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We demonstrate how to devise a Matsubara-formalism-based one-loop approximation to the flow of the func-
tional renormalization group (FRG) that reproduces identically the leading-logarithmic parquet approximation.
This construction of a controlled fermionic FRG approximation in a regime not accessible by perturbation theory
generalizes a previous study from the real-time zero-temperature formalism to the Matsubara formalism and
thus to the de facto standard framework used for condensed-matter FRG studies. Our investigation is based on
a simple model for the absorption of x rays in metals. It is a core part of our construction to exploit that in a
suitable leading-logarithmic approximation the values of the particle-hole susceptibility on the real- and on the

imaginary-frequency axes are identical.
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I. INTRODUCTION

Consider the function x > x/® in which the exponent
f(g) =a g+ ag® + - - - has a well-behaved power-series ex-
pansion without constant term aog”. Then

x/® = expl(a1g + arg® + - -+ ) Inx] (D
= xS exp[(arg® + - -+ ) Inx] 2
~ x48, 3

This approximation is good if g < 1 is so small that g% Inx <
1. The approximation allows even for large In x, and for g Inx
that is not small. In a clearly defined regime of x the approx-
imation is thus a priori known to be good, and it is known to
become better with decreasing g.

Such a controlled approximation is just the result of the
leading-logarithmic parquet approximation to certain many-
body models in condensed-matter theory whose perturbation
theory suffers from logarithmic divergencies. In the above
example, the failure of perturbation theory becomes visible
when one expands x/@ up to first (or higher) order in g (which
plays the role of the coupling constant),

x® ~14aglnx. %)

This approximation is indeed not appropriate when g Inx
is not small. Among the most renowned applications of
the leading-logarithmic parquet approximation in condensed-
matter physics are those to the Kondo model [1], to the
one-dimensional interacting Fermi gas [2], and to x-ray ab-
sorption in metals [3] from which the above example is taken.
These models of interacting zero- and one-dimensional Fermi
systems share the pattern in which logarithmic divergen-
cies arise in diagrammatic perturbation theory: the dominant,
“leading” terms are contained in the so-called parquet
diagrams.
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In Ref. [4] we demonstrated a close relation between the
leading-logarithmic parquet approximation and another, at
first sight separate, approximation: the one-loop flow of the
functional renormalization group (FRG). We substantiated for
a model of x-ray absorption that a suitably crafted one-loop
FRG approximation is identical on a detailed technical level
to the leading-logarithmic parquet approximation. While this
complete identity of the two methods is a unique observation,
it has been known for a long time that renormalization group
(RG) approaches are able to reproduce the results of leading-
logarithmic parquet treatments: This can be achieved already
with basic scaling techniques for the Kondo problem [5], for
x-ray absorption [6], and for one-dimensional conductors [7]
(see also [8]).

The FRG mentioned above is a modern formulation of
the RG idea, based on generating functionals [9-13]. In
this formalism, the flow equation of a suitable generating
functional entails a hierarchy of flow equations for vertex
functions. The RG flow of the vertex functions can also be
understood from a distinctly diagrammatic point of view [14].
This allows to compare FRG approximations in detail with
diagrammatic ones like the parquet approximation, as done,
e.g., in Refs. [4,15-17].

The FRG is nowadays applied to a broad variety of mod-
els in condensed-matter theory, including interacting zero-
and one-dimensional fermionic models for quantum dots and
wires [9,18]. For some of these applications, the applied
approximations are known to reproduce correctly the lead-
ing scaling behavior, which is not accessible by finite-order
perturbation theory. Notable examples are the scaling of the
backscattering self-energy component for Luttinger liquids
with impurities [19] and the scaling of the hopping between
localized level and leads for the interacting resonant level
model at large bandwidth [20,21]. In these particular cases,
the leading approximation to the scaling behavior follows
already in the lowest-level truncation scheme and allows thus
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for a short and lucid derivation. Many applications of the
fermionic FRG to quantum dot structures, however, do not
focus on the idea of constructing a controlled approxima-
tion, especially if they use a higher-level truncation scheme.
Instead, the arguments applied to justify approximate trunca-
tions of the FRG flow equations are often either perturbative
or they are given a posteriori by comparing the results with
those of other methods. A characteristic example for this
situation is given by numerous FRG treatments [22-31] of
the single-impurity Anderson model [32]. It is known that
the Anderson model at small s-d mixing can be mapped
onto the antiferromagnetic spin—% Kondo model by a unitary
transformation [33]; and it is known that the summation of the
leading logarithms of the Kondo model provides meaningful
results for the scattering amplitude at temperatures moder-
ately above the Kondo temperature [1]. However, typical FRG
treatments of the Anderson model are not concerned with
identifying these leading logarithms in a suitable perturbation
theory of that model in order to systematically include them
into the approximation. Instead, most approaches start from
integrating out the lead propagation and treating the onsite
interaction as perturbation; this leads to a perturbation theory
without logarithmic divergencies. The FRG approaches then
typically achieve a somewhat extended range of applicability
compared to second-order perturbation theory, but do not pro-
vide a reliable access to the Kondo regime [22-27,30,31]. One
FRG scheme exploiting Ward identities was able to reproduce
Kondo scaling but used four fit parameters for an interaction-
dependent regulator [29]. And while Ref. [28] is exceptional
in being based on a differently organized perturbation theory,
it does not provide a systematic consideration of leading con-
tributions. In summary, none of the cited FRG approaches to
the Anderson impurity model are controlled a priori in the
Kondo regime.

We believe that it is worthwhile to reinforce the quest
for controlled FRG approximations applicable to models for
quantum dots and wires, in particular for situations which
require truncations beyond the one on the lowest level. Such
approximations could combine the efficiency and analytic
accessibility of the FRG with an a priori known relia-
bility. As a first step in this program, we constructed in
Ref. [4] the aforementioned one-loop FRG approximation
that reproduces identically the leading-logarithmic parquet
approximation for a model of x-ray absorption in metals.
In that reference, we created and used a formulation of the
FRG within the real-time zero-temperature ground-state for-
malism to be as close as possible to the parquet treatment
of this model from Ref. [3]. However, most applications
of the FRG to condensed-matter problems are implemented
within the imaginary-time finite-temperature Matsubara for-
malism [9-13]. It is hence naturally our next goal to transfer
our analysis of Ref. [4] to the Matsubara formalism. This
transfer is realized in this paper: We show how to devise,
within Matsubara formalism, a one-loop FRG approximation
for the x-ray absorption problem that reproduces identically
the leading-logarithmic parquet approximation.

The paper is organized as follows. In Sec. II we set up the
formal framework to describe x-ray absorption in metals. We
start by briefly introducing the underlying model in Sec. IT A.
Then we discuss in Sec. IIB how the ground state of that

system depends on the energy level of the localized deep state.
On this basis we can later relate the description of the model
in the Matsubara formalism to the one in the real-time zero-
temperature ground-state formalism. The relation between the
formalisms then helps us to benefit from results of Refs. [3,4].
In Sec. II C we delineate how the linear response rate of x-ray
absorption can be computed from the imaginary-time exciton
propagator. This propagator in turn is accessible by fermionic
diagrammatic perturbation theory in Matsubara formalism. In
Sec. III we expound how we employ the Matsubara formalism
at T = 0 with continuous Matsubara frequencies and with a
specific choice of the deep-state energy. Within this formal
framework we then apply a leading-logarithmic approxima-
tion to the local conduction-state propagator in Sec. IV. We
show that this approximation makes the imaginary-frequency
diagrammatic expressions coincide with the real-frequency
ones. From that observation onwards, all further steps can be
copied from our previous study in Ref. [4]. In Sec. V we relate
our construction of a leading-logarithmic one-loop Matsubara
FRG approximation to the observation from Ref. [16] that
multiloop FRG improves the results of one-loop FRG for the
model under consideration. Finally, we conclude in Sec. VL.
Detailed explanations of several technical issues can be found
in the Appendixes.

II. X-RAY ABSORPTION AND EXCITON PROPAGATOR

In this section we establish the formal basis underlying all
later considerations. First we introduce (Sec. Il A) a simple
model system for x-ray absorption known from Ref. [3]. Later
we identify the propagator of a local exciton as a many-body
quantity that allows to determine the rate of x-ray absorption
(Sec. II C). In order to relate the Matsubara exciton propagator
to the one from the real-time zero-temperature formalism, a
clear understanding of the ground state of the model system is
required. Therefore, the ground state is studied in Sec. II B.

A. Model system

The model studied in this paper is identical to the one in our
previous paper [4] and essentially taken from Ref. [3]. It is a
basic model for the theoretical analysis of x-ray absorption in
metals. The Hamiltonian of spinless electrons is given by

U . N
H=H,— — a',aaa‘, 5
o=y ; o AAday Q)
Hy = edaziad + Z Ekazak. (6)
k

Here, ag creates an electron in a localized “deep” state with

energy €4 < 0 and a}: creates an electron with momentum k in
the conduction band which extends from —&j to & > 0 with
a constant density of states p. For simplicity, we assume the
total number of momentum eigenstates in the conduction band
to be even and denote it by 2N = 2£yp0. A hole on the deep
state leads to a local attractive potential for the electrons in the
conduction band. The amplitude —U < 0 of this interaction is
independent of the conduction-electron momenta; V denotes
the volume of the conductor. We consider the system primarily
at zero temperature and with a half-filled conduction band.
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Our quantity of interest is the linear response rate R(v)
of absorption of x rays from a perturbing x-ray field with
frequency v. This field is assumed to interact with the system
via an additional addend to the Hamiltonian, namely,

Hy(t) = e WA" + H.c. (7)

Here,

1L t
A N Xk: alag )
creates a local particle-hole excitation. As the electromagnetic
field is not quantized, the rate of x-ray absorptions is derived
from the rate of electronic transitions (compare Sec. 11 C).

The absorption rate is known to vanish for frequen-
cies below some threshold v., above which the leading
behavior is a power-law divergence R(v) o [&y/(v — v.)]*¢
with g = pU/V denoting the dimensionless coupling con-
stant [3,34,35]. An expansion of R(v) in powers of g leads
to a series in powers of g In[&,/(v — v.)]. (We use units with
B =1 and also kg = 1.) Correspondingly, a treatment of this
model with many-body perturbation theory leads to logarith-
mic divergencies; these appear in bubbles of particle-particle
and particle-hole propagation. The way in which the diver-
gencies occur is prototypical for a class of low-dimensional
fermionic systems which includes the Kondo model [1] and
the one-dimensional interacting Fermi gas [2,7].

B. Ground state of the system

In the subsequent sections it is necessary to understand
how the ground state of the system filled with N + 1 particles
depends on the value of €4. This is clarified in this section in
which we explain that there exist two many-body states |Wy)
and |Wg) and a threshold value €49 such that the ground state
changes from |Wg) for €5 < €go to |¥g) for €g > €go. (The
particular case €4 = €49 with a degeneracy of the ground state
will not be important for us.)

Since the Hamiltonian commutes with the deep-state oc-
cupancy nq there exists a Hilbert space basis that consists of
common eigenstates of both operators: the eigenstates of H
can be chosen to have either an occupied or an empty deep
level. Let |Wy) denote the energetically lowest state in the
subspace with occupied deep level and let |W,) denote the
energetically lowest state in the subspace with empty deep
level. Depending on eg4, either |Wy) or |Wp) has the lower
energy and is thus the ground state.

We first consider |Wy). Since H equals Hy on the subspace
with ng = 1, |¥y) is the Slater determinant type many-body
state in which the deep level and the N momentum states in
the lower half of the conduction band are occupied, while the
states in the upper half of the conduction band are empty. The

energy of this state is
Ey =eq + Ecp )

where E, is the energy of the half-filled conduction band,

0
Ep = :0/
=&

Next we discuss |¥g). On the subspace with ng =0,
the Hamiltonian H is equal to the perturbed single-particle

(10)

Hamiltonian

an

_ U
H() = Z <8kk’€k - V)az,ak.
k&'

The single-particle eigenstates of H are not the momentum
states k, but perturbed scattering states k, to energies €,
which we sort as €] < & < --- < &y. To be more precise,
the particular state with the lowest perturbed single-particle
energy €; =: &, is a bound state resulting from the localized
attractive potential generated by the deep hole. Its energy is
approximately

& ~ —&(1 +2e71/8) (12)

for 1> g> 1/In(280p) (see Appendix A for more details).
In the (N + 1)-particle state [Wy), the bound state and the
s_cattering states ki, ..., kyy1 are occupied while the states

kny2, ..., koy are empty. The energy of | W) is thus
Ey =& + E, (13)
where
N+1
(14)

Ecb = E €n
n=2

is the energy of the half-filled band of scattering states.
From the comparison of Ey and Ey follows that there is a
threshold value €49 given by the condition

€d0 + Ecb = & + Ecp, (15)

such that | W) is the ground state for €g < €49 while |¥y) is the
ground state for € > €g4o. It can be shown that Ey, < Eq, <
E., + & (see Appendix A). As a consequence, €4 is strictly
negative.

The deep state of the above model for x-ray absorption in
metals describes an electron which is localized close to the
core and which fully screens the core from the conduction
electrons. The energy gain of binding such a deep electron
should be greater than the gain that results from exposing the
delocalized conduction electrons to the core charge. There-
fore, the situation of physical interest is given by €4 < €qo,
with | W) being the ground state. In Sec. III we will find that it
is of technical advantage to study the system at &g = 0~ (with
€4 = €4 + g&o denoting the Hartree renormalized deep-state
energy) and that the corresponding results can be directly
related to those for physically relevant values of €g.

C. Linear response rate and exciton propagators

In this section, we summarize how the linear response
rate of x-ray absorption can be computed from the retarded
exciton propagator, and how the retarded, time-ordered and
imaginary-time Matsubara exciton propagators are related.
This provides the foundation for the Matsubara-formalism-
based approach to the absorption rate in subsequent sections.

We suppose that the state of the system at some time # is
described by a density operator ¢ (not to be confused with
the density of states p in the conduction band) that commutes
with H and nq4. Later we will focus on the cases o = | W) (V|
and o = ¢ % /Z. From t, on, the system evolves under the
Hamiltonian Hy(t) = H + Hx(¢). During that time, Hx(t)
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induces transitions between the deep state and the conduction
band such that the mean deep-state occupancy changes. The
linear response rate of this change approaches a long-time
limit

d —>—o0 ‘e
T {na) (6) === 2W PImy ™ (). (16)
Here, v denotes the x-ray frequency and
oo
Xl‘et(‘)) — / dt einXret(t), (17)
—00
X)) = —i®@)([A)y, AT]) (18)

denotes the retarded local exciton propagator, with A(t)y =
e Ae=H" Details on the derivation of this standard result are
given in Appendix B.

The above value 2|W |*Imx™!(v) is a good approximation
for d(nq)/dt in a certain time regime only: The time span
(t — to) must be sufficiently long for the linear response rate
to approach its long-time limit, and it must be sufficiently
short for the linear response approximation to be applicable.
The second condition restricts the interval of allowed times by
an upper boundary which can be pushed to higher values by
decreasing the amplitude W of the perturbation.

Concerning the relation between the retarded and the Mat-
subara exciton propagator, it will be important later in this
section that x™'(z) is analytic in the open upper half of the
complex z plane. This region of analyticity of x"™'(z) can be
established in the usual way by use of the Lehmann repre-
sentation (see Appendix C). We use z instead of v to denote
complex frequency arguments. The value of x™'(z) at real
z = v is given by the limit of vanishing imaginary part from
above, x™'(v) = x™'(v + in).

Let use now suppose that the system is initially in the state
0 = |Wy)(Wy|. Then one can use (Wy|AT = 0 to show that the
retarded exciton propagator Xf;‘;(t) resulting from that initial
state is (for ¢ # 0) identical to the time-ordered one y, (f):

XENE) = —iO@) (WollA@). AT We) — (19)
= —iO@) (VoA gAT| V) (20)
= —i(W| TA()AT W) @1
= (1), @)

Here, the time-ordering operator T rearranges A(f)y and
A" = AT(0)y such that their time arguments decrease from
left to right. The time-ordered exciton propagator in frequency
representation,

oo
X0 = [ dre o), 23)
—0o0
is by definition identical to the particle-hole susceptibility
studied in our previous paper [4]; compare also the similar
susceptibilities studied in [3,15,16,34,36]. For €4 < €49, the
state |W) is the ground state. Then
d -

— {0} () S =2W PIme, () = RO (24)
is the rate of x-ray induced excitations from the ground state,
i.e., the rate of x-ray absorption (compare Ref. [3]).

gray: region in which
X, () is analytic

framed: region in which
X (2) = xos™(2)

0

/

LAMMMMAN

\ Rez

E() - E(J

hatched: region in which
Mot (2) is analytic

A\

FIG. 1. Domains of analyticity of xM*(z) from Eq. (C9) and
X, (2) = xf,,eg(z) from Eq. (C2) (in the limit 8 — 00) in the case
€4 < €go in which |Wy) is the ground state.

Next we consider the case that the system is prepared
initially in the thermal density operator ¢ = ¢~## /Z with tem-
perature 7 = 1/8 # 0, chemical potential u = 0, and with
Z = Tre P" For t € (—p, B) define the imaginary-time Mat-
subara exciton propagator

—BH

z

e

xp o (r) = —Tr TA(T)gAT, (25)

with A(t)y = efTAe="". Here, T sorts operators with larger
imaginary time 7 to the left. For bosonic Matsubara frequen-
cies X,, = 2nm /B define furthermore

B )
X(X,) = / d &7 (), (26)
0

As expected, the Lehmann representation of Xg/la‘(an) is
found to coincide with that of X;ft(z =iX,) for positive X, (see
Appendix C).

In the limit 8 — oo of vanishing temperature, X};’Im(iX,l)
approaches a function Xo“ga‘(iX ) which is defined on the
whole imaginary-frequency axis. The analytic properties of
this function are derived in Appendix C. They can be sum-
marized as follows: In the case €4 < €49 in which |W) is the
ground state, the definition of xM(z=iX) can be extended
to the region given by Rez < Ey — Ey, which includes the
left half plane of z. On the intersection of this domain with
the upper half plane, xM(z) coincides with xy,(z) = X5 (@)
This makes an analytic continuation from Xol\gm(iX ) to xw, (V)
possible. This relation between Xé\gat (z) and xy,(z) is sketched
in Fig. 1. We remark in passing that in the case €4 > €49 in
which |Wp) is the ground state, xM(iX) can be analytically
continued to the time-ordered exciton propagator xg,(v) of
the system prepared initially in the state |Wy).

Later we will find an even simpler relation between yMat
and xy,: For an appropriate choice of €4 and in leading-
logarithmic approximation holds indeed Xo“g"“(iX ) = xw,(X)
(compare Sec. IV B).

III. SPECIFICATIONS OF PERTURBATION THEORY IN

MATSUBARA FORMALISM

In this section we specify details of our use of the Mat-
subara formalism which are crucial for the construction of the
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leading-logarithmic one-loop FRG approximation in Sec. IV.
While the appearance of fermionic two-particle functions in
Sec. ITA and the use of Hartree dressed propagators in
Sec. III B are completely analogous to our prior treatment
in the real-time zero-temperature formalism in Ref. [4], a
major difference is that temperature and €4 now regularize the
logarithmic divergencies (Sec. III C). We restrict our consider-
ations to vanishing temperature. In Sec. III D we explain that
the particular parquet diagrams involved then allow us to pass
over to continuous Matsubara frequencies. Technically we
are then so close to the real-time zero-temperature formalism
(compare Appendix D) that we can exploit a Ward identity
proven in that formalism in Ref. [4] to set & to 07; this is
explained in Sec. IITE.

A. Appearance of fermionic Matsubara Green functions

When we described the relation between xy, and XMa‘

the preceding section, we interpreted these susceptlblhtles as
propagators of a single bosonic excitation. Now we aim at a
perturbative and, later on, RG approach to the susceptibili-
ties; for that purpose we treat them as fermionic two-particle
functions. In fact, it is

x5 (X))

- _/ dt Zel“GM"“(d 0;k, 7|d, 7;k, 0) (27)
kk'
1 !
=v5 > G, ok o+ Xold, 0y K w). (28)
ninyn,

kk'

Here the fermionic Matsubara two-particle Green function
and its representation in terms of Matsubara frequencies are

Mat . l ’.q/ ’
G (L, tis o, T2|11, 11305, 1)

= (- 1)2Tr

Tﬂlll (t)uay, (TZ)HaZr (Tz)Halr (t)u, (29)

Mat . .
Gﬁ (llv (,()nl il 127 a)m |llv a)n'l ’ 125 6!),,/2)

Z/‘ﬂdrl/ d f [(‘[](D,,l"‘ ‘L'z’wn/z)
0 0

XGY (I, t1s b, w1, T3 1, ). (30)

In these equations, the /; are single-particle state indices, and
time ordering swaps by definition the sign of the expression if
the resulting sequence of fermionic ladder operators is an odd
permutation of the initial one. In Eq. (30), the w, = 2n +
)T with integer n denote fermionic Matsubara frequen-
cies, and Gg’[a‘(ll, Wny3 la, oy, |17, W3 b, w,,) is proportionate
to ﬁam +ny,ny 40

Standard imaginary-time perturbation theory yields dia-
grammatic approximations for the fermionic Green functions.
The values of the corresponding Hugenholtz diagrams can be
determined with the usual Matsubara diagram rules as

0 () 1 2 BT

(compare, e.g., Ref. [37]). Here, the vertex Vyo/12, with in-
dices 1 = (I, 11), etc., satisfies

_ U s

Vde] k'ej)dey ke, = VS(TI —5)(ry —1)é(t — ). (32)
Several further components of the vertex are deter-
mined through the antisymmetry relation Dy = Dy =
—Vyy12 = —Vypp1. All other components of the vertex van-
ish. In the diagram rule (31), the products run over all vertices
and all lines; the latter represent free propagators glg’la‘. Im-
plicitly, all internal indices for states and times or frequencies
are to be summed over. (—1) is defined as (+1) if the first
incoming line of the diagram is connected to the first outgoing
line and as (—1) if it is connected to the second outgoing line.
Moop 18 the number of internal closed loops, n¢q is the number
of pairs of equivalent lines, and S is the diagram symmetry
factor.

B. Hartree dressed propagators

The free propagator in Matsubara formalism at finite
temperature is given in time or frequency representation, re-
spectively, by

() = e [f () — O(x — )], (33)

at, . _
g%[ (iwy) = pA—
These are equations for matrices. The matrix indices, not
written here, refer to single-particle states. In particular, 4 is
the matrix of single-particle energies. Furthermore, f(h) =
(e?" + 1)~! denotes the (matrix) Fermi function at vanishing
chemical potential; ® denotes the Heaviside step function and
n is a positive infinitesimal.

The matrix & does not only comprise the energies €4 and
€ appearing in the Hamiltonian in Eq. (6) but also a single-
particle perturbation that appears when the interaction term
in Eq. (5) is brought into the standard form by permuting
all creation operators to the left. At 7 = 0, that perturba-
tion is precisely canceled by the Hartree self-energy. This
suggests to work with Hartree dressed propagators, as we
already did in our previous analysis of the model within the
zero-temperature formalism [4]. Hartree dressed propagators
result when £ is replaced in Eqgs. (33) and (34) by A with
components

eiwn n

(34)

U
My = Sixer — [1 — f(éd)]v, (35
hgy = €q + o, (36)
By =0=h. (37

The contribution —U/V to hk, . represents the aforementioned
single-particle perturbation, while f(eq)U/V is the Hartree
self-energy. In the limit 7 — 0, these two contributions can-
cel out due to f(eq) — 1. For moderate T < &, and for
typical € < —&p holds still 1 — f(eq) << 1 and the eigenen-
ergies &, of hgk can be reasonably approximated by first-order
perturbation theory as €, = ¢, — [1 — f(€g)JU/V. The first-
order shift

[1 = fle)lU/V =[1 — f(ea)lggo/N < &/N  (38)
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€Em
U
\\>’/
€d

FIG. 2. Zeroth-order diagram for Xg”a‘(r). The dashed line
denotes a deep-state propagator and the solid line denotes a
conduction-state propagator. An extra particle with energy €,, in the
conduction band and a hole at the deep-state energy €; propagate
from O to 7.

is so small that these energies can still be described by a band
with density p from —&; to &.

The Hartree self-energy contribution to the deep-state en-
ergy in Eq. (36) follows from

U o

o [ deso =g (39)
—&o

This value is independent of temperature due to f(€)+

f(—€)=1 and due to the symmetry of the band around

the chemical potential © = 0. We define &3 := €4 + g&o. The

physically relevant case is & < 0.

In the following computation of two-particle quantities we
will consider only skeleton diagrams with Hartree dressed
propagators, without any further self-energy type contribu-
tions on the diagram lines. This means that the Hartree dressed
propagators take the role of the full single-particle Green
functions. Therefore, we will denote the Hartree dressed prop-
agator simply by G)*'(t) or G} (iw,), slightly abusing the
usual notation for full propagators.

C. Regularizing effect of temperature and €,

Within the real-time zero-temperature formalism, the
archetype of a logarithmic divergence arises in the zeroth-
order diagram (with Hartree dressed propagators) to the
particle-hole susceptibility. That motivates us to study now
the same diagram within Matsubara formalism. We find again
a logarithmic divergence; it is, however, regularized by tem-
perature and by &;.

The zeroth-order contribution to X};’Ia‘(iX,,) at finite temper-
ature and €4 < €49 stems from the diagram shown in Fig. 2. It
has the value

p o1 o
Xoop (iXn) = /0 dfe’x"f;;e““"'”f@d)[f(@m)— 1]
(40)
& =\ _ £z
=£/ e F®~ &) @
V /g & — & — iX,

To arrive at the second expression we solved the integral over
T and exploited

FEOIf ) — N[e® ™ — 1] = f(&q) — f(En). (42)

Furthermore, we used that the Hartree dressed energies &,
form a band from —&; to &, with density p, as explained
above in Sec. III B. In the limit 7 — 0 holds f(¢) — f(&) —

—©(€) such that

- —& —iX

X, L5 e ix) = éLn(so_dgﬁ). 43)
Here, Ln denotes the complex logarithm with the branch cut
chosen along the negative real axis.

We observe that the logarithmic divergence for X — 0 is
regularized by the addend —&; > 0. An additional regulariza-
tion appears in the case of finite temperature, where the step
of the numerator f(€) — f(€y) in the integrand in Eq. (41) is
broadened on a scale of a few T'.

In order to keep our analysis simple and comparable to
our previous approach within the real-time zero-temperature
formalism [4], we focus on the limit of vanishing temper-
ature. In Sec. IIID below we describe that this limit can
be achieved by the transition from frequency summations to
frequency integrations. By this transition we do not only avoid
the complication of an additional regularizing scale in form
of temperature but also the complication that an RG flow
based on a sharp frequency cutoff would perform leaps at the
discrete finite-temperature Matsubara frequencies.

There remains to cope with the regularizing effect of &;.
Only after an analytic continuation iX — v +4in = —&; +
Av +in with Av « &) emerges a bare logarithmic di-
vergence in Av/&. For higher-order diagrams, too, the
logarithmic divergencies appear only after analytic contin-
uation to real frequencies v close to —é&y. If, however, the
internal frequency integrations of a diagram are restricted
due to an FRG frequency cutoff, the expressions for the val-
ues of higher-order diagrams become more complicated and
the analytic continuation becomes more challenging. Then
it is difficult to assess whether certain RG approximations
capture the leading logarithms. This is considerably more
transparent in the case €3 = 07, in which the logarithmic
divergence of x™(iX) appears already on the imaginary-
frequency axis for iX — 0. Then one can see whether certain
RG approximations capture the leading logarithms without
analytic continuation to the real-frequency axis. Results for
the case € = 0~ are, however, only significant if they can
be related to the physically relevant case of finite &€; < 0. In
Sec. Il E we explain that indeed a direct connection between
the two cases is given for the parquet diagrams containing the
leading-logarithmic contributions.

D. Zero-temperature limit for parquet diagrams

Within the framework of the real-time zero-temperature
formalism it is well known that the leading-logarithmic con-
tributions to the particle-hole susceptibility are given by the
parquet diagrams with Hartree dressed lines, in which each
bubble comprises one deep-state and one conduction-state
propagator [3]. Let us now consider the zero-temperature limit
of the same parquet diagrams within Matsubara formalism.
In general, the correct zero-temperature limit of any Matsub-
ara diagram is obtained by evaluating the diagram at finite
temperature and taking the limit 8 — oo of the result. How-
ever, the parquet diagrams under consideration are special in
being skeleton diagrams with Hartree dressed lines. On the
lines connecting the parquet vertices there are no insertions of
subdiagrams that represent parts of the self-energy. Due to the
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absence of such self-energy type insertions on the propagator
lines, the diagram value in the limit § — oo can be obtained
by a different evaluation procedure: In time representation we
may evaluate the diagram directly by using the 8 — oo limit
of the Hartree dressed propagator, namely,

Y () = e T [O(=¢) — B(1)], (44)
and by integrating imaginary times over the whole axis. Here,
the matrix € is given by & = Sprer and Egq = €4 + g€o = &g
and &g = 0 = &4 (compare Sec. IIIB). In frequency repre-
sentation we may use the limit propagator

1
iw— &

G (iw) = (45)
and integrate over continuous Matsubara frequencies instead
of summing over discrete ones. For general diagrams, this
procedure would miss so-called “anomalous contributions”
which take care of interaction-induced changes in the occu-
pancies of the levels [38,39]. Basically, the approach with
limit propagators then fails since a series expansion of @(—&)
in Eq. (44) around some € < 0 does not provide a valid
approximation of ®(—&g,) at some renormalized &g, > 0.
But anomalous contributions arise only in diagrams with self-
energy type insertions on the propagator lines, which we do
not consider here.

Given a diagram D for the particle-hole susceptibility we
now can distinguish the following different ways to evaluate
it: as D%da‘(an) in Matsubara formalism at finite temperature
T = 1/; as DN (iX) resulting from DY(iX,) in the limit
B — oo; as D{‘lf‘“(iX ) evaluated with the limit propagators
from Eq. (44) or (45); and finally as Dy, (v) evaluated by use
of the real-time zero-temperature formalism as contribution to
the particle-hole susceptibility in the state |\Wy).

Consider now any single Matsubara diagram D{‘ga‘(iX ) for
the particle-hole susceptibility that is evaluated with Hartree
dressed limit propagators just as described above. For €3 < 0,
its value is indeed just the analytic continuation of the value
of the very same diagram evaluated as Dy, (v) within the
real-time zero-temperature formalism; we demonstrate this
in Appendix D. Since this way of evaluating Matsubara di-
agrams at zero temperature is correct for parquet diagrams
with Hartree dressed lines and since these diagrams are
known to contain all leading-logarithmic contributions to the
particle-hole susceptibility in the real-time zero-temperature
formalism, we infer that they contain all these contributions
also in the Matsubara formalism. The leading-logarithmic
contribution to xM(iX) can thus be determined by evaluating
parquet diagrams Dﬂf“‘(iX ) with limit propagators.

E. Setting €, = 0~

In Sec. III C we explained that it is technically preferable
for the analysis of the leading-logarithmic contributions to
work at zero temperature and vanishing €3. Concerning the
temperature, we performed the step to 7 =0 in Sec. IIID
where we found that we can use the limit propagators from
Egs. (44) and (45) to evaluate the leading-logarithmic par-
quet diagrams. Now we focus on & and argue that the
diagram values resulting for the technically desirable choice

€4 = 07 are directly related to the physically relevant case of
finite €4 < 0.
In Appendix D we show that diagrams D%Ia‘(z) for the

particle-hole susceptibility xM(z) evaluated within the Mat-
subara formalism using limit propagators are, in the region
Imz > 0 and Rez < —¢&y, identical to the same diagrams eval-
uated within the real-time zero-temperature formalism. In the
special case &g = 0~ this region still includes the upper half
of the imaginary z axis. Furthermore, in Ref. [4] we described
that a Ward identity connects the results for xy,(v) computed
within the real-time zero-temperature formalism for &; < 0
and for & = 0 in the form yy, (v, €&4) = xw, (v + &4, 0) (see
also [3]). This identity holds diagram by diagram. It follows
for any parquet diagram D(v, &;) for the susceptibility with
Hartree dressed lines and real-valued X > 0 and v that

Dy (X, 07)lix—viy = Day (v, 0) = Dy (v — &, &). (46)

Here, the analytic continuation induced by iX — v + in re-
quires formally v < 0. However, we can directly extend the
result to v > 0 because Dy, (v, 0) allows for an analytic con-
tinuation from v < 0 to v > 0 via the upper half plane. The
same result then holds for the leading-logarithmic parquet
approximation to x as sum over such diagrams. It provides a
direct connection between the leading-logarithmic Matsubara
susceptibility computed at €; = 0~ with limit propagators and
the leading-logarithmic ground-state susceptibility at physi-
cally relevant values of €; < 0. Therefore, we can restrict our
Matsubara analysis to the case €; = 07, using the deep-state
propagator

1

GMat . — .
.a(i@) iw— 0~

(47
We note that this argument does not rely on whether €3 = 0~
implies €4 < €49 Or not.

IV. LEADING-LOGARITHMIC APPROXIMATION BY
ONE-LOOP FRG

In this section we construct a one-loop Matsubara FRG
approximation to the model at hand which reproduces
identically the leading-logarithmic parquet approximation
of Ref. [3]. We start with an approximation to the local
conduction-electron propagator which we take over from
Refs. [15,16,36] and which we show to comply with the
leading-logarithmic approximation. The decisive step is then
to realize that this approximation makes the computational
expressions for the Matsubara diagrams for x M (iX) coincide
completely with those for the real-time zero-temperature dia-
grams for xy,(X ). From that point on we can copy identically
all approximation steps that we performed in our previous
real-time zero-temperature approach from Ref. [4].

A. Approximation to the local conduction-electron propagator

In this subsection we make and justify an approximation
for the conduction-electron propagator which was already
used in Refs. [15,16,36]; there it was motivated cursorily but
not justified in detail. We show that this approximation does
not affect the leading logarithms.
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Consider some parquet diagram ng‘“(iX ) within Matsub-
ara formalism, with lines representing the zero-temperature
limit GM* of the deep-state propagator or the Hartree dressed
conduction-electron propagator, respectively. Since the value
of a bare vertex is independent of the momenta of the at-
tached conduction-electron lines, all momentum summations
appearing in the diagram are independent of each other.
Therefore, these summations can be performed separately for
each conduction-electron line, leading to the local conduction-
electron propagator

1
GY (iw) = v Z GM™ (i) (48)
= £ f (49)
£ iw —
= —21— arctan é_o (50)
\% w

— _ix? ~ 2 ctan 2
= mv[sgn(a)) narctango]. 51

We follow Refs. [15,16,36] in approximating G];’Iozf‘c(iw) as

i) ~ —ir Csen(@)O( — o). (52)
Let us make sure that this approximation does not affect
the leading logarithms. For that purpose we consider one of
the bubbles in a leading parquet diagram. We assume it to
be a particle-hole bubble with one deep-state line and one
conduction-electron line; the argument can be applied analo-
gously to the remaining case of a particle-particle bubble. The
value of the particle-hole bubble is determined by the integral
> dw
=
Here, X denotes the bosonic exchange frequency of the bub-
ble. The function f(w) results from the more inner bubbles
that are contained in the effective vertices at the two ends
of our particle-hole bubble. f depends in general on X and
on the external frequencies of the bubble; this dependence
is not shown in our notation. For |w|/& — oo and for w
approaching certain w; which depend on X and on the external
frequencies of our bubble, f(w) diverges like some power
of a logarithm. When combined with the two propagators in
Eq. (53), the factor f(w) does not lead to a divergence of the
integral. In the next two paragraphs we concentrate on the case
|X| < &p and argue afterwards that this is indeed the relevant
case.

Both propagators in the integrand in Eq. (53) fall off as
1/w for |w|/&y — oo so that the contribution from large fre-
quencies |w| 2 & to the integral is O(1). Therefore, we can
neglect the contribution from this frequency region. The lower
bound for the negligible region of |w| is somewhat arbitrary;
the only condition is that w with || < & are not neglected. In
particular the negligible region can be chosen as |[X + w| > &
which justifies the step function in Eq. (52). We note that such
a cutoff in the approximated propagator is required: An inser-
tion of the propagator from Eq. (52) without the step function
into the integral in Eq. (53) would cause the contribution from
large frequencies |w| 2 & to diverge.

GY (iw)GYTi(w + X)1f (). (53)

C

The leading-logarithmic contributions to the integral in
Eq. (83) originate from the combination of the factor
GMad(la)) = 1/@{w —07) with the discontinuous function

sgn(w + X)) contained in GMa‘ [i(w + X)] in Eq. (51). In fact,
this mechanism of how the logarithmic divergencies arise is
the same as in the zero-temperature formalism (cf. Sec. III D
of Ref. [4]). The important frequency range is given by |X| <
lw| < &, where we can approximate

Gl +X)] ~ —im Csgn@+X). (54

A straight computation shows that the next correction term to
Gg’lo‘?‘c[i(w 4+ X)], which is of order (X 4+ w)/&, yields only a
subleading contribution.

We still need to justify that we restricted our considerations
to the case |X| < &j. The argument will first be given for the
outermost bubbles in a diagram for the particle-hole suscep-
tibility. Then it can be replicated iteratively for the more and
more inner tiers. To start with, the leading-logarithmic approx-
imation for the susceptibility x M (iX ) is good only for |X | <«
&, for which the logarithms become large. This corresponds
to the fact that after an analytic continuation iX — v +in
we are interested in the behavior of x(v) near threshold.
Now, the bosonic exchange frequency X; of the outermost
bubbles in a diagram DM(iX) contributing to xM*(iX) is
equal to X and thus |X;| <« &. Concerning the next inner
bubbles, we consider some “crossed” particle-particle bubble
which may be contained in the effective vertex between two
outermost particle-hole bubbles. If we call the integration fre-
quencies of these outermost particle-hole bubbles w; and wj,
then the crossed particle-particle bubble has the bosonic total
frequency Q, = w; + w] + X;. We discussed above that the
important range of frequency 1ntegrat10n in the particle-hole
bubbles is given by |X;| < |w] )| < &y. Hence, |€2;] <« & for
the important contributions. In turn, the leading contributions
to the value of the particle-particle bubble arise from a fre-
quency integration over w, with || < |wz| K &p; this can
be shown on the analogy of the above discussion for the
particle-hole bubble. If now the effective vertex between two
particle-particle bubbles with integration frequencies w, and
w) contains a more inner, crossed particle-hole bubble, then
the latter one is characterized by the bosonic exchange fre-
quency X3 = €, — w; — w) which again satisfies |X3| < &.
This argument can be repeated on and on to show that the lead-
ing contributions result only from those internal integration
frequencies for which the natural bosonic frequencies X;, €;
of all inner bubbles are much smaller that &.

B. Identity between leading-logarithmic contributions
in real and imaginary time

In this subsection we study the consequences of approxi-
mation (52). We find that the approximate expressions that we
obtain for the Matsubara diagrams of the particle-hole suscep-
tibility on the imaginary-frequency axis are plainly identical
(without analytic continuation) to the ones known from the
real-time zero-temperature approach on the real axis. This
makes it possible to use just the identical FRG approximation
steps as used in the real-time case in Ref. [4].
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First we observe that the approximated local conduction-
electron propagator from Eq. (52) coincides with the imagi-
nary part of the local conduction-electron propagator G.(w)
from the real-time zero-temperature formalism,

&0 + ol
&0 — ol

Ge(w) = é[m

— im sgn(w)O(§) — le)]- (55)
The imaginary part of this propagator is indeed the only part
that was retained during the leading-logarithmic calculations
in the real-time zero-temperature formalism (see Refs. [3,4]).

Furthermore, the deep-state propagator in Eq. (47) is, up
to a factor (—i), identical to the deep-state propagator used in
the treatment of the model with the real-time zero-temperature
formalism (see Refs. [3,4]). We note that the particular choice
€4 = 07 isresponsible for this match between 1/(iw — €4) and
(—)/(w — & — i07).

The diagram rules for the susceptibility in Matsubara for-
malism differ from those in the real-time zero-temperature
formalism by a global factor i and by factors i for each vertex.
All these factors i together precisely compensate the factors
(—i) in the deep-state propagators. As a consequence, the
resulting expressions for the Matsubara diagrams D{‘ga‘(iX )
computed with approximated local conduction-electron prop-
agators are literally identical to those for the diagrams for
Xw,(X) in the real-time zero-temperature formalism.

This conformance needs to be distinguished from the
analytic continuation between X})\gat and xy,: Without the
approximation (52) for the Matsubara conduction-electron
propagator, the diagrams D)l*(z) for x*(z) are identical in
value to those for xy,(z) in the upper left quadrant of z (see
Appendix D). In particular the diagrams D%‘at(iX) have the
same values as the diagrams for xy,(iX), not as those for
Xw,(X) as found above. However, in the leading-logarithmic
approximation the diagram values for yy,(iX) and for xy,(X)
can both be reduced to the same factors of the form In |X|/&
and are thus identical. This can be understood from the result

_ Pl (& %
X%(Z)_Z’[l ( Z+€d> :|,

which was constructed in Ref. [3] by imposing the desired
analytic properties onto the leading-logarithmic approxima-
tion. According to this result, the leading contribution to
Xw,(X) and that to xy,(iX) at & = 0~ read both as p[l —
(5o/1X1)*#1/(28).-

For the simple example of the noninteracting particle-
hole susceptibility, the peculiar approximate identity between
Xol\g"“(iX ) and xy,(X) is traced back to the pole structure of
the integrand in the complex plane in Appendix E.

(56)

C. Adopting the steps from the real-time
zero-temperature approach

Given the identity between the approximate expressions for
the diagrams Dﬁ;‘at(z’X ) for xMa(iX) and those for yy,(X),
it is straightforward to construct a one-loop Matsubara FRG
approximation that captures all leading logarithms: We can
copy one by one the steps from the zero-temperature FRG
approach of Ref. [4]. Here we summarize these steps only
very briefly; for details see Sec. V of Ref. [4].

First, we introduce a sharp frequency cutoff into the
principal-value part of the Hartree dressed deep-state propa-
gator:

G Miw) = —iO(|o| — ,\)é + 78(w). (57)
Then the conduction-state propagator at the initial flow param-
eter Aijpj — 00 proves to be Hartree dressed. We approximate
this propagator by Eq. (52). In leading-logarithmic order the
initial value of the (one-particle irreducible) two-particle ver-
tex function is given by the bare interaction while all higher
vertex functions vanish.

Next we neglect the flow of the self-energy of the three-
particle vertex function and of the two-particle vertex function
with four deep-state indices. In the flow equations for the
two-particle vertex function with two deep-state and two
conduction-state indices we perform the logarithmic approx-
imation by setting, e.g., |w + A — Q| & max{|w|, A} in the
frequency arguments of the vertex functions. Furthermore, we
approximate the start of the flow by setting, e.g., ®(§) — |2 +
A~ O — 2).

As shown in Ref. [4], we then obtain the identical integral
equations for the two-particle vertex function as in Ref. [3].
We copy the steps for its solution and for the computation of
the susceptibility and obtain

Mat /. _ﬁ _ S_O &
Koo (’X)_Zg[l <|X|> ]

We identify this function with the analytic continuation of the
retarded ground-state susceptibility Xé\gat(iX) = X{fg(iX) =
Xw,(iX) (see Sec. IIC). Then the only difference compared
to Refs. [3,4] is that we obtain the result (58) for xg,(iX)
instead of xy,(X). This difference is of no importance: We
can reconstruct the imaginary part of xy,(z) in the same way
as Ref. [3], namely, such that the branch cut of the function is
located on the positive semiaxis, as required. We end up again
with Eq. (56).

(58)

V. COMPARISON TO REF. [16]

In Ref. [16] the same model of x-ray absorption is
investigated with different one-loop and multiloop FRG ap-
proximations. Reference [16] presents data which show that,
compared to one-loop FRG, multiloop iterations improve the
agreement of the FRG results with those of a numerical solu-
tion of the parquet approximation. We should now clarify how
this relates to our construction of a one-loop Matsubara FRG
scheme that reproduces identically the leading-logarithmic
parquet approximation of Roulet et al. [3]. There are two
possible explanations for the improved agreement between
multiloop FRG and the numerical parquet results which is
observed in Ref. [16]. One is that the one-loop FRG approx-
imations of Ref. [16] are not constructed properly and miss
certain leading contributions. The other is that the numerical
improvements due to multiloop FRG in Ref. [16] are sub-
leading and thus beyond the controlled regime of the parquet
approximation.

The second possibility is actually very plausible. We note
that due to several approximations in the analytic evaluation,
even the leading-logarithmic parquet result of Roulet et al.
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differs subleadingly from the numerically evaluated sum of
the parquet diagrams. On the subleading level both approxi-
mations are uncontrolled and none is thus preferable a priori.
Figure 4(d) of Ref. [16] displays the particle-hole susceptibil-
ity at zero imaginary frequency as function of the interaction
strength. According to this figure, the agreement between the
leading-logarithmic result of Roulet ef al. and the numerical
sum of the parquet diagrams is fine for interactions up to
roughly g = 0.2, while larger values of g (called « in that refer-
ence) lead to sizable differences. The figure caption attributes
the differences to subleading contributions; they are thus in
the uncontrolled regime. In this context we note that while
the choice 2g — g for the exponent of the guide-to-the-eye
lines in this figure represents the correct function in second
order (compare Ref. [35]), it is uncontrolled in the parquet
approximation; the correction —g> was even renounced in the
improved self-consistent treatment of Ref. [34]. If we concen-
trate on g = 0.28, we find for |xM*(iX =0)| from Fig. 4 of
Ref. [16] approximately 7p for the numerical parquet compu-
tation and approximately 9p for the leading-logarithmic result
of Roulet et al. The difference of about 2p between these val-
ues highlights the large influence of subleading contributions.
From the ordinate intercepts in Fig. 5 of Ref. [16] we infer
that the one-loop FRG results for |xM*(iX =0)| depend on
the choice of regulator and are roughly in the range from 8.5p
to 11p. This differs again up to 2p from the 9p corresponding
to the solution of Roulet et al. It is hence reasonable to assume
that all approximations with different loop orders studied in
Ref. [16] differ only subleadingly.

In spite of this finding we have the impression that the
regulators chosen in Ref. [16] are not optimal for a one-loop
FRG. They suffer from the drawback that the dependence of
the regulator dressed deep-state propagators on w and €4 is not
restricted to a function of iw — €4 alone. In fact, the regulator-
free bare deep-state propagator 1/(iw — €4) is a function of
iw — €4 only. This property ensures that the particle-hole sus-
ceptiblity xMa'(z) is a function of z + €4 (compare Sec. III1C
of Ref. [4]). This Ward identity related to particle-number
conservation and time translational invariance is satisfied not
only by the exact result, but also by any single diagram, by the
sum of the parquet diagrams and by the leading-logarithmic
result from Eq. (56). Correspondingly, the very logarithmic
divergencies appearing in perturbation theory are of the form
In[(z + €4)/&0] and are thus divergencies in z + €4. The differ-
ent regulators investigated in Ref. [16] destroy this property.
Among those is, for example, a sharp frequency cutoff in the
deep-state propagator,

1
Gi(iw,) = O(|w,| — \)———, (59)
lw;,; — €4

with A denoting the flow parameter. Here, the cutoff prefactor
O(Jwy| — X) is not a function of (iw, — €4). The resulting de-
fect of the one-loop approximation is healed by the multiloop
iterations since they make the particle-hole susceptibility con-
verge to the sum of the parquet diagrams. The Ward identity is
then satisfied again so that the nature of the divergencies can
be captured.

We note in passing that our one-loop flow induced by the
cutoff from Eq. (57) is not affected by this problem. As we
set &g = 07, the result of the flow depends on z alone. After

the flow, the use of Eq. (46) allows for the transition from z to
Z + &g, which then appears correctly in Eq. (56).

In summary, Ref. [16] demonstrates with specific examples
that the multiloop FRG scheme allows to construct the sum of
the parquet diagrams even by use of cutoffs whose suitabil-
ity for the model was not inspected in detail. The resulting
numerical parquet approximation is then automatically guar-
anteed to contain the leading-logarithmic contributions. In the
present paper we demonstrated how the leading-logarithmic
parquet approximation can also be obtained from a well-
constructed one-loop FRG flow. This shows that no general
superiority of multiloop flows over one-loop flows is given
for the model at hand.

VI. CONCLUSION

The leading-logarithmic parquet approximation for certain
zero- and one-dimensional condensed-matter problems is a
prominent example of a controlled approximation in a regime
not accessible by perturbation theory. In a previous paper [4]
we revealed that a suitably constructed, one-loop truncated
fermionic FRG approximation merges with the leading-
logarithmic parquet approximation of Roulet ef al. for x-ray
absorption in metals [3]. This highlights the capability of
the fermionic FRG to generate controlled nonperturbative ap-
proximations, in contrast to the perturbatively or a posteriori
justified truncations which are currently widely used [9,13] in
fermionic condensed-matter FRG studies. The potential of the
fermionic FRG to provide controlled approximations should
now be systematically developed. The first important step is
to transfer the construction of a leading-logarithmic one-loop
FRG from the zero-temperature formalism used in Ref. [4] to
the Matsubara formalism, which is most broadly used for ap-
plications of the FRG to condensed-matter problems [9—13].
This is what we achieved in this paper.

We demonstrated how to construct a one-loop FRG ap-
proximation within Matsubara formalism that leads to the
known leading-logarithmic approximation for the absorption
of x rays in metals. Our approach is founded on the fact
that the leading approximation for the particle-hole suscep-
tibility xg,(z) is identical on the real and on the imaginary
z axis when &, is set to zero [see Eq. (58)]. Due to this
property it was possible to find an approximate formulation
of the Matsubara perturbation theory at 7 = 0 which leads to
imaginary-frequency expressions that are identical to the real-
frequency expressions from the zero-temperature ground-state
formalism. At that stage we could copy all further steps from
Ref. [4].

We thus substantiated that, also within Matsubara formal-
ism, leading-logarithmic approximations can be achieved by
one-loop FRG approximations. We expect that a generaliza-
tion of our one-loop flow to T > 0 is possible in a natural
way by using discrete Matsubara frequencies and then, po-
tentially, resorting to a numerical solution. This would allow
to study how the temperature-induced regularization of the
divergencies influences observables. For T — 0 the results
of such an approach are expected to converge to those of
the continuous-frequency approach presented in this paper.
Furthermore, we expect that our analysis can be transferred
to models whose structure of logarithmic divergencies in per-
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turbation theory resembles that of the x-ray absorption model,
in particular to the Kondo model and to the Fermi gas model
of one-dimensional conductors.

We pointed out that the multiloop corrections to the one-
loop results in Ref. [16] are of a size corresponding to
subleading contributions. This is, however, not important for
the main message of that reference, which is that the multiloop
scheme ensures the numerical summation of the complete
parquet diagrams for any choice of cutoff. The approximation
resulting from that summation is known to satisfy certain
symmetries, sum rules, and conservation laws [40-42]. This
was beneficial for multiloop FRG studies of two-dimensional
systems of correlated electrons [43—45] and three-dimensional
interacting quantum spin systems [46,47]. But concerning the
particular class of systems represented by the x-ray absorption
model with its plain structure of logarithmic divergencies,
we established that the desirable leading-logarithmic approx-
imation can be achieved even analytically by a suitably
constructed one-loop FRG.

A broad field of future investigations opens up on the basis
of our present study. From a methodological point of view,
two extensions are highly desirable: on the one hand, that to a
consistent handling of subleading contributions, on the other
hand, that to the nonequilibrium Keldysh formalism. From an
applications point of view, our scheme awaits to be adapted to
the study of diverse zero- and one-dimensional quantum-dot
systems at low temperatures in and out of equilibrium. A
long-term goal is the construction of an efficient and analyti-
cally transparent impurity solver whose range of applicability
extends from the perturbative to the Kondo regime.
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APPENDIX A: DETAILS ON THE STATE |¥,)

In Sec. IIB we described that the ground state of the
system filled with (N + 1) particles is either the state |W)
in which the deep level and the N states in the lower half of
the conduction band of momentum states are occupied, or the
state |Wp) in which a bound state and N states in the lower part
of the band of scattering states are occupied. The bound state
and the scattering states are single-particle eigenstates of the
perturbed Hamiltonian

_ U
HQ = Z <8kk/€k — V)a}:/ak.

k,k'

(AD)

Here we analyze these eigenstates of Hy in more detail.

The single-particle energies of Hy are the eigenvalues &, of
the matrix with components € = 8¢, — U/V . First-order
perturbation theory yields

= — S 10, n=1,....2N (A2
o

with €, = ¢, denoting the unperturbed energies and with

g = pU/V.In order to analyze €, beyond perturbation theory

we introduce a discrete model for the band of unperturbed mo-

10

F1/2—2/8)

0.0

[p(N+1/2—¢/0) — v(—N

FIG. 3. Graphical solution of the implicit equation (A4) for the
case N =5. (The value N =5 is sufficiently small to make the
details visible and sufficiently large to convey the impression of a
band of states. Realistic values of N would be much larger.) The
empty circles mark singularities of the denominator (N + % —
€,/8) — Y (—N + % — €,/8), corresponding to the positions of the
unperturbed energies €, = (n — N — %)8 at g = 0. The gray region
visualizes the corresponding energy window of the unperturbed con-
duction band. The black dots show the solutions of the implicit
equation for g = 0.5 and thus mark the positions of the correspond-
ing perturbed energies &,.

mentum states: We set €, = (n — N — %)8, n=1,...,2N,
with a constant level spacing § > 0. If § is much smaller
than all other energies of interest, this discrete band can be
treated as a continuous conduction band with half-width &, =
N§ and density of states p = 1/5. For the discrete model, a
straightforward computation of the roots €, of the characteris-
tic polynomial of Hy in the single-particle sector leads to the
implicit equation

-1
2N—1

= (2

j=0

-1
=P<N+%—qm>—wﬂw+%—qmﬂ , (Ad)

with g = U/(V§) # 0, and with the digamma function ¥ used
in the second line to express the sum appearing in the first line;
for details on the digamma function see Chap. 5 of Ref. [48].
This implicit equation has 2N solutions €,,n =1, ...,2N. A
graphical solution makes evident that

1
J=N+3—&/s

(A3)

€ <€ and n=2,...,2N

(see Fig. 3).

Of particular interest is the energy &, := &; of a bound state
that results from the localized attractive potential generated
by the deep hole. An approximation for €, that applies to
those values of g which are relevant for our paper can be
derived from 1 (x) &~ Inx for x > 1. Under the assumption
—N + % — &,/6 > 1 this approximation can be applied to
Eq. (A4), yielding

€n—1 < & < €,

(A5)

N+1L1—g&/s
~ In 2 b/

1
- — T (A6)
g —N+1-¢&/s
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with the solution

_ 1 2N§
€ N —N+ = 8—1—1

5 o ~ —£y(1+2e718). (A7)

The last approximation step in Eq. (A7) requires additionally
g < 1. In total, the above approximation for €, is good for
1> ¢> 1/In(2N) = 1/1In(2§p)._

In the (N + 1)-particle state |W,), the bound state and
the states ks, ..., EN+1 are occupied, while the states

knso, ..., ko are empty. The energy of | W) is thus
Ey =& + Eo, (A8)
where
N+1
(A9)

Ecb = E €n
n=2

is the energy of the half-filled band of scattering states. From
the inequality (AS) follows

Eg < Ecy < Egp + &. (A10)

The difference in energy of the half-filled band of scattering
states and the half-filled band of plane-wave states, E., — Ecp,
is thus less than the single-particle energy &.

APPENDIX B: LINEAR RESPONSE RATE

In Sec. IIC we reported that the mean occupancy of the
deep level changes under the influence of the x-ray field as
to—> —00

%(ndm) = 2|W[PImy ™ (v) (B1)

in linear response. Here we give some details on the deriva-
tion.
The rate of change of the mean deep-state occupancy is

d d
77 (al0) = = {Ualto, HHnalia(t. 10)) (B2)

= i(Uie(t0, D[Hx (1), nalUi(, 10)) ~ (B3)
= i(Ui(to, D[Hx, na]()nUi(t, 19)).  (B4)
Here, (-) = Tr(o -) denotes the expectation value given the
density operator o. Furthermore, Uy denotes the time-
evolution operator under the total Hamiltonian H,(f) = H +
Hyx (1), and U;(t', 1) = Uy (0, Ui (t', 1)Ux (¢, 0) denotes the

interaction-picture time-evolution operator, with Uy referring
to time evolution under H only. Furthermore,

[Hy, nal(")g = Un(0, 1)[Hx (1), nalUp(t, 0) (BS)

is the commutator in the interaction picture. By use of the
lowest-order approximation

Ut o) = 1 — i / dty Hy (t)n (B6)

fo

we obtain

d
27 (1a) @) = i([Hyx, nal(n)

+ / diy ([[FHx, na)ns Hy (). (BT)

fo

The first addend on the right-hand side vanishes since the
density operator is supposed to commute with H and nq. For
the second addend we employ

([[Hx, nal(t)u, Hx (t)u]) = — 2|W[*Ree™ ™"
x ([Att —t)u, A'])  (B8)

to obtain

%(nd>(r>=—2|W|2Re / _Odt’e"””<[A<r’>H,A*]> (B9)
0

ty——00

22T W P Imy T (v), (B10)

as indicated in Sec. II C.

APPENDIX C: ANALYTIC BEHAVIOR OF EXCITON
PROPAGATORS

In Sec. IIC we reported in which regions the retarded and
Matsubara exciton propagator are analytic and where they co-
incide. In this part of the Appendix we derive these statements
from the Lehmann representation of the propagators.

By use of the Lehmann representation it is straightforward
to show that x™(z) is analytic in the open upper half plane of
z. For that purpose, let |m) denote the states of an orthonormal
basis of common eigenstates of H and o, with H|m) = E,,|m)
and o|m) = g,,|m). Then

x*(2) = —i / ” dt e Tro[A(t)yAT — ATA(1)y] (CD)
0

oo
— i Y [, — o], (€
m,l 0

Om — 01

=) = = _A,A . C3
le+Em_EI im ( )

In the last step, the integral converges for z from the open
upper half plane, where x™'(z) is thus analytic.

In this context we remark that the advanced exciton propa-
gator

XadV(Z) — / dl eiZtXadV(t), (C4)

o0

XN (t) = iO(—t)([A()y, AT]) (C5)

satisfies x*4V(z) = x™(z*)* and is analytic in the open lower
half plane of z. Its Lehmann representation is formally iden-
tical to that of x™(z) but is obtained from an integral that
converges only for z from the open lower half plane.

The Lehmann representation of Xg’[a‘(t) in the case T > 0
is given by

T

_ﬂEm
e
1@y ==Y e A AL

Z T>0. (C6)

m,l

For x ;" (iX,) follows

1 e BEn _ o=BEI
Mat - T
X)) ==Y —————AuAj,. (CT
XX =70 g g mAm (€D

m,l

by straightforward integration and the use of ¢/#*" = 1. This
coincides formally with the Lehmann representation of x;et
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adv

and x P [compare Eq. (C3)]. However, X}S\’la‘(z) is not defined
on the upper or lower half plane of z but only for the Matsub-
ara frequencies z = iX, on the imaginary z axis.

Next we consider X}}’[a‘ in the limit of vanishing temper-
ature. First we study the case €4 < €49, in which |Wy) is
the ground state. Due to e #£»/Z — §,, y, for B — oo, the

Lehmann representation of X},}’[at(t) approaches

Xol\gat(_c) — —®(T) Z eT(EO_E,)A\llolA;-\y()'
1

(C8)

Here, AIT\I,0 allows only for states [ with empty deep level, such
that E; > E, > Ey. This means that all addends to ngm(r)
decay as e *%0=E0) or faster for T — o0o. Therefore,

() = f dr & Mo () (©9)
0

1 .
= — Ay A}
; z+Ey—E Yol

constitutes a convergent integral for all z with Rez < Ey —
Ey (> 0).

The very same expression results for Xge‘(z) — X{fg(z) =
Xw,(z) from Eq. (C3) in the limit 8 — oo, in which g,, —
Smw,. The two functions thus coincide on the intersection
of their domains given by Rez < Ey — Ey and Imz > 0 (see
Fig. 1).

If instead €4 > €q9 such that |¥y) is the ground state, the
Lehmann representation of x g’l"“(r) approaches

(C10)

() = —0(—0) Y e EFoa, AL (€l

for B — oo. For t — —oo the addends to aM2 (1) decay as
e Eo—Eo) or faster. Therefore,

0
Xoo''(2) = /
—0o0
—1 ¥
=25 g, B )

constitutes a convergent integral for all z with Rez > Ey —
Ep (< 0). We remark in passing that the integration from
—oo to 0 in Eq. (C12) results as the limit of the integration
from —pB to 0. In fact, it is possible to use this interval of
integration in Eq. (26) instead of the one from 0 to 8, due to
Xé‘/la‘(r —B) = x)"™(z) for 0 < v < B and due to e™F = 1.

The very same expression as for Xol‘ga‘(z) in Eq. (C13)
results for x;(z) in the limit B — oo with g, — §,,g,. In
this limit, ngv (z) converges to

dr & x Mt (7) (C12)

Xg, @) = / i ¢ xg, () (C14)
.
with
X (1) = iO(=)(Wol[At)u, A1 o). (C15)
Due to AT|¥y) = 0 the advanced exciton propagator X%iv isin

turn identical to the time-ordered propagator in the state |¥y):

Xy (0 = =i{%o| TAWRAT[Fo) = xg,().  (C16)

hatched: region in which
xMat(2) is analytic

5
7
"//

_
i

framed: region in which
N = _ Mat
X, (2) = Xoo(2)

EO - E()

gray: region in which
Xy, (%) is analytic

FIG. 4. Domains of analyticity of xM%(z) from Eq. (C12) and
X, (@) = X%‘lv(z) from Eq. (C14) in the case €4 > €4 in which | W)
is the ground state.

The two functions Xol\ga‘(z) and yy,(z) thus coincide on the
intersection of their domains given by Rez > Ey — Ey and
Imz < 0. This relation between xo“gat(z) and x g, (z) is sketched
in Fig. 4.

APPENDIX D: IDENTITY BETWEEN MATSUBARA
DIAGRAMS WITH LIMIT PROPAGATORS AND
DIAGRAMS FROM ZERO-TEMPERATURE FORMALISM

In Secs. IIID and IIIE we affirmed that any Matsubara
diagram for the particle-hole susceptibility that is evaluated
by using the zero-temperature limit propagator from Eq. (44)
or (45) is equal to the analytic continuation of the very same
diagram evaluated in the zero-temperature formalism. This is
shown in the following by using propagators in time repre-
sentation. We expect that the result holds as well when the
diagrams are evaluated with propagators in frequency repre-
sentation.

Let D}\g"“(r) denote some time-dependent diagram with
n interaction vertices that contributes to the particle-hole
susceptibility. As the index “lp” indicates, the diagram is
evaluated with limit propagators [in contrast to diagrams
DMat(7) = limg_, Dg[at(t) which are evaluated with finite-
temperature propagators, the limit § — oo being taken
afterwards]. To each vertex in D{‘lfa‘(r) is attached an incoming
and an outgoing deep-state line as well as an incoming and an
outgoing conduction-state line, the lines representing Hartree
dressed limit propagators. In total there are (n + 1) deep-state
lines and (n + 1) conduction-state lines. Since the deep-state
lines Gg’[oafl(t) = ¢~ %" @(—1) are directed backwards in imag-
inary time they are concatenated in a single sequence from 7
to 0, connecting the vertices in a unique time order. Accord-
ingly, we choose the time labels 7; of the vertices such that
T271,2---21 2 0. Then the product of all deep-state
propagators is

e Q=) pm&(ti-1—n)  m&(n—n) ,~&0-T) _ ST (D1)

The vertices are connected in some way by the conduction-
state lines. Due to the unique time order of the vertices,
the conduction-state lines can be grouped into lines of hole
propagation with & < 0 and lines of particle propagation
with €, > 0. Let n, be the number of conduction-state hole
propagators. The product of all conduction-state lines is then

115134-13



JAN DIEKMANN AND SEVERIN G. JAKOBS

PHYSICAL REVIEW B 109, 115134 (2024)

FIG. 5. Example for a diagram D}}f‘“(r) of order n =2. The
(Hartree renormalized) energies of the conduction-state lines are
€, >0, & >0, and & <0 and are addressed as €™ = =" =g,

~1 P t >~ ~1 P
=" =¢.,& =¢,.

Mat( )
Xegdt(— 1 )n+1 (_1)nhe—re e—r,,(e

— (_1)11h+1 (_l)nloop

given by

(—1y+! (_1)nheft?"efr,l(éjl“fal’“‘) e n@E—E (D2)
where €}“ and E;"" denote the (Hartree renormalized) energy
€ of that conduction-state propagator which enters or leaves,
respectively, the vertex with time ;. Furthermore, €™ denotes
the energy of the conduction-state propagator ending at time
7. An example for this labeling is given in Fig. 5.

The frequency dependence of the diagram is thus given by

1 00 0 0 o o
y f mn(_l)m< ) f dr, / dt, - f drp! / dz,- - f dz,, / den i1 / dzs
0 —&o —&o 0 0

ou() —‘[](6 —¢

(D3)

Urprtl 0 e -
vt / del.../ denh/ denrH"'f déns
—%o —&o 0 0
° i T ) 12
) / ar ef(#gd*%‘")/‘ dt, e " EE. . / dry e DE-&"
0 0 o

(D4)

[compare Egs. (27) and (31)]; due to the special role of the deep-state line, the prefactors (—1)”/(2"«S) from Eq. (31) do not
arise here. In Eq. (D4), the rightmost integral over imaginary time yields

This together with the next integral yields

—‘L'z(él _e?m) _ 1

1)
dry e nEEY = 2 (D3)
gm _ éoul
0 1 1
—Tz(ém—ézou[+6m ~ou!) 6_73(%“_%0“[) _ ] ]
( 1) 1n _ gout + gm _ gout - gin _ gout 6 _ gout ’ (D6)
2 1 1 2 2 1 1

and so on. In particular, the first n integrals produce each a prefactor (—1). Finally, the last imaginary-time integral consists of
addends that are made of products of energy denominators and integrations of the type

00 . eT@Fa+E) | 1
/ dt et Gra+E) — - _ , (D7)
0 2+ &+ E| 7+ &+ E
where E is one of
—&in, (D8)
_Em +( out Ein)’ (Dg)
—&n 4 (et — &) + (e, —&ln ), (D10)
—EN (M —En) + (& - ) 4+ (E —El). (D11)

The integral in Eq. (D7) converges for Rez < —&y, as discussed below. This last integral produces again a prefactor (—1). The
combined prefactor (—1)"+! from the time integrals can be merged with the other prefactors to yield

Mat(Z) _ ( 1)n+nh( 1)"100,;

as analytic function on the region given by Rez < —&y. The
sum on the very right of this expression runs over all re-
sulting combinations j of factors. The (n — 1) inner factors
represented by the dots close to the end of Eq. (D12) may

Unpn-H 0 0 &o o 1 1
dé;--- dé dé, 11+ dé =
yn+l /So 1 /50 nh /0 np+1 /0 n+1 Xj: 7+ gd + Ej gin _

Z (D12)

(

carry additional sign factors depending on their precise prove-

nance from the inner time integrations [compare Eq. (D6)].
In order to scrutinize the convergence of the outer-

most imaginary-time integration from Eq. (D7), consider the
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&in — Egut Eiln >0

6Zut 61211

&M <0

FIG. 6. Example for a diagram Di\g‘“(r) of order n = 4 and for
the case m = 2. The dotted vertical line separates the block of (inter-
nal and external) vertices with times 7, 1,, ..., T,_,, from the block
with times t,_,,_1, ..., 71, 0.

general case

E=—&"4&@" -+ —-am)+...

+ (@,‘;itm —&r). (D13)
On the right-hand side of this equation, the energies of
all conduction-state lines connecting the vertices at times
T,T,, ..., Ty—m among each other cancel out, as they ap-
pear once as some E}" and once as some E;’“t (see Fig. 6
for an example). There remains the sum of the energies
of conduction-state lines connecting the block of vertices
at times T, T,, ..., T,—, with the block of vertices at times
Tp—m—1, - -+, T1, 0. If such a line is directed from the former
block to the latter one, then it is a hole line with negative
energy which enters E as some &%, If the line runs in the
opposite direction, then it is a particle line with positive energy

Dy, (z) = " (= 1y H (=1 )Mor ———

The real-time integrations at the end of this expression yield
precisely the same results as the corresponding imaginary-
time integrations in Egs. (D5)—(D7) above, with the single
exception that the prefactor (—1) resulting from every inte-
gral is replaced by a factor i. The combined factor i"*! can
be merged with the other prefactors to yield for Dy, (z) the
identical expression as indicated for Dﬁ”[at(z) in Eq. (D12).
In the case of Dy, (z), the final time integration decays into

addends of the type
/OO dt ' CHaHE)
0

which converge for z from the upper half plane, as opposed to
the condition Rez < —&4 for Dﬂfa‘(z). On the quadrant allowed
by both conditions, the values are identical. This allows for
an analytic continuation from the limit-propagator Matsubara
diagram to the one from the zero-temperature formalism.

(D17)

APPENDIX E: ILLUSTRATION OF THE IDENTITY
BETWEEN ;¥ (iX) AND xy,(X)

In order to illustrate the remarkable equality between the
leading-logarithmic approximations for xM*(iX) and yg,(X)
that was described in Sec. IV B, we refer to the simple ex-

Unpn-H

Vn+1 /7
o0 N

X/ dt eit(erahgm)/ dt, e*lfn(e "(!ul).../ dt, e*lll(e] 75})u[).
0 0 0

which enters E as some —éli]“. Consequently, E < 0. This
means that the convergence of the integral in Eq. (D7) is
guaranteed if Rez < —é&;.

We note that the resulting domain of analyticity differs
from the domain of analyticity of xM*(z) which is given by
Rez < E() — E() (= €40 — €4 = ng — gd) for €d < €40 and by
Rez > Ey — Ey for €5 > €y (see Sec. IIC and Appendix C).
This discrepancy highlights that there are diagrams (those
with self-energy type insertions on the lines) for which the
transition to limit propagators is not correct.

Now we switch from imaginary times to real times and
consider the diagram as a contribution to xy,(z) in the state
|W) as determined by the real-time zero-temperature formal-
ism. We will find the same diagram value on the overlap
of the corresponding domains. The Hartree dressed zero-
temperature propagators are given by

G(@t) = ie F[O(—&) — O@)]. (D14)

Here, the exponent —i€¢ is understood as limit of —i(1 — in)ér
for n — 0" (compare Ref. [4]). Again, the deep-state propa-
gator is directed backwards in time, establishing a unique time
order of the vertices witht > ¢, > --- > t; > 0. Similar to the
Matsubara case above, the product of all deep-state lines is
i"T1ei and the product of all conduction-state lines is

. _izin __zout _ in__ (3ul
(_l)rz+1(_1)nhe ité e ztn(e () e ity (&} )

(D15)

The contribution of the diagram to xy,(z) thus turns out to be

&o &o
/ denh / d€nh+1 / d€n+1
éo 0

(D16)

(

ample of the noninteracting particle-hole susceptibility and
the corresponding distribution of poles in the complex plane.
The noninteracting particle-hole susceptibility is given in the
real-time zero-temperature formalism by

Xnonint(z)z_iﬁf / 1
Yo ¢ VJ_ 27ra)—z—u7a) E+insgné’
(ED)

The contour of w integration and the poles of the integrand
in the complex w plane are shown in Fig. 7(a), with z chosen
in the open upper left quadrant. The integration contour can
now be rotated: The integral along the negative real w axis is
identical to the integral along the negative imaginary w axis as
there are no nonanalyticities in the lower left quadrant and as
the integrand decays as 1/w? for || — oo. Due to the same
reasons, the integral along the positive real w axis equals the
integral along the positive imaginary w axis. With w = iw’ we

thus Obtai]l
L — 27{ lC() Z la) €

Mat nonint (Z)

X" @) = (E2)

(E3)
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(a) Imw (b) Imw‘/ A (c) Rew’ A

x4 oz

X X X X X X

»> >
X X X X X

X X X X X X

P4

xxxxxJ
x?xxxx

X X X X X X
Rew Imw’

= —Imw’

FIG. 7. (a) Integration contour and poles of the integrand in Eq. (E1). The crosses symbolize the numerous poles at &, — in sgné; stemming
from the conduction band. (b) Rotated integration contour and the poles of the integrand in Eq. (E2). (c) Integration contour and the poles of

the integrand in Eq. (E7).

The infinitesimal shifts =in can be omitted once the integra-
tion is along the imaginary axis. The new integration contour
is shown in Fig. 7(b).
So far we rederived the analytic continuation between yy,
and M2 for the noninteracting case. But now we rewrite
Mat, nonint
Xoo (z) as

X(l)\g[at,nonim(z):_i/w d_w’ 1 ' B/EO ' dé
- —&

0 2 @ — (—iz)V , ' — &
(E4)
and use

P o e

V,/ P —lﬂ—sgn(w )O& — |o'])  (ES)
=& -

A —/ (E6)

g W — € + in sgne

Here, the first approximation is precisely Eq. (52); the second
one is known from Ref. [3] to respect the leading-logarithmic
contributions to xy,. We obtain

Mat nonint (Z)

P / / 1 1
N —]—
vV /- 2nw—(—zz)—znw—e+msgne
(E7)
= x4 (—iz) (E8)

and in particular xMat nonint(jx) ~ X\‘l‘g"im(X ). We note that
for z from the open upper left quadrant we could simply
reintroduce the infinitesimal shift (—in). The poles of the
complex integrand are shown in Fig. 7(c). In comparison to
Fig. 7(a) it becomes apparent that the main effect of Eq. (ES),
i.e., of approximation (52), is to reestablish the pole structure
of the conduction-electron states as known from the real-time
zero-temperature formalism in a coordinate system with inter-
changed real- and imaginary-frequency axes.
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