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Anomalous conditional counting statistics in an electron-spin-resonance quantum
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A detailed understanding of the full measurement statistics in experiments is the basis for thorough device
characterization and advanced applications such as quantum metrology. In this spirit, we investigate the con-
ditional counting statistics of an electron-spin-resonance pumped quantum dot (QD), which is tunnel-coupled
to a side electrode and continuously monitored by a quantum point contact (QPC). For such a noninvasive
detector, we find that the spin current through the QD and its related cumulants exhibit intriguing features
and system parameter dependences when conditioned on the QPC current, which are in strong contrast to
the unconditional cumulants. By turning the perspective around and considering the counting statistics of
the QPC current conditioned on the QD current, we reveal an anomalous conditional QPC current noise,
which is surprisingly suppressed for increasing coupling to the environment. Our results show that information
backaction can substantially render statistical transport fluctuations. This unique advantage of the conditional
counting statistics in probing the underlying correlations between system and detector, even for noninvasive
measurements, can thus be employed for improving measurement protocols in quantum metrology.
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I. INTRODUCTION

The essence of quantum measurements is the tradeoff
between acquisition of system information and the detection-
induced state reduction, which acts as an effective backaction
on the state of the system [1–4]. In contrast to a classical
measurement which in principle allows for unlimited degree
of specific system information, randomness is inevitably in-
volved in quantum measurements, imposing a fundamental
limit on the information attainability by the Heisenberg’s un-
certainty principle [5–8]. An important figure of merit is to
deduce system information encoded in the detector and under-
stand how it alters the remaining uncertainty in the quantum
system [9,10].

The state-of-the-art nanofabrication technology has en-
abled on-chip measurement of individual electron transport in
an accurate and continuous manner [11–16]. Yet, the charge
quantization gives rise to inherent randomness, which can
be analyzed systematically based on full counting statistics
(FCS) [17,18]. It has been shown that FCS serves actually as a
powerful diagnostic tool to unveil unique system information.
In a typical single QD transport system, the FCS is infered
from the current through a nearby QPC, where the dynamics
and output of the QD is unaffected by the QPC measurement
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on the ensemble average level [19]. In a quantum trajectory as-
sociated with a realtime experimental measurement, however,
the system state is updated dependent on the measurement
outcome during the continuous monitoring by a QPC, lead-
ing thus to a conditional (Bayesian) detection backaction. In
quantum systems, this information or statistical backaction
has both a classical and a quantum contribution: On the one
hand, a measurement updates the (classical) knowledge which
we have about the system state, leading thus to a modified
time evolution. On the other hand, a quantum measurement
inevitably leads to state-reduction that destroys coherences
in the measurement basis. The information backaction has a
central role to play in the informational approach to detection
[20–24]. Instead of the unconditional FCS, this information
backaction is described by the conditional counting statis-
tics (CCS): The statistical current fluctuations in one system
given the observation of a particular current in the other
one [25].

Thus far, CCS has been investigated in systems within
the description framework of classic rate equations [25,26].
For a typical setup of electron transport through a single
QD monitored by a QPC, the conditional backaction on the
system gives rise to a number of novel effects in the CCS
compared to the unconditional FCS [25]. The presence of a
strong Coulomb interaction leads to additional correlations
between transferred electron spins, which may serve as a
sensitive tool to detect many-body interactions in mesoscopic
transport systems [26]. Recently, CCS has been analyzed in
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FIG. 1. (a) Schematics of an ESR pumped QD tunnel-coupled to a side electrode, which is continuously monitored by a noninvasive QPC
detector. (b) Simulation of the QPC current for �↑ = 9�↓ and (c) simulation of the QPC current for �↓ = 9�↑, which are obtained using the
quantum trajectory method. We set � = �↑ + �↓ as unit of energy and choose I0 = 120� and I1 = 80�.

the quantum regime for transport through a double quan-
tum dot system [27]. For electron transport through a double
quantum dot (DQD) measured by a QPC [28], the QPC is
modeled as a tunneling junction whose conductance is suscep-
tible to changes in the surrounding electrostatic environment
(the occupation configurations of the DQD). The asymmet-
rical electrostatic coupling between the DQD and the QPC
results in different QPC currents, i.e., IL

QPC (IR
QPC ) when the

left (right) dot of the DQD is occupied. It is due to this
mechanism that the QPC is able to distinguish between dif-
ferent charge states in the DQD. This however gives rises to
a measurement-induced dephasing of the DQD system γd =
1
2 (

√
IL

QPC − √
IR

QPC )2 [29,30]. It is therefore appealing to explore
the CCS in a quantum system where the quantum coherence
is fully retained during the measurement and explore the inti-
mate correlation between system dynamics and the detection
process.

This work is dedicated to unveil the underlying correlations
by investigating the CCS of an electron-spin-resonance (ESR)
system as schematically shown in Fig. 1(a), where the spin-
resolved tunneling between the QD and the side electrode is
continuously measured by a nearby QPC detector based on
a spin-to-charge conversion mechanism [31–35]. The electro-
static coupling between the QD and QPC enables the QPC
detector to sense the presence (or absence) of an extra elec-
tron on the QD. The Fermi energy of the side electrode is
adjusted between the Zeeman sublevels such that only spin-up
electrons can tunnel into the QD and spin-down electrons
tunnel out at low temperatures. Whenever an extra spin up
(down) electron tunnels into (out of) the QD, a down (up)
jump takes place in the QPC current as shown in Figs. 1(b)
and 1(c). After an electron has tunneled into the QD, it may
hop between the |↑〉 and |↓〉 spin states, but the QPC will
stay in the low-current level as long as the electron remains
on the QD. That means the QPC is unable to detect the spin
state of the electron, as the QPC can only sense whether the
QD is occupied or not, regardless of the spin states. Yet,
the QPC is able to detect spin-resolved tunneling without
distinguishing between different spin states in the QD and thus
does not give rise to any measurement-induced dephasing.
We reveal that even for such a noninvasive QPC detector,
the measurement leads to a substantial change in the con-
ditional spin-resolved current fluctuations in contrast to the

unconditional FCS. In particular, the detector’s information
backaction gives rise to intriguing spin-resolved conditional
statistics and signal-to-noise ratios, which depends sensitively
on the magnetic field. We furthermore turn the perspective
around and investigate the statistical QPC cumulants condi-
tioned on the spin-resolved current through the QD, where
anomalous conditional noise characteristics is observed in
regard to its dependence on the environment-induced dephas-
ing in appropriate spin tunneling configurations. Our results
unambiguously demonstrate that the information backaction
of one conductor can substantially change the statistical fluc-
tuations of the other even for noninvasive measurements,
which may serve as a sensitive detection protocol in quantum
metrology.

The rest of the paper is organized as follows. We start in
Sec. II with an introduction of the ESR spin transport sys-
tem monitored by a QPC detector, which is then followed in
Sec. III by the description of the CCS in comparison with the
unconditional FCS. Section IV is devoted to a detailed inves-
tigation of the unique CCS features of the ESR QPC system
in appropriate parameter regimes. Finally, we conclude our
findings in Sec. V.

II. MODEL SYSTEM

The system under investigation is schematically shown
in Fig. 1(a), where a single QD is tunnel-coupled to a side
electron reservoir. The QD is tuned in the Coulomb blockade
regime such that double occupation is energetically prohib-
ited and there is only one energy level involved in transport.
The QD is subject to a magnetic field Bz in the z direction,
which leads to the Zeeman splitting � = gzμBBz, where gz

is the effective electron g factor in the z direction, and μB is
the Bohr magneton. Furthermore, an additional rotating mag-
netic field is applied in the x-y plane B‖(t ) = B‖ cos(�t )êx +
B‖ sin(�t )êy, where the oscillation frequency � is tuned close
to the Zeeman splitting �, leading to the well-known ESR and
enabling spin flipping in the QD. The Fermi energy of the side
electrode is tuned in the middle of the two Zeeman sublevels.
At low temperatures, a spin-up electron can only tunnel into
the QD from the side electrode, which is pumped to the higher
energy level with a flipped spin orientation before it tunnels
out to the side reservoir, leading thus to an ESR-pumped spin
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current. The entire system Hamiltonian reads

HT(t ) = HS(t ) + HB + HI. (1)

Here, HS(t ) denotes the Hamiltonian of the QD exposed to the
magnetic field

HS(t ) = �

2
(d†

↓d↓ − d†
↑d↑) + Ud†

↑d↑d†
↓d↓

+ γRF (d†
↑d↓ei�t + d†

↓d↑e−i�t ), (2)

where dσ (d†
σ ) is the annihilation (creation) operator of an

electron with spin σ = {↑,↓} in the QD and γRF = g‖μBB‖
is the ESR Rabi frequency, with g‖ the electron g-factor in
the parallel direction. Double occupation on the QD costs an
intradot Coulomb charging energy U , which will be assumed
to be infinitely large in the following (U → ∞) such that
double occupation on the QD is energetically prohibited.

The second term describes the side electron reservoir, mod-
eled as a collection of noninteracting electrons

HB =
∑

k

∑
σ=↑,↓

εkσ c†
kσ

ckσ , (3)

where c†
kσ

(ckσ ) is the creation (annihilation) operator of a
spin-σ electron with momentum k in the side reservoir. The
electron reservoir is in thermal equilibrium described by
the Fermi distribution f (ω) = {1 + eβ(ω−μ0 )}−1, where β =
(kBT )−1 is the inverse temperature and μ0 is the chemical po-
tential in the middle of the spin-up and spin-down sublevels.

Electron tunneling between the QD and the side reservoir
is described by

HI =
∑

k,σ=↑,↓
(t∗

σ c†
kσ

dσ + tσ ckσ d†
σ ), (4)

where tσ is the spin-dependent tunneling amplitude. The tun-
nel coupling strength between the QD and the side reservoir
is described by the intrinsic linewidth �σ (ω) = 2π |tσ |2Dσ (ω)
for spin up (σ =↑) or spin down (σ =↓) electrons, where
Dσ (ω) is the spin-dependent density of the states. On one
hand, the tunneling amplitude tσ depends on the height and
width of the tunneling barrier. On the other hand, the elec-
trode may have a structured spin-dependent density of states.
According to the Stoner model of ferromagnetism [36], there
might be a strong asymmetry in the density of states Dσ (ω)
for up (σ =↑) or down (σ =↓) spins [37]. It provides the
possibility for different asymmetries in spin dependent tun-
neling strength. For simplicity, in the following we assume
the tunnel coupling strengths to be energy independent, i.e.,
�σ (ω) = �σ .

A QPC is placed in the vicinity of the QD. Its conduc-
tance is sensitive to changes in the surrounding electrostatic
environment, and thus can be utilized to sense the pres-
ence (or absence) of an extra electron in the QD. When the
QD is empty (occupied), the QPC current is I0 (I1), with
I1 < I0 due to Coulomb repulsion. At sufficient low temper-
atures (kBT 	 �), only spin-up electrons can tunnel into
the QD and spin-down electrons tunnel out. Typical sim-
ulations of the QPC currents are shown in Figs. 1(b) and
1(c) for �↑ 
 �↓ and �↑ 	 �↓, respectively, based on the
quantum trajectory method [10,38–40]. A switching of the
QPC current from I0 to I1 implies that a spin-up electron

has tunneled into the QD. When the QPC current undergoes
an opposite jump, a spin-down electron has tunneled out
of the QD. It is this spin-to-charge conversion mechanism
that enables the QPC measurement of spin-resolved tunneling
events between the QD and the side reservoir. It should be
noted that the QPC is unable to distinguish between differ-
ent spin states in the QD, and thus does not give rise to
measurement-induced dephasing. Nevertheless, we will show
that even for such a noninvasive QPC detector, the measure-
ment leads to a CCS which is substantially different from the
unconditional FCS.

Experimentally, measurement of the CCS in the ESR-QPC
system can be implemented by replacing the side electrode
reservoir by two ferromagnetic terminals with the same
chemical potential. If the two terminals feature fully but oppo-
sitely spin-polarized tunnelings, this setup can be equivalently
mapped onto the model as shown in Fig. 1(a), with the ad-
vantage of adjusting the spin dependent tunnelings though
each terminal in a controllable manner. It thus enables the
measurement of the CCS for various ratios between the spin
tunneling rates.

III. CONDITIONAL COUNTING STATISTICS

Before we discuss the CCS, it is instructive to describe the
general idea of conventional FCS in mesoscopic transport.
This helps to get a better understanding of the difference
between the two.

A. Full counting statistics

The randomness in QD and QPC transport is characterized
by the joint probability distribution Pt (N) (N = {N↑, N↓, Nq}),
which describes the joint probabilities of finding N↑ spin-↑
electrons, N↓ spin-↓ electrons through the QD, and Nq elec-
trons through the QPC during the time interval [0, t]. The joint
probability distribution can be obtained from

Pt (N) = tr[ρ (N)(t )], (5)

where tr[· · · ] denotes the trace over the degrees of freedom
of the reduced system, ρ (N)(t ) is the N-resolved reduced den-
sity matrix [41] satisfying ρ(t ) = ∑

N ρ (N)(t ). Here, ρ(t ) =
trB[ρT(t )] is the unconditional reduced density matrix, with
ρT(t ) the density matrix of the entire system and trB[· · · ] the
trace over the reservoir’s degree of freedom.

However, due to the time dependence of the system Hamil-
tonian in Eq. (2), it is difficult to deal with the dynamics of the
reduced density matrix directly. One may either use Floquet
theory [42–45] or work in a time rotating frame. Here we
adopt the latter and introduce the total density matrix in the
rotating frame

�T(t ) = ei �
2 σztρT(t )e−i �

2 σzt , (6)

where σz is a pseudospin operator defined as σz = d†
↓d↓ −

d†
↑d↑. The equation of motion of �T(t ) simply reads

d

dt
�T(t ) = −i[HT(t ), �T], (7)
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where HT(t ) = HS + HB + HI(t ) is the entire Hamiltonian
in the time rotating frame. Each term, respectively, is given by

HS = 1

2
δESRσz + γRFσx, (8a)

HB = HB =
∑
kσ

εkσ c†
kσ

ckσ , (8b)

HI(t ) =
∑

k

(
ei �

2 t t∗
k↑c†

k↑d↑ + e−i �
2 t t∗

k↓c†
k↓d↓

) + H.c., (8c)

where δESR = � − � is the ESR detuning and σx is a pseu-
dospin operator defined as σx = d†

↑d↓ + d†
↓d↑. In the time

rotating frame, the reduced system Hamiltonian becomes time
independent, and the Hamiltonian for the electron reservoir
remains the same. Yet, the tunneling between the QD and
reservoir becomes time dependent, which will be eventually
irrelevant under the usual second-order perturbation expan-
sion.

In the rotating frame, the reduced density matrix �(t )
can be obtained by tracing the entire system density ma-
trix over the reservoir’s degrees of freedom, i.e., �(t ) =
trB[�T(t)]. As shown below, we can further unravel it into
�(t ) = ∑

N �(N)(t ), where �(N)(t ) is the N-resolved reduced
density matrix in the rotating frame. The corresponding joint
probability distribution in the rotating frame is thus given by

P′
t (N) = tr[�(N)(t )] = tr

[
ei �

2 σztρ (N)(t )e−i �
2 σzt

] = tr[ρ (N)(t )]

= Pt (N), (9)

which turns out to be exactly the same as the original proba-
bility function in Eq. (5). It is therefore justified to work in the
time rotating frame. The joint cumulant generating function
(CGF) Ft (χ) can be obtained via [17,18,46,47]

e−Ft (χ) =
∑

N

Pt (N)e−iN·χ = tr[�(χ, t )], (10)

where χ = {χ↑, χ↓, χq} are the counting fields associated
with the corresponding numbers of transferred particles N =
{N↑, N↓, Nq}, and �(χ, t ) is the χ-dressed reduced density
matrix

�(χ, t ) =
∑

N

�(N)(t )e−iN·χ. (11)

Under the usual second-order Born-Markov approxima-
tion, the χ-dressed reduced density matrix �(χ, t ) satisfies the
following quantum master equation:

�̇(χ, t ) = L(χ)�(χ, t ). (12a)

To be specific, in the Fock state representation of the QD:
|0〉, |↑〉, and |↓〉, standing for no extra electrons, one extra
spin-↑ electron, and one extra spin-↓ electron, respectively,
the reduced density matrix can be reexpressed as a column
vector � ≡ (�00, �↑↑, �↓↓, �↑↓, �↓↑), where �aa = 〈a|ρ|a〉 de-
notes the probability of the QD in the state |a〉 (a = 0,↑,↓)
and �↑↓ = 〈↑ |ρ|↓〉 denotes the coherences in the spin basis.
The other off-diagonal elements are dynamically decoupled
and thus excluded. Then L(χ) is explicitly given by

L(χ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

I0h(χq ) − �↑ 0 �↓eiχ↓ 0 0

�↑e−iχ↑ I1h(χq ) 0 iγRF −iγRF

0 0 I1h(χq) − �↓ −iγRF iγRF

0 iγRF −iγRF I1h(χq) + iδESR − �ϕ 0

0 −iγRF iγRF 0 I1h(χq ) − iδESR − �ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12b)

where h(χq) = eiχq − 1. The diagonal terms I jh(χq ) describe
counting of tunneling events through the QPC detector with
the tunneling currents I j depending on whether the QD is
empty ( j = 0) or occupied ( j = 1). It can be derived from
a microscopic theory in the large bias voltage regime with
unidirectional transport [29].

One may also describe the coupling between the spin and
an additional noisy environment, which, in a phenomenolog-
ical method, leads to spin relaxation (with typical time T1 in
which an excited spin state relaxes to the thermal equilibrium)
and spin dephasing (with T2 the time for losing the phase
coherence). In what follows, we assume T1 → ∞ in recog-
nition of recent transport experiments [35,48] but allow for
an environment-induced spin dephasing [49–51]. This enables
us to investigate the influence of a finite environment-induced
dephasing on the CCS. Yet, it should be stressed that the QPC
measurement can only distinguish whether the QD is occupied
or not [see the jumps in the QPC current in Figs. 1(b) and
1(c)]. It can not distinguish the two spin states |↑〉 and |↓〉,
and thus does not cause any measurement-induced dephasing.
Therefore �ϕ = 1

T2
+ �↓

2 is the total dephasing rate with 1
T2

purely due to coupling to the environment, and �↓
2 arising from

tunnel coupling between the QD and the side reservoir.
In the stationary limit, the CGF Ft (χ) is given by

[18,47,52] Ft (χ) = λ(χ)t , where λ(χ) is the unique eigen-
value of L(χ ) that satisfies λ(χ)|χ→0 → 0. All the cumulants
can be obtained by taking derivatives of the λ(χ) with respect
to the counting fields. For instance, simple expressions for
the first cumulants of the QD and the QPC can be obtained,
respectively, as

〈〈J↓〉〉 = ∂iχ↓λ(χ)|χ→0 = 4�↓�↑γ 2
RF

(
�↓ + 2

T2

)
N

= −〈〈J↑〉〉, (13a)

〈〈Iq〉〉 = ∂iχqλ(χ)|χ→0 = I0�
st
00 + I1�

st
11, (13b)

where I0 (I1) is the QPC current when the QD is in the absence
(presence) of an extra electron, and �st

00 = 4�↓γ 2
RF(�↓ +

2
T2

)/N and �st
11 = �st

↑↑ + �st
↓↓ = [�↑(�↓ + 2

T2
)(�2

↓ + 8γ 2
RF +

�↓ 2
T2

) + 4�↓δ2
ESR]/N are the stationary probabilities of

finding an empty and occupied QD, respectively, with N =
(�↓ + 2

T2
)(4γ 2

RF(�↓ + 2�↑) + �↓�↑(�↓ + 2
T2

)) + 4�↓�↑δ2
ESR
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denoting the normalization constant which ensures the
probability conservation �st

00 + �st
11 = 1.

Analogously, one may obtain the second cumulants of the
QD and the QPC as (for δESR = 0 and T −1

2 → ∞)〈〈
J2
σ

〉〉 = ∂2
iχ↓λ(χ)|χ→0

= 〈〈J↓〉〉16γ 4
RF(�2

↓ + 4�2
↑) + �2

↓�2
↑
(
�2

↓ − 8γ 2
RF

)
N 2

= −〈〈J↑J↓〉〉, (14a)〈〈
I2
q

〉〉 = ∂2
iχq

λ(χ)|χ→0 = 2(I0 − I1)2〈〈J↓〉〉

× 64γ 4
RF + 4�2

↓γ 2
RF + �4

↓
N 2

+ 2〈〈Iq〉〉, (14b)

respectively. In the limit of a vanishing Rabi frequency (γRF →
0), spin pumping is strongly suppressed and the spin transport
is thus blocked (〈〈Jσ 〉〉 → 0). As a consequence, the noise of
the spin current goes to zero (〈〈J2

σ 〉〉 → 0) and that of the QPC
current reduces to its background noise, i.e., 〈〈I2

q 〉〉 → 2〈〈Iq〉〉.
It should be stressed that the QPC is a noninvasive detector,

i.e., its current depends on the QD occupation, while the
QD dynamics is not influenced by the QPC current. This is
explicitly shown in the current cumulants of the QD, which
are independent of the QPC parameters, see, for instance, the
lowest two cumulants in Eqs. (13a) and (14a). That means, on
the level of ensemble average, the QPC measurements do not
physically affect the state of the QD system. This becomes ap-
parent if one sets χq = 0 in Eq. (12b) the dynamics of the QD
is completely independent of the QPC. Nevertheless, a partic-
ular detection outcome of the QPC gives rise to a conditional
backaction on the QD state, due to the information which we
acquire by the measurement. This statistical or information
backaction [20–24] can reveal a number of novel effects. In-
deed, the information backaction is not just a concept, but can
be measured experimentally [25]. In the following, we will in-
vestigate essentially this information backaction of ESR-QPC
system via conditional counting statistics.

B. Conditional counting statistics

We introduce the conditional probability distribution func-
tion Pt (N↑, N↓|Nq ) describing the probability of finding N↑
spin-↑ electrons and N↓ spin-↓ electrons have tunneled
through the QD, given that Nq electrons have tunneled through
the QPC during the time interval [0, t]. The conditional
probability distributions (or equivalently their corresponding
conditional counting statistics) play an essential role in the
statistical analysis of the dynamics. The corresponding condi-
tional CGF Ft (χ↑, χ↓|Nq ) is given by

eFt (χ↑,χ↓|Nq ) =
∑

N↑,N↓

Pt (N↑, N↓|Nq )eiN↑χ↑+iN↓χ↓ . (15)

The conditional moments can be obtained by taking the partial
derivatives

〈Nk↑
↑ (t )Nk↓

↓ (t )〉Nq = ∂
k↑
iχ↑∂

k↓
iχ↓eFt (χ↑,χ↓|Nq )|χ↑,χ↓→0. (16)

Now the central task is to evaluate the conditional CGF
Ft (χ↑, χ↓|Nq ). According to Bayes’s theorem, the condi-
tional probability distribution function Pt (N↑, N↓|Nq ) can be

expressed as

Pt (N↑, N↓|Nq ) = Pt (N)

Pt (Nq )
, (17)

where Pt (Nq ) is the marginal probability distribution of the
electrons which have tunneled through the QPC. The joint
probability distribution is given by Pt (N) = tr[�(N)(t )] as
shown in Eq. (9). Thereby, the particle-number-resolved re-
duced density matrix �(N)(t ) can be obtained via an inverse
Fourier transform

�(N)(t ) =
∫ 2π

0

dχ

(2π )3
e−iN·χ�(χ, t ), (18)

where the χ-dependent reduced density matrix satisfies the
QME in Eq. (12a). By combining Eqs. (15)–(18), we find the
spin-resolved conditional moments

〈Nk↑
↑ Nk↓

↓ 〉Nq =∂
k↑
iχ↑∂

k↓
iχ↓

∫ 2π

0

dχqe−iNqχq

2πPt (Nq )
tr[�(χ, t )]χ↑,χ↓→0, (19)

where �(χ, t ) is the solution of the generalized quantum mas-
ter equation (12).

Since an analytical solution of �(χ, t ) is not available, one
might solve Eq. (12) numerically for all the counting fields
and then perform the Fourier transform according to Eq. (19).
Yet, we will not calculate the conditional moments in this
way for two reasons. First, it is not necessary to evaluate the
full dependence of the density matrix on the counting fields.
What we need is the partial derivative of �(χ, t ) evaluated
at the point χ↑ = χ↓ = 0. Second, taking high order partial
derivatives by using the numerical calculated �(χ, t ) may
suffer from numerical instabilities. Therefore we introduce a
spin-resolved auxiliary reduced density matrix

�[k↑,k↓](χq, t ) ≡ ∂
k↑
iχ↑∂

k↓
iχ↓�(χ, t )|χ↑,χ↓→0 (k↑, k↓ � 0), (20)

which is a generalization of the auxiliary density matrix ap-
proach in Refs. [27,53,54] that includes the spin degrees of
freedom. Taking partial derivatives of Eq. (12a) with respect
to the counting field χ↑ by k↑ times and χ↓ by k↓ times, we
obtain the following coupled differential equations

�̇[0,0] = L[0,0]�[0,0], (21a)

�̇[0,1] = L[0,1]�[0,0] + L[0,0]�[0,1], (21b)

�̇[1,0] = L[1,0]�[0,0] + L[0,0]�[1,0], (21c)

�̇[0,2] = L[0,2]�[0,0] + 2L[0,1]�[0,1] + L[0,0]�[0,2], (21d)

�̇[1,1] = L[1,1]�[0,0] + L[1,0]�[0,1] + L[0,1]�[1,0]

+L[0,0]�[1,1], (21e)

�̇[2,0] = L[2,0]�[0,0] + 2L[1,0]�[1,0] + L[0,0]�[2,0], (21f)

· · · = · · · (21g)

�̇[k↑,k↓] = L[k↑,k↓]�[0,0] + k↓L[k↑−1,k↓]�[1,0]

+k↑L[k↑,k↓−1]�[0,1] + k↑k↓L[k↑−1,k↓−1]�[1,1]

+ · · · + L[0,0]�[k↑,k↓], (21h)

where, for simplicity, we have introduced the notation

L[k↑,k↓](χq) ≡ ∂
k↑
iχ↑∂

k↓
iχ↓L(χ)|χ↑,χ↓→0 (k↑, k↓ � 0). (22)
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By representing the density matrix as a column vector μ(χq, t ) ≡ (�[0,0], �[0,1], �[1,0], · · · , �[k↑,k↓] )T, Eq. (21) can be reexpressed
as

μ̇(χq, t ) = Z (χq)μ(χq, t ), (23)

where the super operator Z (χq) is given by

Z (χq)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L[0,0] 0 0 0 0 0 · · · 0

L[0,1] L[0,0] 0 0 0 0 · · · 0

L[1,0] 0 L[0,0] 0 0 0 · · · 0

L[0,2] 2L[0,1] 0 L[0,0] 0 0 · · · 0

L[1,1] L[1,0] L[0,1] 0 L[0,0] 0 · · · 0

L[2,0] 0 2L[1,0] 0 0 L[0,0] · · · 0
...

...
...

...
...

...
. . .

...

L[k↑,k↓] k↑L[k↑,k↓−1] k↓L[k↑−1,k↓] (k↓−1)L[k↑−2,k↓] k↓k↑L[k↑−1,k↓−1] (k↑−1)L[k↑,k↓−2] · · · L[0,0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

We assume that the counting starts at t = 0, where the
system has reached its stationary state such that �(N)(t =
0) = �stδN↑,0δN↓,0δNq,0 and thus �[0,0](χq, t = 0) = �(χ, t =
0)|χ↑,χ↓→0 = �st, with �st denoting the stationary reduced
density matrix. All the higher tier auxiliary density matri-
ces vanish at t = 0, i.e., �[k↑,k↓](χq, t = 0) = ∂

k↑
iχ↑∂

k↓
iχ↓�(χ, t =

0)|χ↑,χ↓→0 = 0 for k↑ + k↓ � 1, meaning Eq. (23) is solved
with the initial condition μ(χq, t = 0) ≡ (�st, 0, . . . , 0)T. In-
spection of Eq. (24) reveals that an arbitrary tier auxiliary
density matrix is only coupled to lower tier density matrices,
such that they form a closed set of equations. Thus, one only
has to solve Eq. (23) up to the tier corresponding to the desired
conditional moment.

By substituting the solution �[k↑,k↓](χq, t ) into Eq. (19),
one eventually arrives at the corresponding spin-resolved con-
ditional moments, from which one can equivalently obtain
the conditional cumulants. For instance, the lowest two spin-
resolved conditional cumulants are given by

〈〈Nσ 〉〉Nq = 〈Nσ 〉Nq , (25a)〈〈
N2

σ

〉〉
Nq

= 〈
N2

σ

〉
Nq

− 〈Nσ 〉2
Nq

. (25b)

Higher-order conditional cumulants can be obtained in an
analogous manner.

IV. RESULTS AND DISCUSSION

A. Conditional spin-resolved current cumulants

The spin-down conditional current (〈〈N↓〉〉Nq/tm) is plotted
in Fig. 2 for various ESR detunings with a given measurement
time tm. The spin-up counterpart satisfies 〈〈N↑〉〉Nq = −〈〈N↓〉〉Nq

and is not displayed in Fig. 2. When the QD is dominantly oc-
cupied (empty), the QPC current approaches I1 = 80� (I0 =
120�). To appropriately include the width of the probabil-
ity distribution of the QPC current which is approximately
5�, we therefore plot the spin-resolved conditional counting
statistics of the QD within the regime 75� � Nq/tm � 125�.
For comparison, we have also depicted the unconditional
currents by horizontal lines in Fig. 2(a), where each color

corresponds to the same parameters as the conditional cur-
rents. These unconditional currents obtained by averaging the
conditioned expectation values over Nq are in striking agree-
ment with the theoretical predictions.

Let us first consider the situation �↑ 
 �↓ (�↑ = 0.9�

and �↓ = 0.1�, where � = �↑ + �↓ is set as the unit of
energy throughout this work). In order to obtain a meaningful
statistics of spin-resolved currents, we employ a large mea-
surement time tm = 20�−1. For the above defined parameters,
the QD is most of the time occupied such that the QPC cur-
rent distribution is peaked roughly at Nq/tm ≈ 80� within the
regime 75� < Nq/tm < 100�. For 100� < Nq/tm < 125�,
the QPC current probability Ptm (Nq ) and the joint probability
Ptm (N↓, Nq ) are both quite small (but roughly on the same
order). According to Bayes’s theorem in Eq. (17), we thus
observe a finite value in the spin-resolved conditional current
through the QD. Although at small measurement times the
QPC currents have relatively broader distributions, the corre-
sponding spin-resolved conditional currents are qualitatively
the same (not shown here explicitly).

It is observed that in contrast to the unconditional current
cumulants in Eqs. (13a) and (14a) which are independent of
the QPC detection current, the conditional counterparts are
apparently sensitive to the QPC current. In comparison with
the conditional charge transport through a single QD [25], the
spin-resolved conditional current exhibits unique correlations.
First, we find a finite spin current even at Nq/tm = I0 and
Nq/tm = I1, the QPC endpoint currents corresponding to an
empty and occupied QD, respectively. The nonvanishing con-
ditional current is attributed to the QPC detector shot noise. If
one formally neglects the QPC shot noise (by expanding eiχq

up to the first order in χq), the conditional spin current would
vanish at the endpoints. An increase of the ESR detuning
suppresses the QPC shot noise (see the inset in Fig. 2), which
leads thus to a reduction of the spin-down conditional current,
particularly prominent at the endpoint Nq/tm = I1. The second
unique feature is that, different from the semicircular condi-
tional charge current in a single QD [25], the spin-resolved
conditional cumulant 〈〈N↓〉〉Nq is unambiguously asymmetric.
Especially, a radical change is observed for a large ESR
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FIG. 2. (a) The spin-resolved conditional current vs the QPC detector current for various ESR detunings with very asymmetric spin
tunneling rates �↑ = 9�↓. For comparison, the corresponding unconditional spin-resolved currents 〈〈J↓〉〉 are also plotted by the curves with
the same color. (b)The spin-resolved conditional current vs the QPC detector current for δESR = 0 with �↑ = �↓ (circles), �↓ = 9�↑ (squares),
and �↑ = 9�↓ (diamonds). The other plotting parameters are γRF = 2�, T −1

2 = 0, I0 = 120�, I1 = 80�, and a measurement time tm = 20�−1,
where � = �↑ + �↓ is set as unit of energy. (Inset) Unconditional QPC shot noise vs ESR detuning.

detuning: The semicircle-like behavior turns into a steplike
behavior such that the maximum is apparently shifted towards
a lower QPC current, see the dotted curve for δESR = 32� in
Fig. 2.

To elucidate this unique asymmetric correlation, we ex-
pand the system Hamiltonian in Eq. (8a) as

H̃S = 1
2 Ẽ (|+〉〈+| − |−〉〈−|), (26)

where Ẽ = (δ2
ESR + 4γ 2

RF
)

1
2 is the eigenenergy splitting, and

|+〉 and |−〉 are the eigenstates given by

|+〉 = sin

(
θ

2

)
|↑〉 + cos

(
θ

2

)
|↓〉, (27a)

|−〉 = cos

(
θ

2

)
|↑〉 − sin

(
θ

2

)
|↓〉. (27b)

Here θ is introduced via sin θ = 2γRF/Ẽ . As a result, the
tunnel-coupling Hamiltonian in Eq. (8c) becomes

H̃I(t ) =
∑

k

{[
ei �

2 t t∗
k↑ sin

(
θ

2

)
c†

k↑

+ e−i �
2 t t∗

k↓ cos

(
θ

2

)
c†

k↓

]
|0〉〈+|

+
[

ei �
2 t t∗

k↑ cos

(
θ

2

)
c†

k↑

− e−i �
2 t t∗

k↓ sin

(
θ

2

)
c†

k↓

]
|0〉〈−|

}
+ H.c. (28)

It is now apparent that the ESR system can be mapped onto
a two-level system tunnel-coupled to fully spin-up polarized
and spin-down polarized electrodes, as schematically shown
in Fig. 3. The tunneling amplitudes are effectively modulated
by the ESR detuning and Rabi frequency via θ . Again, the

time dependence in Eq. (28) is irrelevant under the second
order expansion and thus suppressed in Fig. 3.

For a vanishing ESR detuning (δESR → 0, θ → π
2 ), elec-

trons transfer from the spin-up polarized electrode to the two
states “|+〉” and “|−〉” with comparable rates as shown in
Fig. 3(a), where the thickness of the arrows indicates the
magnitude of the corresponding tunneling rates. Likewise,
the tunneling rates between the spin-down polarized elec-
trode and the states “|+〉” and “|−〉” are comparable. Yet, for
�↑ 
 �↓ it means that tunneling rates between the spin-up
polarized electrode and the system are much stronger than
those between the spin-down polarized electrode and the sys-
tem, implying that the system is most of the time occupied.
To quantitatively explain the asymmetry in the spin-resolved
conditional current, we depict in Fig. 4 the conditional
probabilities P(N↓|Nq ) for given QPC currents Nq/tm = 80�

and Nq/tm = 120� with different spin tunneling asymmetries
�↑ = 9�↓ and �↓ = 9�↑, respectively. For �↑ = 9�↓, the
conditional probability for Nq/tm = 120� [Fig. 4(b)] shows
a larger average value than that for Nq/tm = 80� [Fig. 4(a)].
This is the reason that we observe a larger conditional cur-
rent at Nq/tm = 120� than that at Nq/tm = 80�, as shown
by the diamonds in Fig. 2(b). Similar analysis applies to the
opposite case �↓ = 9�↑ in Fig. 4(c) and Fig. 4(d), which
explains a larger conditional current at Nq/tm = 80� than that
at Nq/tm = 120� [cf. the squares in Fig. 2(b)].

In the limit of a large ESR detuning (δESR 
 γRF , θ → 0),
the coupling between spin-up polarized electrode to the state
“|+〉” as well as that between spin-down polarized electrode
to the state “|−〉” have almost vanishing contributions, such
that the system can be mapped onto a coupled two-level
system, where the electrons tunnel via the following path:
Spin-up polarized electrode � |−〉 � |+〉 � spin-down po-
larized electrode, as indicated by the arrows in Fig. 3(d). In
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FIG. 3. (a) Different spin transport configurations in the eigenstate basis for (a) δESR = 0 and �↑ 
 �↓, (b) δESR = 0 and �↓ 
 �↑,
(c) δESR = 0 and �↓ = �↑, and (d) δESR 
 γRF and �↑ 
 �↓. The ESR detuning, together with the tunneling rates �σ can modulate the
tunneling strength in the eigenbasis, which is indicated by the thickness of the arrows in each panel.

the limit of strong spin tunneling asymmetry (�↑ 
 �↓), the
electron has a very low probability to tunnel out, such that it
will stay in the eigenstate |+〉 for a long time. This shows the
advantage of the eigenbasis picture (Fig. 3) in that it reveals
not only the occupation of the quantum dot, but also specif-
ically which eigenstate is dominantly occupied, as well as a
more detailed understanding of the spin transport processes.
In this case, a large δESR leads to a prominent suppression of
the QPC shot noise (cf. the inset in Fig. 2), which gives rise
to a strong inhibition of the spin-resolved conditional current
through the QD.

The occurrence of the step-like behavior in Fig. 2 can
be explained as follows. During the measurement time tm =
20�−1, at most one electron can tunnel out of the quantum
dot. The probability for multiple tunnel events is strongly sup-
pressed because of the large detuning, i.e., P(N↑ > 1 | Nq ) ≈
0. Moreover, P(N↑ = 0 | Nq 
 I1tm ) ≈ 0 if Nq is significantly
larger than I1tm. For this reason, we conclude that P(N↑ =
1 | Nq 
 I1tm ) ≈ 1, thus leading to the plateau observed in
Fig. 2(a). Accordingly, the noise is increasingly suppressed for
Nq/tm > 95� as can be seen in Figs. 5(a), 6(b), and 7(b) for
increasing detunings, as the probability distribution converges

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0 2 4 6 8 10
0.00

0.25

0.50

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10
0.00

0.25

0.50

FIG. 4. The conditional probability distributions P(N↓|Nq ) for a given QPC current Nq/tm = 80� with (a) �↑ = 9�↓ and (c) �↓ = 9�↑,
as well as these for Nq/tm = 120� with (b) �↑ = 9�↓ and (d) �↓ = 9�↑, respectively. The other plotting parameters are: γRF = 2�, T −1

2 = 0,
δESR = 0, and a measurement time tm = 20�−1.
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FIG. 5. (a) Spin-resolved conditional shot noise and (b) skewness vs QPC detection current for various ESR detunings in the absence of
environment-induced dephasing ( 1

T2
→ 0). The other plotting parameters are the same as those in Fig. 2.

to P(N↑ | Nq 
 I1tm ) ≈ δN↑,1 in this regime. This leads to a
formation of a peak in the noise around Nq/tm = 90�.

The intimate correlation between spin transport and QPC
detection is much more sensitively reflected in the higher-
order conditional cumulants, such as the conditional shot
noise 〈〈N2

↓〉〉Nq and skewness 〈〈N3
↓〉〉Nq , shown in Figs. 5(a)

and 5(b), respectively. For instance, the conditional shot
noise is much more asymmetric than the conditional current
for the same parameters in the conditional current. An in-
crease in ESR detuning leads to a general suppression of the
conditional shot noise. The semicircular-like behavior grad-
ually vanishes and prominent peaks appear at the position

where the conditional current shows a step-like structure.
For a sufficient large ESR detuning (cf. the dotted curve for
δESR = 32�), the local maximum turns into a global one.
The conditional skewness is more susceptible, which shows
a prominent dip even at δESR = 0. As the ESR detuning
grows, the dip gradually evolves into an inflexion. For suf-
ficient large δESR, the conditional skewness is remarkably
suppressed and becomes even negative when the QPC cur-
rent exceeds the critical value, as shown by the dotted curve
in Fig. 5(b).

The influence of the Rabi frequency on the spin-resolved
CCS is investigated in Fig. 6. For small Rabi frequencies,

FIG. 6. (a) Spin-resolved conditional current, (b) noise, and (c) signal-to-noise ratio vs QPC detection current for various Rabi frequencies
with δESR = 32�. The other plotting parameters are the same as those in Fig. 2.
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FIG. 7. (a) Spin-resolved conditional current and (b) shot noise vs QPC detection current for various environment-induced dephasing rates
( 1

T2
) with ESR detuning δESR = 32�. The horizontal lines are the corresponding unconditional currents and noises. Inset: The unconditional

spin-resolved current J↓ versus dephasing rate 1
T2

for δESR = 32�. The other plotting parameters are the same as those in Fig. 2.

the conditional current 〈〈N↓〉〉Nq/tm shows prominent step-like
structures and the conditional noise 〈〈N2

↓〉〉Nq/tm exhibits a
pronounced peak due to the increasing detunings. The effect
of an increasing γRF is twofold. First, as the Rabi frequency
increases, the step of the conditional current and the peak
of the noise both shift towards low Nq/tm. In this case, the
spin-down electron tends to dwell on the QD for a longer
time before it tunnels out to the electrode, leading thus to
a longer plateau. Second, both 〈〈N↓〉〉Nq/tm and 〈〈N2

↓〉〉Nq/tm
increase with rising Rabi frequency in general. This is due to
the fact that an increase in γRF leads to a growing θ , similar to a
decrease in ESR detuning. Thus, as γRF increases, the steplike
structure disappears, just as an decrease in δESR does. It is
worthwhile to mention that the CCS and the signal-to-noise
ratio [〈〈N↓〉〉Nq/(〈〈N2

↓〉〉Nq )1/2] both exhibit high sensitivity to
the Rabi frequency, showing their potential to probe the mag-
netic field in the x-y plane, which may serve as a promising
protocol for quantum metrology.

So far, we have analyzed the CCS in the absence of dephas-
ing, which is justified by the fact that the QPC detector does
not distinguish the two spin states. In order to quantitatively
elucidate the effect of finite dephasing on the CCS, we allow
for finite environment-induced dephasing in Eq. (12). The
spin resolved conditional cumulants for various dephasing
rates ( 1

T2
) with a large ESR detuning (δESR = 32�) are plotted

in Fig. 7. For 1
T2

→ 0, the conditional spin current shows
a step-like structure and the conditional spin current noise
exhibits a prominent peak as shown by the solid curves in
Fig. 7, see also Figs. 2 and 5(a). A small increase in 1

T2
gives

rise to a general enhancement of the conditional current and
noise, cf. the dashed and dash-dotted curves in Figs. 7(a) and

7(b), respectively. In the regime of large depahsing rates, both
conditional current and noise decreases with 1

T2
, see the dotted

curve in Figs. 7(a) and 7(b) for 1
T2

= 100�. The conditional
and uncondtional current and noise show qualitatively similar
behavior with the dephasing rate, see, for instance, the uncon-
ditional current in the inset of Fig. 7(a). Here, both conditional
current and unconditional current [see Eq. (13a)] are sensitive
to the dephasing. This shows a striking difference in compar-
ison with the unconditional current through a DQD system,
which is independent of dephasing [55,56]. The unconditional
currents and noises obtained from averaging the conditioned
expectation values are also plotted by the horizontal lines for
comparison. It is found that they are in striking agreement
with the results using the unconditional master equation (not
shown explicitly).

B. Conditional QPC current cumulants

Let us now turn the perspective around and consider the
QD as a detector and investigate the conditional QPC current
fluctuations, given an observation of the QD spin-resolved
current. In the low-temperature regime, they can be theoret-
ically evaluated following a similar procedure as described
in Sec. IV. In each trajectory, a jump down (up) of the QPC
current indicates that an electron has tunneled into (out of)
the QD. Using this deterministic correlation, we obtain the
number of tunneled electrons through the QD by counting the
number of jumps during a given measurement time tm. By
utilizing a large number of single trajectories with the same
measurement time tm, one is able to obtain the statistics of
the QPC current for a given number of electrons transferred
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FIG. 8. Conditional QPC current for (a) �↑ = 9�↓, (b) �↑ = �↓, (c) �↓ = 9�↑ and QPC noise for (e) �↑ = 9�↓, (f) �↑ = �↓, and (g)
�↓ = 9�↑ vs spin-resolved current N↓/tm into the QD for various environment-induced dephasing rates ( 1

T2
). (d) The stationary QD occupation

probabilities �st
00 and �st

11, and (h) the condtional QPC noise vs spin tunneling asymmetry for a spin-resolved current N↓/tm = 0.1� with
1
T2

→ 0. The ESR detuning is set to zero (δESR = 0). The other plotting parameters are the same as those in Fig. 2.

through the QD. Thus, the QD is automatically implemented
as a detector to investigate the conditional QPC current fluc-
tuations without having to introduce additional amplifiers.

Figure 8 shows the influence of environment-induced
dephasing on the conditional QPC current fluctuations for
various spin tunneling configurations. For �↑ 
 �↓, the QD
is most of the time occupied and thus the QPC almost always
exhibits the lower current I1, except for some rare jumps due
to spin tunneling events, see Fig. 1(b). If one adds an extra
jump in Fig. 1(b) (see the dotted “up and down” switch), it
would mean an increase in spin current and a rising of the QPC
current. Both conditional QPC current and noise increase
monotonically with the spin-resolved current. Furthermore,
we find that both are insensitive to the environment-induced
dephasing. This corresponds to the situation with minimum
backaction of the QD on the QPC current cumulants.

Strikingly, for the conditional noise, anomalous depen-
dence on the environment-induced dephasing is observed.
In contrast to previous observations that dephasing in-
creases noise [57], the condtional QPC noise is suppressed
with rising dephasing rate. This unique feature is shown
even more clearly for symmetric spin tunnelings (�↑ = �↓),
see Fig. 8(f).

The situation becomes very different in the opposite case of
�↓ 
 �↑, where, most of the time, the QD is empty and the
corresponding QPC current is in the upper level I0. Adding
an extra jump in Fig. 1(c) (see the dotted “down and up”
switch) would increase the spin current but decrease the QPC
currents. This explains the results in Fig. 8(c), where 〈〈Nq〉〉N↓
decreases with the rising spin-resolved current. An increase in
dephasing leads to incoherent spin jumps which suppress the
conditional QPC current. The conditional noise shows some
peculiar behavior. For weak dephasing, the conditional noise
increases slightly with the spin-resolved current, see the solid

and dashed curves for 1
T2

→ 0 and 1
T2

= 4�, respectively, in
Fig. 8(g). In the case of a large dephasing rate, it decreases
monotonically with spin-resolved current, see the dot-dashed
curve in Fig. 8(g). This unique dependence of the conditional
QPC current noise on the dephasing rate are out of the de-
scription scope of the rate equation in sequential transport
through a single QD [25]. Remarkably, in contrast to the case
of �↑ 
 �↓, the conditional QPC noise now increases with
rising dephasing rate.

In order to investigate the anomolous behavior and de-
termine at which turnover point the conditional QPC noise
changes its dependence on the environment-induced dephas-
ing, we plot 〈〈N2

q 〉〉N↓ versus �↓ (with fixed � = �↓ + �↓) for
an arbitrary spin-resolved current N↓/tm = 0.1� in Fig. 8(h).
We find that the turning point occurs at �↓ = 2�↑, which
corresponds to a crossing in the QD occupation [see Fig. 8(d)].
We ascribe this anomalous behavior to a combined effect of
QD occupation and environment-induced dephasing. From
Fig. 7(d), we observe that the QD is dominantly empty for
�↓/�↑ > 2. In this case, an increase of the dephasing leads
to the loss of coherence of the system, such that the system
can be described by a sequential tunneling picture. The re-
sultant conditional QPC current noise is thus consistent with
the previous observation that it increases the dephasing. In
the opposite case of �↓/�↑ < 2, the QD is most of the time
occupied by an electron. A strong dephasing not only leads to
the loss of coherence, but also to a prominent localization of
the electron in the QD. This inhibits electron tunneling though
the QD and consequently suppresses the QPC current and its
noise. This reveals that the QPC current fluctuations depend
sensitively on the QD occupation and environment-induced
dephasing, demonstrating the great advantage of the CCS over
the unconditional FCS in revealing the detailed correlation be-
tween the system and detector, even for a noninvasive detector.
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V. CONCLUSIONS

We have investigated the conditional counting statistics of
an ESR pumped QD coupled to a side electrode under con-
tinuously monitoring by a QPC detector. The measurement
is enabled by a spin-to-charge mechanism which does not
distinguish between the two spin states, such that it does not
give rise to measurement-induced dephasing. In contrast to the
unconditional cumulants which are independent of the QPC
measurement, the detector’s information backaction leads to
a number of unique features in the spin-resolved conditional
fluctuations and signal-to-noise ratio, which are intimately
associated with the external magnetic field. We furthermore
turned the perspective around and considered the QD as a
“detector” to investigate the conditional QPC current fluctu-
ations, given an observation of a spin-resolved current. We
find an intriguing transition point where the conditional QPC
noise changes its dependence on the environment-induced
dephasing, corresponding to a crossing of the occupation of

the QD. Our results unambiguously show that the information
backaction of one conductor renders the statistical fluctuations
of the other even for a noninvasive detector. In particular,
it also implies the great potential of the conditional count-
ing statistics to serve as a promising detection protocol in
the field of quantum metrology. This work will facilitate the
measurement of these intriguing correlations in near future
experiments.
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