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We provide the plasmon spectrum and related properties of the three-dimensional (3D) Dirac semimetals
Na3Bi and Cd3As2 based on the random-phase approximation. The necessary one-electron eigenvalues and
eigenfunctions are obtained from an effective k · p Hamiltonian. Below the energy at which the velocity vz

along the kz axis vanishes, the density of states differs drastically from that of a 3D electron gas (3DEG) or
graphene. The dispersion relation is anisotropic for wave vectors parallel (q) and perpendicular (qz) to the (x, y)
plane and is markedly different than that of graphene or a 3DEG. The same holds for the energy-loss function.
Both depend sensitively on the position of the Fermi energy EF relative to the region of the Berry curvature of
the bands. For EF below the energy at which vz vanishes, the range of the relevant wave vectors q and qz shrinks,
for qz by about one order of magnitude.
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I. INTRODUCTION

In the last decade, three-dimensional (3D) Dirac semimet-
als (DSMs), in which doubly degenerate conduction and
valence bands cross linearly at one or more Dirac points,
have been studied extensively [1–8]. The electronic disper-
sion relation of the low-energy excitations around the Dirac
points is linear and resembles the massless Dirac equation of
relativistic particle physics. In particular, it has been found
that Na3Bi and Cd3As2 are 3D DSMs that have two symmetry
Dirac points connected by a pair of opposite chiral Fermi arcs
[4,6].

Angle-resolved photoemission spectroscopy (ARPES) ex-
periments have unveiled a pair of stable 3D bulk Dirac points
in both Na3Bi and Cd3As2, located on opposite sides of the
Brillouin zone center (� point) which are protected by crystal
symmetries [4–8]. The Fermi arc surface state, Berry curva-
tures, and anisotropic energy dispersions are observed as well
in their 3D energy bands, which is in line with theoretical
predictions [4,6]. This unique energy dispersion of 3D DSMs
leads to many interesting properties, such as ultrahigh carrier
mobilities [9–11], chiral anomalies [12,13], topological phase
transitions [14,15], ultrafast transient times [16], nonlinear
optical responses [17,18], quantum Hall effect in thin films
[19], and in the bulk [20]. Reviews of their properties, as well
as of those of Weyl semimetals, can be found in Refs. [21,22].

Despite the strong research activity in DSMs, we find that
their collective excitations have not been studied as exten-
sively as other properties. We are aware only of the studies of
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Ref. [23] for Na3Bi and Cd3As2, of Refs. [24,25] for general
3D DSMs, and of Ref. [26] for PtTe2. In all of them, only
limited aspects of these excitations have been studied with
very simplified energy spectra that are valid only very close
to the Dirac points. In particular, Ref. [24] used the spectrum
Ek,s = sh̄vF k, where k is the 3D momentum, vF is the Fermi
velocity, and s the band index. This spectrum was criticized
in Ref. [21]. Transport studies of 3D DSMs indicate that the
simple energy spectra cannot explain their electronic excita-
tions well due to their unique electronic band structures, so
their plasmon modes remain unclear [10,11].

The aim of this paper is to present a comprehensive
random-phase approximation (RPA) treatment of collective
excitations in Na3Bi and Cd3As2 using the broadly accepted
energy spectrum of the k · p approximation [2,3], i.e., with-
out unnecessary simplifications, and present a full account of
the plasmon spectrum and of the corresponding energy loss.
Using the energy band structures of 3D DSMs, we found
that their collective excitations are anisotropic and sensitively
affected by the Berry curvature of the bands. This is in
sharp contrast to graphene or other 3D systems like layered
graphene [27], Weyl semimetals [28], and 3D DSMs with
isotropic Dirac cones [26].

The paper is organized as follows. In Sec. II, we present the
basics of the one-electron aspects and in Sec. III the relevant
dielectric functions. In Sec. IV, we present our results and
discussion, and in Sec. V our summary.

II. ONE-ELECTRON ASPECTS

Na3Bi is a hexagonal crystal normally in its P63/mmc or
D4

6h phase. There are two nonequivalent Na sites noted as
Na(1) and Na(2). Na(1) andBi can form simple honeycomb
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lattice layers stacked along the c axis. The Na(2) atoms are
sandwiched between the above-mentioned lattice layers and
connect to the Bi atoms in forming the layers of honeycomb
lattices. Na3Bi has an inverted band structure and its Fermi
surface consists of two isolated Fermi points [2]. Both time-
reversal and inversion symmetries are present in Na3Bi, so
there is fourfold degeneracy at each Fermi point around which
the band dispersion can be linearized. Due to the lattice struc-
ture, asymmetric features of the electronic band structure are
expected for Na3Bi Dirac fermions. In the k· p approximation
[2], the Hamiltonian for low-energy electrons is given by

H (K) = εK × I +

⎛
⎜⎜⎝

MK Ak+ 0 B∗
K

Ak− −MK B∗
K 0

0 BK MK −Ak−
BK 0 −Ak+ −MK

⎞
⎟⎟⎠, (1)

where K = (k, kz ) = (kx, ky, kz ) is the electron wave vector
or momentum operator, and I is the 4 × 4 unitary ma-
trix. The z axis is the direction of stacking honeycomb
lattice layers to form Na(1) and Bi. Further, k± = kx ±
iky, εK = C0 + C1k2

z + C2k2, MK = M0 − M1k2
z − M2k2, and

C0, C1, C2, M0, M1, M2, and A are band parameters [2,29].
In Eq. (1), BK = B3kzk2

+ ∼ K3 gives a high-order contribution
to the electron motion, which is significant only at relatively
large electron momentum. The corresponding Schrödinger
equation can be solved analytically and the eigenvalues ob-
tained are E±(K) = εK ± [M2

K + A2k2 + |BK|2]1/2, where the
+ (−) sign refers to the conduction (valence) band. There
exist two Dirac points at k = 0 and kz = ±kc = ±[M0/M1]1/2;
see Fig. 1.

ARPES and spin-resolved ARPES measurements indicate
that the energy bands for both Na3Bi and Cd3As2 are spin
degenerate near the Dirac points [4,7] and the observable
energy band splitting occurs in large energy and high mag-
netic field ranges [30]. These experimental works are in good
agreement with theoretical predictions for Na3Bi and Cd3As2

[2,3]. The plasmons, induced by electron-electron (e-e) in-
teractions, mainly occur in low-energy and small-momentum
regimes, in which case a spin degeneracy occurs. Thus, we
can neglect the high-order terms containing BK in Eq. (1). The
4 × 4 matrix becomes block diagonal in form with two 2 × 2
matrices, the upper-left block Hu(K), and lower-right block
Hl (K), respectively. By time reversal symmetry of 3D DSMs,
we have Hl (K) = H∗

u (−K) [21]. This allows us to focus on
studying the Hu(K), which reads

Hu(K) =
(

εK + MK Ak+
Ak− εK − MK

)
. (2)

The resulting eigenvalues and eigenfunction of Eq. (2) are,
respectively,

EK,l = εK + l
[
M2

K + A2k2
]1/2 = εK + l[ξK,l + MK], (3)

where l = +1 (−1) represents the conduction (valence) band,
and

ψK,l (R) = |K, l〉 = aK,l

(
1

bK,l

)
eiK·R, (4)

with R = (x, y, z), ξK,l = [M2
K + A2k2]

1/2 − lMK,

aK,l = Ak
(
ξ 2

K,l + A2k2
)−1/2

, bK,l = lξK,l/Ak−. (5)

FIG. 1. (a) Energy dispersion EK of Na3Bi as a function of k and
kz, as given by Eq. (3). (b) EK as a function of k at kz = kc. The Dirac
point is at k = 0 with energy E0 = 7.6 meV. (c) EK as a function of
kz at k = 0. There are two Dirac points at kz = ±kc. The top of the
Berry curvature in the conduction band is E1 � 23 meV, its bottom
in the valence band at E2 � −151 meV, and they are both located
at k = 0 and kz = 0. (d)–(f) As in (a)–(c), respectively, for Cd3As2.
The energy of the Dirac point is at E0 � −218.68 meV. The top of
the Berry curvature in the conduction band is E1 � −209 meV and
its bottom in the valence band at E2 � −229 meV. The red curve
shows the conduction band and the blue-dash-dotted curve is the
valance band. The green-dashed and black-dotted lines show the
Fermi energy EF for high- and low-electron densities, respectively,
see Figs. 3–6.

Equations (1)–(5) also apply to Cd3As2 but with different
parameters [29].

It’s worth emphasizing that the band structures of 3D
DSMs are different from those of single-layer or multilayer
3D DSMs. In the bulk 3D DSM samples that are unconfined
along the z axis, kz is a continuous variable while, in confined
systems, kz is quantized for sufficiently small thicknesses due
to the formed quantum-well structure [2,3]. The finite-size
effect removes the band inversion and opens a band gap
for sufficiently thin samples [3,31]. The effect weakens with
increasing thickness and eventually the band inversion is re-
stored. A recent experimental study confirmed this prediction
in Cd3As2 thin films, indicating that this feature is unique and
worth exploring further [15]. In our case, the bulk 3D DSMs
are extended and, in line with Eqs. (2) and (4), there is no
finite-size effect to consider.

In Fig. 1, we show the energy dispersions EK of Na3Bi (left
panels) and of Cd3As2 (right panels) given by Eq. (3). The
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first row of panels shows the full dispersions, the second one
shows them as functions of k for fixed kz = kc, and the third
as functions of kz for k = 0. We note the following features.

(i) Both Na3Bi and Cd3As2 have two symmetric Dirac
points at the bottom of the conduction band and the top of
the valence band for k = 0 and kz = ±kc. The correspond-
ing energies are E0 = C0 + C1M0/M1 (Na3Bi ∼ 7.62 meV,
Cd3As2 ∼ −218.68 meV).

(ii) Near the two Dirac points, the electron energies are
approximately linear, but the dispersions for both bands are
asymmetric and depend nonlinearly on k and kz.

(iii) The dispersions along the kz direction for both systems
show arch-bridge-like Berry curvatures from −kc to kc in both
conduction and valence bands. The top of the arch-bridge-like
energy spectrum is reached at k = kz = 0, which is in contrast
to a conventional 3D electron system where the minimum of
the conduction band is at k = 0 and kz = 0. The top of the
Berry curvature in the conduction band is at E1 = C0 + |M0|
(Na3Bi ∼ 23 meV, Cd3As2 ∼ −209 meV).

(iv) The Berry curvatures in the energy bands imply that the
electronic density of states (DOS) should be much smaller for
E < E1 than that for E > E1 in n-doped 3D DSMs. Because
the effect of Berry curvature in Na3Bi is stronger than in
Cd3As2, the DOS in Na3Bi should also change more than in
Cd3As2.

(v) The condition of carrier number conservation deter-
mines the Fermi energy EF . With Ne the electron density and
f+(EK,+) = [e(x−E+

F )/kBT + 1]−1, the Fermi-Dirac distribution
for electrons reads

Ne = 1

π2

∫ ∞

0
dkz

∫ ∞

0
dkk f+(EK,+). (6)

For n-doped Na3Bi, the Fermi level EF is in the conduction
band and the Fermi wave vector kF along the kz axis is much
larger than along the k direction; near the Dirac points it’s
about 10–20 times larger. But for Cd3As2 kF along the k
direction, it is about twice larger than along the kz axis. Ac-
cordingly, the electronic transitions will be different in Na3Bi
along the k or kz directions, but in Cd3As2 these differences
will be smaller. This conclusion, that Na3Bi has stronger
anisotropic properties than Cd3As2, has already been pointed
out in the literature [2–6].

(vi) It should be noted that the magnitude of the Fermi
velocity vF = 2A in Na3Bi (�7.473 × 105 m/s) is similar
to that in Cd3As2 (�7.6 × 105 m/s). This is because the
electron effective mass in Cd3As2 [32] (∼0.02−0.042 me),
as found experimentally, is much smaller than that in Na3Bi
[10] (∼0.11−0.24 me). The effective mass term M0−M1k2

z in
Eq. (3), with parameters obtained from experiments, leads to
similar Fermi velocities in both systems though Na3Bi has a
larger kF wave vector than Cd3As2.

(vii) As in previous work [11], we measure EF from E0 =
7.6 meV. This suggests that EF will locate inside the range of
the Berry curvature when the electron density is lower than
Ne ∼ 4 × 1018 cm−3 at low temperatures at which we have
EF < E1 − E0 meV [33].

For an n-type 3D DSM, the valence band is fully occupied
and electronic transitions occur from the valence to the con-
duction band. The density of states (DOS) for the conduction

FIG. 2. Density of states (DOS) D(E ) for Na3Bi as a function of
the electron energy E (blue curve) with D0 = C2

0 /A3 for Na3Bi. The
top of the Berry curvature in the conduction band is E1 � 23.2 meV
and is marked by the red-dashed curve. At this value of the energy,
the velocity ∂EK/∂kz vanishes (cf. Fig. 1), i.e., it corresponds to an
integrable van Hove singularity. The DOS for a 3DEG is shown by
the orange-dotted curve using the effective mass m∗ � 0.11me of
Na3Bi and D0 = m∗3/2

√
2|C0|/(π h̄3) for a 3DEG. The black-dashed

curve is the result for graphene with energy dispersion E = h̄vF k
and D0 = C2

0 /(h̄vF )3. Arrows indicate the two values of EF used to
obtain the results shown in Figs. 3–6.

band is given by

D+(E ) = −(gs/π )
∑
k,kz

δ(E − EK,+), (7)

where gs = 2 counts for spin degeneracy. Though one of the
sums can be evaluated analytically, the result is too cumber-
some to be given here. Instead, the δ function is replaced by a
Lorentzian of width � = 1 meV, and the integrals over k and
kz are carried out numerically.

In Fig. 2, we show the DOS D(E ) as a function of the
electron energy E based on Eq. (7). For clarity, we contrast
it with the result for a 3DEG and that for graphene using the
details given in the caption. As is known, for a 3DEG the
DOS is D(E )3D =

√
2m∗3E/(π h̄)2 ∝ E1/2. The sharp con-

trast between the two DOSs implies that a 3DEG has different
physical properties than 3D DSMs, especially for E < E1, i.e.,
when EF is relatively low and near the Berry curvature. As
can be seen, the effect of the Berry curvature is still clear for
energies lower than E1 � 23.2 meV.

These properties of the DOS for 3D DSMs imply that
their plasmon modes, for low energies and small momen-
tum, should mainly occur for small qz. In addition, it’s worth
pointing out that the variation of the DOS in Cd3As2 will
be different from that of Na3Bi although the two systems
are similar and have the same energy dispersion. Based on
the results of Fig. 1, the electron energy for Cd3As2 along
different wave vector directions shows much less difference
than in Na3Bi, which means that the DOS in Cd3As2 changes
less. In addition, the effect of Berry curvature in Cd3As2

will be weaker than in Na3Bi and will lead to more weakly
anisotropic properties in Cd3As2; this is in line with the ex-
perimental finding in Na3Bi [4,5] and Cd3As2 [6,7].

115123-3



Q. N. LI et al. PHYSICAL REVIEW B 109, 115123 (2024)

III. DIELECTRIC FUNCTIONS

As stated in Sec. II, for bulk 3D DSMs the low-energy elec-
tronic excitations along k and kz directions are well described
by the effective Hamiltonian Eq. (2). Thus, we can study their
anisotropic plasmon modes by applying Eqs. (3)–(5) to the
RPA dielectric functions based on a 3D Coulomb potential
V (R) with R = (x, y, z).

The electrostatic potential induced by the bare electron-
electron (e-e) interaction, V (R) = e2/(κ|R|), can be calcu-
lated via [34]

Vind(Q, t ) = VQ

∑
K

∑
l,l ′

〈K + Q, l ′|δN |K, l〉

× 〈K + Q, l ′|e−iQ·R|K, l〉
= lim

η→0
VQV (Q, t )

∑
K

∑
l,l ′

Fl ′,l (K, Q)�l ′,l (ω; K, Q),

(8)

where

�l ′,l (ω; K, Q) = gs
fl ′ (EK+Q,l ′ ) − fl (EK,l )

EK+Q,l ′ − EK,l − h̄ω + ih̄η
(9)

is the corresponding density-density correlation function and
fl (x) = [e(x−El

F )/kBT + 1]−1 is the Fermi-Dirac distribution
function. Further, El

F is the Fermi energy or chemical potential
just above the band l and gs = 2 counts for spin degeneracy.
Here, the conservation law for momentum flowing into and
out of the interaction region has been applied, κ is the di-
electric constant for Na3Bi or Cd3As2, Q = (q, ϕ, qz ) is the
change of the electron wave vector during an e-e scattering
event, and VQ = 4πe2/(κQ2) is the 3D Fourier transform of
the Coulomb potential induced by the e-e interaction. δN is
the induced density and V (Q, t ) is the total self-consistent
perturbed potential energy.

Using the expressions for the dielectric function Ê (ω, Q),
induced and total potential energy, we obtain

Ê (ω, Q) = 1 − Vind(Q, t )

V (Q, t )

= 1 − lim
η→0

VQ

∑
K

∑
l,l ′

Fl ′,l (K, Q)�l ′,l (ω; K, Q),

(10)

where F (K, Q) is the form factor for many-body interactions
given by

Fl ′,l (K, Q) = |〈K + Q, l ′|e−iQ·R|K, l〉|2

= |a∗
K+Q,l ′aK,l (1 + b∗

K+Q,l ′bK,l )|2

=

∣∣∣∣∣∣∣
A2k|k + q|√(

ξ 2
K+Q,l ′ + A2|k + q|2)(ξ 2

K,l + A2k2
)

×
(

1 + ll ′ξK,lξK+Q,l ′

A2[k2 + (kx − iky)(qx + iqy)]

)∣∣∣∣∣∣∣

2

,

(11)

here, |k + q|2 = k2 + q2 + 2kq(cos θ cos ϕ + sin θ sin ϕ) =
k2 + q2 + 2kq cos(θ − ϕ), θ is the angle between k and the x
axis, and ϕ is the angle between q and the x axis. Eventually,
the dielectric function takes the form

Ê (ω, Q) =1 − lim
η→0

4πe2gs

κQ2

∑
K

∑
l ′,l

Fl ′,l (K, Q)

× fl ′ (EK+Q,l ′ ) − fl (EK,l )

EK+Q,l ′ − EK,l − h̄ω − ih̄η
. (12)

We now use the identity limη→0[1/(x ± iη)] = P{1/x} ∓
iπδ(x), with P{1/x} the principal value and δ(x) the Dirac
delta function, to obtain the real and imaginary parts of the
dielectric function. Moreover, we replace h̄η by a small value
�, assumed to be caused, e.g., by impurity scattering. Then
we obtain the real part:

ERe(ω, Q) =1 − 4πe2gs

κQ2

∑
K

∑
l ′,l

Fl ′,l (K, Q)

× [ fl ′ (EK+Q,l ′ ) − fl (EK,l )]

× (EK+Q,l ′ − EK,l − h̄ω)

(EK+Q,l ′ − EK,l − h̄ω)2 + �2
. (13)

Meanwhile, the imaginary part EIm(ω, Q) becomes

E Im(ω, Q) =4π2e2gs

κQ2

∑
K

∑
l ′,l

Fl ′,l (K, Q)[ fl ′ (EK+Q,l ′ )

− fl (EK,l )]δ(EK+Q,l ′ − EK,l − h̄ω). (14)

It is very difficult to study the plasmon mode along an
arbitrary direction of the 3D wave vector Q. Instead, we de-
compose it in two components: Q⊥ = (0, 0, qz ) perpendicular
to the (x, y) plane, which will only act along the kz direction,
and Q‖ = (q, ϕ, 0), with ϕ the angle between q and x axis,
which is parallel to this plane.

A. Q perpendicular to the (x, y) plane

In the first case, the real part of Ê (K, Q) from Eq. (13) for
Q⊥ = (0, 0, qz ) becomes

E⊥
Re(ω, qz ) =1 − 8e2

κπq2
z

∑
l ′,l

∫ ∞

0
dkz

∫ ∞

0
dkk

× Fl ′,l (K, qz )[ fl ′ (EK,qz,l ′ ) − fl (EK,l )]

× (EK,qz,l ′ − EK,l − h̄ω)

(EK,qz,l ′ − EK,l − h̄ω)2 + �2
, (15)

with

EK,qz,l ′ = C0 + C1(kz + qz )2 + C2k2 + l ′
√

M2
qz

+ A2k2,

(16)

Mqz = [M0 − M1(kz + qz )2 − M2k2],

Fl ′,l (K, qz ) =

∣∣∣∣∣∣∣
A2k2√(

ξ 2
K,qz,l ′ + A2k2

)(
ξ 2

K,l + A2k2
)

×(1 + ll ′ξK,lξK,qz,l ′/A2k2)

∣∣∣∣∣∣∣

2

, (17)
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where

ξK,qz,l ′ =
√

M2
qz

+ A2k2 − l ′Mqz . (18)

In the meantime, assuming a broadening of the energy levels
due to scattering, we can write δ(E ) ≈ (�/π )(E2 + �2)−1

in Eq. (14), where � = h̄/τ and τ is the lifetime. Then the
imaginary part of Ê (K, Q) for Q⊥ = (0, 0, qz ) becomes

E⊥
Im(ω, qz ) = 8e2 h̄

κπτq2
z

∑
l ′,l

∫ ∞

0
dkz

∫ ∞

0
dkk

× Fl ′,l (K, qz )[ fl ′ (EK,qz,l ′ ) − fl (EK,l )]

× [�2 + (EK,qz,l ′ − EK,l − h̄ω)2]−1. (19)

B. Q parallel to the (x, y) plane

In this case, we take the wave vector Q as Q‖ = (q, ϕ, 0),
where ϕ is the angle between q and the x axis. From Eq. (13),
we obtain the real part of Ê (K, Q) as

E‖
Re(ω, q, ϕ) = 1 − 4e2

κπ2q2

∑
l ′,l

∫ ∞

0
dkz

∫ 2π−ϕ

0
dφ

∫ ∞

0
dkk

× Fl ′,l (K, q, ϕ)[ fl ′ (EK,q,ϕ ) − fl (EK )]

× EK,q,ϕ − EK − h̄ω

(EK,q,ϕ − EK − h̄ω)2 + �2
, (20)

with

EK,q,ϕ = C0 + C1k2
z + C2|k + q|2 + l ′

√
M2

q + A2|k + q|2,
(21)

where Mq = M0 − M1k2
z − M2|k + q|2,

Fl ′,l (K, q, ϕ) =

∣∣∣∣∣∣∣
A2k|k + q|√(

ξ 2
K,q,ϕ,l ′ + A2|k + q|2)(ξ 2

K,l + A2k2
)

×(1 + ll ′ξK,lξK,q,ϕ,l ′/A2k|k + q|)

∣∣∣∣∣∣∣

2

, (22)

and

ξK,q,ϕ,l ′ =
√

M2
q + A2|k + q|2 − l ′Mq. (23)

By applying relaxation time approximation to Eq. (14), the
imaginary part of Ê (K, Q) for Q‖ = (q, ϕ, 0) has the form

E‖
Im(ω, q, ϕ) = 4e2 h̄

κπ2τq2

∑
l ′,l

∫ ∞

0
dkz

∫ 2π−ϕ

0
dφ

∫ ∞

0
dkk

× Fl ′,l (K, q, ϕ)[ fl ′ (EK,q,ϕ ) − fl (EK )]

× [�2 + (EK,q,ϕ,l ′ − EK,l − h̄ω)2]−1. (24)

Here, we made the change φ = θ − ϕ, so |k + q|2 = k2 +
q2 + 2kq cos(θ − ϕ). Then the integration over θ from 0 to
2π becomes one over φ from 0 to (2π − ϕ), which describes
how different wave vector q directions affect the dielectric
function. After obtaining the expressions of the dielectric
function for 3D DSMs in different directions, we consider the
transitions between different energy bands. The band index

TABLE I. The energy band parameters and dielectric constant
of Na3Bi are taken from Refs. [2,37], respectively. Note that for
Cd3As2, the original band parameters are M ′

0 = −0.060 eV, M ′
1 =

96 eVÅ2, and M3 = 0.05 eV. For small momenta |kz| � M3/
√

M ′
1,

the energy dispersion in Cd3As2 will have the same form as in
Na3Bi, and the band parameters become M0 = M ′

0 + |M3| and M1 =
0.5M ′

1/|M3| in Eqs. (1)–(4) [29]. The dielectric constant for Cd3As2

is taken from Ref. [24].

Na3Bi band parameters

C0 (eV) C1 (eVÅ2) C2 (eVÅ2) M0 (eV)
−0.06382 8.7536 −8.4008 −0.8686
M1 (eVÅ2) M2 (eVÅ2) A (eVÅ) κ

−10.6424 −10.361 2.4598 5.99

Cd3As2 band parameters

C0 (eV) C1 (eVÅ2) C2 (eVÅ2) M0 (eV)
−0.219 −30 −16 −0.01
M1 (eVÅ2) M2 (eVÅ2) A (eVÅ) κ

960 18 2.75 12

l = 1 (−1) represents the conduction (valence) band, and the
dielectric function will have four parts:∑

ll ′
Ê = E++ + E−+ + E+− + E−−. (25)

Since we focus on n-type 3D DSMs, in which the conduc-
tion band is occupied, the valence band is fully occupied
so f−(x) = 1, and �l ′,l (ω; K, Q) = 0 for l ′ = l = −1. At
the same time, electron transitions from the conduction band
(l = +1) to the valence band (l ′ = −1) have only a very small
influence on plasmon modes, so we take E+− � 0. Thus, even-
tually we consider only intraband transitions in the conduction
band (E++) and interband transitions from the valence to the
conduction band (E−+) into account. Then, the resulting plas-
mon modes are the solutions of Re[Ê (ω, Q)] = |ERe(ω, Q)| =
0. The energy loss rate can be evaluated using the imaginary
part of the dielectric function through the energy loss function:

Eloss = −Im

[
1

Ê (ω, Q)

]
= −EIm(ω, Q)

ERe(ω, Q)2 − EIm(ω, Q)2
. (26)

As shown in Fig. 1, 3D DSMs have anisotropic energy dis-
persions, but in the (x, y) plane their dispersions are isotropic
and similar to that of graphene. Thus, we first consider the
simple case in which q is parallel to k by setting ϕ = 0 in
Eqs. (20) and (24). Following the standard procedure [35], we
first obtain the plasmon dispersion from the zeros of the real
part of the dielectric function and then calculate the energy
loss using Eq. (26).

IV. RESULTS AND DISCUSSION

For the numerical calculations, we use the band parame-
ters for Na3Bi shown in Table I [2]. They were determined
by fitting the energy spectrum of the effective Hamiltonian
in Eq. (1) to those obtained from ab init io calculations and
the ARPES experimental results [4,5] since both agree well
with those of Ref. [2]. For the 3D DSM Cd3As2, the experi-
mental works from ARPES measurements [6,7] and scanning
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microscopy measurements [29] indicate that the energy spec-
trum deduced from experiments is basically the same as the
theoretical one [3], though with some minor differences. The
main one is that the experimentally determined Fermi veloc-
ities in Cd3As2 [6,29] are much larger than the theoretical
ones [3]. As a result, we use the band parameters from the
ARPES measurements shown in Table I [29]. Furthermore, it
has been shown experimentally that for 3D DSMs, the lifetime
is different for samples with different carrier densities, but for
low temperatures both Na3Bi and Cd3As2 samples exhibit fast
lifetimes (∼1−7 ps) [10,16,36]. Hence, we use 6.71 ps for
Na3Bi [10] and 6.87 ps for Cd3As2 [36].

As shown in Fig. 2, the DOS for 3DEG, graphene, and
3D DSMs are different from each other. Accordingly, their
plasmon modes will also be different. In the long-wavelength
limit (Q → 0), the plasmon dispersion of 3DEG is given
by an optical-like formula ωQ = ωP + 3v2

F Q2/(10ωP ) ∼ Q2,
where ωP = [Nee2/(mκ0)]1/2 is the plasma frequency, κ0

the vacuum dielectric constant, and vF = h̄kF /m is the
Fermi velocity. In a real metal, e.g., sodium, we have Ne ∼
1023 cm−3, the plasmon energy h̄ωP ∼ 5.9 eV is much
larger than kBT ∼ 25 meV, so plasmons in a 3DEG are not
easily, i.e., thermally excitable; this means it’s very diffi-
cult to directly observe them in experiments. However, for
graphene in the long-wavelength limit (q → 0), the disper-
sion relation ωq = (2e2EF q/κ0)1/2 ∼ q1/2 ∼ N1/4

e with EF =
h̄vF kF , kF = (πNe)1/2, is acousticlike and depends strongly
on q [38]. In addition, a conventional 2D electron gas
(2DEG) has a dispersion relation similar to graphene ωq ∼
q1/2 ∼ N1/2

e [39]. The plasmon energies for both 2DEG and
graphene are h̄ωq → 0 for q → 0, i.e., quite small. Conse-
quently, plasmons in them are easier to excite and observe in
experiments.

Figure 3 shows the plasmon dispersion and energy loss
rate for different wave vector directions for high electron
density in Na3Bi and fixed temperature. The corresponding
Fermi level is much higher than the Berry curvature [cf. green-
dashed line in Figs. 1(b) and 1(c)], and the Fermi wave vector
kFz is about five times larger than kF .

We notice the following
(i) Figures 3(a) and 3(b) show the dispersion relations

along q and qz are anisotropic in Na3Bi. This is in line with
the anisotropic band structure of Na3Bi shown in Figs. 1(b)
and 1(c), which indicates that its electron excitation energy
EK requires a different momentum k or kz along different
directions.

(ii) The plasmon energy h̄ω → 0, in the long-wavelength
limit q → 0 and qz → 0, which is in sharp contrast with the
results for a 3DEG and also with those for 3D DSMs with
a single Dirac point [24–26]. The collective oscillations of
electrons should be easier to excite and observe in Na3Bi due
to its unique energy band.

(iii) The dispersions are linear for small q or qz (h̄ω ∝ q,
qz), but with increasing q or qz they become similar to that
of a 3DEG (h̄ω ∝ q2 or q2

z ). Also, these changes are more
distinct vs qz in Figs. 3(b) and 3(d) than vs q in Figs. 3(a)
and 3(c). In Fig. 1(b), we found that the electron energy along
the k direction is approximately linear in k in a higher energy
range, but along the kz direction, cf. Fig. 1(c), it is linear only
close to the Dirac points whereas at high energies it becomes

FIG. 3. Dispersion relations and energy loss functions in Na3Bi
along different Q directions at temperature T = 10 K, electron den-
sity Ne = 1 × 1019 cm−3 [see green-dashed lines in Figs. 1(b) and
1(c), corresponding to EF1 � 59.076 meV], and lifetime τ = 6.71
ps. In (a) and (c), we have Q‖ = (q, ϕ, 0) at ϕ = 0; the Fermi
wave vector kF along the k direction is about ∼2.25 × 108 m−1.
In (b) and (d), we have Q⊥ = (0, 0, qz ); the Fermi wave vector kFz

along the kz direction is about ∼10.4 × 108 m−1. The orange-dotted
curve in (a) is graphene’s plasmon dispersion relation for Ne = 1 ×
1012 cm−2. The black-dash-dotted curves in (a) and (b) represent, for
a 3DEG with m∗ � 0.24me, the beginning of the particle-hole (p-h)
excitations area in which ω � h̄2(q2 + 2qkF )/2m∗.

parabolic. That is, the plasmon dispersion vs q is linear in a
broader range than vs qz.

(iv) The energy loss function, corresponding to Fig. 3
panels (a) and (b), is shown in Fig. 3 panels (c) and (d),
respectively. As expected, plasmons appear as peaks in the
energy loss functions for both Q‖ and Q⊥. Meanwhile, the
wave-vector dependence is consistent with that of the plasmon
dispersion and it is anisotropic. The energy loss peaks are
broader at large q and qz, but still they converge up to a high
energy h̄ω = 2EF .

(v) The plasmon energies will involve the particle-
hole (p-h) excitation continuum in 3DEG, graphene [39],
and single-cone 3D DSMs [25,26], e.g, for h̄ω < h̄2(Q2

c +
2QcKF )/(2m∗) and Q > Qc in 3DEG. However, we found
that in Na3Bi the plasmon dispersion curves only occur in a
relatively small wave vector range and the plasmon energies
are above the continuum of the 3D p-h excitations in the entire
wave vector range in both Figs. 3(a) and 3(b). Meanwhile, we
would like to point out that this paper is based on the effec-
tive Hamiltonian, which is only valid for small momenta and
low-energy ranges. Thus, our paper indicates that plasmons in
Na3Bi do not merge into the Landau damping range, i.e., the
plasmon energy will not decay by single-particle excitations
for small q and qz.
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FIG. 4. As in Fig. 3 with electron density Ne = 1 × 1017 cm−3

[see black-dotted lines in Figs. 1(b) and 1(c), corresponding to
EF2 � 14.634 meV]. For Q‖ = (q, ϕ, 0) at ϕ = 0, the Fermi wave
vector kF along the k direction is about ∼0.298 × 108 m−1. For
Q⊥ = (0, 0, qz ), the Fermi wave vector kFz along the kz axis is about
∼9.24 × 108 m−1.

The results of Fig. 3 are for high values of the electron
density Ne = 1 × 1019 cm−3 and EF is much higher than
the energy for Berry curvature region, cf. green-dashed line
in Fig. 1(b). A significant change occurs for low electron
density, Ne = 1 × 1017 cm−3, and EF is lower than the Berry
curvature, cf. black-dotted line in Fig. 1(b). The results are
shown in Fig. 4. Although the overall trend looks similar,
the range of the relevant wave vectors changes. In particular,
that for qz shrinks dramatically, it’s approximately 30 times
shorter whereas q is only about four times shorter. This is due
to the presence of the Berry curvature in energy bands. As
seen from Fig. 2, the DOS of Na3Bi decreases rapidly with
decreasing EF , especially for EF < E1, and Fig. 1 indicates
that the Berry curvature mainly effects the energy along kz

direction. As a result, reducing electron doping leads to a
much smaller wave vector dependence of plasmon dispersion
for Q⊥. Similar effects of the Berry curvature were reported
in Ref. [11].

The results shown in Figs. 3 and 4 are for Na3Bi. The
corresponding ones for Cd3As2 are shown in Figs. 5 and 6,
respectively. As shown, the plasmon dispersion relations and
energy losses for high electron density Cd3As2 are similar to
those in Na3Bi. In some detail, we observe the following:

(i) The plasmon energies are h̄ω → 0 for q → 0 and
qz → 0.

(ii) The plasmon modes are anisotropic, the plasmon dis-
persions are linear for small q and qz but become parabolic
with increasing q and qz. The dispersion for q is linear in a
boarder range than qz.

FIG. 5. Plasmon dispersions and energy loss functions in Cd3As2

along different Q directions at fixed temperature T = 10 K, electron
density Ne = 1 × 1019 cm−3 [see Figs. 1(e) and 1(f), correspond-
ing to EF1 � −185.651 meV], and lifetime τ = 6.87 ps. For Q‖ =
(q, ϕ, 0) at ϕ = 0, the Fermi wave vector kF along the k direction
is about ∼1.33 × 108 m−1. For Q⊥ = (0, 0, qz ), the Fermi wave
vector kFz along the kz axis is about ∼0.68 × 108 m−1. The orange-
dotted curve in (a) is graphene’s dispersion relation for Ne = 1 ×
1012 cm−2. The black-dash-dotted curves in (a) and (b) represent, for
a 3DEG with m∗ � 0.24me, the beginning of the particle-hole (p-h)
excitations area in which ω � h̄2(q2 + 2qkF )/2m∗.

(iii) The plasmon energies in both directions do not in-
volve p-h excitations, so its plasma oscillations will also
not be damped nor will they decay into the single-particle
continuum. For low electron densities, cf. Fig. 6, a significant
small qz dependence for plasmon energy can be found and
results from the Berry curvature of the energy band.

The overall trend is similar to Na3Bi, but we notice some
differences between Na3Bi and Cd3As2. We mentioned that
Cd3As2 has less anisotropic properties than Na3Bi in Figs. 1
and 2. Specifically, when we reduce the electron doping, both
plasmon wave vectors for Na3Bi and Cd3As2 will decrease,
but the qz range in Na3Bi will shrink much more than that
in Cd3As2. In addition, the kFz value in Cd3As2 is smaller
than its kF whereas in Na3Bi kFz is about 20 times larger than
its kF . We emphasize that in both 3D DSMs the distance of
EF from the Berry curvature importantly affects the pertinent
wave vector ranges.

Finally, it is of interest to see how the results vs q change
when qz is not zero and how the results change vs qz when
q takes certain values. We show them in Figs. 7(a) and 7(b)
for Na3Bi and for Cd3As2 in Figs. 7(c) and 7(d), using the
parameters of the caption and the constant qz or q values
specified in the insets. As shown in Fig. 7, for qz �= 0 (or
q �= 0), the dispersion becomes similar to that of a 3DEG as
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FIG. 6. As in Fig. 5 with electron density Ne = 1 × 1017 cm−3

[see Figs. 1(e) and 1(f), corresponding to EF2 � −211.237 meV].
For Q‖ = (q, ϕ, 0) at ϕ = 0, the Fermi wave vector kF along the
k direction is about ∼0.301 × 108 m−1). For Q⊥ = (0, 0, qz ), the
Fermi wave-vector kFz along the kz axis is about ∼0.438 × 108 m−1.

either qz or q take some constant values and the anisotropic
features are distinct.

Considering the results from all figures, we see that the
plasmon modes in the bulk materials Na3Bi and Cd3As2 show
unique properties and advantages over other materials. For
instance, 3D DSMs have similar gapless Dirac properties
as graphene, such as high carrier mobility, but the samples
for bulk 3D DSMs are easier to manufacture. Also, in 3D
DSMs the plasmons are easier to observe than in metals due
to the their energy h̄ω being close to kBT ∼ 25 meV as we
discussed before. The Fermi energy EF related to the carrier
density is gate tunable in 3D DSMs [12]; therefore, the plas-
mons, which are sensitively affected by the position of EF

relative to the Berry curvature region of the bands, will also
have the anisotropic gate-tunable properties in sharp contrast
to other 3D materials such as multilayered graphene [27],
Weyl semimetals [28], and isotropic Dirac semimetals [26].
Furthermore, other interesting properties, such as anisotropic
plasmon polaritons and surface plasmons can be expected
based on our results.

V. SUMMARY

We presented a premiere RPA treatment of collec-
tive excitations in 3D DSMs Na3Bi and Cd3As2 using
one-electron properties derived from a k · p Hamiltonian.
The density of states of these DSMs differ significantly from
those of a 3D electron gas or graphene. The anisotropy of the

FIG. 7. (a) Plasmon dispersion for Na3Bi as a function of q at
fixed temperature T = 10 K, electron density Ne = 1 × 1019 cm−3,
lifetime τ = 6.71 ps, and fixed qz. (b) Plasmon dispersion for Na3Bi
with q and qz interchanged is shown. (c), (d) As in (a) and (b), respec-
tively, for Cd3As2, for the same temperature and electron density, and
τ = 6.87 ps. All curves for selected qz or q isovalues are marked as
shown in the insets.

one-electron spectrum shows up in the dispersion relations
that are markedly different from those of graphene or a 3D
electron gas. The same holds for the energy-loss function.
There are important differences between results valid for high
and low electron densities that result in the Fermi energy being
far or close to the region of the Berry curvature of the bands.
One particularly worth mentioning is that for EF less than the
energy at which vz vanishes, the range of the relevant wave
vectors q and qz shrinks, especially the one for qz shrinks by
nearly a factor of 10. Therefore, changing the electron density
of 3D DSMs allows one to tune the frequency range of their
plasmon modes, particularly along the z direction. Moreover,
other intriguing properties like anisotropic plasmon polaritons
and surface plasmons, which will also be affected by electron
density due to the Berry curvature of the energy band, can be
expected.
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