbols [29,46,47] (also known as Berezin symbols
[48]):

X σσ ′
(z, ξ ) ≡ 〈z, ξ |X σσ ′ |z, ξ 〉. (7)

Here z and ξ are the complex even and odd Grassmann pa-
rameters, respectively. The state |z, ξ 〉 is defined as

|z, ξ 〉 ≡ (1 + z̄z + ξ̄ ξ )−1/2 exp(zX ↓↑ + ξX 0↑)|↑〉
= (1 + z̄z + ξ̄ ξ )−1/2(|↑〉 + z|↓〉 + ξ |0〉). (8)

The above representation was found by acting with the low-
ering superspin operators X ↓0 and X ↓↑ on the highest weight
state |↑〉. For a complete exposition on this subject, please
see Refs. [46,49]. Physically, z represents the spinful bosonic
fields, and ξ represents the spinless charged fermionic fields
[49,50]. In this new representation, and using the change of
variables,

ξ → ξ√
1 + |z|2

, z → z,

the effective Hamiltonian Eq. (6) will be

Heff(z, ξ ) = − t
∑

i

ξiξ̄i+1ai,i+1 + ıα
∑

i

ξiξ̄i+1α
∗
i,i+1

− �
∑

i

ξiξi+1�
∗
i,i+1 + H.c. + μ

∑
i

ξ̄iξi, (9)
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where

ai,i+1 ≡ 1 + z̄izi+1√
(1 + |zi|2)(1 + |zi+1|2)

, (10a)

α∗
i,i+1 ≡

[
zi − z̄i+1√

(1 + |zi|2)(1 + |zi+1|2)

]∗
, (10b)

�∗
i,i+1 ≡

[
zi − zi+1√

(1 + |zi|2)(1 + |zi+1|2)

]∗
. (10c)

In the second quantization language, ξi (ξ̄i) creates (annihi-
lates) a spinless fermion at the ith site. Similarly, zi (z̄i) creates
(annihilates) a spinful boson at the ith site. In Eq. (9) the ξ

and z degrees of freedom emerge as low-energy degrees of
freedom.

One can absorb the electron hopping and RSOC terms in
Eq. (9) into a single effective term. In this case, the Hamilto-
nian, Eq. (9), transforms to

Heff(z, ξ ) = −
∑

i

ξ̄iξi+1(t a∗
i,i+1 + ıα αi,i+1)

− �
∑

i

ξ̄iξ̄i+1�i,i+1 + H.c. + μ
∑

i

ξ̄iξi. (11)

In effect, electron hopping acquires a phase that is a complex
function of the spin field. One can define the modified hopping
as

t̃i =
√

(t a∗
i,i+1)2 + (α αi,i+1)2 exp

[
ı arctan

(
α αi,i+1

t a∗
i,i+1

)]
.

(12)

III. HAMILTONIAN FOR SPIRAL SPIN FIELDS

While treating the real systems, it is instructive physically
to treat the dynamic spin fields zi(t ) in terms of the spin
covariant symbols [46]:

S+
i = zi

1 + |zi|2
, S−

i = z̄i

1 + |zi|2
, Sz

i = 1

2

(
1 − |zi|2
1 + |zi|2

)
.

(13)

The corresponding expressions for Sx
i = S+

i + S−
i and Sy

i =
−ı(Sx

i − Sy
i ) can be easily found. In strongly correlated elec-

tronic systems, the dynamics of the effective spin field is
much slower than that of the fermionic fields [51]. Because
of this, we can apply the mean-field approximation to the
spin system (from the point of view of the fermions). In
other words, the picture where spinless fermions travel in
the static background of the spin field is fully applicable.
One of the main differences between our approach and the
previous works related to the 1D topological superconductors
[9,13,18,52] is that we first derive our effective Hamiltonian
taking full account of the strong correlation effects, and only
then do we apply the mean-field approximation. Contrary to
previous works, the mean-field approximation is applied to the
Hamiltonian right from the beginning. In fact, using density
matrix renormalization group it was explicitly shown that

the usual mean field model fails when strong correlation is
present [37].

We consider a spin field of the form

�Si = (
Sx

i , Sy
i , Sz

i

) = 1
2 (cos θi, sin θi, 0). (14)

Physically it represents the rotating spin vector on the xy
plane; the z component of the spin is zero. θi is the angle on
the xy plane. It is related to the spatial coordinate through the
relation θi = �q · �ri, where �q is the spin wave vector and �ri is
the position vector. Substituting Eq. (14) in Eq. (13) it is easy
to see that zi = eıθi . Further, using this zi in Eqs. (10a), (10b),
and (10c), one will find

a∗
i,i+1 = e−ı(θi+1−θi )/2 cos

(θi+1 − θi )

2
,

αi,i+1 = ıe−ı(θi+1−θi )/2 sin
(θi+1 + θi )

2
,

�i,i+1 = −ıeı(θi+1−θi )/2 sin
(θi+1 − θi )

2
eıθi . (15)

Substituting Eq. (15) in Eq. (11), and soon after that making
the gauge transformations ξi → ξieı(θi/2 − π/4), the effective
Hamiltonian can be written as

Heff = − t
∑

i

ξ̄iξi+1 cos
(θi+1 − θi )

2

+ α
∑

i

ξ̄iξi+1 sin
(θi+1 + θi )

2

− �
∑

i

ξ̄iξ̄i+1 sin
(θi+1 − θi )

2
+ H.c. + μ

∑
i

ξ̄iξi.

(16)

In a limiting case, one can assume that the rotation of
the spin through neighboring sites θi+1 − θi ≡ θ is constant.
This spin structure is known as the spiral spin structure. A
schematic of it is shown in Fig. 2. The Hamiltonian for the
spiral spin structure then becomes

Heff = − t
∑

i

ξ̄iξi+1 cos
θ

2
+ α

∑
i

ξ̄iξi+1 sin

(
θi + θ

2

)

− �
∑

i

ξ̄iξ̄i+1 sin
θ

2
+ H.c. + μ

∑
i

ξ̄iξi. (17)

The Rashba term is now real and oscillating.
Before further discussion, an explanation of why we con-

sidered the spiral spin texture is necessary. The spiral spin
texture is not new and it has been observed in other sys-
tems, especially in heterostructures where magnetic adatoms
are placed over superconducting substrates [9,10]. In these
systems, strong RSOC [53], together with the RKKY inter-
action [54], are responsible for generating spiral spin texture.
In fact, it can be shown that the tight-binding Hamiltonian
of a 1D wire with spin-orbit coupling is equivalent to the
tight-binding Hamiltonian with a rotating magnetic field [55].
This result is valid only when the e-e interaction is small
(U � t). When the e-e interaction is strong, the Hamiltonian
cannot be transformed in this way. This is due to the fraction-
alization of the electronic degrees of freedoms into a separate
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FIG. 2. Spiral spin structure found from Eq. (14) by taking θi+1 − θi = θ as constant.

spinless fermionic field (charge) and a spinful bosonic field
(spin).

The mechanisms for emergence of the spiral spin texture
in the case of weak interactions are not applicable to the case
of strong correlations. Therefore, we suggest the following
mechanisms and approximations for the emergence of the
spiral spin texture. For the strong e-e interaction, nearly local-
ized effective spins emerge at individual sites. The effective
spinful bosonic field is generated by Hubbard operators. A
crucial observation is that the operators X σ0 transform in
the spinor (fundamental) representation of the SU(2) group
[40]. Because of this, the local spin operators that describe
the effective spin degrees of freedom of strongly correlated
electrons can be written as

�Qi := X †
i �σXi, (18)

where Xi := (X 0↑
i , X 0↓

i )T . It can be checked that a set of spin
operators �Q spans the su(2) algebra. The explicit coherent-
state symbols of those operators can be found in Ref. [49].
Physically we have the effective system where at each lat-
tice site sits a classical spin with S = 1/2, and in this
spin background itinerant spinless fermions travel through
the lattice. The nearly localized spins create a dynamical
spin field for which the internal energy of the system is
lowest.

Since the background spin field is generated dynamically,
it is natural to assume that the system chooses the spin config-
uration for which the internal energy is lowest. Keeping this
in mind, for analysis of the properties of the Hamiltonian,
one can start with any noncollinear spin structure, however
for general complex spin textures—e.g., for skyrmions, hop-
fions, etc,—the resulting Hamiltonian, Eq. (11), becomes too
complex to be solved analytically. Hence, some assumptions
are in order. First, we assume that the z component of the
spin is zero; physically, this means that the spin rotates only
on the xy plane. This was motivated by the fact that the
spin projection along the z-axis does not play any role in
determining the topological properties of the system for not
too large spins S [56]; this means that only the spin rota-
tions on the xy plane are important. Secondly, we assume
that the rotation of the spin projection on the xy plane be-
tween two neighboring sites is constant. It is motivated by
two facts: (i) a constant rotation angle—which corresponds
to the spiral spin texture—has been observed in numerous
experiments [8–10], and (ii) in this case the Hamiltonian
takes a very simple form, which turns out to be solvable
analytically.

IV. ABSENCE OF RSOC (α = 0)

First we analyze Eq. (17) when the RSOC is absent, i.e., we
take α = 0. The effective Hamiltonian in this case becomes

HKitaev
eff = − t

∑
i

ξ̄iξi+1 cos
θ

2
− �

∑
i

ξ̄iξ̄i+1 sin
θ

2

+ H.c. + μ
∑

i

ξ̄iξi. (19)

This Hamiltonian does not break time-reversal symmetry,
as HK

eff = (HK
eff)

∗. In this sense, it is analogous to Kitaev’s
toy model of topological superconductivity [2,57]. In fact,
analogous to Kitaev’s toy model, we also find that both the
trivial and the topological phases depend on the specific val-
ues of t , �, μ, and θ . When there is no superconductivity,
the system is gapped for |μ| > 2t cos(θ/2), but it is gapless
when |μ| < 2t cos(θ/2). However, when superconductivity is
itself present, due to the particle hole symmetry, a topological
phase appears for |μ| < 2t cos(θ/2). The phase diagram of
HKitaev

eff , and its dependence on θ—physically, θ represents the
rotation of the spin projection through neighboring sites—
is shown in Fig. 3. The main difference between the phase
diagrams shown in Fig. 3, and the original phase diagram of
the Kitaev chain [2], is the emergence of the new parame-
ter θ in the effective Hamiltonian. It can be observed that
with the increase in θ the area of the topological phase in
the μ-t phase plane decreases. This is due to the decrease
in the electron hopping parameter t cos(θ/2). The boundary
between the topological and the trivial phase in the |μ|/t-θ
phase space is given by the condition |μ|/t < 2 cos(θ/2). The
corresponding phase diagram is shown in Fig. 3(d). In this
figure we observe that, when θ = 0, i.e., for the ferromag-
netic state, the system behaves either as a simple metal or
as an insulator depending on the relative value of μ [58].
The system loses its topological property at θ = 0 due to the
disappearance of the superconducting gap. In effect, the sys-
tem loses the particle-hole symmetry, which in the first place
gives rise to the topological phase. This is expected physically
since the underlying extended s-wave superconducting state
should not survive in a ferromagnetic background. On the
other end, when θ = π , i.e., for an antiferromagnetic state,
the system behaves as an usual Mott insulator. The hopping of
the electrons becomes identically zero, and this represents a
state in which the fermionic particles are frozen in their lattice
sites. From the band theory point of view, the superconducting
gap never closes even if μ is modified, when θ = π . This
means that the MZM cannot be created, since in such a state
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FIG. 3. (a), (b), (c) Dependence of trivial and topological phase
on the angle of the rotation of the spin through neighboring sites
(θ ). The topological phase appears when |μ| < 2t cos(θ/2) is satis-
fied. The range of parameters μ and t , for which topological phase
occurs, decreases with increase in θ . (d) The condition |μ/t | <

2 cos(θ/2) determining the topological phase is plotted. The area
for the topological phase in parameter space is largest when spins
on neighboring atoms are almost aligned along the same direction
(θ > 0). For ferromagnetic ordering (θ = 0) the topological phase
vanishes as the superconducting gap [� sin(θ/2)] also vanishes. For
anti-ferromagnetic ordering (θ = π ) the topological phase vanishes,
because electron hopping becomes zero [t cos(θ/2)]. The arrow
marks on the boundary of the topological and trivial phase near
θ = 0, π represent the fact that the topological phase survives as
θ → 0 and θ → π , however at θ = 0, π the topological phase is
absent.

Majorana fermions only emerge during the closing and the
reopening of the band gap.

To support the previous results, we numerically diagonal-
ize the real-space Hamiltonian Eq. (19) for a chain of 35
atoms. First the energy modes are calculated for different μ

keeping θ = π/4 [Fig. 4(a)] and θ = 3π/4 [Fig. 4(b)] con-
stant. One can clearly see the zero-mode energy and their
splitting as μ increases. In Figs. 4(c) and 4(d) we analyze
the dependence of the energy modes on θ while the chemical
potential μ is kept constant. In these figures, one can see that
when θ → 0 and θ = π , zero mode energy is absent as was
predicted in Fig. 3(d). If we compare Figs. 4(c) and 4(d) with
Fig. 2(a) of Ref. [9], then we find an analogous dependence
on the magnetic field; in our case, θ plays the same role as the
magnetic field in Ref. [9]. Next, we discuss the effect of θ

on the energy spectrum. Using Nambu spinors in momentum
space, the Hamiltonian Eq. (19) can be written in the usual
Bogoliubov–de Gennes form

HKitaev
eff (k) = 1

2

∑
k∈BZ



†
k Hk 
k,

(a) (b)

(d)(c)

FIG. 4. Dependence of real-space energy modes on μ and θ for
a chain of 35 atoms. (a), (b) Energy modes are calculated by numeri-
cally diagonalizing the Hamiltonian Eq. (19) for θ = π/4 and 3π/4.
We fixed the superconducting gap � = 0.5t . The zero-mode energy
is present up to values of μ/t = 2 cos(θ/2). (c), (d) Dependence of
energy modes on θ for μ = 0.5t and 1.5t . The inset in (c) shows the
absence of zero-mode energy at θ → 0.

where



†
k ≡ [ξk, ξ̄−k],

Hk ≡
[

2t cos θ
2 cos ka − μ 2� sin θ

2 sin ka

2� sin θ
2 sin ka 2t cos θ

2 cos ka − μ

]
.

(20)

Here, k is the crystal momentum, and a is the distance be-
tween two near-neighbor lattice sites. The single-mode energy
dispersion can now be easily calculated:

E (k) = ±
√(

2t cos
θ

2
cos ka − μ

)2

+
(

2� sin
θ

2
sin ka

)2

.

(21)

If one compares the energy dispersion of Eq. (21) with the en-
ergy dispersion of Kitaev’s toy model [see Eq. (13) of Ref. [2]
again], there is only a single difference: in Eq. (21) the extra
parameter θ appears explicitly in our energy dispersion. The
dependence of energy dispersion for different combinations of
�, μ, and θ is shown in Figs. 5 and 6.

In Figs. 5(a), 5(b) and 5(c) the evolution of the energy
dispersion is shown for θ = π/4, π/2, and 3π/4, while the
superconducting gap is kept constant (� = 0.7t ), and the
chemical potential is varied as a function of t (μ = 2t , 1.5t ,
0.7t , 0). As is well known, one of the properties of the topo-
logical superconductors is its sensitivity to the closing and to
the reopening of the energy gap at k = 0, ±π when we tune μ.
In Kitaev’s toy model this takes place precisely at μ = ±2t .
However, in our case the gap closes for μ = ±2t cos(θ/2)—it
evolves with θ . The values of μ/t where the gap closes for
a given θ are plotted in Fig. 5(d). Similarly, in Figs. 6(a),
6(b) and 6(c) the energy dispersion is shown for θ = π/4,
π/2, and 3π/4, while the chemical potential is kept constant
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FIG. 5. (a), (b), (c) Evolution of the energy dispersion, Eq. (21),
as the superconducting gap is kept constant (� = 0.7t), and chemical
potential is decreased (μ changes from 2t to 0) for θ = π/4, θ =
π/2, and θ = 3π/4. (d) The values of |μ|/t at which the bulk gap
closes at k = 0 for a given value of θ . The values are found by using
the condition θ = 2 arccos(|μ|/2t ).

(μ = 1t ), and the superconducting gap is varied (� = 0.1t ,
0.3t , 0.5t , 0.6t ). As is expected for θ = π/4, the spectrum is
defined by the electron hopping term [2t cos(θ/2) cos k]; the
superconducting term has little effect as [2t sin(θ/2) sin k] is
very small. However, for θ = 3π/4 the spectrum is defined
by the superconducting term. As the dispersion is a function

FIG. 6. (a), (b), (c) Evolution of the energy dispersion, Eq. (21),
as the chemical potential is kept constant (μ = 1t), and the super-
conducting gap is increased (� = 0.1t, 0.3t, 0.5t, 0.6t) for θ = π/4,
θ = π/2, and θ = 3π/4. (d) Comparison of the energy dispersion
for the strongly correlated Hamiltonian, Eq. (19), and the Kitaev’s
toy model [2] at μ = 1t , � = 0.6t , and θ = π/4.

(a) (b)

FIG. 7. Dependence of the topological gap on θ , μ, � calculated
numerically using dispersion Eq. (21). (a) Values of the maximum
topological gap energy for different μ and �. (b) Corresponding
values of θ for which the maximum topological gap occurs. The lines
show the contour line of equal values of the topological gap (a) and
θ (b). In this figure we have not shown the values of 0 < θ < π/6 or
π − π/6 < θ < π and corresponding topological gaps.

of θ , μ, and �, the topological gap will also depend on these
parameters. In Fig. 7 we showed the highest topological gap
and corresponding θ for a given value of μ and �. In Fig. 7(b)
we show the value of θ for which the maximum topologi-
cal gap results; the corresponding topological gap energy is
shown in Fig. 7(a). In both these figures we did not show the
value of μ and � for which θ in the vicinity of 0 and π—i.e.,
where 0 < θ < π or π − π/6 < θ < π—as at these values of
θ either the highest topological gap is almost negligible or the
system is an insulator. Both of these cases are of no interest
to us. However, it should be kept in mind that the values of
μ and � for which the topological gap is not shown in Fig. 7
does not mean the topological phase is always absent there,
it just means that the highest topological phase appears in the
aforementioned limits of θ .

The angle θ = �q · (�ri − �ri+1) = �q · �a, where �a is a lattice
spacing and �q is a spin spiral modulation vector, appears as
a control parameter. It can in principle be tuned by changing
a. However, such a change affects the other parameters in the
Hamiltonian as well. One could alternatively try to change the
modulation vector �q by applying an external modulated field
as discussed in Sec. VII. It is still not quite clear, however,
how the tunability of θ could be realized in an efficient way.

A comment is in order regarding the related work of
Ref. [59]. If one compares our Hamiltonian, Eq. (20), with
Eq. (20) of Ref. [59], they are identical. However, there
are a few fundamental differences in what the two models
truly represent. In Ref. [59] the heterostructures are pro-
duced by the magnetic adatoms on a superconductor, while
in our work we consider a strongly correlated 1D nanowire on
the superconductor. In the magnetic adatom superconductor
heterostructures the whole physics is directly related to the
YSR states, while in our system the physics depends on the
proximity effect induced by the superconductivity and by the
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chemical potential of the nanowires. In this sense they are
completely different systems. A priori it is not obvious they
can be represented by one and the same low-energy theory.
This only happens in the limit where on-site Coulomb repul-
sion is infinite. If one goes away from that limit, the relevant
theories differ from each other accordingly. In our work, we
have also considered the effect of the RSOC, which was not
taken into account in Ref. [59].

V. PRESENCE OF RSOC (α �= 0)

When the RSOC is present, i.e., when (α �= 0), we can
observe in the |μ|/t-θ phase plane the region in which the
topological phase manifest is contracted with the increase in
the value of α. To show this more explicitly, we rewrite the
effective Hamiltonian, Eq. (16), as

Heff(z, ξ ) = −
∑

i

t̃i ξ̄iξi+1 − �
∑

i

ξ̄iξ̄i+1 sin
θ

2

+ H.c. + μ
∑

i

ξ̄iξi,

where

t̃i ≡
[

t cos

(
θ

2

)
− α sin

(
θi + θ

2

)]
(22)

is the modified hopping term. Interestingly, it is spatially
oscillating through ∼α sin θi. Equations (22) and (19) are
analogous to each other, apart from the modified hopping
parameter. Therefore, the boundary of the topological phase
can be established by the same process—one can canonically
represent the fermionic ξi operators in terms of the Majorana
fermions, and apply the limiting conditions to find the associ-
ated topological phase boundary (see Ref. [2]). The resulting
condition for the topological phase is then |μ| < Min(2t̃i ).
Explicitly, we can write

|μ| < 2

(
t cos

θ

2
− |α|

)
. (23)

The corresponding values for μ, t , and θ which determine
both the topological and trivial phases for different values of
α are displayed in Fig. 8. We note that the parameter range for
the topological phase decreases gradually as we increase the
magnitude of α. When α � t cos(θ/2) the topological phase
is completely absent. Therefore, the RSOC and nonalignment
of the spin vectors negatively affect the topological phase in a
strongly correlated regime. We can conclude that for strongly
correlated wire the RSOC does not add new physics to the
problem.

VI. SUPERCONDUCTING CONDENSATION ENERGY

The results found in the previous sections were applica-
ble when the spiral spin texture is present in the system. In
Eq. (21) it was explicitly shown that the single-mode energy
depends also on the spin rotation angle θ . However, as men-
tioned before, the background spin field is dynamic in nature.
This means that θ changes as we change the global system
parameters μ and �. These two parameters are essential for
the determination of the lowest internal energy (UInternal). The

FIG. 8. Dependence of trivial and topological phase on θ for
different Rashba interaction α = 0.1t , 0.2t , 0.7t , and 0.9t . The plot-
ted condition for topological phase is found from Eq. (23): |μ|/t =
2 cos(θ/2) − |α|/t .

internal energy is found by summing over the energies of all
the occupied states:

UInternal =
∑
k∈BZ

E (k) f [E (k), μ],

where

f [E (k), μ] ≡ 1

e[E (k)−μ]/kBT + 1
. (24)

f [E (k), μ] is the Fermi-Dirac distribution, kB = 8.6 ×
10−5 eV K−1 is the Boltzmann constant, and T is the temper-
ature. In our calculation, we take T ≈ 0 K. The summation in
Eq. (24) is taken over the whole Brillouin zone k ∈ [−π, π ].
Although UInternal is an important characteristic of the system,
for superconducting systems the condensation energy ECond.

is of importance. Physically it represents the decrease in in-
ternal energy in the superconducting states UInternal(� �= 0)
compared to the normal state UInternal(� = 0). It is defined as
[see Sec. 3.4.2 of Ref. [60]]

ECond. = UInternal(� = 0) − UInternal(� �= 0). (25)

Positive ECond. means decreases in internal energy in super-
conducting states compared to nonsuperconducting states, and
vice versa. As it is always preferable that the ground state of
the system has the lowest possible energy, the system always
tries to be in that state where the ECond. is highest.

In Fig. 9 we show the dependence of the condensation
energy on θ for constant � = 0.5t , and for different μ val-
ues. The energies are normalized in these figures. As positive
ECond. is preferable, we search for local maxima in these plots.
It should be remembered that the system has topological prop-
erties only when θ �= 0, π ; this is a necessary but not sufficient
condition. The second condition is

θ < θTopo ≡ 2 arccos
∣∣∣ μ

2t

∣∣∣. (26)

This gives the upper boundary θTopo for a topological phase;
θTopo is a function of μ. In Fig. 9 the values of θTopo obtained
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FIG. 9. (a), (b), (c), (d) Dependence of the condensation energy
(ECond.) on θ for constant superconducting gap (� = 0.5t) as the
chemical potential (2t > μ > 0) decreases. The ECond. is found by
numerically integrating Eq. (24) over Brillouin zone k ∈ [−π, π ]
and later applying Eq. (25). The ECond. for different μ, � are nor-
malized. The θTopo found from Eq. (26) is plotted as the vertical
bar. Values of θ on the left of this bar where maxima occur have
topological phase. Hence, if the energy maxima lie on the left of this
vertical bar (but θ �= π ), then the system thermodynamically resides
in the topological phase.

from Eq. (26) are displayed as vertical lines. Therefore, if a
global or local maximum lies on the left of the vertical bar
and does not occur at θ = 0, then the system will thermody-
namically acquire a topological phase. In Fig. 10 we show
the condensation energy dependence on θ for several values
of μ and �. The values of θ found from Eq. (26) are shown
as the vertical line. As was mentioned before, the following
two conditions are sufficient and necessary for the emergence
of the topological phase thermodynamically: (i) θ ∈ 0, π , (ii)
θ < θTopo; θ being the angle where the maxima of ECond. oc-
curs. In Fig. 11 we plot the values of μ and � which satisfy the
aforementioned conditions thermodynamically. The shaded
regions represent the topological phase, while the unshaded
regions represent the trivial no topological phase. The color
coding in the figure represents the value of θ where maximum
energy occurs thermodynamically.

In addition to Fig. 11, in Fig. 12 we also show the first-
order differentiation of the condensation energy dECond./dθ

for constant μ = 1.5t and different 0.1 � � � 0.9. We ob-
serve that, as was expected from Fig. 10(a), with an increase
in � the energy maximum (dECond./dθ = 0) shifts toward the
right. This signals a transition to the nontopological phase.

While comparing Fig. 10(a) with Fig. 7 one might think
they contradict each other. However, it should be remembered
that in Fig. 7 we showed the values of μ and � for which the
highest energy gap occurs away from θ ≈ 0, π ; if the highest
energy occurs in the vicinity of θ ≈ 0, π we did not show
them. For example, the missing values of μ = 1.5t in Fig. 7
do not mean that the topological gap is absent there; it just

FIG. 10. (a), (b), (c), (d) Dependence of the condensation energy
(ECond.) on θ for constant chemical potential (μ) as the superconduct-
ing gap (�) increases. The ECond. is found by numerically integrating
Eq. (24) over Brillouin zone k ∈ [−π, π ] and later applying Eq. (25).
The ECond. for different μ, � are normalized. The θTopo found from
Eq. (26) is plotted as vertical bar. Values of θ on the left of this bar at
which the maxima occur have topological phase. Hence, if the energy
maxima lie on the left of this vertical bar (but θ �= π ) then the system
thermodynamically resides in the topological phase.

means that for μ = 1.5t the “highest” topological gap appears
in the vicinity of θ ≈ 0, π . However, at other θ , although the
topological gap might not be the highest, the topological phase
is present. This is exactly the case in Fig. 10(a). Besides,
one should keep in mind that in Fig. 10 we have shown the
normalized values of the internal energy.

The main physical conclusion from this section is that by
modifying the chemical potential, we can drive the system

FIG. 11. Phase diagram showing the values of μ/t and �/t for
which the topological phase occurs thermodynamically. Topological
phase appears for the shaded regions, however it is absent for un-
shaded regions. The color coding of the shaded region represents the
values of θ .
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FIG. 12. Differentiation of condensation energy with respect to
angle θ (dECond./dθ ) for μ = 1.5t and different �. The value of θ

where (dECond./dθ ) = 0 local maximum or plateau occurs. The black
vertical bar is the θTopo. for μ = 1.5t .

into and out of the topological phase thermodynamically.
Although previously proposed heterostructures [8] used the
same broad idea, in this work no external magnetic field is
needed to produce such an effect.

VII. PROPOSAL FOR EXPERIMENTAL
HETEROSTRUCTURE

Usually tunneling experiments are employed to detect the
Majorana fermions [17]. The proposed experimental setups
for detecting Majorana fermions in strongly correlated wires
are shown in Fig. 13. A zero bias peak in the conductance
plot is usually interpreted as the possible signature of the
MZM. However, these experiments are not at all conclusive,
because Andreev bound states also have the same zero bias
peak signature [61]. Despite these difficulties, recently a num-
ber of experiments have been performed to detect the MZM
[8,10,62]. We propose analogous experiments to detect MZM.

In Fig. 13(a), a strongly correlated wire is placed on top
of an insulating substrate. The tunneling electrons enters into
the wire out through the metallic contacts. Furthermore, they
exit the wire out through the superconducting contact and
flow directly into the current measuring device. The chem-
ical potential is controlled through the gate contacts. For
nanowires, either heavy fermion [63–68] or transition metal
[69–74] compounds can be used. Especially nanowires from
transition-metal dichalcogenides compounds are promising
candidates [71,73,74]. For superconductors one can use the
iron-based materials, since they have an extended s-wave or-
der parameter [32,45,75,76]. Because the spiral spin field is
dynamically generated in strongly correlated 1D nanowires,
we expect to see a MZM signature in the tunneling ex-
periments, without the need of an external applied rotating
magnetic field to generate spiral spin fields.

However, one can also perform experiments by exter-
nally inducing a noncollinear spin textures in the wire. The
schematics for this corresponding experiment is shown in
Fig. 13(b). Here, the only difference from the previous ar-

FIG. 13. Device schematics: (a) Tunneling experiment probing
the presence of the Majorana fermions due to dynamic spin field
of the 1D nanowire. (b) Tunneling experiment due to induced non-
collinear spin texture through the bottom layer. One can use the Van
der Waals magnets as the noncollinear magnetic layer.

rangement [Fig. 13(a)] is that we place the nanowire on a
magnetic layer with noncollinear magnetic structures. The
magnetic structure of the base magnetic material is induced
into the nanowire, which is a necessary condition for the
MZM to occur. One can also use the Van der Waals magnets
as a magnetic layer [77,78]. They may host different magnetic
structures, e.g., skyrmions, spirals [79–90], etc.

Finally, there is yet a third way to perform the required
experiment. Instead of the nanowire, one can use a single wall
carbon nanotube, which has the required strong correlation
[91–93]. Interestingly, in these nanotubes RSOC can be in-
duced and controlled through an electric field [94–96]. The
schematic of the device is analogous to the one displayed in
Fig. 13(a); instead of the nanowire, a single-wall carbon tube
is placed over the metal contact, the gate, and the supercon-
ducting contact. One should remember in this case that the
applied electric field also controls the RSOC.

The aforementioned experimental setup is known as local
detection of MZM, however there also exist several nonlocal
detections of the MZM [97]. In one of the schemes, basically
one adds two extra gates to the two ends of the nanowires. The
gate near the tunnel gate is denoted as the local gate, and the
other is denoted as the nonlocal gate. The local gate measures
the local density of states (dI/dV ). When the nonlocal gate is
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tuned, the MZM on the other side move towards the MZM at
the local gate, and finally two MZMs merge with each other
to create an interference pattern. It can be detected by the
transformation of the dI/dV from the single peak at V = 0
to the double peak on two sides of V = 0. There also exist
the three terminal circuits where two tunnel gates are placed
at two sides of the superconducting induced wire. As these
tunnel gate measures the local density of states on the two
sides, one can use measure the dI/dV on the two sides of the
wire. It the MZM is present at two ends of the nanowire, the
zero bias peak corresponding to these two MZMs should be
correlated. Apart from electric measurement, there also exist
the caloric function measurement of the MZM [37,98].

For application of our model to real systems, the following
energy scales of different parameters should be satisfied. If
a is the lattice constant and m is the electric effective mass,
then the hopping strength is t = h̄2/ma2. We assume that
the RSOC in the wire is comparable to the values in two-
dimensional quantum wells having heavy elements; RSOC
in these materials in the continuous limit is αcont. ∼ 104 −
105 m/s. However, as we are considering the lattice model,
instead of the continuous limit RSOC (αcont.) we need to use
the lattice RSOC (αLat.). The αcont. is related to the lattice limit
as αLat. = h̄

a αcont.. In a semiconductor with heavy elements,
the electron effective mass is of order m ∼ 0.05me. Putting
all the values together, we will get mα2

cont. = α2
Lat./t ∼ 1 K.

For a reasonable proximity effect � ∼ 1 − 10 K. Hence the
relevant hierarchy of energy will be U � t > αLat. > �. In
the absence of RSOC, one can set αLat. = 0.

We should make a small comment about the extended
s-wave iron-based superconductors. One usually expects that
the order parameter in this case will have nodes. This means
the superconducting gap will close, which will destroy the
topological phase. However, recent experimental works, al-
though not fully convincing, have shown otherwise (see
Sec. VIII of Ref. [99]). It was argued that spin-orbit coupling
and interband pairing can give rise to the nodeless supercon-
ducting order parameter.

VIII. CONCLUSION

In this work, it was shown that the Majorana zero modes in
nanowire-superconductor heterostructures can emerge with-
out application of an external magnetic field; the only
condition is that the electrons in the nanowire should be re-
quired to be strongly correlated. Within a mean-field treatment
of Eq. (6) that ignores the no double occupancy constraint, the
Hubbard operators are replaced with the conventional electron
operators, X σ0 → c†

σ , X 0σ → cσ , X 00 → ∑
σ c†

σ cσ , etc. As

a result, the Hamiltonian reduces to an exactly solvable one
that produces the doubly degenerate band structure. To effec-
tively generate the spinless fermions, one needs to separate the
bands by adding into consideration a large external magnetic
field. This, however, may totally destroy the superconduc-
tivity. To avoid such a scenario, we apply the mean-field
treatment only after the no double occupancy constraint has
been rigorously imposed. Within our approach, there is no
electron double occupancy since the spinless fermion field
ξ 2

i ≡ 0. The spinless fermion excitations emerge in the ab-
sence of an external magnetic field. This is the reason we
do not need z magnetic field when strong e-e correlation is
present.

The physical system shown in Fig. 1 was investigated for
a spiral spin field, both in the presence and absence of the
Rashba spin-orbit coupling (RSOC). It was found that, apart
from the chemical potential (μ), an extra parameter θ—the
angle between spin projection of the neighboring sites on the
xy plane—enters into the Hamiltonian as a tuning parameter
for allowing the system to go into and out of the topolog-
ical phase. This can be easily observed by comparing the
single-mode energy as described by Eq. (21), with the same
single-mode energy displayed by Kitaev’s toy model [2,3].
The increase in θ decreases the allowed values of μ and t
for which the system enters into the topological phase, as
shown in Fig. 3. We investigated the θ dependence of the
internal energy, and we found out that only for limited values
of μ and � does the system thermodynamically enter into
the topological phase, as shown in Figs. 9 and 10. The cor-
responding phase diagram is shown in Fig. 11. We also found
out that RSOC is not a necessary ingredient for the appearance
of the topological phase. This result is different from the
usual semiconductor-superconductor heterostructure used for
the realization of Majorana fermions, where RSOC, as well
as an external magnetic field, are the necessary ingredients.
In fact, in our case with an increase in intensity of RSOC, the
area in the parameter phase space (μ/t − θ ) for the occurrence
of topological phase decreases, as shown in Fig. 8. Finally, in
Sec. VII we proposed possible ways to experimentally realize
the proposed system.
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