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Jahn-Teller effect with rigid octahedral rotations in perovskites
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We consider rigid rotation and tilting of the anion octahedra around the transition metal ions in ABO3

perovskites from the viewpoint of the Jahn-Teller problem and study the effect of the crystal field of the nearest A
and B ion cages on the single electron spectrum of the central transition metal B ions. While the crystal field of the
octahedra, which creates degenerate manifolds eg and t2g, does not change with such rigid rotations, the field of A
and B cages deforms significantly from the ideal octahedral field in a way that leads to sizable splittings in these
manifolds. The lowering of the ground state energy of a given many-electron configuration due to these splittings
can thus be an important driving force behind the octahedral rotations and associated structural transformations.
We find that the size of the splitting and the order of the orbitals are determined by a competition between the A
and B cages, as well as a competition between the tilt and rotation angles.

DOI: 10.1103/PhysRevB.109.115138

I. INTRODUCTION

Perovskites exhibit a rich variety of intriguing electronic,
magnetic and optical properties [1–7] due to the interplay
between spin, orbital, and structural degrees of freedom and
widely varying electronic correlations. These materials are
important both for practical applications in all sorts of modern
devices and fundamental understanding of various physical
phenomena [8–12].

The perovskite structures have a common formula unit
ABX 3, where A and B are positive ions while X are negative
ions that form octahedra around B. In a cubic perovskite,
the octahedra are symmetric, but they can distort [13–18] or
simply rotate [19–25] to lower the symmetry and produce,
e.g., a rhombohedral, tetragonal or orthorhombic structure.
Octahedral rotations also occur in other perovskite related
structures and have been extensively studied due to their
crucial role in determining various physical properties, e.g.,
in ferroelectric [26–33] and multiferroic [34–41] systems.
The interplay of octahedral rotations and spin-orbit coupling
[42,43], breathing distortions [44], strain [45], defects [46],
and pressure [47], and their role in magnetostructural phase
transitions [48], orbital order [49,50], orbital anisotropy [51],
and surface electronic structure [52], have also been investi-
gated. Since, usually, the octahedra are not just distorted or
rotated but a combination of both, the influence of these two
structural mutations on each other has recently been explored
by many authors [18,50,53] as well.

While the tetragonal distortion of the octahedra is asso-
ciated with a (cooperative) Jahn-Teller effect [13–18,54–60]
(i.e., the orbital degeneracy of the metal ion coordinated by the
anionic octahedron is lifted, which stabilizes the distortion),
the rotation and tilting of the octahedra are almost always
explained empirically in terms of the relative sizes of the three
ions with the Goldschmidt tolerance factor [61,62].

*ahsan.zeb@hotmail.com

Based on density functional theory (DFT) calculations, a
few recent works [63–66], however, suggest that the octahe-
dral rotation and tilting is a second order Jahn-Teller effect
[67–72] (i.e., the distortion is stabilized by a coupling between
the ground and excited adiabatic potential energy surfaces).
Garcia-Fernandez et al. study potassium fluoride perovskite
family KMF3 (M = Ca2+ or a 3d transition metal) and found
that the tilting angle depends on the covalent bonding through
the mixing of occupied and low-lying unoccupied orbitals of
the transition metal [63]. Cammarata and Rondinelli find a
negative correlation between metal-oxygen bond covalency
and octahedral rotation in orthorhombic perovskite oxides
[64]. Lee et al. find similar results for metal-iodine bonding
in lead iodide perovskites, where the role of the hydrogen
bonding in a hybrid perovskite with organic ammonium ions
at A sites is also found to be crucial [65]. Yoshida et al. use
DFT along with representation theory analysis and indicate
that the rotations are induced by bonding interaction between
the valence and conduction band Bloch states at different
wave vectors that are mapped onto each other on Brillouin
zone folding for the associated lattice distortion [66].

We take a completely different approach to this problem.
We go back to the basics and see what is it that lifts the
orbital degeneracy in the classical JT effect? It is a specific
deformation of the crystal field at the transition metal (JT ion)
site. Does the same happen in the case of octahedral tilting
and rotations? While the potential of an octahedral anion cage
in its own frame does not change with rigid rotations for
obvious reason, the total crystal field does deform because the
rest of the lattice is not only rotated in a given octahedron’s
frame (that turns its nonspherical potential) but also distorted
owing to the accompanying structural transformation. Using
this insight and elements of crystal field theory [59,73,74], we
consider next two coordination cages around an octahedron
and find that, just like a first order JT effect, the deformed
crystal field in this case also lifts the orbital degeneracy, by
a significant amount for typical system parameters, signalling
the instability against the rotations.
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FIG. 1. Crystal structures and coordination cages. Crystal struc-
tures of cubic (a) and orthorhombic (b) perovskites. The anions
(red) form the shown octahedra around the B cations (gold), while
the A cations (green) sit in the voids between the octahedra. In the
orthorhombic structure shown here (b), the octahedra are rotated
and tilted by 15◦. [(c) and (d)] The coordination cages of A and B
cations just next to the anion octahedron around a B ion in cubic and
orthorhombic perovskites. In the anion octahedron’s frame, the cages
are symmetric and aligned to the octahedron in the cubic perovskites
(c), while they are rotated and slightly distorted in the orthorhombic
perovskites (d).

Since the octahedra are connected to each other (mak-
ing a three-dimensional network in the perovskite structure),
rotating one octahedron rotates all other in the crystal in a
consistent fashion [19]; see Figs. 1(a) and 1(b). We consider
an octahedral rotation β around 001 direction (that trans-
forms the structure from cubic Pm3̄m to tetragonal P4/mbm)
followed by a tilting α around the new 110 direction (trans-
forming to orthorhombic Pbnm, or Imma at β = 0). We use
the rotation and tilt terminology for these two angles through-
out the rest of the manuscript.

Beyond the anion octahedron, each transition metal ion B
in a cubic perovskite is coordinated by two cation cages, a
cube of A and an octahedron of B, as shown in Figs. 1(c) and
1(d). Including the potential of these two ion cages into the
crystal field Hamiltonian of the central ion B, we explore the
effect of the rotation and tilting on its t2g and eg manifolds
that are created primarily by the anion’s octahedral potential.
We find that the degeneracy of t2g and eg is lifted. The size of
the splitting and the order of the orbitals depend on the relative
charges on the two types of cations and a competition between
rotation and tilting. At typical parameter values, the splitting
is large enough to play a major role in the corresponding
structural instability. The qualitative picture developed by our

calculations holds even when the potential of the full lattice is
considered.

The paper is organized as follows. Section II presents
the formalism and Sec. III reviews the Jahn-Teller effect to
introduce the notation and concepts involved by considering
tetragonal distortion of an octahedron. The model and calcu-
lations are presented in Sec. IV, where we first discuss the
relative contributions of the three closest ion cages in the cubic
structure to the crystal field at the central transition metal site
and crystal field splitting between its eg and t2g manifolds
(Sec. IV A), and then describe the deformation effects of rigid
octahedral rotations on the structure (Sec. IV B) and crystal
field (Sec. IV C). The results are in Sec. V, where we present
the splitting in the single particle spectrum belonging to the t2g

(Sec. V A) and eg (Sec. V B) manifolds, and finally describe
the effect of the full lattice (Sec. V C).

II. FORMALISM: CRYSTAL FIELD HAMILTONIAN
USING MULTIPOLE EXPANSION OF THE CRYSTAL

FIELD POTENTIAL

Let us introduce the basic formalism we use throughout
this manuscript. The spectrum of an atom or ion changes
in the presence of nearby charged species. This is described
by the crystal field Hamiltonian of the atom that contains
the coupling between its atomic orbitals and/or their energy
shifts induced by the electrostatic potential of those charges.
Since the angular part of atomic orbitals are described by
the spherical harmonics, an expansion of the potential at the
atom’s site in the same bases simplifies the analysis. This is
because the effect of various multipole components of the
potential is governed by certain selection rules (enforced by
the symmetries of the spherical harmonics through Gaunt
coefficients, see below).

If we have an arrangement of ions with charge q around a
given site, we can express their potential in terms of spherical
harmonics [59],

V (�r) = q

a

∑
lm

Vlm

(
r

a

)l

Ylm(r̂), (1)

where a sets the length scale, r̂ = �r/r is the direction of �r,
and Vl,m are multipole components of the potential (for the
given site as origin and a chosen orientation). Assuming we
have a transition metal atom/ion at the central site with only
d orbitals (l = 2), the matrix elements of its crystal field
Hamiltonian are then given by

Hm′m′′ = −q

a

∑
l,m

VlmCm′m′′m
l Dl , (2)

where Cm′m′′m
l = 〈Y2m′ |Ylm|Y2m′′ 〉 are Gaunt coefficients for

the given (real or complex) spherical harmonics, and Dl =
〈(r/a)l〉 is the expectation of (r/a)l evaluated in the d-orbital
bases assuming the same radial dependence for all orbitals
[75]. The sum is restricted to even values of l � 4 as Cm′m′′m

l =
0 otherwise, with −l � m � l .

We consider transition metal oxides as an example per-
ovskite system throughout the rest of the manuscript, but
our calculations and results are general and also apply to
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perovskite transition metal compounds with other anions, e.g.,
halides and chalcogenides.

A. Atom/ion in an octahedral field: t2g and eg manifolds

Consider six oxygen (O) ions each with a charge −qo

making an octahedron of size a (where these anions are placed
at the face centres of a cube of edge length a). The nonspher-
ical part of the potential they produce at the center of the
octahedron relevant for the d orbitals contains only two l = 4
components, in a specific ratio (V4,0 : V4,4 = 1 :

√
5/7), and is

called octahedral field. It is given by [59]

Voct (�r) = −224
√

π

3

qo

a

(
r

a

)4
[

Y4,0(r̂) +
√

5

7
Y4,4(r̂)

]
. (3)

The crystal field Hamiltonian of a transition metal ion B in the
field Voct (�r) turns out to be diagonal, with its states split into
two manifolds: Hmm = −�/3 for m ∈ {−2,−1, 1} (xy, yz, zx
orbitals) called t2g, and Hmm = +2�/3 for m ∈ {2, 0} (x2 −
y2, z2 orbitals) called eg. The crystal field splitting between
the two manifolds is � = 160

3
qo

a D4.

III. JAHN-TELLER EFFECT

The Jahn-Teller effect [13–18,54–60] describes the geo-
metric and electronic instability of a molecule, cluster or
crystal with a symmetric structure and orbitally degenerate
ground state against structural distortions. The distortions
reduce the symmetry of the structure and lift the electronic de-
generacy. This lowers the energy of the system proportional to
the distortion. The elastic energy of the structure that increases
as the square of the distortion competes with this linear term
and the optimum structure is obtained at a finite distortion, as
described below.

The dependence of the elastic energy on the distortion can
be roughly explained as follows. Consider an elongation or a
compression of an octahedron along one of its axes by aδ,
where a is the size of the octahedron and lattice constant
of the cubic perovskite structure. The corresponding change
in the unit cell volume would be linear in δ as ∼a3δ so
the elastic energy would change as ∼δ2. Assuming a linear
change in the electronic spectrum, the total energy has a
form E = −ρδ + Kδ2, where ρ and K are positive constants
describing the changes in the electronic and elastic energies,
and would be optimum at δ = ρ/2K . In general, as long as the
two competing terms are not the same degree monomial in the
distortion, the ground state can have a finite distortion. We use
this argument to focus only on the changes in the electronic
energy throughout this paper.

It is worth reminding that, in the Jahn-Teller problem, we
usually consider single particle spectrum, i.e., single electron
energy states, to analyze the ground state of a many electron
system, which is the lowest energy “electronic configuration”
(a combination of occupied single particle states out of all
available single particle states, or a slater determinant of that
combination to be more precise!). So a degenerate set of states
that are completely occupied makes a nondegenerate many
electron state because only a single configuration/combination
is possible. For a given number of electrons in the d shell of
the transition metal ion, we can determine the (most likely)

configuration(s) or ground state(s) using Hund’s rule and see
if it is degenerate or otherwise.

In the following, we consider an octahedral environment
around a transition metal ion and illustrate how the changes in
the electronic energy can be calculated when the octahedron
is elongated.

A. Tetragonal distortion of an octahedron

Let us consider elongation of an octahedron along one of
its O-B-O bonds. Align the Cartesian axes along O-B-O bonds
and stretch the two bonds along z axis equally by an amount
aδ. The potential V JT (�r) at the central B site (JT ion) of this
deformed octahedron still contains only a few nonzero com-
ponents (see Appendix for a method to calculate V JT

lm ). Not
only the ratio V JT

4,0 : V JT
4,4 now deviates from ideal octahedral

field in Eq. (3), there is an l = 2 component induced due to
the deformation,

V JT
2,0 = −32

√
π
5 δ(δ2 + 3δ + 3)

(δ + 1)3
, (4)

V JT
4,0 = 32

3

√
π

(
4

(δ + 1)5
+ 3

)
, (5)

V JT
4,4 = 32

√
35π

3
. (6)

The crystal field Hamiltonian of the JT ion,
HJT

m′m′′ = (qo/a)
∑

l,m V JT
lm Cm′m′′m

l Dl , still turns out to be
diagonal (i.e., the deformation δ will not couple these orbitals
to each other), but the degeneracies of the two manifolds
is lifted and their respective average energies also shifted.
Defining Fn(δ) = 1 − 1/(1 + δ)n, we see that the t2g now
splits into two levels, with energies

Exy = 32

7

qo

a

(
D2F3 − 20

9
D4F5

)
, (7)

Eyz = Ezx = − 1
2 Exy, (8)

as measured from their average E
t2g

0 = −64qoD4(3 − F5)/9a.
Similarly, eg splits up as

Ex2−y2 = 32

7

qo

a

(
D2F3 + 5

3
D4F5

)
, (9)

Ez2 = −Ex2−y2 , (10)

as measured from their average E
eg

0 = 32qoD4(3 −
F5)/3a. The crystal field splitting becomes � ≡ E

eg

0 − E
t2g

0 =
160qoD4(3 − F5)/9a. At small δ, expanding F3, F5 up to first
order in δ, we obtain

(Exy, Eyz, Ezx ) = (2,−1,−1)

[
D2 − 100

27
D4

]
48

7

qo

a
δ, (11)

(Ex2−y2 , Ez2 ) = (1,−1)

[
D2 + 25

9
D4

]
96

7

qo

a
δ, (12)

whereas E
t2g

0 , E
eg

0 , and � all are rescaled by a factor of
1 − 5δ/3.

The terms in square brackets on the right of Eqs. (11)
and (12) contain D2 and D4. D4 is proportional to the crystal
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field splitting � (D4 = 3a
160qo

�) and we can estimate its
value from realistic values of � for a given octahedron of
size a and ion charge −qo. Assuming a = 7.0 bohr and
qo = 2e (e being the elementary charge), D4 ranges from
1×10−3 to 7×10−3 for � � 0.5–3 eV. Typically, D2 ≈ √

D4,
so D2/D4 ≈ 1/

√
D4 and it roughly ranges between 29 and

12 for D4 in the above range. This means that, for realistic
systems, we should always have D2/D4 > 100/27, 25/9 ≈ 4
so D2 terms in Eqs. (11) and (12) dominate and determine the
sign and size of the splittings.

So far, we have calculated the changes in the single particle
energy levels of the B ion. Whether the deformation would be
energetically favourable or not will depend on the number of
electrons occupying these levels, as illustrated below.

Let us consider a JT/B ion with two electrons. In the
symmetric octahedron case, we will have a degenerate (many
electron) ground state with both electron in the same spin
state (Hund’s rule) in the t2g manifold. Distorting the structure
δ > 0, we lower the ground state energy because we can now
choose yz, zx orbitals that have lower energy than the original
t2g energy of the undistorted structure. In case of a JT/B ion
with three electrons, the situation is very different. Assuming
Hund’s coupling is enough to still produce complete spin
polarization, there is only one possible orbital configuration,
one electron in each of xy, yz, zx orbitals. This nondegenerate
(many electron) ground state does not lower its energy if the
structure is distorted because the gain due to yz, zx is already
balanced by the loss due to picking the higher energy xy state.

To complete the discussion of the JT instability, it is worth
mentioning that JT effect occurs in all kinds of systems—
molecules, clusters and crystals. In crystals, e.g., perovskites,
it becomes a cooperative effect where the elongation of one
octahedron is accompanied by a compression of adjacent oc-
tahedron, which minimizes the changes in the unit cell volume
and hence the elastic energy cost of the transformation. Such
alternate elongations and compressions also lead to an inter-
esting long range orbital ordering where alternate orbitals are
populated on the adjacent JT sites.

IV. MODEL AND CALCULATIONS
OF ABO3 PEROVSKITES

We now turn to our model and calculations of the splittings
in the t2g and eg manifolds due to the deformations in the
crystal field that are produced as the octahedra rotate or tilt.
First, let us consider the cubic perovskite and see how much
A and B cages contribute to the octahedral crystal field and
associated splitting � between t2g and eg manifolds.

A. Contribution of different coordination
cages in a cubic perovskite

In a cubic perovskite ABO3, each transition metal atom/ion
B is surrounded by six O2−, each at a distance a/2, making
an octahedron of size a around it. The potential of these ions
VO(�r) = Voct (�r) splits the degenerate d orbitals by an amount
�o = 160qoD4/3a into t2g and eg. However, this is not the
only crystal field potential at the B site. The coordination
cages of next nearest neighbors, eight A atoms/cations all at
the same distance

√
3a/2 make a cube around the B ion, which

also produces an octahedral field, given by

VA(�r) = 8

81
√

3

qA

qo
VO(�r). (13)

Furthermore, the nearest neighboring B ions, six of them each
at a distance a, make an octahedron, with a potential

VB(�r) = − 1

32

qB

qo
VO(�r). (14)

It is interesting to note that VA(�r) and VB(�r) have oppo-
site signs and their combined effect VAB(�r) = VA(�r) + VB(�r)
depends on their relative charges. Using the charge neutral-
ity qB = 3qo − qA (remember that we take anion charge to
be −qo), we can write

VAB(�r) = fqAVO(�r), (15)

fqA =
(

1

32
+ 8

81
√

3

)
qA

qo
− 3

32
, (16)

which shows that VAB(�r) vanishes at qA/qo = 729/

(256
√

3 + 243)� 1.062.
Including the contribution of these AB cages to the crystal

field, we obtain

V (�r) = (
1 + fqA

)
VO(�r), (17)

whereas the splitting becomes � = (1 + fqA )�o. We see that,
relative to the O octahedron, the contribution of the two cation
cages towards the total field splitting is relatively small at any
qA but still too large to be ignored. It can be measured by
(� − �o)/�o = fqA , which linearly changes from −3/32 �
−10% at qA = 0 to 8/27

√
3 � 17% at qA = 3qo. Typical val-

ues of qA relevant for real transition metal oxides can be safely
assumed to range between 0 and 4; qA = 0 for systems like
tungsten oxide W O3 that do not have any cations at the A
sites, and qA = 4 still contributing just above 8%. We will see
that, as the anion octahedra rotate or tilt, VAB(�r) rotate in its
frame and deform as well. The deformation also induces l = 2
components, which couple to the d orbitals of the B ion much
more strongly.

B. Rigid octahedral rotations: transformation
of the crystal structure

We consider a
√

2×√
2×2 unit cell of the cubic structure

that transforms to the unit cell of the orthorhombic structure
under octahedral rotation and tilting, as shown in Fig. 1.
Assuming a, b, c to be the lattice vectors, two B atoms in a
layer are situated at a/2, b/2, while two A atoms in the same
layer are at c/4, (a + b)/2 + c/4. Similar atoms in the second
layer are simply shifted by c/2. While the lattice vectors
change under the rotation and tilting of the octahedra, these
relations do not change. The O atoms in the cubic structure
lie half way between the B atoms and make octahedral cages
around them. Their positions in the deformed structure are not
directly required for our calculations and discussion.

We rotate the octahedra by an angle β about ẑ ≡ 001 and
then tilt it about the new 110 by an angle α [76]. The four
octahedra in the cell have to be rotated and tilted clock-
wise or counter clockwise consistently. For example, (α, β ),
(−α,−β ), (−α, β ), (α,−β ) for the octaherda labeled 1
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through 4 in Fig. 1(b). The structure transforms from cubic to
orthorhombic under these rotation and tilting of the octahedra.
The lattice vectors of the deformed structure and the positions
of A and B atoms can be calculated easily by calculating the
coordinates of all six oxygen atoms that make the octahedra
(by rotating and tilting the octahedra) for all four octahedra
in the unit cell and comparing the coordinates of their shared
oxygen atoms. We obtain⎛

⎜⎝a
b
c

⎞
⎟⎠ = a

⎛
⎜⎝ cos β cos β 0

− cos α cos β cos α cos β 0
0 0 2 cos α

⎞
⎟⎠. (18)

C. Deformation of the crystal field

There are two different ways the crystal field V (�r) is de-
formed from the ideal case V (�r) ∝ Voct (�r) when the octahedra
are rigidly rotated.

(1) The relative rotations of the AB and O frames due to
the rigid rotation and tilting of the oxygen octahedra removes
the choice of a set of d orbitals where the effect of AB and O
cages is the same. We no longer just get eg, t2g manifolds in
any frame but with splittings induced by the rotation, which
generates nonoctahedral but still only l = 4 field components.

(2) The rigid rotation and tilting of the octahedra keeps the
octahedra symmetric but deforms the unit cell and AB ionic
cages with it. This not only changes the l = 4 components
but also induces l = 2 field components that can couple to the
JT ion much more strongly [see discussion on D2 versus D4

below Eq. (12) in Sec. III A]. So, the magnitude of the net
effect of the octahedral rotations is not limited by the relative
sizes of the octahedral fields of AB and O in the cubic case
(see Sec. IV A).

Since VO(�r) is relatively stronger, we can take the octahe-
dra’s local frames (that are rotated with them) to first describe
the effect of VO(�r), i.e., splitting of degenerate d orbitals into
eg, t2g manifolds with a gap �o, and then consider the effect
of VAB(�r) on these manifolds. VAB(�r) will couple and mix the
orbitals in the two manifolds. Since fqA � 1, we can even
ignore the coupling between the states belonging to different
manifolds that are �o apart. This also makes it possible to
analytically solve the problem in two limiting cases discussed
later.

It is worth reminding that V (�r) a scalar quantity in the
position space but a vector in the spherical harmonics bases,
so we can calculate it in one bases as per our convenience and
then transform it to another.

V (�r) =
∑
l,m

VlmrlYlm(r̂) =
∑
l,m

ṼlmrlỸlm(r̂), (19)

Ṽlm =
l∑

m′=−l

Rl
m,m′Vlm′ , (20)

where Rl = Rl (α, β ) is the rotation matrix for real spherical
harmonics of degree l . It can be calculated using the method
devised by Ivanic and Ruedenberg [77]. The multipole com-
ponents of VO(�r) in the rotated frame do not change with the
rigid octahedral rotations because, by definition, the octahe-
dron itself rotates with its frame. These can be directly read
off Eq. (3). Similarly, it is easier to obtain the components
of VAB(�r) in the unrotated frame so we do that first and
later transforms them to obtain the rotated frame components.
That is,

Ṽlm = Ṽ O
lm +

l∑
m′=−l

Rl
mm′V AB

lm′ , (21)

V AB
lm =

(
qA

a

)
V A

lm +
(

qB

a

)
V B

lm, (22)

where the quantities bearing a tilde on top belong to the
rotated (octahedron’s) frame. As described above, Ṽ O

lm are
simply octahedral field components with l = 4 and m = 0, 4
[see Eq. (3)]. However, V AB

lm contain the effect of the defor-
mation of the crystal structure so it now has not only other
l = 4 components but also l = 2 components; see below. A
procedure to obtain these multipole components, without ac-
tually calculating the projection of the potential VAB(�r) onto
the spherical harmonics, is described in the Appendix.

We find that the splittings due to octahedral rotation and
tilting are practically the same for all B ions (but their eigen-
states differ considerably, which creates interesting orbital
ordering as discussed later in the discussion in Sec. VII), so
we consider the octahedron 1 with central B ion at a/2 in
the calculations that follow. We obtain the following exact
expressions for V A

lm,

V A
2,−2 = 64

√
3π

5
cos2 β

(
1

(cos2 α + 2 cos2 β )5/2
− sec3 α

(cos 2β + 2)5/2

)
, (23)

V A
2,0 = 32

√
π

5

(
2 sec3 α sin2 β

(cos 2β + 2)5/2
− 32

√
π
5 (cos 2β − cos 2α)

(cos2 α + 2 cos2 β )5/2

)
, (24)

V A
4,−2 = 128

√
5π

3
cos2 β

(
3 cos 2α − cos 2β + 2

(cos2 α + 2 cos2 β )9/2
+ sec5 α(cos 2β − 5)

(cos 2β + 2)9/2

)
, (25)

V A
4,0 = 16

√
π

3

(
sec5 α(36 cos 2β − 3 cos 4β + 23)

(cos 2β + 2)9/2
− 8 cos 2α(3 cos 2β + 2) − 2 cos 4α + 12 cos 2β − 3 cos 4β + 9

(cos2 α + 2 cos2 β )9/2

)
,

V A
4,4 = −128

√
35π

3
cos4 β

(
1

(cos2 α + 2 cos2 β )9/2
+ sec5 α

(cos 2β + 2)9/2

)
, (26)
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whereas V B
lm are given by

V B
2,−2 = 64

√
3π

5

sin2 α sec3 β

(cos 2α + 3)5/2
, (27)

V B
2,0 = 4

√
π

5

(
sec3 α − 8 sec3 β

(cos 2α + 3)3/2

)
, (28)

V B
4,−2 = −128

√
5π

3

sin2 α sec5 β

(cos 2α + 3)7/2
, (29)

V B
4,0 = 4

√
π

3

(
24 sec5 β

(cos 2α + 3)5/2
+ sec5 α

)
, (30)

V B
4,4 = 16

√
35π

3

(20 cos 2α − cos 4α + 13) sec5 β

(cos 2α + 3)9/2
. (31)

The Hamiltonian of the central ion (JT ion) including the
crystal field of the AB cages in the octahedron’s frame are
given by

H̃m′m′′ =
∑
l,m

ṼlmC̃m′m′′m
l Dl , (32)

where C̃m′m′′m
l = 〈Ỹ2m′ |Ỹlm|Ỹ2m′′ 〉 = Cm′m′′m

l .

V. RESULTS: SINGLE PARTICLE SPECTRUM
AND JT INSTABILITY

Before we present our results, let us briefly describe the
kind of behavior that would indicate a JT instab against the
tilting and rotations of the octahedra, and how it relates to
the standard JT problem. As describe in Sec. III, the optimum
structure can have a finite distortion as long as the splitting in
the single particle spectrum has a different dependence on the
distortion than the elastic energy associated with the changes
in the unit cell volume. Here, the unit cell volume depends
on the “distortions” α, β as v = 4a3 cos2 α cos2 β, and, at
α, β � 1, it changes as ∼a3(α2 + β2). The elastic energy in
the harmonic approximation thus goes as ∼(α2 + β2)2, which
is quartic in α, β. So, in contrast to the case of elongations or
compressions of the octahedra [60], the behavior we are look-
ing for in the electronic spectrum is not linear but quadratic,
which would compete with such a quartic elastic energy to
produce a finite distortion in the optimum structure. Thinking
of squared angles α2, β2 as the basic distortion variables, the
order of the electronic and elastic energy terms matches to the
standard JT problem.

We will first focus on the t2g manifold and see how the
potential of the AB cages split it when the octahedra tilt and
rotate.

A. t2g manifold

Let’s consider three cases separately, only rotation, only
tilting, and both rotation and tilting.

1. Only rotation: α = 0 and β �= 0

Ignoring the coupling between the eg and t2g manifolds
(between xy and x2 − y2 at α = 0), their Hamiltonians turn
out to be diagonal. We can write the single particle energies

of t2g states as

(Exy,Eyz, Ezx ) = (2,−1,−1)[ �2D2 + �4D4], (33)

where Eyz and Ezx are degenerate and

�l = (
qA�A

l + qB�B
l

)
/a, (l = 2, 4), (34)

�A
2 = 64 sin2 β

7(cos 2β + 2)5/2
� 64

63
√

3
β2, (35)

�A
4 = 160 sin2 β

63(cos 2β + 2)9/2

× (125 cos 2β + 42 cos 4β + 7 cos 6β + 82) (36)

� 40960

5103
√

3
β2, (37)

�B
2 = 2

7
(1 − sec3 β ) � −3

7
β2, (38)

�B
4 = 5

126
((7 cos 4β − 3) sec5 β − 4) � −115

63
β2. (39)

We see that �A
2/4 > 0 while �B

2/4 < 0, revealing a competition
between the two terms that would determine the sign and size
of the term in the square bracket in Eq. (33) as qA (and hence
qB) is varied. The average t2g energy also shifts from −2/5�

by an amount

E
t2g

0 = (
qAEA

0 + qBEB
0

)
D4/a − (2/5) fqA�o, (40)

where

EA
0 = 8(92 cos 2β + 24 cos 4β + 20 cos 6β + 5 cos 8β + 51)

9(cos 2β + 2)9/2

� 512

243
√

3
− 2560β2

729
√

3
, (41)

EB
0 = − 1

18
((5 cos 4β + 3) sec5 β + 4)

� −2

3
+ 10β2

9
. (42)

The results in Eqs. (33) and (40) are summarized in Fig. 2,
where Exy, Eyz/zx , and E

t2g

0 are shown as a function of β

at three values of qA/qo = 1/2 and 1, 2. We have assumed
D2 = √

D4 and taken �o = 4qo/15a throughout this paper,
which fixes the value of D4 = 1/200, and corresponds to
�o = 2.073 eV at qo = 2 e and a = 7.0 bohr. We present the
energies as a percentage of �o by calculating all quantities at
the above values of qo, a. Figure 2 shows that the competition
between A and B cages determines the ground state and the
size of the splitting between the t2g states Exy and Eyz/zx. In
Fig. 2(a), where qA/qo = 1/2 (qB/qo = 5/2), the effect of B
cage dominates. Since it’s negative [see Eqs. (38) and (39)],
it reverses the order in Eq. (33) and Exy becomes lower than
Eyz/zx, by about 6% of �o at β = 15◦. When A cage dominates
at large qA/qo, as shown in Fig. 2(c) for qA/qo = 2, Eyz/zx

are the single particle ground states (with a splitting of the
same order), whereas the net effect of both cages is reduced in
Fig. 2(b) that corresponds to qA/qo = 1 and we only obtain a
splitting of ∼2% of �o at β = 15◦. Obviously, there will also
be a point near qA/qo = 1 where A and B completely cancel
the effect of each other (not shown in Fig. 2). We also see that
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FIG. 2. Splitting in t2g manifold induced by the octahedral rota-
tions. Exy, Eyz, Ezx , and E

t2g
0 as a function of the rotation angel β

at α = 0 (no tilting), �o = 4qo/15a (D4 = 1/200), D2 = √
D4, and

three values of qA/qo. (a) The B cage dominates at qA/qo = 1/2; it
lowers xy state and raises yz, zx states with increasing β. As qA/qo

increases to 1, (b) A cage almost cancels the effect of B cage reducing
the splitting, while it dominates at qA/qo = 2 (c) where it switches
the order of the states.

E
t2g

0 changes from a small negative to a small positive value
with an increase in qA/qo as we go from Fig. 2(a) to Fig. 2(c).
This is because the rotation suppresses the effect of AB cages
on the gap � between eg and t2g. Since A supports O while B
opposes it, � slightly widens at small qA and shrinks at large
qA, shifting the t2g manifold slightly down or up with β.

These results also indicate that in case of a superlattice with
qA alternating between the two regimes shown in Figs. 2(a)
and 2(c), we should obtain an alternating orbital order if the
octahedra are rotated.

2. Only tilting: α �= 0 and β = 0

In this case, the situation gets slightly complicated as the
couplings between the three states become finite. However,
the Hamiltonian still has a simple structure,

H̃ =
⎛
⎝Exy g −g

g Eyz λ

−g λ Eyz

⎞
⎠, (43)

where the matrix elements have relatively long expressions
and only an approximation at small α, β is given later in
this section. H̃ can be simplified by rotating the bases in
{|yz〉, |zx〉} space to obtain bright and dark states as follows.

|B〉 = (|yz〉 − |zx〉)/
√

2, (44)

|D〉 = (|yz〉 + |zx〉)/
√

2. (45)

The state |D〉 at energy ED = Eyz + λ decouples from the
rest (so is already an eigenstate of H̃ ) and the state |B〉 at
energy Eyz − λ obtains the enhanced collective coupling

√
2g.

The Hamiltonian can thus be solved analytically to obtain the
remaining two eigenstates

|+〉 = cos γ |xy〉 + sin γ |B〉, (46)

|−〉 = sin γ |xy〉 − cos γ |B〉, (47)

tan 2γ =
√

8g/(Exy − Eyz + λ), (48)

FIG. 3. Splitting and mixing in t2g manifold induced by octahe-
dral tilting. [(a)–(c)] ED, E±, and E

t2g
0 as a function of α at β = 0;

other parameters are the same as in Fig. 2. [(d)–(f)] Weight Wxy of xy
orbital in |E±〉 states shown in (a)–(c). The xy orbital predominantly
contributes to |E+〉 at qA/qo = 1/2, 1 [(a), (b), (d), and (e)], but to
|E−〉 at qA/qo = 2 [(c) and (f)].

at energies

E± = Exy + Eyz − λ

2
± 1

2

√
(Exy − Eyz + λ)2 + 8g2. (49)

Since we are only interested in small tilt and rotation, an
expansion of the matrix elements of the Hamiltonian about
α, β = 0 to the leading order turns out to be quite good an
approximation. The matrix elements in this case simplify a
lot. Defining a vector Q = (qAD2, qAD4, qBD2, qBD4), we can
write them as

Exy = Q ·
(

− 64α2

63
√

3
,−512(15α2 + 7)

1701
√

3
,

3α2

7
,

5α2

7
+ 2

3

)
,

(50)

Eyz = Q ·
(

32α2

63
√

3
,

512(25α2 − 7)

1701
√

3
,−3α2

14
,−85α2

42
+ 2

3

)
,

(51)

g = Q ·
(

−80

63

√
2

3
α3, 0,

15α3

14
√

2
,

5α3

2
√

2

)
, (52)

λ = Q ·
(

64α2

63
√

3
,− 2560α2

1701
√

3
,−3α2

7
,

40α2

21

)
. (53)

ED and E± relative to their average and the weight of xy
state Wxy in E±, as a function of α at qA/qo = 1/2, 1, 2
(and �o = 4qo/15a) are shown in Fig. 3. The average shifts
slightly with α, qA by E

t2g

0 = (Exy + 2Eyz )/3 − (2/5) fqA�o,
again reflecting a change in the gap �, and is also included
in Fig. 3. Apart from the mixing between the three states
xy, yz, zx in |±〉 at finite α, Fig. 3 shows a similar trend
as in Fig. 2 but with an interesting twist. In contrast to
α = 0 case discussed in the previous section, Wxy is the
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FIG. 4. Splitting in t2g manifold due to octahedral rotation and
tilting. t2g energies as a function of β at α = 10◦ at the same values
of other parameters as in Figs. 2 and 3. There are two anticrossings
between the three states around β ∼ α. The character of the states
depends on the competition between the two angles and the two ion
cages.

largest in the highest (lowest) energy state at small (large)
qA/qo, as shown in Figs. 3(a) and 3(c). α and β would
thus tend to produce different ordering (details in the next
section). The splittings are also about the same magnitude,
between 4%–6% at α = 15◦ at qA/qo = 1/2, 2 [Figs. 3(a)
and 3(c)] and about 2% at qA/qo = 1 [Fig. 3(b)]. The mix-
ing is sizable but still far from perfect (50%/50%) even at
the largest α shown (Wxy = 0.25–0.35 at α = 20◦). Overall,
at finite α, the lowest energy state is either purely xy/yz,
or contains at least some fraction of these, but it is never
pure xy.

3. Rotation and tilting: α, β �= 0

The t2g Hamiltonian in the general case α, β �= 0 cannot
be solved analytically so there is no longer any advantage of
ignoring the coupling between the eg and t2g manifolds. Even
though their effect should be negligible due to a large gap
� between the two manifolds, here we keep these couplings
and numerically solve the full Hamiltonian. Figure 4 shows
the energies at α = 10◦ as a function of β at qA/qo = 1/2, 2
and �o = 4qo/15a again. All states in the t2g mix up to make
the eigenstates {|Ei〉} at energies {Ei}, i = 1, 2, 3. At β = 0,
these results correspond to α = 10◦ in Figs. 3(a) and 3(c),
so the lowest state at β = 0 here is |D〉 in Fig. 4(a) while
it is the highest in Fig. 4(b). We see two anticrossings or
level repulsion in either of Figs. 4(a,b) in different orders.
In Fig. 4(a), the anticorssing between the highest two states
occurs at smaller β, while the situation is the opposite in
Fig. 4(b) where it occurs between the lowest pair at smaller
β. From the results in the previous two sections, we know
that not only A and B but also α and β tend to establish
different orders. To get more insight, the weights of these
three t2g states in the three eigenstates are shown in Fig. 5. Let
us first focus on the left column (qA/qo = 1/2). Figure 5(a)
shows that, while |E1〉 → |D〉 as β → 0, |E1〉 practically stays
in yz, xz subspace for β < 7◦ and it quickly becomes xy as
β → α = 10◦. Figures 5(b) and 5(c) show a complimentary
behavior between xy and yz, xz, where |E3〉 transforms from
almost pure xy at β = 0 to almost complete yz, xz at β �
α = 10◦. The right column in Fig. 5 (qA/qo = 2), shows the

FIG. 5. The dependence of the character of the t2g states on
the competitions between α, β and A,B ion cages. Weights of the
three t2g orbitals in the three t2g eigenstates shown in Fig. 4. At
qA = qo/2,the B cage dominates and |E1〉 is predominantly yz, zx at
β ∼ 0 � α = 10◦ but becomes ∼xy at β � 10◦ (a). The situation
flips when A cage dominates at qA = 2qo (d). Similarly, the character
of |E3〉 at qA = qo/2 resembles that of |E1〉 at qA = 2qo [compare
(c) with (d)] and vice versa [compare (f) with (a)]. The character
of the middle state |E2〉 [(b) and (e)] becomes ∼xy only around the
“resonance” region β ∼ α.

opposite behavior about the “resonance” β ∼ α. Figures 5(b)
and 5(e) show an interesting aspect, the Wxy peaking in the
middle state |E2〉 before it is transferred between |E1〉 and
|E2〉 around β ∼ α, i.e., at β between the two anticrossings
in Fig. 4, which makes sense if we imagine the continuation
of various energy surfaces/curves in the spectra in Fig. 4
ignoring their anticorssings: xy starts from the top and goes
down in Fig. 4(a), while it starts from the bottom and goes up
in Fig. 4(b).

In a given material, assuming the charges on A and B are
fixed and either A or B dominates, one type of distortion
would be energetically preferred over the other for certain
numbers of electrons in the d orbitals of the Jahn-Teller ion B.
For example, if B cage dominates, a d2 configuration should
prefer tilting over rotation because it stabilizes two occupied
orbitals while rotation stabilizes one and destabilizes the other
occupied orbital.

B. eg manifold

Since eg has only two states, we can always analytically
diagonalize it if we ignore its coupling to the t2g states. The
expressions for the matrix elements of the Hamiltonian are
long however, so we present the expansion at small angles
in the following. The diagonal terms with reference to the
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average eg energy are given by

(Hx2−y2 , Hz2 ) = (1,−1)[ 
2D2 + 
4D4], (54)


l = (
qA
A

l + qB
B
l

)
/a, (l = 2, 4), (55)


A
2 = −64(α2(7β2 + 3) − 6β2)

189
√

3
, (56)


A
4 = 640(α2(β2 + 16) − 32β2)

1701
√

3
, (57)


B
2 = 3

14 (α2(3β2 + 2) − 4β2), (58)


B
4 = − 5

168 (α2(37β2 + 46) − 92β2), (59)

whereas the coupling between the two states is

Hx2−y2,z2 = 2α2β

567
( 128qA(3D2 − 20D4)

− 81
√

3qB(2D2 − 5D4)), (60)

which vanishes if either of α, β is zero.
The average energy slightly shifts at nonzero α, β from

3/5� by an amount

E
eg

0 = (
qAEA

0 + qBEB
0

)
D4/a − (3/5) fqA�o, (61)

EA
0 = 256(5(4β2 + 1)α2 + 5β2 − 3)

243
√

3
, (62)

EB
0 = − 1

12
5(7β2 + 4)α2 − 5β2

3
+ 1. (63)

Diagonalising the Hamiltonian, we obtain two eigenstates |±〉
at energies E±. We present the results obtained using the exact
expressions instead of the expansions in Eqs. (54) and (60).
Figure 6 shows E± and weights Wx2−y2 of x2 − y2 orbital in the
two states as a function of β at α = 10◦, �o = 4qo/15a, and
qA/qo = 1/2, 2. We get the same ordering of orbitals “with
and without z” as in t2g case, i.e., at qA/qo = 1/2, β tends to
lower x2 − y2 while α tend to lower z2 orbital, as indicated by
the behavior of Wx2−y2 , which is almost zero in |E−〉 at β � 5◦
(� α = 10◦), while it approaches unity at β � α. Similarly, at
qA/qo = 2, Wx2−y2 shows this behavior for |E+〉. This is also
evident from the signs of the 
l in Eq. (54). We see that l = 2
terms have the same signs as t2g case but l = 4 terms have
switched the signs. Since D4 is much smaller than D2, we will
still get the same ordering as in t2g case. The splitting is much
smaller in this case though, only ∼0.5% of �o at β = 10◦ in
either case shown. To see how well the expansions in Eqs. (54)
and (60) can approximate the exact results, Fig. 6 includes
them as thin dotted lines that are collectively labeled Approx.,
which are almost indistinguishable from the exact results at
qA/qo = 1/2, but deviate at qA/qo = 2 as their “resonance
point” is shifted towards larger β.

C. Effect of the full lattice

In a crystal, obviously, not only the nearest coordination
cages of A and B ions but also the other ions (including O)
at longer distances all have finite contributions to the crystal
field and hence the JT effect. To see how much our results
change when the full lattice (FL) is considered instead of just

FIG. 6. Energies and characters of eg states. E± and E
eg
0 as a

function of β at α = 10◦, and the same parameters as in Fig. 4. At
qA = qo/2 [(a) and (c)] where B cage dominates, α tends to make
|E+〉 more x2 − y2 (see small β region), while β tends to do the
opposite (see large β region). The roles of α, β switch at qA = 2qo

[(b) and (d)], where A cage dominates. We see that the splitting is
relatively small as compared to t2g manifold. Approximate results
obtained by a second order expansion of the Hamiltonian given in
Eqs. (54)–(61) are also shown for comparison.

the nearest AB cages, we numerically calculate the multipole
components of the potential of the full lattice by following the
recipe in Refs. [75,78,79] and Ewald summation method [80].
To do this, we borrow relevant routines from the tight binding
package in Questaal suite [81] that implements these methods.

We find that the potential of the FL does not change the
qualitative picture we presented but merely shifts the balance
between A and B cages towards smaller qA. This can be seen
in Fig. 7 where the energies of the t2g states as a function
of qA/qo are compared for the two cases at α = 0, β = 20◦
(and �o = 4qo/15a). In case of AB cages, the crossing of the
(xy and yz/zx) energy levels occurs at qA/qo � 1.1, whereas
the FL moves it to qA/qo � 0.3. The slopes of the lines are
almost the same in both cases, meaning that the splitting due
to octahedral rotations would be the same in both cases if qA is
measured from their crossing points. The shift towards smaller
qA in case of FL can be explained by noting that the next
coordination cage beyond the first AB cages has O ions (24 of
them at a distance of

√
5a/2 at α, β = 0) that supports A cage

against the B cage, lowering the value of qA that balances it at
the crossing in Fig. 7. It significantly increases the agreement
between the two cases presented by moving the crossing point
to qA/qo � 0.8 (not shown in Fig. 7).

From the above results, we also see that a comparison
between the rotation induced splittings in the two cases (FL
versus AB cages) at a fixed value of qA would show an un-
derestimation or an overestimation depending on whether qA
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FIG. 7. The effect of the potential of full ionic lattice. t2g spec-
trum computed using the potential of full lattice and that obtained
from only nearest AB cages (and the anion octahedron itself) are
shown as a function of qA/qo at α = 0, β = 20◦, and �o = 4qo/15a.
Full lattice only shifts the balance between the two cation cages
towards A (i.e, the crossing point, where the two cages balance each
other, moves to smaller qA) but keeps the qualitative picture the same.
(The bold black line is nothing but an overlap of two practically
degenerate black lines.)

lies to the right or the left side of the middle point of the two
crossings. Besides, the characters of the eigenstates would be
in a disagreement at qA between the two crossings.

VI. SUMMARY AND CONCLUSION

We consider the effects of octahedral rotations and tilting in
perovskites on the t2g and eg manifolds of the central transition
metal ions. We find significant splitting in these levels caused
by the distortions in the crystal field of nearest A and B ion
cages, which essentially amounts to a Jahn-Teller instability.
The sign and strength of this effect is determined by a compe-
tition between the two ion cages. The tilt and rotation also tend
to establish different ground states depending on which ion
cage dominates. While the tilting alone can mix t2g states, eg

states do not mix unless both rotation and tilting are nonzero.
Despite such mixing, we can see which orbitals are stabilized
or destabilized. If A cage dominates (i.e., qA is larger than a
critical value), tilting lowers xy, x2 − y2 orbitals and raises
yz, zx, z2, while rotation tends to do the opposite; the whole
situation reverses if B cage dominates. Considering the crystal
field of the full lattice only shifts the balance towards A cage
but does not qualitatively change the results.

VII. DISCUSSION AND OUTLOOK

We have only focused on the spectrum of the B ion at a/2
in the cell described in Sec. IV B but there are three more
distinct B ions in the unit cell at finite octahedral rotations that
also need to be considered simultaneously. We find that the
splittings in the spectra of all B ions are practically identical.
However, their eigenstates are different in a way that can
create interesting orbital ordering that depends on the tilt and
rotation angles, unlike what happens in tetragonal Jahn-Teller

FIG. 8. The effect of electron hopping between B sites. (a) En-
ergy of two configurations t1

2g and e1
g as a function of β when either

the crystal field or the hopping is considered alone. In the latter case,
the energy changes are scaled with the bandwidth W . (b) Considering
both the crystal field and the hopping simultaneously, the ratio of
the change in energy with rotation β at a finite hopping to that in
the absence of hopping E (W )/E (0) as a function of the average
bandwidth W , for the same two configurations t1

2g and e1
g. The results

of the crystal field model presented in this manuscript hold in the
small bandwidth limit where E (W )/E (0) ∼ 1.

distortions (elongation and compression) such as seen in
KCuF3 [82], where the orbital ordering does not depend on
the size of the distortion. The eigenstates’ components in
the local bases attached to the octahedra’s frame also vary
between different B sites so the dependence on the rotation
and tilt angle is not trivial, which is understandable because
different B sites in the unit cell have different environments.
A detailed study of orbital ordering in this case is out of scope
of this manuscript and is left for future work.

Of course, beside the crystal field we consider in our sim-
plistic model, in real materials, there would be other local
effects like electronic correlations (Hubbard and Hund’s in-
teraction) and spin-orbit interaction, as well as band structure
effects arising from the electron hopping between the B ions.
The interplay between these and the crystal field (or JT) effect
we discussed in this manuscript is also an interesting future
work. A discussion about the role of electron hopping along
with some preliminary results follows.

Assuming the crystal field splitting to be the largest energy
scale, the orbitals in the eg and t2g manifolds of B sites are
aligned with their respective octahedra. The electron hop-
ping between these orbitals that are localized on different B
sites depends on the relative orientation of the orbitals. As
the octahedra rotate (or tilt), the hybridization between the
neighboring sites change, modifying the electronic bands and
associated band energy.

To shed some light on the role of these band structure
effects, we consider the nearest neighbor hopping between the
B sites using the Slater-Koster method [83] and calculate the
change in the energy of the system as the octahedra rotate. We
do this for three cases: with either the crystal field or the hop-
ping only, and with both of these simultaneously. Figure 8(a)
shows the change in the energy of two (spinless) configura-
tions t1

2g and e1
g as a function of β for the first two cases for

the crystal-field-only (black curves, left y axis; α = 0, q =
2qo, �o = 4qo/15a) and for the hopping-only case (red/gray
curves, right y axis). We use Slater-Koster hopping parameters
(tσ , tπ , tδ ) = (0.15,−0.1, 0.025) eV, a = 7 bohr, qo = 2 e,
and consider only the crystal field of O octahedra that creates
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t2g and eg manifolds. (These parameters produce an average
bandwidth W = 0.97 eV for the two manifolds). While both
t1
2g and e1

g configurations show a lowering of energy due to the
crystal field as β increases—consistent with the results pre-
sented before—the energy of e1

g increases when only hopping
is considered (the effect scales with the hopping parameters or
the bandwidth). This is due to a reduced hybridization leading
to narrower eg bands. In contrast, the energy of t1

2g decreases
due to a band widening arising from an enhanced hybridiza-
tion. The crystal field and these band structure effects are
not additive however. The rotation induced splitting of the
t2g/eg manifolds arising from the crystal field suppresses the
effectiveness of the hopping in creating the dispersion in the
energy states, and thus reduces the bandwidths and the the
associated rotation induced energetic changes.

To show the validity regime of our crystal field model
presented in this manuscript, Fig. 8(b) presents the ratio of
the change in the energy at β = 20◦ (i.e., the energy differ-
ence from the cubic case) at finite hopping E (W ) to that of
our simplistic crystal field model E (0) as a function of the
average bandwidth W of t2g and eg bands. Here we scale
the Slater-Koster parameters used for Fig. 8(a) to tune the
bandwidth W . We see that E (W )/E (0) decreases from unity
at W = 0 to half its value for t1

2g configuration at W/�o �
0.3, and even becomes negative for e1

g configuration around
W/�o � 0.15 (showing the dominance of the band structure
effects). From this analysis, we conclude that the results of
our crystal field model hold unambiguously only for narrower
bands, W/�o � 1, while a detailed further study is required
to understand the interplay of the two effects at larger band-
widths.

APPENDIX: COMPUTING Vlm

Here we describe a method to obtain the multipole compo-
nents Vlm of a potentials V (�r) at a position �r around a JT ion.
It is worth noting that this can be done without evaluating the
inner products between the spherical harmonics and V (�r).

Let’s consider V A(�r) to illustrate the idea. V B(�r) and
V JT (�r) can also be dealt in the same way. We like to expand
the potentials V A(�r) in spherical harmonics as

V A(�r) = qA

a

∑
l,m

V A
lm

( r

a

)l
Ylm(r̂), (A1)

where we have assumed a as a length scale and taken out the
factor qA/a for clarity.

First we calculate V A(�r) using the simple textbook
formula. V A(�r; α, β ) = qA

∑
i 1/|�rA

i − �r|, where �rA
i is the po-

sition of ith A ion and �r is the position of the observation point
measured from the JT ion. Writing Cartesian components of �r
as �r = r(cos φ sin θ, sin θ sin φ, cos θ ), where (r, θ, φ) are the
spherical coordinates in the frame of JT ion and expanding
V A(�r; α, β ) in powers of r, we can separate coefficient of rl

that give degree l components. We can then consider each
degree l term individually, and resolve it in its (2l + 1) m
components. This can be done by expanding such a coefficient
of rl in powers of cos θ, cos φ (or sin θ, sin φ) and comparing
the terms with a similar expansion of the formal expression
on the right side of Eq. (A1). This gives a set of linear equa-
tions in {V A

lm} (for a fixed value of l) that can be easily solved.
The whole calculation can be performed on MATHEMATICA

[84] or a similar software.
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