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Three-band non-Hermitian non-Abelian topological insulator with PT symmetry
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Non-Abelian topological charges have recently been proposed to characterize the noncommutative topological
properties in multiple-band-gap systems. In this work, we investigate a non-Abelian system based on a three-band
tight-binding model characterized by quaternions. By introducing nonreciprocal hopping, the system becomes
non-Hermitian yet still preserves PT symmetry within a range of hopping parameters. As the hopping strength
increases, the PT symmetry is spontaneously broken. We find that the critical hopping values of PT transitions
for quaternion charges {±i,±k, −1} are different from that of the ± j case. Non-Hermitian quaternion topolog-
ical charges are analytically analyzed using the Berry-Wilczek-Zee (BWZ) phase. By diagonalizing the BWZ
phase matrix, we discover that its eigenvalues undergo a real-to-imaginary PT transition. This corresponds to the
real-to-imaginary transition of the associated eigenvalues of the Hamiltonian. However, the boundary states in
the finite system remain robust against random disorder only when the PT symmetry is preserved. Furthermore,
we examine the existence of domain wall states between two subsystems carrying different topological charges
to verify the non-Abelian quotient relation in the non-Hermitian situation. It is revealed that domain wall states
are no longer robust against random disorder once the PT symmetry is broken. Our work deepens the physical
understanding of the non-Abelian topology in the non-Hermitian system with PT symmetry.
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I. INTRODUCTION

Recently, the exploration of non-Abelian topological
physics has received significant attention both theoretically
and experimentally [1–8]. To date, many experiments have
been conducted in various physical systems to confirm
the non-Abelian topology, including photonic systems [2,9],
phononic systems [10,11], and transmission lines [4,12]. Non-
Abelian groups have played a crucial role in characterizing
topological properties of nodal line semimetals in three di-
mensions [1–3,6,10,13] and boundary states in three-band
models [4] and four-band models [12]. Non-Abelian topo-
logical charges can be protected by the system’s combined
PT symmetry, exhibiting robustness against perturbations
and even random disorders. Here, PT -symmetric systems are
those that remain unchanged under the combined operations
of parity (P) and time-reversal (T ) symmetry.

On the other hand, non-Hermitian topological physics has
garnered significant attention [5,14–22]. Non-Hermiticity is
typically achieved through the introduction of nonrecipro-
cal hopping terms or non-Hermitian gain and loss terms.
Non-Hermitian systems exhibit a plethora of intriguing phe-
nomena, including the non-Hermitian skin effect [22–27],
broken bulk-boundary correspondence [28–33], complex
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eigenspectra, complex energy gaps, and exceptional points
[15,34–39], among others. In non-Hermitian systems, eigen-
values and eigenfunctions are generally complex. However,
if non-Hermitian Hamiltonians possess PT symmetry, they
can exhibit a purely real eigenvalue spectrum within a range
of parameters [18,40,41]. Spontaneous PT -symmetry break-
ing transitions between real and complex eigenvalues occur,
leading to complex eigenvalues and eigenfunctions. Such
spontaneous PT -symmetry breaking typically manifests at an
exceptional point (EP). EPs refer to points in the parameter
space of a system where two or more eigenvalues and their
corresponding eigenvectors coalesce or merge into a single
entity. In non-Hermitian systems, EPs are commonly asso-
ciated with topological charge and geometric (Berry) phase
[42,43]. Consequently, extensive research has been conducted
on various PT -symmetric systems, including the Anderson
models for disorder systems [44,45], the Dirac Hamilto-
nians of topological insulators [46], and open quantum
systems [47]. Moreover, considerable attention has been given
to studying non-Hermitian PT -symmetric discrete systems,
such as the tight-binding chain [5,48]. However, the non-
Hermitian non-Abelian topological systems are less studied.

Based on the non-Abelian three-band tight-binding model,
we introduce the nonreciprocal hopping strength γ into the
system. We analytically obtain the energy spectrum versus the
hopping parameter. It is found that the PT symmetry is pre-
served until γ reaches the critical points. The critical hopping
values of PT transitions for quaternion charges {±i,±k,−1}
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FIG. 1. Schematic plot of the tight-binding model with nearest-
neighbor hoppings; each unit cell consists of three meta-atoms A, B,
and C. The nearest-neighbor hopping strengths are defined as vAB =
vBA = iu (blue), vCA = vAC = iw (green), and vBC = vCB = iv (red).
The nonreciprocal hopping strength is denoted by γ .

are different from that of the ± j case. The topological charges
are analytically computed by the Berry-Wilczek-Zee (BWZ)
phase matrix. The eigenvalues of the BWZ phase matrix
also undergo a real-to-imaginary PT transition, which cor-
responds to the real-to-imaginary transition of the associated
eigenvalues of the Hamiltonian. More importantly, the bound-
ary states in the finite system remain robust against random
disorder introduced in the on-sites only when the PT sym-
metry is preserved. To investigate the non-Abelian quotient
relation, we consider the domain wall states in two different
scenarios, i.e., one Hermitian and non-Hermitian subsystems
and two non-Hermitian subsystems. By connecting two sub-
systems carrying different topological charges, the domain
wall states always emerge. It is also found that domain states
are no longer robust against random disorder when PT sym-
metry is broken.

This paper is structured as follows. In Sec. II, we demon-
strate a non-Hermitian non-Abelian three-band tight-binding
model. In Sec. III, we analytically calculate the eigenval-
ues, eigen-wave-functions, and non-Hermitian non-Abelian
topological charges via BWZ phase matrix. Additionally, we
investigate the effect of random disorder on the boundary
states and domain wall states when the nonreciprocal hopping
γ is present. Finally, a brief summary is given in Sec. IV.

II. NON-HERMITIAN NON-ABELIAN THREE-BAND
TIGHT-BINDING MODEL

As shown in Fig. 1, we consider a three-band tight-binding
model in a quasi-one-dimensional lattice with the nearest-

neighbor (NN) and next-nearest-neighbor (NNN) hoppings,
which can be classified by the quaternion group Q =
(+1,±i,± j,±k,−1). There are three inequivalent lattice
sites in each unit cell, labeled separately as A, B, and C.
Starting from the tight-binding Hamiltonian [4]

H0 =
∑

n

⎛
⎜⎜⎝

∑
X=A,B,C

sXX c†
X,n

cX,n +
∑

X=A,B,C
Y =A,B,C

vXY c†
X,n

cY,n+1

+
∑

X=A,B,C
Y =A,B,C

vXY l c
†
X,n

cY,n+2 + H.c.

⎞
⎟⎟⎠, (1)

where the first term in H0 represents the on-site energy, the
second term represents NN hoppings, and the last term rep-
resents NNN hoppings. The c†

X,n
and cX,n denote the creation

and annihilation operators on the sublattice X/Y and site
n, respectively. The sXX is the on-site energy parameter, vXY

is the nearest-neighbor hopping parameter, and vXY l is the
next-nearest-neighbor hopping parameter. It is important to
note that for non-Abelian topological charges ±i, ± j, ±k,
we only consider NN hoppings. Conversely, for non-Abelian
topological charge −1, we only consider the NNN hoppings.
Based on Eq. (1), we incorporate the non-Hermitian part H(Q)

γ

into the system,

H(Q) = H0 + H(Q)
γ . (2)

For the topological Q = ±i case, the nonreciprocal hopping is
introduced between the B and C atoms in Fig. 1. H(Q)

γ equals

H(i)
γ = γ

∑
n

(c†
B,n

cC,n − c†
C,n

cB,n ). (3)

For the topological Q = ± j case, the nonreciprocal hopping
is introduced between the A and C atoms in Fig. 1. H(Q)

γ equals

H( j)
γ = γ

∑
n

(c†
A,n

cC,n − c†
C,n

cA,n ). (4)

For the topological Q = ±k and Q = −1 cases, the nonre-
ciprocal hopping is introduced between the A and B atoms in
Fig. 1. H(Q)

γ equals

H(k/−1)
γ = γ

∑
n

(c†
A,n

cB,n − c†
B,n

cA,n ). (5)

Once the nonreciprocal hoppings denoted as γ become
nonzero, the system transitions to a non-Hermitian state.

After the Fourier transformation, the Hamiltonian is repre-
sented in k space for different topological charges,

H (i/ j/k)
0 (k) =

⎡
⎢⎣

sAA + 2vAA cos k 2u sin k 2w sin k

2u sin k sBB + 2vBB cos k 2v sin k

2w sin k 2v sin k sCC + 2vCC cos k

⎤
⎥⎦, (6)

H (−1)
0 (k) =

⎡
⎢⎣

sAA + 2vAAl cos 2k 2ul sin 2k 2wl sin 2k

2ul sin 2k sBB + 2vBBl cos 2k 2vl sin 2k

2wl sin 2k 2vl sin 2k sCC + 2vCCl cos 2k

⎤
⎥⎦, (7)

H (Q)(k) = H (Q)
0 (k) + γ (−1)l−1

∑
mn

εlmn |m〉〈n|, (8)
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TABLE I. Parameters of various non-Abelian topological charges Q in the ideal tight-binding model for the Hermitian case.

Q sAA sBB sCC vAA vBB vCC u v w

+i 1 5/2 5/2 0 1/4 −1/4 0 1/4 0
−i 1 5/2 5/2 0 1/4 −1/4 0 −1/4 0
+ j 2 2 2 1/2 0 −1/2 0 0 −1/2
− j 2 2 2 1/2 0 −1/2 0 0 1/2
+k 3/2 3/2 3 1/4 −1/4 0 1/4 0 0
−k 3/2 3/2 3 1/4 −1/4 0 −1/4 0 0
Q sAA sBB sCC vAAl vBBl vCCl ul vl wl

−1 3/2 3/2 3 −1/4 1/4 0 −1/4 0 0

where for the Q = i case, l = 1; for the Q = j case, l = 2; for
the Q = k,−1 cases, l = 3; εlmn is a three-dimensional Levi-
Civita symbol; and m, n ∈ {1, 2, 3}, |1〉 = (1, 0, 0)T , |2〉 =
(0, 1, 0)T , |3〉 = (0, 0, 1)T . We have set vAB = vBA = iu, vABl =
vBAl = iul , vCA = vAC = iw, vCAl = vACl = iwl and vBC = vCB =
iv, vBCl = vCBl = ivl to make the Bloch Hamiltonian explicitly
real (u, ul , v, vl , w, wl are all real). The parameters for
various topological charges in the Hermitian case (γ = 0) are
summarized in Table I.

Before exploring the effects of introducing nonrecipro-
cal hopping into the non-Abelian system, we study PT
symmetry property of non-Hermitian non-Abelian system
by defining the parity operator P (Q). Its action satisfies
(P (Q) )−1H (Q)

0 (k)P (Q) = H (Q)
0 (−k). The parity operators P (Q)

are

P (i/ j) =
⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦, P (k/−1) =

⎡
⎣1 0 0

0 −1 0
0 0 1

⎤
⎦. (9)

Correspondingly, the time-reversal operators T (Q) can be ex-
pressed as

T (i/ j) =
⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦K, T (k/−1) =

⎡
⎣1 0 0

0 −1 0
0 0 1

⎤
⎦K,

(10)
where K is the complex-conjugation operator. We can
find that (T (Q) )−1H (Q)

0 (k)T (Q) = H (Q)∗
0 (−k). So H (Q)

0 (k) has
PT symmetry (P (Q)T (Q) )−1H (Q)

0 (k)(P (Q)T (Q) ) = H (Q)∗
0 (k)

with P (Q)T (Q) = K. Furthermore, we can verify that the
non-Hermitian part H (Q)

γ (k) = γ (−1)l−1 ∑
mn εlmn |m〉〈n| also

maintains PT symmetry.

III. RESULTS AND DISCUSSION

A. Eigenvalues and PT symmetry breaking

By incorporating nonreciprocal hoppings, denoted as γ ,
into the Hamiltonian shown in Eq. (2), the PT symme-
try is preserved until γ reaches a critical value. Hence, the

FIG. 2. The real parts (a1)–(a4) and imaginary parts (b1)–(b4) of bulk-band energy versus γ for different non-Abelian topological charges
+i, + j, +k, and −1 in non-Hermitian cases. The insets in panels (a1)–(a4) display the corresponding eigenstate frame spheres when γ = 0.3.
Critical points ±γc are indicated by dotted gray lines.
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FIG. 3. The real parts (a1)–(a4) and imaginary parts (b1)–(b4) of BWZ phase matrices’ eigenvalues �
(Q)
l with l = 1, 2, 3 versus γ for

different non-Abelian topological charges +i, + j, +k, and −1 in non-Hermitian cases. Critical points ±γc are indicated by dotted gray lines.

corresponding eigenvalues are real-valued for any wave vector
k in the Brillouin zone when γ is small. The eigenvalues
corresponding to the Hamiltonian in Eq. (8) can be found by
diagonalization:

E (+i)
1 = 1, E (+i)

2,3 = 5

2
∓

√
1 − 4γ 2

2
, (11)

E (+ j)
2 = 2, E (+ j)

1,3 = 2 ∓
√

1 − γ 2, (12)

E (+k/−1)
3 = 3, E (+k/−1)

1,2 = 3

2
∓

√
1 − 4γ 2

2
. (13)

Here, E (Q)
i represents the eigenvalue, with the subscript i

(i = 1, 2, 3) indicating the ith band and the superscript Q rep-
resenting non-Abelian topological charges +i, + j, +k, and
−1 in the Hermitian case. It is worth noting that all bands are
flat in k space. Since −i, − j, and −k correspond to conjugate
elements with inverse rotations, we will focus on the +i, + j,
and +k cases in the following discussion. It is observed that
when γ = 0, all these eigenvalues are real. However, by in-
troducing a small γ , all bulk band energies remain purely real
for |γ | � γc as depicted in Fig. 2. When the magnitude of γ

exceeds a critical value, known as the exceptional point γc, the
bulk band energies become complex, and the PT symmetry
is spontaneously broken. According to Eqs. (11)–(13), the
critical value γc = 0.5 applies for the Q = +i,+k,−1 cases,
but 1 for the Q = + j case. Figures 2(a1) and 2(b1) illustrate
that the real parts of the second and third bulk bands merge at
critical points ±γc while the corresponding imaginary parts
become nonzero after these points for the Q = +i case. In
the Q = +k,−1 cases, the real parts of the first and second
bands merge without any distinction from the band structure
perspective. It is also found that the real parts of the first
and third bulk bands merge at critical points γc = 1 for the
Q = + j case.

B. Non-Abelian topological charges in non-Hermitian cases

To characterize the topological property of the non-
Hermitian non-Abelian system, we first introduce the
non-Hermitian non-Abelian Berry connection, also known
as the non-Abelian Berry-Wilczek-Zee (BWZ) connection
[5,49,50],

A(Q)
αβ (k) = i

〈
φ(Q)

α

∣∣∂k

∣∣ψ (Q)
β

〉
, (14)

where α, β = 1, 2, 3. The eigen-wave-functions |ψ (Q)
α 〉 and

|φ(Q)
α 〉 can be obtained,

H (Q)
∣∣ψ (Q)

α

〉 = E (Q)
α

∣∣ψ (Q)
α

〉
(15)

and

(H (Q) )†
∣∣φ(Q)

α

〉 = (
E (Q)

α

)∗∣∣φ(Q)
α

〉
. (16)

Then the non-Abelian BWZ phase matrix element can be ob-
tained to characterize the topological property of the proposed
Hamiltonian in Eq. (2),

�
(Q)
αβ = 1

2π

∫ 2π

0
A(Q)

αβ (k)dk. (17)

As an illustration, the eigen-wave-functions corresponding to
Q = +i are analytically solved as

∣∣ψ (+i)
1

〉 = {1, 0, 0}, (18)

∣∣ψ (+i)
2,3

〉 = {0, (cos k ∓
√

1 − 4γ 2)/(sin k − 2γ ), 1}, (19)

∣∣φ(+i)
1

〉 = {1, 0, 0}, (20)

∣∣φ(+i)
2,3

〉 = {0, (cos k ∓
√

1 − 4γ 2)/(sin k + 2γ ), 1}. (21)
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FIG. 4. (a1)–(c1) The real parts of energy spectrum vs the disorder strength δ with different nonreciprocal hopping strengths γ = 0,
γ = 0.3, and γ = 0.8 for topological charge +i case. (a2)–(c2) The real parts of energy spectrum vs the disorder strength δ with different
nonreciprocal hopping strengths γ = 0, γ = 0.5, and γ = 1.2 for topological charge + j case. Here sBB = 2.2 for charge + j; other parameters
are the same as those in Table I. The color bar corresponds to the imaginary parts of the energy spectrum. The red ellipses indicate the
corresponding edge states. Here 21 unit cells are used in the numerical calculation; 10 configurations are calculated for each disorder
strength δ.

The eigen-wave-functions for other cases can be found in the
Appendix. In the inset of Figs. 2(a1)–2(a4), the rotations of
the eigenstate (|ψ (Q)

α 〉) frames are plotted when γ = 0.3. For
the Q = +i case, the eigenstate of the first band remains un-
changed, while the eigenstates of the second and third bands
rotate through π when k ranges from −π to π . For Q = + j,
the eigenstate of the second band remains unchanged, while
the eigenstates of the first and third bands rotate by π . Sim-
ilarly, for the Q = +k,−1 cases, the eigenstate of the third
band remains unchanged, and the eigenstates of the first and
second bands rotate by π and 2π , respectively. Note that when
PT symmetry is broken, the wave function becomes complex
and the eigenstate frame is no longer well defined.

When there is no nonreciprocal hopping, i.e., γ = 0, we
analytically calculate the non-Abelian BWZ connection by
Eq. (14) and hence the non-Abelian BWZ phase matrices

�(+i) =

⎛
⎜⎝

0 0 0

0 0 i
2

0 − i
2 0

⎞
⎟⎠, �(+ j) =

⎛
⎜⎝

0 0 i
2

0 0 0

− i
2 0 0

⎞
⎟⎠,

�(+k) =

⎛
⎜⎝

0 i
2 0

− i
2 0 0

0 0 0

⎞
⎟⎠, �(−1) =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠. (22)

Note that the non-Abelian BWZ phase matrices vary with
different non-Abelian topological charges.

Similarly, the non-Hermitian non-Abelian BWZ phase ma-
trices can also be analytically obtained,

�(+i) =

⎛
⎜⎝

0 0 0

0 −iγ i
2

0 − i
2 iγ

⎞
⎟⎠, �(+ j) =

⎛
⎜⎜⎝

iγ
2 0 i

2

0 0 0

− i
2 0 − iγ

2

⎞
⎟⎟⎠,

�(+k) =

⎛
⎜⎝

−iγ i
2 0

− i
2 iγ 0

0 0 0

⎞
⎟⎠, �(−1) =

⎛
⎜⎝

−2iγ −i 0

i 2iγ 0

0 0 0

⎞
⎟⎠.

(23)

Through the analytical diagonalization of the non-Abelian
BWZ phase matrices, we discover that their eigenvalues un-
dergo a real-to-imaginary PT transition. This corresponds to
the transition from real to imaginary among the associated
eigenvalues of the Hamiltonian, as depicted in Fig. 3. In the
following, we will investigate how the boundary states change
during PT symmetry breaking.

C. Robustness of edge states against random disorders

According to the bulk-boundary correspondence in the
non-Abelian situation [4], the boundary states emerge in the
finite system. In this section, we introduce the random dis-
order to study the robustness of these boundary states when
the nonreciprocal hoppings are introduced in a finite system
with 21 unit cells shown in Fig. 1. The random disorder is
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FIG. 5. The eigenstate distributions with different nonreciprocal hopping strengths (a1), (a2) γ = 0; (b1), (b2) γ = 0.3; and (c1), (c2)
γ = 0.8 for topological charge +i. (a1)–(c1) The clean system without disorder. (a2)–(c2) The system with disorder strength δ = 0.3. A slight
modulation (1%) is applied to vXX (X = A, B,C) to avoid flat band. The edge states for +i, localized at the hard boundaries, are represented
by yellow and cyan dots. Color bar represents the value of |ψ |2. Here 21 unit cells are used in the numerical calculation; 100 configurations
are calculated for disorder strength δ = 0.3.

added to the on-site energy parameters: sAA , sBB , and sCC , i.e.,
sAAn = sAA + δεn , where n is the cell number, εn is uniformly
distributed between −0.5 and 0.5, and δ denotes the disorder
strength.

First, we compute 10 configurations for each disorder
strength δ to observe the energy spectra. The numerical results
for topological charges +i and + j are presented in Fig. 4.
In a finite system, the boundary states appear in the second
and first band gaps for the +i and + j cases, respectively,
as expected. As illustrated in Figs. 4(a1) and 4(a2), the edge
states remain robust against random disorder as long as both
band gaps are not closed by the disorder when γ = 0. Once
γ becomes nonzero, the energies of edge states acquire the
imaginary parts ±γ . Even as the disorder strength increases,
the edge states remain robust until the PT symmetry is bro-
ken. We can observe that the edge states of topological charge
+i are robust against disorder and always stably located in the
second band gap when |γ | < 0.5. For the topological charge
+ j case, its edge states are robust against disorder when
|γ | < 1. As an illustration, Figs. 4(b1) and 4(b2) show the
energy spectra against the disorder strength when γ = 0.3 in
the +i case and γ = 0.5 in the + j case. Once γ reaches the

critical value for PT symmetry breaking, the band gaps close,
and the edge state becomes embedded in the bulk states, as
depicted in Figs. 4(c1) and 4(c2). For both the +k and −1
cases, we observe that the edge states emerge and remain
isolated when the PT symmetry is preserved, specifically
when |γ | < 0.5. This prompts the question of whether these
edge states remain robust in the presence of random disorder,
especially in situations where the PT symmetry is broken.

We further investigate the eigenstate distributions for the
topological charges +i and + j to confirm the robustness
of edge states. Figures 5(a1)–5(c1) illustrate the eigenstate
distributions of topological charge +i with varying nonrecip-
rocal hopping strengths γ in the clean system. It is evident
that edge states consistently appear as nonreciprocal hopping
strength γ reaches the critical value of 0.5, signifying that
the second band gap is nontrivial. Figures 5(a2)–5(c2) display
the eigenstate distributions for the disorder strength δ = 0.3,
keeping all other parameters the same as in Figs. 5(a1)–5(c1).
Interestingly, the edge states vanish when γ > 0.5. Notably,
in the non-Hermitian system, the edge states show resilience
against disorder when the PT symmetry is unbroken, that is,
|γ | < 0.5.
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FIG. 6. The eigenstate distributions with different nonreciprocal hopping strengths (a1), (a2) γ = 0; (b1), (b2) γ = 0.5; and (c1), (c2)
γ = 1.2 for topological charge + j. (a1)–(c1) The clean system without disorder. (a2)–(c2) The system with disorder strength δ = 0.3. A slight
modulation (1%) is applied to vXX (X = A, B,C) to avoid flat band. The edge states for + j, localized at the hard boundaries, are represented
by yellow and cyan dots. Color bar represents the value of |ψ |2. Here 21 unit cells are used in the numerical calculation; 100 configurations
are calculated for disorder strength δ = 0.3. Here sBB = 2.2; other parameters are the same as those in Table I.

As we increase the nonreciprocal hopping strength γ in a
clean system without the disorder, we consistently find that
the edge states of + j emerge. This indicates the first band
gap is nontrivial, as shown in Fig. 6. These edge states remain
robust against disorder, provided that they are protected by
PT symmetry, specifically when |γ | < 1. In the clean sys-
tem without the disorder, the edge states of the +k and −1
cases consistently appear stable when nonreciprocal hopping
strength |γ | < 0.5. This is consistent with the bulk energy
value analysis in the previous section. In our study, there is
no skin effect found.

D. Non-Hermitian non-Abelian domain wall states

According to the non-Abelian quotient relation in the
Hermitian case [4], domain wall states can emerge when
two subsystems carrying different topological charges are
connected. This is indicated by �Q = QL/QR (QL,R,�Q ∈
Q). Here, we explore the situation where the subsystem
becomes non-Hermitian. There are two different scenar-
ios. First, domain wall states can arise when a Hermitian
non-Abelian subsystem and a non-Hermitian non-Abelian

subsystem carrying different topological charges are inter-
connected. Second, two non-Hermitian non-Abelian systems
carrying different topological charges can be connected.

As an illustration, we numerically calculate the finite sys-
tems with topological charge pairs of (+ j,+k) and (+ j,+i),
using different nonreciprocal hopping strengths γ = 0.3 and
γ = 0.8. The results are shown in Fig. 7 and Fig. 8. The
non-Abelian quotient relation prompts the emergence of a
domain wall state, indicated by the topological charge i, in the
second band gap region. Figure 7 confirms that a domain wall
state appears regardless of which subsystem is non-Hermitian
or even if both are non-Hermitian. These domain wall states
show minor distribution differences in all cases. Furthermore,
the domain wall state also appears when nonreciprocal hop-
ping strength γ = 0.8 is introduced to the subsystem with
topological charge +k, as shown in Figs. 7(a2) and 7(c2). In
the (+ j,+i) system, the domain wall state, indicated by the
topological charge k, emerges in the first band gap region as
shown in Fig. 8 in different combinations. As demonstrated in
Figs. 8(a2) and 8(c2), the domain wall state occurs when the
nonreciprocal hopping strength of the introduced subsystem
with topological charge +i exceeds the PT -symmetry-broken
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FIG. 7. Domain wall states corresponding to the topological charge pair of (+ j, +k) with varying nonreciprocal hopping strengths γ = 0.3
and γ = 0.8 in different subsystems. Here sBB = 2.2 for charge + j; other parameters are the same as those in Table I. Each panel’s inset shows
the corresponding real part of energy spectrum, with the red line denoting the domain wall state. Here 21 unit cells are used.

value, γ = 0.5. We also discover that the domain wall state
can emerge in systems that combine different topological
charges.

Finally, we examine the robustness of the domain wall
states when random disorder is introduced into the system. For
example, we calculate the wave function distribution of the
domain wall state in a random configuration with topological
charge pairs of (+ j,+k). From Figs. 9(a1)–9(c1), we find
that the domain wall states are robust against random disorder
when γ = 0.3. However, when the nonreciprocal hopping
strength γ = 0.8, the domain wall state persists only when
it is added in the + j subsystem, as shown in Fig. 9(b2).
This is because the critical value of PT symmetry breaking
for + j is γ = 1, as we discussed previously. In the other
two cases with γ = 0.8 in the +k subsystem presented in

Figs. 9(a2) and 9(c2), the domain wall states are not robust
against random disorder and are no longer localized, since the
PT symmetry is broken in the +k region. For all other cases,
we verify that the domain wall states are robust when the PT
symmetry is maintained in the non-Hermitian case. Once the
PT symmetry is broken, the domain wall states are no longer
stable and can be disrupted by random perturbations.

IV. CONCLUSION

In summary, we have explicitly studied a non-Hermitian
non-Abelian three-band tight-binding model by introducing
nonreciprocal hopping. We discovered that the system’s PT
symmetry is broken as the nonreciprocal hopping strength
increases up to a critical value. Note that the critical
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FIG. 8. Domain wall states corresponding to the topological charge pair of (+ j, +i) with different nonreciprocal hopping strengths γ = 0.3
and γ = 0.8 in different subsystems. Here sBB = 1.8 for charge + j; other parameters are the same as those in Table I. Each panel’s inset shows
the corresponding real part of energy spectrum, with the red line denoting the domain wall state. Here 21 unit cells are used.

hopping values of PT transitions for the ± j case are different
from other cases. The non-Hermitian non-Abelian topological
charges and PT transition can be analytically described by
the BWZ phase matrix. In the corresponding finite system,
edge states emerge. Before the PT symmetry is broken,
these states are stably localized at the system’s two bound-
aries. However, after the symmetry is broken, the edge states
become unstable and lose their robustness against disorder.
We also examined the non-Abelian quotient relation in the
non-Hermitian situation by investigating domain wall states
between two subsystems carrying different non-Abelian topo-
logical charges. When two subsystems are protected by PT
symmetry, the domain wall state remains stable and is robust
against disorder. However, once either region’s PT symmetry
is broken, the domain wall state becomes unstable and loses

its robustness against disorder. Our work provides valuable in-
formation for designing non-Hermitian non-Abelian systems
with PT symmetry.
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FIG. 9. Domain wall states corresponding to those in Fig. 7 in a random configuration with disorder strength δ = 0.13. Other parameters
are the same as those in Fig. 7.

APPENDIX: EIGEN-WAVE-FUNCTIONS
FOR OTHER CASES

For Q = + j,+k,−1, the eigen-wave-functions can also be
analytically solved as

∣∣ψ (+ j)
2

〉 = {0, 1, 0}, (A1)

∣∣ψ (+ j)
1,3

〉 = {−(cos k ∓
√

1 − γ 2)/(sin k + γ ), 0, 1}, (A2)

∣∣φ(+ j)
2

〉 = {0, 1, 0}, (A3)

∣∣φ(+ j)
1,3

〉 = {−(cos k ∓
√

1 − γ 2)/(sin k − γ ), 0, 1}. (A4)

∣∣ψ (+k)
3

〉 = {0, 0, 1}, (A5)

∣∣ψ (+k)
1,2

〉 = {(cos k ∓
√

1 − 4γ 2)/(sin k − 2γ ), 1, 0}, (A6)

∣∣φ(+k)
3

〉 = {0, 0, 1}, (A7)

∣∣φ(+k)
1,2

〉 = {(cos k ∓
√

1 − 4γ 2)/(sin k + 2γ ), 1, 0}. (A8)

∣∣ψ (−1)
3

〉 = {0, 0, 1}, (A9)

∣∣ψ (−1)
1,2

〉 = {(cos 2k ±
√

1 − 4γ 2)/(sin 2k + 2γ ), 1, 0},
(A10)

∣∣φ(−1)
3

〉 = {0, 0, 1}, (A11)
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∣∣φ(−1)
1,2

〉 = {(cos 2k ±
√

1 − 4γ 2)/(sin 2k − 2γ ), 1, 0}.
(A12)

Using these analytical expressions, we can derive the BWZ
phase matrix in Eq. (23).
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