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Machine learning based nonlocal kinetic energy density functional for simple metals and alloys
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Developing an accurate kinetic energy density functional (KEDF) remains a major hurdle in orbital-free
density functional theory. We propose a machine-learning-based physical-constrained nonlocal (MPN) KEDF
and implement it with the usage of the bulk-derived local pseudopotentials and plane wave basis sets in the
ABACUS package. The MPN KEDF is designed to satisfy three exact physical constraints: the scaling law
of electron kinetic energy, the free electron gas limit, and the non-negativity of Pauli energy density. The
MPN KEDF is systematically tested for simple metals, including Li, Mg, Al, and 59 alloys. We conclude
that incorporating nonlocal information for designing new KEDFs and obeying exact physical constraints are
essential to improve the accuracy, transferability, and stability of ML-based KEDF. These results shed new light
on the construction of ML-based functionals.
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I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT) is a widely
used ab initio method in materials science [1,2]. How-
ever, its computational complexity of O(N3), where N is
the number of atoms, poses significant challenges for large
systems. Alternatively, orbital-free density functional theory
(OFDFT) [3,4] calculates the noninteracting electron kinetic
energy Ts directly from the charge density instead of relying
on the one-electron Kohn-Sham orbitals. As a result, OFDFT
achieves a more affordable computational complexity of typi-
cally O(N ln N ) or O(N ) [5–8]. Given that Ts is comparable
in magnitude to the total energy, the accuracy of OFDFT
largely depends on the approximated form of the kinetic
energy density functional (KEDF). However, developing an
accurate KEDF has been a major hurdle in the field of OFDFT
for decades.

Over the past few decades, continuous efforts have been
devoted to developing analytical KEDFs [4,9]. In general,
KEDFs can be classified into two categories. The first cate-
gory comprises local and semilocal components in KEDFs,
where the kinetic energy density is a function of the charge
density, the charge density gradient, the Laplacian of charge
density, or even higher-order derivatives of the charge den-
sity [10–15]. The second category consists of nonlocal forms
of KEDFs, where the kinetic energy density is a functional
of charge density, such that the kinetic energy density at
each point in real space depends on the nonlocal charge
density [16–20]. Typically, semilocal KEDFs are more com-
putationally efficient, while nonlocal ones offer a higher
accuracy. However, since most of the existing nonlocal
KEDFs are constructed based on the Lindhard response func-
tion, which is accurate for nearly free electron gas, they are
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mainly adequate for simple metals [16,17]. Some KEDFs
were proposed to describe semiconductor systems, but they
cannot work well for simple metals [18–20]. As a result, a
KEDF that works for both simple metal and semiconductor
systems is still lacking, and it is still unclear how to construct
it systematically.

In recent years, machine learning (ML) techniques
have been involved in the developments of computational
physics [21]. In particular, the remarkable fitting ability of
ML models has been demonstrated in various applications,
including the fitting of potential energy surfaces in molecu-
lar dynamics [22,23], as well as fitting exchange-correlation
functionals [24–27] and Hamiltonian matrices [28] within the
framework of density functional theory (DFT) [1,2]. Addi-
tionally, there have been endeavors to construct ML-based
KEDFs within the framework of OFDFT [29–35]. For exam-
ple, Imoto et al. implemented a semilocal ML-based KEDF,
which takes dimensionless gradient and dimensionless Lapla-
cian of charge density as descriptors and puts the enhancement
factor of kinetic energy density as the output of neural network
(NN) [33]. This model exhibits convergence and satisfies the
scaling law, but it overlooks nonlocal information crucial for
improving the accuracy of KEDFs. Ryczko et al. implemented
a nonlocal ML-based KEDF, utilizing a voxel deep NN, but
this model could not achieve convergence in OFDFT compu-
tations [34]. Thus, it is still a formidable task to construct an
accurate, transferable, and computationally stable ML-based
KEDF.

In this work, as the first step to construct an ML-based
KEDF that works for both simple metal and semiconductor
systems, we construct an ML-based physical-constrained non-
local KEDF (MPN KEDF) for simple metals and their alloys,
which (i) contains nonlocal information, (ii) obeys a series
of exact physical constraints, and (iii) achieves convergence
via careful design of descriptors, NN output, postprocessing,
and loss function, etc. The performance of the MPN KEDF is
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systematically evaluated by testing on a series of simple
metals, including lithium (Li), magnesium (Mg), aluminum
(Al), and their alloys. In particular, incorporating nonlo-
cal information and exact physical constraints is crucial to
improving the accuracy, transferability, and stability of ML-
based KEDFs [31].

The rest of this paper is organized as follows. In Sec. II, we
propose an ML-based KEDF that satisfies physical constraints
and introduces numerical details of KSDFT and OFDFT cal-
culations. In Sec. III, we analyze the performances of the
MPN KEDF and discuss the results. Finally, the conclusions
are drawn in Sec. IV.

II. METHODS

A. Pauli energy and Pauli potential

In general, the noninteracting kinetic energy Ts can be
divided into two parts [36],

Ts = TvW + Tθ , (1)

where

TvW = 1

8

∫ |∇ρ(r)|2
ρ (r)

d3r (2)

is the von Weizsäcker (vW) KEDF, [12] a rigorous lower
bound to the Ts, with ρ(r) being the charge density. The
second term Tθ represents the Pauli energy, which takes the
form of

Tθ =
∫

τTFFθd3r, (3)

where the Thomas-Fermi (TF) kinetic energy density [10,11]
term is

τTF = 3
10 (3π2)2/3ρ5/3. (4)

Additionally, Fθ denotes the enhancement factor. The corre-
sponding Pauli potential is given by

Vθ (r) = δEθ /δρ(r). (5)

The Pauli energy and Pauli potential satisfy several exact
physical constraints. For example, first, the scaling law is

Tθ [ρλ] = λ2Tθ [ρ], (6)

where ρλ = λ3ρ(λr) and λ is a positive number [36].
Second, in the free electron gas (FEG) limit, the TF KEDF

is exact, and the vW part vanishes so that the enhancement
factor in the FEG limit takes the form of

Fθ (r)|FEG = 1. (7)

In addition, the Pauli potential returns to the potential of TF
KEDF VTF(r)

Vθ (r)|FEG = VTF(r) = 1
2 (3π2)2/3ρ2/3. (8)

Third, the non-negativity ensures

Fθ (r) � 0 (9)

and

Vθ (r) � 0. (10)

FIG. 1. Workflow of the MPN KEDF. F NN(r) is the enhance-
ment factor obtained by the deep neural network (NN), and F NN|FEG

denotes the enhancement factor under the free electron gas (FEG)
limit. In order to ensure both the FEG limit and the non-negativity
of Pauli energy density are satisfied, the enhancement factor of Pauli
energy is defined as F NN

θ = softplus[F NN − F NN|FEG + ln (e − 1)],
where softplus(x) = ln(1 + ex ) is an activation function commonly
used in machine learning with softplus(x)|x=ln(e−1) = 1. The defined
formulas are used to evaluate the kinetic energy and kinetic potential.

In order to train the MPN KEDF, we collect the Pauli
energy and Pauli potential data from KSDFT calculations per-
formed on a set of selected systems. In detail, with the help of
the Kohn-Sham orbitals and eigenvalues, in a spin degenerate
system, the Pauli energy density can be analytically expressed
by [36]

τKS
θ =

M∑
i=1

fi|∇ψi(r)|2 − |∇ρ|2
8ρ

, (11)

while the Pauli potential has the form of

V KS
θ = ρ−1

(
τKS
θ + 2

M∑
i=1

fi(εM − εi )ψ
∗
i ψi

)
, (12)

where ψi(r) denotes an occupied Kohn-Sham orbital with
index i, while εi and fi are the corresponding eigenvalue and
occupied number, respectively. In addition, M represents the
highest occupied state, and εM is the eigenvalue of ψM (r), i.e.,
the chemical potential.
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B. Design neural network based on exact physical constraints

The workflow of the MPN KEDF is summarized in Fig. 1.
The major structure of the MPN KEDF is an NN composed of
one input layer consisting of four nodes, three hidden layers
with ten nodes in each layer, and an output layer with one
node. The activation functions used in the hidden layers are
chosen to be hyperbolic tangent functions, i.e., tanh(x). In
order to ensure that the calculated Pauli energy and potential
obey the physical constraints mentioned above, the output
of the NN is chosen as the enhancement factor Fθ for each
real-space grid point r, which is denoted as F NN(r). Next,
we elucidate how nonlocal information and exact physical
constraints can be incorporated into the NN to improve its
accuracy and reliability.

As shown in Fig. 1, we define four descriptors
{ p̃, p̃nl, ξ̃ , ξ̃nl} (vide infra) as the input of the NN for the
MPN KEDF. The first descriptor p̃(r) is semilocal, while the
other three are nonlocal. First, the semilocal descriptor is the
normalized dimensionless gradient of the charge density given
by

p̃(r) = tanh (χp p(r)), (13)

where the parameter p(r) is evaluated via

p(r) = |∇ρ(r)|2/[2(3π2)1/3ρ4/3(r)]2. (14)

Here, χp is a hyperparameter to control the distribution of p̃.
Second, we propose a nonlocal descriptor of p̃, which is

defined as

p̃nl(r) =
∫

w(r − r′) p̃(r′)d3r′, (15)

where w(r − r′) is the kernel function similar to the Wang-
Teter [16] kernel function, satisfying∫

w(r − r′)d3r′ = 0. (16)

The kernel function is defined in reciprocal space as

w(η) =
(

1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
)−1

− 3η2 − 1. (17)

Here η = k
2kF

is a dimensionless reciprocal space vector, while
kF = (3π2ρ0)1/3 is the Fermi wave vector with ρ0 being the
average charge density.

The third and fourth nonlocal descriptors represent the
distribution of charge density and take the form of

ξ̃ (r) = tanh

(∫
w(r − r′)ρ1/3(r′)d3r′

ρ1/3(r)

)
, (18)

and

ξ̃nl(r) =
∫

w(r − r′)ξ̃ (r′)d3r′, (19)

respectively.
In summary, the MPN KEDF is characterized by the above

four descriptors: { p̃, p̃nl, ξ̃ , ξ̃nl}, with χp = 0.2 being an em-
pirical parameter adopted in all calculations. Next, we propose
three physical constraints that are met by our ML-based MPN
KEDF.

FIG. 2. Illustration of the scaling law introduced in Eq. (6). The
gray line represents the function of λ2Ts[ρ], where ρ denotes the
ground charge density of face-centered cubic (fcc) Al as obtained
by the MPN KEDF. The red stars denote the kinetic energies of
ρλ = λ3ρ(λr) computed using the MPN KEDF for different values
of λ, namely 0.25, 0.5, 1.0, 2.0, and 3.0. All the red stars fall on the
gray line, indicating that the scaling law Ts[ρλ] = λ2Ts[ρ] is exactly
obeyed by the MPN KEDF.

First, the scaling law of noninteracting electron kinetic
energy is ensured when we design the above descrip-
tors. In detail, under the scaling translation ρ(r) → ρλ =
λ3ρ(λr), the descriptors { p̃(r), p̃nl(r), ξ̃ (r), ξ̃nl(r)} become
{ p̃(λr), p̃nl(λr), ξ̃ (λr), ξ̃nl(λr)}, i.e., the descriptors are in-
variant under the scaling transformation, and the detailed
derivation can be found in the Supplemental Material
(SM) [37]. Since the TvW term satisfies the scaling law, we
have

TMPN[ρλ] = TvW[ρλ] + λ5
∫

τTF(λr)

× F NN
θ ( p̃(λr), p̃nl(λr), ξ̃ (λr), ξ̃nl(λr))d3r

= λ2

[
TvW[ρ] +

∫
τTF(λr)

× F NN
θ ( p̃(λr), p̃nl(λr), ξ̃ (λr), ξ̃nl(λr))d3(λr)

]

= λ2TMPN[ρ]. (20)

In order to verify the scaling law, we obtain the ground-state
charge density ρ(r) of fcc Al with the MPN KEDF, then the
kinetic energy of ρλ = λ3ρ(λr) with various λ (0.25, 0.5, 1.0,
2.0, and 3.0) are calculated by the MPN KEDF. As displayed
in Fig. 2, all of the TMPN[ρλ]s computed by the MPN KEDF
fall on the line of f (λ) = λ2Ts[ρ], demonstrating that the
MPN KEDF obeys the scaling law.

The second and third constraints, i.e., the FEG limit and the
non-negativity of Pauli energy density, are introduced through
postprocessing of the deep neural network. In the FEG limit,
all four descriptors become zero, and hence we define the
output of the NN in this limit as F NN|FEG. In addition, the
enhancement factor of Pauli energy is defined as

F NN
θ = softplus(F NN − F NN|FEG + ln (e − 1)), (21)
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where F NN is the output of NN, and

softplus(x) = ln(1 + ex ) (22)

is an activation function commonly used in machine learning,
satisfying

softplus(x) � 0 (23)

and

softplus(x)|x=ln(e−1) = 1. (24)

By construction, the non-negativity constraint is satisfied as

F NN
θ � 0, (25)

and in the FEG limit where the charge density is a constant,
we have

F NN
θ |FEG = softplus(F NN|FEG − F NN|FEG + ln (e − 1))

= 1, (26)

thereby ensuring that the FEG limit is also exactly satisfied.
We note that the selection of kernel function and descriptors
guarantees that once the FEG limit of Pauli energy is met,
the FEG limit of Pauli potential is automatically satisfied, as
discussed in Sec. III of SM [37].

Figure 1 summarizes the workflow of the MPN KEDF,
which involves the above-mentioned physical constraints.
First, for each real-space grid point, the descriptors of
charge density ρ(r) ({ p̃, p̃nl, ξ̃ , ξ̃nl}) are entered into NN
to get the corresponding enhancement factor F NN(r). Sec-
ond, the descriptors of FEG ({ p̃ = 0, p̃nl = 0, ξ̃ = 0, ξ̃nl =
0}) are fed into the NN, and the enhancement factor of
FEG F NN|FEG is obtained. Third, to ensure both the FEG
limit and the non-negativity of Pauli energy density are sat-
isfied, the enhancement factor of Pauli energy is defined
as F NN

θ = softplus(F NN − F NN|FEG + ln (e − 1)). Finally, the
kinetic energy and kinetic potential are calculated by the MPN
KEDF using the defined formulas.

C. Training details

Before training the MPN KEDF, the loss function is
defined as

L = 1

N

∑
r

[(
F NN

θ − F KS
θ

F̄ KS
θ

)2

+
(

V MPN
θ − V KS

θ

V̄ KS
θ

)2
]

+ [F NN|FEG − ln(e − 1)]2. (27)

where N is the number of grid points, and F̄ KS
θ (V̄ KS

θ ) rep-
resents the mean of F KS

θ (V KS
θ ). The first term helps NN to

learn information from the Pauli energy, while the second term
emphasizes the significance of reproducing the correct Pauli
potential. We emphasize that fitting the Pauli potential is cru-
cial in determining the optimization direction and step length
during the OFDFT calculations, and V MPN

θ can be obtained
through the back propagation of NN, as derived in SM [37].
The last term is a penalty term to reduce the magnitude of
the FEG correction, which improves the stability of the MPN
KEDF.

The training set consists of eight metallic structures,
namely bcc Li, fcc Mg, fcc Al, as well as five alloys: Li3Mg

(mp-976254), LiMg (mp-1094889), Mg3Al (mp-978271),
β ′′ MgAl3 [38], LiAl3 (mp-10890), where the numbers in
brackets are the Materials Project IDs [39]. We performed
KSDFT calculations to obtain the ground charge density
and calculate the corresponding descriptors. Additionally, the
Pauli energy and potential are calculated using Eqs. (11)
and (12), respectively. These calculations are performed on
a 27 × 27 × 27 grid, resulting in a total of 157 464 grid points
in the training set.

D. Numerical details

We have employed the ABACUS 3.0.4 packages [40] to
carry out OFDFT and KSDFT calculations, while for OFDFT
with the Wang-Govind-Carter (WGC) KEDF [17], we have
utilized the PROFESS 3.0 package [7]. The MPN KEDF is
implemented in ABACUS using the LIBTORCH package [41],
and the LIBNPY package is adopted to dump the data. Table
S1 [37] lists the plane-wave energy cutoffs employed in both
OFDFT and KSDFT calculations, as well as the Monkhorst-
Pack k-point samplings [42] utilized in KSDFT. For both
OFDFT and KSDFT calculations, we used the Perdew-Burke-
Ernzerhof (PBE) [43] and bulk-derived local pseudopotentials
(BLPS) [44]. Additionally, we used the Gaussian smearing
method with a smearing width of 0.1 eV in our KSDFT
calculations.

In order to calculate the ground-state bulk properties, we
first optimize the crystal structures until the stress tensor
elements are below 5 × 10−7 Hartree/Bohr3, then compress
and expand the lattice constant of the unit cell from 0.99a0

to 1.01a0, where a0 is the equilibrium lattice constant. Once
the energy-volume curve is obtained, the bulk modulus B of a
given system is fitted by Murnaghan’s equation of state [45].

We compare the results obtained by the MPN KEDF to
those obtained from OFDFT calculations with traditional
KEDFs. Specifically, we have employed semilocal KEDFs
such as the TFλvW [46] and the Luo-Karasiev-Trickey (LKT)
KEDFs [13], as well as the nonlocal ones including the
Wang-Teter (WT) [16] and WGC KEDFs. The parameter λ

of TFλvW has been set to be 0.2, and the parameter a of the
LKT KEDF is set to be 1.3, as in the original work [13]. In ad-
dition, we set α = 5+√

5
6 , β = 5−√

5
6 and γ = 2.7 in the WGC

KEDF [17], as well as α = 5
6 , β = 5

6 in the WT KEDF [16].
The formation energy Ef of Li-Mg-Al alloy is defined as

Ef = 1

N
(Etotal − nLiELi − nMgEMg − nAlEAl), (28)

where Etotal is the total energy of the alloy, and ELi, EMg, and
EAl denote the equilibrium energy of the bcc Li, hcp Mg,
and fcc Al structures, respectively. Furthermore, nLi, nMg, and
nAl depict the number of Li, Mg, and Al atoms, respectively.
N = nLi + nMg + nAl denotes the total number of atoms of the
alloy.

The mean absolute relative error (MARE) and mean abso-
lute error (MAE) of property x are respectively defined as

MARE = 1

N

N∑
i

∣∣∣∣xOF
i − xKS

i

xKS
i

∣∣∣∣, (29)
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FIG. 3. MAREs of bulk properties of Li, Mg, and Al systems, i.e., (a) the bulk moduli (B in GPa), (b) the equilibrium volumes (V0 in
Å3/atom), and (c) the total energies of given systems (E0 in eV/atom). The MARE defined in Eq. (29) is obtained by comparing OFDFT to
KS-BLPS results. We use body-centered cubic (bcc), fcc, simple cubic (sc), and cubic diamond (CD) structures of Li. We also adopt hexagonal
close-packed (hcp), fcc, bcc, and sc structures of Mg. For Al systems, we take fcc, hcp, bcc, and sc structures.

MAE = 1

N

N∑
i

∣∣xOF
i − xKS

i

∣∣. (30)

Here N is the number of data points, xOF
i and xKS

i are
properties obtained from OFDFT and KSDFT calculations,
respectively.

III. RESULTS AND DISCUSSION

In order to examine the precision and transferability of
the MPN KEDF, we prepared two testing sets. The first set
comprises four structures of Li (bcc, fcc, sc, and CD), four
structures of Mg (hcp, fcc, bcc, and sc), and four structures
of Al (fcc, hcp, bcc, and sc). We evaluated the properties of
these bulk systems, including the bulk moduli, the equilibrium
volumes, and the equilibrium energies using various KEDFs.
For the second testing set, we selected 59 alloys obtained
from the Materials Project database [39], including 20 Li-Mg
alloys, 20 Mg-Li alloys, 10 Li-Al alloys, and 9 Li-Mg-Al
alloys, and the detailed information of these alloys are listed
in Table S2 [37].

Notably, most of the structures in the two testing sets do
not appear in the training set, allowing for an unbiased com-
parison. We systematically compared the total energies, the
formation energies, and the charge densities of alloys within

the second testing set. We also trained another semilocal ML-
based KEDF with descriptors as { p̃, q̃} with q̃ = tanh (0.1q),
where q = ∇2ρ/[4(3π2)2/3ρ5/3]. However, we found this
semilocal ML-based KEDF cannot achieve convergence in all
tested systems.

A. Simple metals

Figure 3 displays the MAREs of bulk properties of Li, Mg,
and Al systems. Compared to the nonlocal WT and WGC
KEDFs, the semilocal KEDFs (the TFλvW and LKT KEDFs)
yield larger MAREs across all the properties in all three
systems, indicating that the nonlocal information is crucial
to enhance the accuracy of KEDF. Comparatively, the MPN
KEDF yields MAREs slightly larger than those of the WT
and WGC KEDFs but does not exceed those of semilocal
ones. Notably, the MPN KEDF achieves a lower MARE of
1.37% for the bulk modulus of Mg, outperforming WT and
WGC KEDFs, which exhibit MAREs of 2.32% and 3.73%,
respectively. On the other hand, the poorest results obtained
by the MPN KEDF are the bulk modulus of Al, where it
exhibits a MARE of 7.75%, nearly three times than those
from the WT (2.41%) and WGC (2.26%) KEDFs. This may be
caused by the fact that we did not include more Al structures
with different densities in the training set. However, even in
this case, the MAREs obtained by the TFλvW (40.72%) and
LKT (16.69%) KEDFs are almost five and two times higher

FIG. 4. (a) Total energies (in eV/atom) and (b) formation energies (in eV) of 59 alloys, including 20 Li-Mg alloys, 20 Mg-Li alloys, 10
Li-Al alloys, and 9 Li-Mg-Al alloys. Different colors indicate the formation energies from different KEDFs (TFλvW, LKT, WT, and MPN),
while different shapes of markers indicate different alloys.
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TABLE I. MAEs [Eq. (30)] of the total energies and forma-
tion energies of 59 alloys obtained by comparing various KEDFs
(TFλvW, LKT, WT, and MPN) in OFDFT to KS-BLPS results. The
systems include 20 Li-Mg alloys, 20 Mg-Li alloys, 10 Li-Al alloys,
and 9 Li-Mg-Al alloys.

MAE of total energy
(eV/atom) LiMg MgAl LiAl LiMgAl Total

TFλvW 0.540 1.330 0.873 0.999 0.934
LKT 0.040 0.156 0.351 0.124 0.145
WT 0.013 0.059 0.082 0.031 0.043
MPN 0.078 0.163 0.146 0.106 0.123

MAE of formation
energy (eV) LiMg MgAl LiAl LiMgAl Total

TFλvW 0.022 0.061 0.103 0.036 0.051
LKT 0.041 0.189 0.397 0.138 0.166
WT 0.005 0.050 0.077 0.023 0.035
MPN 0.015 0.027 0.056 0.024 0.028

than that of the MPN KEDF. As a result, we conclude that
the MPN KEDF yields reasonable accuracy when compared
to other nonlocal KEDFs.

It is noteworthy that the energy difference between the fcc
and hcp structures of bulk Al is small, which is 0.025 eV/atom
as predicted by KSDFT, and it is sensitive to the accuracy
of KEDF [47]. Both TFλvW and LKT KEDFs, as semilocal
KEDFs, fail to distinguish this subtle energy difference and
predict it as 0.000 eV/atom. In contrast, the nonlocal WT
and WGC KEDFs yield nonzero energy differences of 0.018
and 0.016 eV/atom, respectively. Moreover, the MPN KEDF
predicts the energy difference to be 0.021 eV/atom, which is
close to the result of 0.025 eV/atom obtained by KSDFT and
is more accurate than the WT and WGC KEDFs. This result
emphasizes the importance of involving the nonlocal informa-
tion again, which enables the MPN KEDF to distinguish the
subtle difference between similar crystal structures [47].

B. Alloys

Figure 4 illustrates the total energies and the formation
energies of 59 alloys obtained by different KEDFs in OFDFT
calculations, and their corresponding MAEs are listed in Ta-
ble I. Notably, the WGC KEDF failed to achieve convergence
for nine alloys; therefore, we have excluded the WGC re-
sults from Table I. Regarding the prediction of total energy
shown in Fig. 4(a), the TFλvW KEDF consistently under-
estimates the values compared to those obtained by KSDFT,

resulting in a large MAE of 0.934 eV/atom. In contrast, the
LKT KEDF performs better with a reduced MAE of 0.145
eV/atom, while the nonlocal WT KEDF yields a lower MAE
of 0.043 eV/atom. The MPN KEDF yields a higher MAE
(0.123 eV/atom) than the WT KEDF but still outperforms
the TFλvW and LKT KEDFs. As for the formation energies
shown in Fig. 4(b), we observe that the LKT KEDF con-
sistently yields larger values compared to KSDFT, resulting
in a high MAE of 0.166 eV, which is much larger than the
MAEs obtained by the TFλvW KEDF (0.051 eV) and WT
KEDFs (0.035 eV). Remarkably, the MPN KEDF exhibits an
even lower MAE (0.028 eV) than the WT KEDF. Overall,
these results demonstrate the promising potential of the MPN
KEDF in predicting the energies of complex alloy systems
with a high accuracy.

In order to further evaluate the accuracy of the MPN KEDF,
we computed the charge densities of 59 alloys and calcu-
lated the mean MAREs, listed in Table II. As expected, the
semilocal TFλvW and LKT KEDFs failed to reproduce the
charge density obtained by KSDFT, exhibiting mean MAREs
of 14.30% and 7.34%, respectively. These MAREs are consid-
erably higher than the mean MARE obtained by the nonlocal
WT KEDF (2.38%). Impressively, the MPN KEDF yields a
mean MARE of 3.30%, which is slightly higher than that
of the WT KEDF but significantly lower than those of the
TFλvW and LKT KEDFs. We note that the above 59 alloys
are not present in the training set, and there are even no
Li-Mg-Al alloys in the training set, so the above results not
only indicate a high accuracy but also excellent transferability
of the MPN KEDF.

Figure 5 shows the charge densities of four typical struc-
tures, one taken from the training set and the other three
from the testing set. The first structure is Li3Mg (mp-976254)
from the training set, containing four atoms. The MPN KEDF
yields a MARE of 2.73%, which is slightly larger than that
obtained by the WT KEDF (1.03%) but significantly lower
than those obtained by the TFλvW (13.85%) and LKT KEDFs
(5.28%), demonstrating the efficiency of the training process.

The second structure is Li(Mg4Al3)4 (mp-1185175) with
87 atoms, which is the largest system among the testing
set. Notably, the MPN KEDF achieves convergence to yield
a smooth ground-state density, which is close to the result
obtained by KSDFT, indicating an excellent stability in op-
timizing the electron charge density. In contrast, the WGC
KEDF fails to reach convergence for this structure.

The last two crystal structures are Mg3Al (mp-1094666,
16 atoms) and LiAl (mp-1191737, 48 atoms) from the testing
set, for which the MPN KEDF yields the lowest MARE and
largest MARE among the testing set, respectively. For the

TABLE II. Mean MAREs [Eq. (29)] of charge densities of 59 alloys, including 20 Li-Mg alloys, 20 Mg-Li alloys, 10 Li-Al alloys, and 9
Li-Mg-Al alloys. MAREs are obtained by comparing various KEDFs (TFλvW, LKT, WT, and MPN) in OFDFT to KS-BLPS results.

mean MARE of charge density (%) LiMg MgAl LiAl LiMgAl Total

TFλvW 12.40 16.11 13.26 15.66 14.30
LKT 5.26 7.44 11.61 6.98 7.34
WT 1.06 2.57 4.98 2.04 2.38
MPN 2.41 3.12 5.81 2.89 3.30
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FIG. 5. Charge densities of four typical alloys. (a) Li3Mg (mp-976254, 4 atoms) from the training set. The MARE of charge density
obtained by the TFλvW, LKT, WT, and MPN KEDFs are 13.85%, 5.28%, 1.03%, and 2.73%, respectively. (b) Li(Mg4Al3)4 (mp-1185175),
the largest system in the testing set, containing 87 atoms. The MARE of charge density obtained by the TFλvW, LKT, WT, and MPN KEDFs
are 16.15%, 7.76%, 2.54%, and 3.08%, respectively. (c) Mg3Al (mp-1094666, 16 atoms) from the testing set, in which the MPN KEDF yields
the lowest MARE among the testing set. The MARE of charge density obtained by the TFλvW, LKT, WT, and MPN KEDFs are 16.73%,
6.42%, 1.65%, and 1.57%, respectively. (d) LiAl (mp-1191737, 48 atoms) from the testing set, in which the MPN KEDF obtains the largest
MARE among the testing set. The MARE of charge density obtained by the TFλvW, LKT, WT, and MPN KEDFs are 13.51%, 15.41%, 6.98%,
and 8.16%, respectively. The labels a1 and a2 denote the first and second lattice vectors of the corresponding structures, respectively.

Mg3Al structure, the MPN KEDF exhibits a better accuracy
than the WT KEDF, yielding a MARE of 1.57%, lower
than the 1.65% obtained by the WT KEDF. For the LiAl
structure, although the MPN KEDF yields the largest MARE
of 8.16%, it is still much lower than those obtained by the
TFλvW (13.51%) and LKT KEDFs (15.41%). Overall, the
MPN KEDF outperforms the semilocal KEDFs in terms of
accuracy and achieves comparable accuracy to the other non-
local KEDFs. Additionally, the stability of the MPN KEDF
is evidenced by reaching convergence and obtaining smooth
charge densities for all alloys in the testing set.

What is more, in order to further test the transferability
and stability of the MPN KEDF, we have generated 45 hy-
pothetical Mg-Al alloys and calculated the total energies and
formation energies of these alloys. Similar to the phenomenon
described above, the MPN KEDF gives worse total energies
than the WT KEDF, but it yields substantially more accurate
formation energies than the WT KEDF, and detailed results
can be found in SM [37]. In conclusion, the above results
imply the good transferability of the MPN KEDF for Mg-Al
alloys.

IV. CONCLUSIONS

In this work, based on the framework of deep neural
networks, we proposed an ML-based physical-constrained
nonlocal (MPN) KEDF. Our proposed method relied on four
descriptors, i.e., { p̃, p̃nl, ξ̃ , ξ̃nl}, in which p̃ was a semilocal de-
scriptor, and the other three captured the nonlocal information
of charge density. Importantly, the MPN KEDF was subject to
three crucial physical constraints, including the scaling law of
Eq. (6), the FEG limit shown in Eq. (7) and the non-negativity
of Pauli energy density. The MPN KEDF was implemented in
the ABACUS package [40].

We systematically evaluated the performance of various
KEDFs on simple metals, including bulk Li, Mg, and Al,
by calculating their bulk properties, i.e., the bulk moduli, the
equilibrium volumes, and the equilibrium energies. Addition-
ally, we tested 59 alloys consisting of 20 Li-Mg alloys, 20
Mg-Li alloys, 10 Li-Al alloys, and 9 Li-Mg-Al alloys. Overall,
our results demonstrated that the MPN KEDF exceeded the
accuracy of semilocal KEDFs and approached the accuracy of
nonlocal KEDFs for all of the tested systems. Additionally, the
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proposed MPN KEDF exhibited satisfactory transferability
and stability during density optimization. In the future, our
proposed approach sheds new light on generating KEDFs for
semiconductors or molecular systems, and may also serve
as a reference for developing ML-based exchange-correlation
functionals.
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