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Complex path simulations of geometrically frustrated ladders
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Quantum systems with geometrical frustration remain an outstanding challenge for numerical simulations due
to the infamous numerical sign problem. Here, we overcome this obstruction via complex path integration in
a geometrically frustrated ladder of interacting bosons at finite density. This enables studies of the many-body
ground state properties, otherwise inaccessible with standard quantum Monte Carlo methods. Specifically, we
study a chemical potential tuned quantum phase transition, along which we track the emergence of quasi-long-
range order and critical softening of the single particle gap. We chart future methodological improvements and
applications in generalized geometrically frustrated lattice models.
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I. INTRODUCTION

A paradigmatic instance of the numerical sign problem,
in the context of condensed matter physics, is geometrically
frustrated antiferromagnets. The appearance of nonpositive
(or even complex) quantum amplitudes renders numerical
calculations via Monte Carlo techniques uncontrolled, with
statistical errors that scale exponentially with system size and
overwhelm the signal. Geometrical frustration enhances quan-
tum fluctuations, promoting exotic and inherently quantum
phenomena. Examples thereof include valance bond solids
comprising a spatially ordered pattern of singlet dimers [1],
unconventional magnetic textures [2], and, most remark-
ably, spin liquids that defy ordering down to absolute zero
temperature [3]. It is, therefore, desirable to devise novel
methodologies that overcome the obstruction imposed by the
numerical sign problem and provide an accurate numerical
solution to geometrically frustrated quantum spin models.

More broadly, a generic solution to the numerical sign
problem is likely unfeasible. In fact, in some instances, no-go
theorems preclude a complete elimination of the sign prob-
lem via local transformations [4–8]. Nevertheless, tremendous
progress has been made in devising clever reformulations of
the path integral representation, providing either a partial or
complete elimination of the sign problem in specific models
[9–13]. Promising recent progress in controlling the numerical
sign problem is the complex path integration (CPI) approach
[14,15]. In this method, the path integral is deformed into the
complex plane. An informed choice of the integration man-
ifold can then achieve a significant reduction in the severity
of the numerical sign problem. Indeed, numerically accu-
rate investigations of a wide range of many-body problems
have been demonstrated, involving both bosonic [16–20],
fermionic [21–24], and spin degrees [25] of freedom.
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While the CPI approach is a promising avenue for mitigat-
ing the numerical sign problem, its overarching applicability
in various quantum many-body problems remains an open and
timely question. In practice, addressing this question requires
a case-by-case study since it is difficult to a priori deter-
mine the sign structure associated with many-body quantum
amplitudes deformed into the complex plane. Specifically,
concerning this work, the utility of the CPI to the important
problem of geometrically frustrated quantum many-body sys-
tems and associated quantum critical behavior is unknown and
serves as the central motivation for this study.

In this work, we address the above inquiry in a geo-
metrically frustrated triangular chain of lattice bosons at a
finite chemical potential, a setting for which the sign problem
plagues standard quantum Monte Carlo (QMC) methods. Re-
markably, we find that integration along complex plane man-
ifolds allows taming the numerical sign problem, leading to
controlled numerical calculations. In particular, we track with
high precision a chemical potential tuned order-disorder quan-
tum many-body phase transition and analyze the associated
finite system size and finite temperature scaling of pertinent
physical observables and the numerical sign problem.

II. MICROSCOPIC MODEL AND PHASE DIAGRAM

As a concrete lattice model for testing the applicability of
the CPI in the context of geometrically frustrated many-body
quantum systems, we consider a bosonic lattice model defined
on a triangular chain with L sites; see Fig. 1(a). The dynamics
is governed by the Hamiltonian,

H = 1

2

∑
r

�∗
r �r − t

∑
〈r,r′〉

ψ∗
r ψr′ + H.c. +

∑
r

m2|ψr |2

+
∑

r

U |ψr |4 + iμ
∑

r

(ψr�
∗
r − ψ∗

r �r ).
(1)

Here, the complex scalar field operators, ψr , reside on lattice
sites, r. We employ linear indexing of sites along an effec-
tive one-dimensional chain that alternates between the upper
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FIG. 1. (a) Illustration of the frustrated (π -flux) bosonic triangu-
lar chain model of Eq. (1) and a sketch of the corresponding global
phase diagram as a function of the boson mass m2 and chemical po-
tential μ. The yellow dot marks the quantum phase transition at zero
boson density (μ = 0) between gapped and gapless phases. (b) The
average sign, |〈e−iSI 〉|, of configuration weights as a function μ along
the chemical potential tuned condensation transition, as marked by
the dashed black line and purple dot in (a). Different curves cor-
respond to an increasing range of flow times �; see Eq. (3). The
gray line extrapolates the sign problem along the original integration
manifold R2N to large μ. The vertical dashed line corresponds to the
estimated critical chemical potential μc ≈ 1.73, for t/|t | = −1 and
U = 1.

and lower legs of the ladder. The canonical momenta, �r ,
follows the standard commutation relations [ψr,�r′ ] = iδr,r′ .
Complementary relations apply to their complex counterparts,
ψ∗ and �∗. Hamiltonian terms in the first line correspond
to the quadratic (“free”) part, comprising nearest-neighbor
hoppings with amplitude t and a mass term of magnitude m2.
The second line includes on-site quartic repulsive interactions
of strength U and a chemical potential term. The Hamiltonian
admits a global U (1) symmetry corresponding to particle
number conservation, as defined by the boson charge operator,
Q = ∑

r (ψr�
∗
r − ψ∗

r �r ). For nonvanishing μ, particle-hole
symmetry, ψ → ψ∗, is broken, which potentially induces a
finite particle density, 〈Q〉 �= 0.

Making contact with physical systems, we note that our
model serves as a low energy effective description of various
condensed matter systems with a conserved U (1) charge and
broken particle-hole symmetry; see Ref. [26]. Two concrete
examples are lattice bosons detuned from integer filling and
easy plane (XY) magnets in an external magnetic field per-
pendicular to the magnetization axis. Our primary interest
will be in cases where the hopping amplitude is negative, i.e.,
t < 0. On nonbipartite lattices, this choice leads to geometric
frustration akin to antiferromagnetic interactions in lattice
spin models. By contrast, the more standard case, t > 0, can
be interpreted as ferromagnetic interactions and is commonly

used in lattice regularizations of continuum quantum field
theories [27].

For numerical simulations via QMC techniques, we eval-
uate the thermal partition function following the standard
quantum to classical mapping, Z = ∫

DψDψ∗e−S[ψr,τ ,ψ
∗
r,τ ],

that sums over space-time histories of the complex scalar field
ψr,τ , where τ denotes the imaginary time axis. The corre-
sponding action reads

S = −εt
∑

〈r,r′〉,τ
(ψr,τψ

∗
r′,τ + H.c.)

− 1

2ε

∑
r,τ

[
ψ∗

r,τψr,τ+ε(1 − εμ) + ψr,τψ
∗
r,τ+ε(1 + εμ)

]

+
∑
r,τ

[(
εm2 − εμ2

2
+ 1

ε

)
|ψr,τ |2 + εU |ψr,τ |4

]
. (2)

In the above equation, the Trotter step equals ε = β/Lτ , with
β denoting the inverse temperature, and Lτ is an integer that
defines the length of the discrete imaginary time axis. Notably,
the action involves complex weights for a finite μ, rendering
direct Monte Carlo sampling uncontrolled due to the notorious
numerical sign problem.

Interestingly, for t > 0, the path integral can be reformu-
lated in terms of the so-called dual variables [28,29], for
which configuration weights are real and strictly nonnegative.
Physically, this representation tracks boson world line config-
urations, such that the case μ > (<)0 favors particles (holes)
world lines propagating along the positive (negative) imagi-
nary time axis. By contrast, for negative hopping amplitudes,
t < 0, on nonbipartite lattices, boson world lines acquire a π

phase associated with trajectories encircling an odd number
of bonds; see Fig. 1(a). This effect reintroduces the numerical
sign problem and addressing it using CPI is the main focus of
this work.

We now briefly chart the zero-temperature phase diagram
of our model [Eq. (1)] in its limiting cases. For a vanishing
chemical potential, μ = 0, a quantum phase transition sepa-
rates a gapped phase for large and positive mass, m2, from a
gapless phase with quasi-long-range order (QLRO) in the op-
posite limit of large and negative m2. The transition belongs to
the Berezinskii-Kosterlitz-Thouless (BKT) universality class
and occurs at a critical coupling m2

c . We note that, due to
the π -flux pattern, for negative hopping amplitudes, t < 0,
QLRO correlations develop an incommensurate spiral pattern
at finite Bragg wave vector q̃ = cos−1(−1/4); see Fig. 1(a)
and Appendix C.

For a given hopping amplitude, starting from the disor-
dered phase, m2 > m2

c , the single particle gap can also be
closed by increasing the chemical potential μ. Physically, this
induces a BEC-like transition, where the chemical potential
provides the necessary energy for particles to overcome the
gap and condense [30]. However, unlike the μ = 0 transition,
here, the transition is nonrelativistic with a dynamical critical
exponent z = 2. In the context of matter fields at finite den-
sity, such transitions are commonly termed the “Silver Blaze”
effect [31].
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III. NUMERICAL METHODS AND OBSERVABLES

We now briefly review the construction of our CPI scheme
using the generalized thimble method (GTM) [14–16,32,33].
Within this approach, the complex plane integration manifold
is determined through the holomorphic flow equation,

dψr,τ

dλ
= ∂S

∂ψr,τ
, (3)

where λ parametrizes the flow time. We set R2N as the initial
condition, of the above differential equation, at flow time
λ = 0, which is associated with the real and imaginary parts
of the complex fields ψr,τ residing on N = L × Lτ space-time
points. The equation is then integrated up to a flow time
λ = �, which induces a mapping between R2N (the original
integration manifold) and M�, which is embedded in C2N .

This construction is motivated by the limiting manifolds at
� → ∞, known as the Lefschetz thimbles [15]. Importantly,
along each Lefschetz thimble, the imaginary part of the action
is constant, which, at least formally, eliminates the numeri-
cal sign problem. However, the Lefschetz thimble structure
may fracture into multiple disconnected thimbles that assign
potentially distinct phases to their quantum amplitudes in
the complex plane. Interference between different thimbles
can then reintroduce the numerical sign problem. The flow
time � presents a trade-off between reducing the numerical
sign problems at long flow times versus ergodicity issues in
the Monte Carlo dynamics arising from the trapping of MC
configurations in the vicinity of a specific thimble. To address
this problem, we employ the parallel tempering technique that
exchanges between configurations at varying flow times �.
This allows for smooth interpolation between distinct thim-
bles [33,34]. Residual phases of configuration weights are
considered through the standard reweighting approach.

We now turn to defining physical observables, character-
izing the various phases and phase transitions appearing in
our problem. We first consider the particle number density
Q = 1

Lβ
∂ lnZ

∂μ
, explicitly given by

Q = 1

Lβ

〈∑
r,τ

1

2
(ψ∗

r,τψr,τ+ε − ψ∗
r,τ+εψr,τ ) + εμ|ψr,τ |2

〉
, (4)

which tracks the breaking of particle-hole symmetry. To
probe the evolution of space-time correlations, we com-
pute the single particle Green’s function, G(q, ωm) =

1
Lβ

〈| ∫ β

0 dτ
∑

r ψr,τ ei(qr+ωmτ )|2〉. Here, ωm = 2πm/β are the
standard bosonic Matsubara frequencies for integer m and
integration along the imaginary time axis is discretized, as de-
fined above. The corresponding imaginary time correlations,
G(q, τ ), are obtained by Fourier relations.

With the above definitions, in the condensed phase, we
expect to find QLRO, which we detect by examining the equal
time Green’s function evaluated at the Bragg vector g(q̄) =
G(q = q̄, τ = 0), with q̄ taken as the closest approximate to q̃
on our finite-size lattice.

The low energy dynamics is studied through the expected
long imaginary time exponential decay,

G(q̃, τ > 0) ∼ e−�q̃τ . (5)

FIG. 2. (a) Average sign, |〈e−iSI 〉|, evaluated at μ = 1.6, as a
function of the inverse temperature β. Solid curves correspond to
flow time � = 0.2. The dashed line represents a vanishing flow time,
� = 0. Different curves are associated with different system sizes.
(b) The average particle number Q as a function of μ for L = 6.
Different curves correspond to different inverse temperatures. Solid
(dashed) lines depict finite (vanishing) flow times.

We estimate the single particle gap for particles, �q̃, by fitting
to the above form. The gap for antiparticles (holes) can be
extracted similarly from the decay at negative times τ < 0.

IV. NUMERICAL RESULTS

For concreteness, we measure all energy scales in units
of

√|t | and fix U = 1, m2 = 2.25, and t/|t | = −1. For this
parameter choice and a vanishing chemical potential μ = 0,
we are located in the disordered (gapped) phase, m2 > m2

c ≈
−0.5; see Fig. 1(a) and Appendix C. For finite size and
finite temperature analysis, we consider system sizes L =
6, 8, 10, 14 and track the convergence to the ground state
result by progressively increasing the inverse temperature,
taking the values β = 1, 2, 4, 6. We observed that within our
parameter regime, β = 4 serves as a proxy for the ground state
behavior. Throughout, the Trotter step equals ε = 0.17.

We begin our analysis by probing the evolution of the nu-
merical sign problem as a function of the chemical potential,
μ, for an increasing range of the flow times �, as shown in
Fig. 1(b). As expected, a naive integration over R2N displays
a hard sign problem upon approach to the critical chemical
potential μc ≈ 1.73, as evident by the rapid drop towards zero
of the average sign, |〈e−iSI 〉|. Remarkably, examining finite
flow times, �, progressively reduces the sign problem even
for the challenging parameter regime μ > μc.

To further substantiate the above result, in Fig. 2(a), we
examine the average sign for flow time � = 0.2, chemical
potential μ = 1.6, and an increasing range of system sizes and
inverse temperatures. Crucially, at low temperatures and for
all L values, the average sign along M� rises in almost three
orders of magnitude compared with the one computed on R2N

for L = 6. This key finding is one of our main results, which
enables an accurate numerical study of our geometrically frus-
trated model via Monte Carlo sampling, as we demonstrate
below.
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FIG. 3. Chemical potential tuned quantum phase transition. (a) Boson particle number density, Q, (b) equal time Green’s function at the
Bragg vector g(q̄), and (c) the single particle gap �. Different curves correspond to increasing values of system size L. Simulations were
carried out at inverse temperature β = 4. The flow time for μ < 1.4 equals � = 0.15 and for 1.4 � μ � 2.4, � = 0.2. The vertical line at
μ = 1.73 marks the approximate position of the phase transition obtained from vanishing chemical potential simulations.

Turning to physical observables, we test the advantage of
finite flow times (� > 0) simulation against “brute force”
integration on R2N . To that end, we measure the average
particle number Q as a function of the chemical potential μ

for β = 1, 2, 4. In all cases, due to the severe sign problem, we
considered a factor of 128 times more Monte Carlo samples
for R2N integration than the finite flow time simulations. The
results of this analysis are shown in Fig. 2(b). Indeed, at
low temperatures, β = 4 converged results are only obtained
using finite flow times, demonstrating the utility of the GTM
sampling. Even more impressively, this advantage is obtained
despite the significantly reduced MC samples. We note that,
for larger system sizes, direct comparison is completely infea-
sible in realistic run times due to the vanishingly small average
sign in R2N simulations.

After establishing control over the numerical sign problem
within the parameter range of interest, we investigate the
physical properties of our many-body problem in the vicin-
ity of the chemical potential tuned quantum phase transition
described above. In the following, we fix β = 4 and explore
the finite size scaling properties with L = 6, 8, 10, and 14.
First, we compute the evolution of the particle number, Q, as a
function μ, in Fig. 3(a). As expected, we find that, at small μ,
the particle number vanishes and starts to increase only above
a critical coupling, μc ≈ 1.73, consistent with the estimate of
the single particle gap computed at μ = 0; see Appendix C.

Next, we track the order parameter g(q̄) as a function of μ,
as depicted in Fig. 3(b). We observe a rise of g(q̄) for μ > μc,
signaling the appearance of QLRO. Lastly, in Fig. 3(c), we ad-
dress dynamical properties by computing the gap for particle
excitations �. The numerical results agree with the predicted
gap closing transition at μc, which nucleates the condensed
phase.

V. DISCUSSION AND SUMMARY

In this work, we have demonstrated the effectiveness of
the CPI approach in controlling the numerical sign problem
appearing in a geometrically frustrated quantum many-body

system. In particular, we identify complex plane manifolds,
M�, over which the severity of the sign problem is pro-
gressively reduced as a function of the flow time �. This
methodological headway enabled access to an accurate nu-
merical study of collective effects in the vicinity of a quantum
critical point.

Our work primarily concerns ladder geometries. In such
cases, tensor network approaches, such as the density matrix
renormalization group and tensor renormalization [35,36] that
target low-entangled states can provide an efficient and ac-
curate numerical solution. However, beyond one dimension
and even worse in the proximity of quantum criticality, the
unbounded growth of the entanglement entropy hinders the
applicability of these methods. Our results indicate that, at
least for the restricted ladder geometry, CPI also allows a siz-
able reduction in the severity of the numerical sign, enabling
controlled numerical calculation. This key observation serves
as an encouraging first step and motivates extensions to a
higher dimension. As a proof of principle, in Appendix D,
we showcase the applicability of the CPI approach for a
small (3 × 3) two-dimensional frustrated triangular lattice.
We, indeed, overcome the inherent numerical sign problem
and observe a chemical potential-driven transition towards a
120◦ ordered phase.

Looking to the future, despite a great deal of progress,
standard application of the GTM approach remains compu-
tationally demanding, mainly due to the repeated numerical
solution of the holomorphic flow equation (3). In that regard,
it would be beneficial to explore optimization techniques over
families of analytically defined complex plane manifolds [37]
or machine learning based approaches for constructing inte-
gration manifolds [38].

From the physics front, our results open the door to stud-
ies of more involved geometrically frustrated lattice models.
Natural extensions include approaching the hard-core limit
U 
 t and the more audacious goal of addressing the two-
dimensional triangular lattice [39] in the thermodynamic
limit. We leave these exciting research directions to future
studies.
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APPENDIX A: DETAILS OF THE MONTE
CARLO SIMULATION

In our numerical simulations, we employed the generalized
thimble method (GTM) [22]. The key idea of this approach
is to construct a complex plane integration manifold via a
mapping of R2N as defined by the holomorphic flow equa-
tion up to time �. The motivation for this particular choice
is derived from the long flow time limit � → ∞, for which
the integration manifold coincides with the set of Lefschetz
thimbles. Since, by definition, the complex part of the action
is stationary on each Lefschetz thimble, the effect of the nu-
merical sign problem is anticipated to be diminished. We note
that different thimbles may carry a distinct phase and hence
lead to an interference effect. Therefore, the GTM approach is
expected to be advantageous when a small number of thimbles
dominate the contribution to path integral.

From the technical perspective, to speed up the compu-
tation of the Jacobian associated with the mapping between
R2N and M�, we use the Wrongian [32] approximation for
the Jacobian and correct via reweighting. For the numerical
integration of the holomorphic flow Eq. (3) in the main text,
we employed the DifferentialEquations.jl package [40] using
the Tsit5 algorithm [41]. We allow for a local integration error
tolerance of 10−3, which we empirically found to be sufficient
for obtaining converged results.

In some instances, the long flow time integration manifold
is fractured into multiple thimbles separated by large energy
barriers. Consequently, the Monte Carlo sampling may turn
nonergodic due to the low acceptance rate of trajectories
connecting distinct thimbles. To address this issue, we con-
sider a parallel tempering (PT) scheme [33,34] for a linearly
spaced range of flow times �i = {0,��, 2��, . . . ,�max}.
Typically, we considered 15–25 walkers and averaged our
results on the last 3–5 walkers. This approach enables a
smooth interpolation between disjoined thimbles at long flow
times via thermalization at short flow times. Importantly, it
still retains the essential aspect of suppressing the numerical
sign problem when sampling from the long flow time mani-
folds. To monitor the efficiency of the PT scheme, we used
the methods described in [42] and found a sufficiently high
rate swap move between PT replicas. To initialize the field
configurations, we used simulated annealing by progressively
increasing the flow time � in the thermalization phase of the
Monte Carlo sampling.

We note that the complex amplitudes appearing in our path
integral originate both from the standard imaginary part of the
action ImS and the Jacobian determinant associated with the

FIG. 4. Comparison of the average phase emanating from the
imaginary part of the action and the imaginary part of the coordinate
transformation Jacobian determinant (log det J). Simulations are car-
ried out at L = 6, β = 4, � = 0.2, and the rest of the parameters are
the same as the main text.

coordinates’ transformation of the real plane to the complex
plane manifold. Typically, the latter has a minor contribution
to the numerical sign problem. Indeed, we find that, also in
our case, Im log det(J ) is vanishing small. This is exemplified
in Fig. 4, where we show that the contribution to the sign
problem corresponding to the action ImS overwhelms the one
originating from Im log det(J ).

Lastly, to quantify the effect of Trotter errors, we carry out
QMC simulations at m2 = 2.25, U = 1, β = 4, and L = 6,
using a sequence of decreasing values of ε; see Fig. 5. In-
deed, we confirm that ε � 1/6, as used in the main text,
is sufficiently small to produce converged results within the
statistical errors.

APPENDIX B: BENCHMARKING
THE GTM INTEGRATION

To verify the correctness of our numerical implementa-
tion of the GTM, we carried out extensive benchmarking,

0.0 0.5 1.0 1.5 2.0

0

1

2

3

μ

Q

ε = 1/4
ε = 1/6
ε = 1/8

FIG. 5. Particle number density Q for β = 4 and L = 6, as a
function of the chemical potential μ. The rest of the microscopic
parameters are the same as the main text. Different curves correspond
to different values of ε.
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FIG. 6. Comparison of the GTM algorithm with the worm al-
gorithm for ferromagnetic interaction. We present results for L =
6, m2 = 2.25, U = 1, t = +1, and ε = 1/6. For GTM we take a
flow time � = 0.14. In (a) we depict the average particle number, Q,
and in (b) the order parameter, G(q = 0, τ = 0), both as a function
of the chemical potential μ.

comparing our numerical results with brute force calcula-
tions and, when possible, complementary numerically exact
methods.

First, we consider the ferromagnetic case, t > 0. Here, as
mentioned in the main text, by formulating the path integral
in terms of dual variables, one can completely eliminate the
sign problem. The resulting world lines configuration space
is then efficiently sampled via the Worm algorithm [28]. We
note that the direct representation (S[ψ,ψ∗]) still suffers from
a severe sign problem. In Fig. 6, we present the result of this
analysis. We find excellent agreement both for the particle
number density, Q, and the two-point Green’s function G(q =
0, τ = 0). We note that this nontrivial check also nontrivially
corroborates the correctness of our implementation for the
frustrated case since, operationally, it only involves changing
the sign of the hopping amplitude and does not affect the GTM
procedure.

Next, we benchmark the frustrated case, t < 0. Here,
due to the severe sign problem, sampling at vanishing flow
times (� = 0) requires substantial statistics and hence enables
addressing only small system sizes at relatively high tempera-

FIG. 7. Comparison between R2N (dashed line) and
finite flow time � = 0.14 (solid line) integration for
L = 6, β = 2, ε = 1/6, U = 1, and frustrated (antiferromagnetic)
hopping t = −1. (a) Equal time Green’s function g(q) and
(b) G(q̄, τ ). Different curves correspond to a different chemical
potential μ = 0, 1.4, 2.0. R2N simulations are carried out with 128
times more measurements than the simulation at M�.

tures. Concretely, we consider L = 6, β = 2. Reassuringly, in
Fig. 7, we indeed find excellent agreement between the brute
force approach and GTM integration, both for G(q, τ = 0) in
Fig. 7(a) and G(q̄, τ ) in Fig. 7(b). This result further supports
our numerical scheme. We note that despite using 128 times
more measurements for � = 0 compared to � = 0.14, we
still obtained results with smaller error bars in the latter case.

APPENDIX C: MEAN FIELD SOLUTION
AND ESTIMATION OF THE GAP AT μ = 0

It is illuminating to carry out a simple mean field analysis
of our model in the particle-hole symmetric limit (μ = 0) in
order to predict the ordering pattern in the condensed phase.
To that end, we analyze an effective quadratic model corre-
sponding to the disordered phase. In this regime, nonlinear
terms, for finite U , will only renormalize the hopping and
mass terms. We then search for the leading susceptibility di-
vergence as we approach the ordered phase. More concretely,
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FIG. 8. Quantum phase transition at μ = 0. We take an inverse temperature β = 12 as a proxy for ground state properties. (a) Equal time
Green’s function g(q) for different system sizes at m2 = 2.25. The dashed lines mark the position of q̃. Finite-size scaling across the transition:
(b) equal time Green’s function evaluated at q̄ as a function of m2; (c) the single particle gap �. The horizontal dashed line marks the value of
the single particle at m2 = 2.25, used in the main text. The inset in (c) represents a curve crossing analysis with the dimensionless amplitude
L� (the dynamical exponent z = 1). We identify the phase transition at the crossing point m2

c ≈ −0.5.

we analyze the quadratic action

S =
∑
q,ωm

{
ω2

m + m2 − t[cos(q) + cos(2q)]
}
ψ∗

q,ωψq,ω. (C1)

From the above equation, we isolate the q-dependent mass
M2(q) = m2 − t[cos(q) + cos(2q)]. The resulting Green’s
function displays a peak at momentum q̃ = cos−1(−1/4) ≈
0.58π , which corresponds to planar magnetic order with a
rotation angle θ ≈ 104◦ between adjacent spins.

We corroborate this prediction by exact numerical
simulations, which for μ = 0 are free of the numerical sign in
the direct (S[ψ,ψ∗]) representation. Concretely, we scan the
phase diagram as a function of m2; all other parameters appear
as in the main text. In Fig. 8(a), we depict the equal-time
Green’s function g(q), in the gapped phase, m2 = 2.25.
Indeed, we find a maximum in the vicinity of q̃, indicating the
incipient quantum critical point. Next, we drive the transition
by further lowering m2. As predicted, we observe a divergence
of g(q̃), in Fig. 8(b), and vanishing of the single particle gap,
�, in Fig. 8(c), at a critical value m2

c ≈ −0.5. From this

analysis, we also estimate the gap at m2 = 2.25 to be
� = 1.73. We use this value in the main text to estimate the
critical chemical potential μc.

APPENDIX D: TWO-DIMENSIONAL SIMULATION
OF A TRIANGULAR LATTICE

In this section, we investigate the applicability of the
CPI method in small two-dimensional systems. More con-
cretely, we consider an extension of the model, appearing
in Eq. (3) of the main text to the full two dimensions tri-
angular lattice. For concreteness, we fix antiferromagnetic
interactions t/|t | = −1 and set m2 = 4, U = 1, and ε = 1/6,
such that for vanishing chemical potential we are in the
gapped phase. We study a 3 × 3 triangular lattice with peri-
odic boundary conditions and we probe the convergence into
the ground state with inverse temperature β = 1, 2, and 4.
By tuning the chemical potential, we induce an ordering tran-
sition that is expected to develop at the Bragg vectors q̃2D =
(2π/3, 2π/

√
3), (−2π/3, 2π/

√
3), (4π/3, 0) corresponding

FIG. 9. Simulations of a 3 × 3 two-dimensional frustrated triangular lattice. (a) The average sign for an increasing range of μ and inverse
temperatures β = 1 and 4. Solid (dashed) lines correspond to integration along M�=0.15(R2N ). The particle number density (b) and the structure
factor (c) at the Bragg vector q̃2D for β = 1, 2, and 4 as a function of μ. In all cases, we set ε = 1/6, m2 = 4, t/|t | = −1, and U = 1. In the
inset, we illustrate the 120◦ pattern that emerged in the ordered phase.

115122-7



COHEN, ALEXANDRU, AND GAZIT PHYSICAL REVIEW B 109, 115122 (2024)

to 120◦ order Fig. 9(c). For the CPI simulation, we take the
flow time � = 0.15.

Indeed, we find a significant reduction in the severity
of the sign problem, up to one order of magnitude. This
result is shown in Fig. 9(a) by comparing simulations with

finite and vanishing flow times. Encouraged by these results,
we probe the ordering transition by computing the average
particle number density, Q, and structure factor, g(q̃2D), at the
Bragg vector. The simulation results are consistent with an
ordering transition at μ ≈ 2.0 [Fig. 9(b) and Fig. 9(c)].
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