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Magnetic eightfold nodal-point and nodal-network fermions in MnB2
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Realizing topological semimetal states with novel emergent fermions in magnetic materials is a focus of
current research. Based on first-principles calculations and symmetry analysis, we reveal interesting magnetic
emergent fermions in an existing material MnB2. In the temperature range from 157 K to 760 K, MnB2 is a
collinear antiferromagnet. We find the coexistence of eightfold nodal points and nodal network close to the
Fermi level, which are protected by the spin group in the absence of spin-orbit coupling. Depending on the Néel
vector orientation, consideration of spin-orbit coupling will either open small gaps at these nodal features, or
transform them into magnetic linear and quadratic Dirac points and nodal rings. Below 157 K, MnB2 acquires
weak ferromagnetism due to spin tilting. We predict that this transition is accompanied by a drastic change in
anomalous Hall response, from zero above 157 K to ∼200 � cm−1 below 157 K.
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Topological semimetals have been attracting great interest
in condensed-matter physics research [1–4]. In these ma-
terials, the symmetry-/topology-protected band degeneracies
in the vicinity of Fermi level give rise to novel emergent
fermion states, which may lead to fascinating physical ef-
fects. Early examples include Weyl and Dirac semimetals,
which host twofold and fourfold nodal points, respectively,
and can simulate the physics of Weyl and Dirac fermions
[3]. Subsequent works showed that there is a rich variety
of emergent fermions beyond the Weyl and Dirac paradigm,
which may have different numbers of degeneracy and dif-
ferent dimensions of the band degeneracy manifold [5–10].
Recent classification works showed that the maximal degree
of degeneracy that can be protected by crystalline symme-
try is eight [7,8,10–14]. Such eightfold nodal point (ENP)
has been proposed in a few nonmagnetic crystals, such as
Bi2CuO4 [7], Bi2AuO5 [8], TaCo2Te2 [14], etc. In Ref. [14],
ENP in TaCo2Te2 has been probed by angle-resolved photoe-
mission spectroscopy (ARPES). Besides nodal points which
are zero-dimensional (0D), the degeneracy manifold may
also form one-dimensional (1D) nodal lines [15–18] or even
two-dimensional (2D) nodal surfaces [19–22]. Especially, the
nodal lines can be connected to form various patterns in the
momentum space [23–26].

A recent focus in the field is to extend the study from
nonmagnetic to magnetic systems. This is motivated by
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several points. First, due to magnetic ordering, symmetries of
magnetic systems that underly topological semimetal states
are different and are much richer compared to nonmagnetic
systems. Second, magnetism offers a new possibility to con-
trol band topology and topological phase transitions, e.g., by
tuning the magnetic moment orientation. Finally, magnetic
materials are technologically important. Topological features
and emergent fermions may endow them with new advantages
for applications. Currently, the realization of unconventional
fermions in magnetic materials is still rather limited. In
Ref. [27], an ENP was reported in antiferromagnetic CeSbTe,
but its energy is quite far away from Fermi level. Thus, it
remains an important task to search for suitable magnetic
materials that can host ENPs and other interesting topological
states.

In this work, based on first-principles calculations and
symmetry analysis, we reveal that the existing intermetallic
compound MnB2 is actually a magnetic topological semimetal
with rich emergent fermion states. MnB2 itself has two no-
table features [28]. First, it has a high Néel temperature of
760 K. Second, it exhibits more than one magnetic phase.
Between 157 K and 760 K, it adopts collinear antiferromag-
netic (AFM) ordering. Below 157 K, it transitions into a phase
exhibiting weak ferromagnetism (wFM), due to small tilting
of the local moments. We find that in the collinear AFM
phase, MnB2 possesses a pair of ENPs and an interesting
nodal network formed by three sets of nodal loops in its
low-energy band structure, protected by the spin group in the
absence of spin-orbit coupling (SOC). Depending on the Néel
vector orientation, SOC will either open small gaps at these
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FIG. 1. (a) Top and side views of MnB2 crystal. In the side view, we also illustrate the AFM configuration. The red arrows show the
direction of the local moment. (b) shows the wFM state of MnB2. The inset is an enlarged view indicating the tilting of magnetic moments
towards c axis (the angle is exaggerated here). (c) Magnetic phase diagram of MnB2.

degeneracies or transform them into fourfold linear and
quadratic Dirac points and separated nodal rings. Effective
models are constructed for these nodal features. In addition,
we find that due to symmetry constraint, there will be a drastic
change in the anomalous Hall response accompanying the
transition at 157 K: Anomalous Hall response is forbidden
by symmetry in the collinear AFM phase, whereas it can be-
come sizable in the wFM phase. We estimate that the intrinsic
anomalous Hall conductivity can reach up to ∼200 � cm−1

below 157 K. Our work identifies a promising platform to
study novel emergent fermions and their interplay with mag-
netic ordering.

I. COMPUTATION METHOD

Our first-principles calculations were based on the density-
functional theory (DFT), using a plane-wave basis set and
projector augmented-wave method [29], as implemented in
the Vienna ab initio simulation package [30,31]. The general-
ized gradient approximation (GGA) parametrized by Perdew,
Burke, and Ernzerhof (PBE) was adopted for the exchange-
correlation functional [32]. The energy cutoff was set to
390 eV. A 15 × 15 × 7 Monkhorst-Pack k mesh was used
for the Brillouin zone (BZ) sampling. The atomic positions
were fully optimized until the residual forces were less than
10−3 eV/Å. The convergence criterion for the total energy
was set to be 10−6 eV. To account for the correlation effects of
the Mn-3d electrons, we have adopted the GGA + U method
[33]. We have tested different U values, and found that U =
1 eV gives a calculated magnetic moment ∼3 μB, which best
matches previous experimental observation (∼2.6 μB) [28],
therefore, this U value was taken for the results presented
below. The k · p effective models were constructed with the
help of the MAGNETICKP package [34]. The intrinsic anoma-
lous Hall conductivity was evaluated on a denser k mesh of
200 × 200 × 200 by using the WANNIER90 package [35,36].

II. CRYSTAL STRUCTURE AND MAGNETISM

The intermetallic compound MnB2 has been synthesized
in experiment more than sixty years ago [37]. The crys-
tal has the hexagonal AlB2 type structure with space group
P6/mmm (No. 191). As depicted in Fig. 1, it consists of
alternating atomic layers of Mn and B along the c axis (z di-
rection in our setup). Mn layers are of simple hexagonal type,
whereas B layers are of honeycomb type. A primitive unit

cell contains one formula unit. The Mn atom occupies the 1a
Wyckoff position, whereas the B atoms are at the 2d position.
The experimental lattice constants are a = 3.01 Å and c =
3.04 Å [38], which have been adopted in our first-principles
calculations.

The magnetic structures of MnB2 have been studied in pre-
vious experiments [28]. From magnetic measurements, such
as nuclear magnetic resonance and neutron diffraction, it was
found that MnB2 has two magnetic phases. The magnetic mo-
ments are mainly on the Mn sites and have a value ∼2.6 μB.
At room temperature, MnB2 has A-type collinear AFM, where
each Mn atom layer is FM ordered and neighboring layers are
coupled in AFM manner, as illustrated in Fig. 1(a). Measure-
ment showed that the Néel vector prefers to be in the ab plane.
It was found that this collinear AFM phase occupies a wide
temperature range from 157 K to 760 K. Below 157 K, MnB2

enters the wFM phase, where the magnetic moments slightly
tilt out of the plane, with a tilt angle ∼5◦, as illustrated in
Fig. 1(b), which leads to a net magnetization along z. These
experimental results will be used in our modeling below.

III. NONRELATIVISTIC BAND STRUCTURE
OF AFM PHASE

Let us investigate the electronic properties of MnB2 in
the collinear AFM phase [as in Fig. 1(a)]. We first con-
sider the nonrelativistic band structure, i.e., in the absence
of SOC. The result obtained from our DFT calculation is
plotted in Fig. 2(a). One observes that the system is metallic,
which agrees with the transport measurement result reported
in Ref. [39]. The density of states (DOS) shows a dip at the
Fermi level, reflecting its semimetal character. From projected
DOS (PDOS), the low-energy bands are mainly contributed by
Mn-3d and B-2p orbitals.

Interestingly, one observes several linear band crossings in
the vicinity of Fermi level. First of all, there is a crossing point
E on the �-A path, located at kz = 0.274π [in unit of 1/(2c),
2c is the lattice constant for the magnetic cell] and at energy
of −0.2575 eV below Fermi level, as indicated by the red
arrow in Fig. 2(a) (There is also a partner point at −0.274π

due to inversion symmetry.) Note that due to AFM ordering,
spin degree of freedom has to be considered, and each band
in the band structure is at least doubly degenerate with the
spin degeneracy. Then, one can see from Fig. 2(a) that the two
bands which cross at E are each fourfold degenerate, hence
point E is an ENP.
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FIG. 2. (a) Calculated band structure of MnB2 along with PDOS,
in the absence of SOC. The inset shows the enlarged view of the
bands around ENP. (b) Distributions of the nodal lines, labeled as
NL1, NL2, NL3 in the BZ. They are connected and form a nodal
network as shown in (c).

Meanwhile, there are other crossing points marked by ar-
rows with different colors in Fig. 2(a); a careful scan of BZ
shows that these points actually belong to several nodal loops.
As illustrated in Fig. 2(b), there is a nodal ring centered at
� point in the kz = 0 plane [orange colored in Fig. 2(b)],
marked as NL1. Two (green colored) nodal rings are centered
at H and H ′ points in the kz = π plane, marked as NL2. In
addition, there are six (blue colored) loops traversing BZ in
the z direction, marked as NL3. These nodal loops are four-
fold degenerate and they are connected to form an interesting
network pattern as shown in Fig. 2(c) in the extended BZ.

All these nodal features in the nonrelativistic band struc-
ture are protected by spin group symmetry [40]. Let us first
consider the protection of the nodal loops. Without SOC, the
spin-up and spin-down channels can be considered separately
(and the two are connected, e.g., by translation of c along z,
which enforces the band spin degeneracy). If we focus on one
spin channel, it can be regarded as a spinless system, which
has an effective time-reversal symmetry T (represented by the
complex conjugation). In addition, the inversion P (with inver-
sion center on Mn site), horizontal mirror Mz (coincides with
Mn plane), and three vertical mirrors are respected in each
spin channel. These symmetries are sufficient to protect the
nodal loops in Fig. 2(b). For example, the loops in the kz = 0
and kz = π planes are protected by the Mz symmetry, i.e., in
each spin channel, the two crossing bands have opposite Mz

eigenvalues. Similarly, the six blue-colored nodal loops are
protected by the three vertical mirrors. Furthermore, one notes
that each spin channel respects the spinless PT symmetry,
which enforces quantization of Berry phases in unit of π . This
offers a second protection of the loops, as any small closed
path encircling a loop here must carry a π Berry phase. It
follows that even if the mirrors are weakly broken, these loops
will not disappear as along as the inversion symmetry is still
preserved.

Now we turn to ENP (point E ) and analyze its protection.
In this analysis, we shall also construct an effective k · p
model for its description. For spin groups, the actions on spa-
tial and spin spaces are independent and can be separated. We
first consider the symmetries acting only on spatial (orbital)
degrees of freedom. The ENP is formed by the crossing of
two degenerate bands on �-A path. For orbital degrees of
freedom, there are two symmetry generators on this path,
namely the sixfold rotation C6z and the vertical mirror Mx.
The corresponding little cogroup has two (single valued) two-
dimensional (2D) irreducible representations (IRRs) �5 and
�6 on this path. The matrix representations for the generators
in �5 and �6 may be taken as

�5(C6z ) =
(

− 1
2 −

√
3

2√
3

2 − 1
2

)
; �5(Mx ) =

(
1 0
0 −1

)
, (1)

and

�6(C6z ) =
(

1
2 −

√
3

2√
3

2
1
2

)
; �6(Mx ) =

(−1 0
0 1

)
. (2)

Each 2D IRR gives a doubly degenerate band, and the
accidental crossing between them will lead to a fourfold de-
generate point on �-A.

Next, we take into account the spin degree of freedom,
which will double the degeneracy. This introduces additional
generators for the spin group. These include, e.g., all possible
rotations of spin along its polarization direction. Assuming
the moments are in the ±y direction (the specific direction
does not matter here since there is no SOC), then such rota-
tions, sometimes denoted as S∞

y [40], can be represented as
exp(− iεσ2

2 ), where ε is any real number and σ2 is the Pauli
matrix. In addition, reversing the spin direction (e.g., by π

rotation normal to the spin-polarization direction or by time
reversal T [41]) and interchange the two AFM sublattices
(e.g., by P or by translation of c along z) is also an allowed
symmetry. Including spin, �n (n = 5, 6) gives rise to spin
group IRR �s

n which is four-dimensional, for which the gen-
erators can be taken as

�s
n(C6z ) = �n(C6z ) ⊗ σ0, �s

n(Mx ) = �n(Mx ) ⊗ σ0,

�s
n

(
S∞

y

) = σ0 ⊗ e− iεσ2
2 , �s

n(PT ) = σ0 ⊗ iσ2,

�s
n

(
tc||Sπ

x

) = σ0 ⊗ e− iπσ1
2 , �s

n

(
tc||Sπ

z

) = σ0 ⊗ e− iπσ3
2 , (3)

where σ0 is the 2 × 2 identity matrix, and tc is the translation
of c along the z direction (i.e., half of the magnetic cell length
along z).

Using these matrix representations, we can construct the
k · p model for the ENP. Up to linear order in q (i.e., the
momentum deviation from point E ), the model is given by

HENP(q) = a1qz + a2qx�100 + a2qy�220 + a3qz�300. (4)

Here, the model is an 8 × 8 matrix with �i jk = σi ⊗ σ j ⊗ σk ,
a’s are real model parameters, and the energy is measured
from the ENP.

Before proceeding, we comment that besides the nonmag-
netic versus magnetic difference, all previously reported ENPs
in fact require protection by nonsymmorphic space-group
symmetries and they all locate at high-symmetry points at
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FIG. 3. Band structure of MnB2 with SOC included along
(a) H -� and (b) �-A paths for the AFM-y state. Small gaps are
opened at the original band crossings by SOC.

the boundary of BZ [7,8,14]. In contrast, the ENP here is
stabilized only by symmorphic symmetries and it occurs on
a high-symmetry path in the interior of BZ. It also follows
that the ENP here comes in a pair, whereas previous cases all
have a single point.

IV. EFFECT OF SPIN-ORBIT COUPLING

In this section, we examine the effect of SOC in the
collinear AFM phase. With SOC, the orientation of Néel
vector will affect band structure. Note that the previous ex-
periments only showed the Néel vector prefers to be in plane
[28], but the specific in-plane direction was not determined.
Our DFT calculation suggests that the energy of y direction
is slightly lower than the x direction (the in-plane magnetic
anisotropy energy profile is shown in the Supplemental Ma-
terial [42]). Nevertheless, the qualitative features of band
structures for the two in-plane directions are essentially the
same.

Let us first consider the case with Néel vector along the
y direction, denoted as AFM-y configuration. With SOC,
symmetry operations will act on orbital and spin spaces simul-
taneously. Note that the system still respects PT symmetry,
where the inversion center is in the B layer at the center of
a B hexagon. As a result, each band still has a twofold spin
degeneracy due to (PT )2 = −1. Furthermore, we find that
SOC generally opens a small gap at all the nodal features
near Fermi level. Figures 3(a) and 3(b) show the enlarged
band structures around two original band crossings on high-
symmetry paths. The opened SOC gap ranges from a few meV
to ∼8 meV. The results of the AFM-x configuration are similar
and are shown in the Supplemental Material [42].

Next, we consider the configuration with Néel vector along
the z direction, denoted as AFM-z. In this case, we find that
there are still preserved nodal features near Fermi level. First
of all, regarding the nodal network in Fig. 2(b), we find that
the two nodal rings in the kz = π plane (the NL2 rings) are
preserved, while other nodal lines open small gaps, as illus-
trated in Fig. 4(a). The symmetry protection of these fourfold
nodal rings come from the combined actions of the horizon-
tal mirror Mz and PT symmetries. Here, each nodal ring is
formed by the crossing of two doubly degenerate bands, where
the double degeneracy comes from PT . To have a protecting
crossing, it is essential that the PT -related partners must have
the same Mz eigenvalues. To demonstrate this point, consider
a band eigenstate |ψ〉 with momentum in the kz = π plane. It

FIG. 4. Band structure results for AFM-z state under SOC.
(a) Two nodal rings (the NL2 rings) in kz = π plane are still preserved
under SOC. (b) Band structure along A-H path, showing the fourfold
degenerate point on the nodal ring. (c) Band structure around the
original ENP on �-A. Here, D1 and D2 are linear Dirac point, whereas
D3 is a quadratic Dirac point.

can always be chosen as an Mz eigenstate, i.e.,

Mz|ψ〉 = mz|ψ〉, (5)

where mz = i or −i in the presence of SOC. To find the
Mz eigenvalue of its partner PT |ψ〉, we need to know the
relationship between operations Mz and PT . Considering their
consecutive actions on a spatial point (x, y, z), we have

(x, y, z)
PT ,Mz−−−−→ (−x,−y, z + 1

2

)
, (6)

and

(x, y, z)
Mz,PT−−−−→ (−x,−y, z − 1

2

)
. (7)

Therefore, we have

Mz(PT |ψ〉) = e−ikz PT Mz|ψ〉 = mz(PT |ψ〉), (8)

where in the second step, we have used kz = π and mz = ±i is
purely imaginary. This demonstrates that the PT partners |ψ〉
and PT |ψ〉 must have the same eigenvalue mz. When bands
with opposite mz values cross, they will form the fourfold
band crossing [see Fig. 4(a)], i.e., the NL2 rings. One also
notes from Eq. (8) that the condition kz = π is important; the
other mirror plane kz = 0 does not have this property. This
explains why the original nodal ring NL1 in Fig. 2(a) is not
preserved.

Next, we consider the SOC effect on the ENP in the AFM-z
state. We find that each ENP will be transformed into three
fourfold Dirac points on �-A path. These points are marked
in the calculated band structure in Fig. 4(c). Two points are
conventional linear Dirac points (marked as D1 and D2 in the
figure). Interesting, the third one is a quadratic Dirac point
[43,44] (marked as D3), which has linear band splitting along
kz but quadratic band splitting in the 2D plane normal to kz.

To characterize these Dirac points, we construct their k · p
effective models. The magnetic space group for AFM-z is
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Pc6/mmc (BNS No. 192.252). The low-energy bands that
form the Dirac points belong to �7, �8, and �9 irreducible
representations on the �-A path, as shown in Fig. 4(c). The
symmetry generators on this path can be selected as C6z, M̃x,
and PT , where M̃x is a glide mirror involving a half-magnetic
cell translation along z. Their matrix representations for �7,
�8, and �9 can be taken as

�7(C6z ) =
(

i 0
0 −i

)
, �8(C6z ) =

(
e

iπ
6 0

0 e− iπ
6

)
,

�9(C6z ) =
(

e
i5π
6 0

0 e− i5π
6

)
, (9)

and

�n(M̃x ) = e−ikz

(
0 i
i 0

)
; (10)

�n(PT ) =
(

0 1
−1 0

)
, (11)

for n = 7, 8, 9. For the linear Dirac point D1 formed by the
crossing of �7 and �8 bands, the obtained effective model
takes the form of

HD1 (q) = b1qz + b2qx�23 + b2qy�10 + b3qz�30, (12)

where �i j = σi ⊗ σ j . Similar, point D2 formed by the crossing
of �7 and �9 is described by the model of

HD2 (q) = c1qz + c2qx�23 − c2qy�10 + c3qz�30. (13)

Lastly, the quadratic Dirac point D3 is formed by the crossing
of �8 and �9. Its model is given by

HQDP(q) = d1qz + d2
(
q2

x + q2
y

) + d3qz�30 + d4
(
q2

x − q2
y

)
�10

+ 2d4qxqy�23 + d5
(
q2

x + q2
y

)
�30. (14)

In the above models, the energy and the momentum are mea-
sured from each nodal point, and bi’s, ci’s, and di’s are real
model parameters. These models confirm that D1 and D2 are
linear Dirac points, and D3 is a quadratic Dirac point, all
realized in an AFM state. It should be noted that although
quadratic Dirac point was proposed before based on theoreti-
cal analysis in nonmagnetic and magnetic systems [43,44], its
material realization is rare. Particularly, to our knowledge, it
has not been reported in magnetic materials before.

V. ANOMALOUS HALL RESPONSE IN FM PHASE

Experiment shows that when the temperature is below
157 K, MnB2 will transition into the wFM phase, with mag-
netic moments tilted toward the c axis by a small angle (∼5◦)
[28], as shown in Fig. 1(b). The magnetic space group changes
into Cm′c′m (BNS No. 63.462), in which the symmetries P
and Mz are respected. The calculated band structure of the
wFM phase is shown in Fig. 5(a). One observes that first,
the twofold band degeneracy in the AFM phase is lifted in
the wFM phase. Second, the system is still metallic, and
low-energy bands show complicated patterns due to the lifted
spin degeneracy. By analyzing the double representations of
the energy bands, we find that there are still several protected

FIG. 5. (a) Band structure for wFM state along with PDOS.
(b) Calculated intrinsic anomalous Hall conductivity as a function
of chemical potential for the wFM state.

crossing points, as illustrated in Sec. III of Supplemental
Material [42].

Here, we are interested in the anomalous Hall response.
The reason is that in the AFM phase, regardless of the Néel
vector orientation, this response is forbidden in bulk MnB2,
by the T t00 1

2
symmetry, where t00 1

2
is the translation along z

by half of the AFM cell. Now, in the wFM phase, this T t00 1
2

symmetry is broken by the moment tilting, so the system can
exhibit a finite anomalous Hall response. This can serve as a
contrasting property between the two phases. We evaluate the
intrinsic part of anomalous Hall conductivity in the ab plane,
which is related to the Berry curvature of the material’s band
structure [45,46]:

σxy = −e2

h̄

∫
BZ

d3k

(2π )3
�z(k). (15)

Here, �z(k) is the total Berry curvature of all occupied states
at k:

�z(k) = −2 Im
∑
n 
=n′

fnk
〈nk|vx|n′k〉〈n′k|vy|nk〉

(ωn′ − ωn)2
, (16)

where n and n′ are band indices, εn = h̄ωn is the band energy,
v’s are the velocity operators, and fnk is the Fermi distribution
function for state |nk〉.

Figure 5(b) shows the σxy obtained from our DFT calcula-
tions as a function of the chemical potential μ. We find that
without doping (μ = 0), σxy has a value of ∼200 (� cm)−1,
which is actually sizable, considering that good FM mate-
rials such as Fe has a value around ∼1000 (� cm)−1 [47].
This sizable anomalous Hall response originates from several
small gap regions near the Fermi level, which generates large
Berry curvature peaks (see Supplemental Material [42]). Fur-
thermore, with small electron doping, σxy can have a large
change and even flip its sign, reaching ∼−450 (� cm)−1 at
μ ∼ 60 meV (i.e., doping of ∼ 0.018 e/f.u.). These results

115119-5



YONGHENG GE et al. PHYSICAL REVIEW B 109, 115119 (2024)

show that the anomalous Hall signal will exhibit a large jump
during the magnetic phase transition, from nearly zero in the
AFM phase to a sizable value in the wFM phase.

VI. DISCUSSION AND CONCLUSION

We have revealed interesting band nodal features in MnB2.
The ENPs found here are distinct from previously reported
cases, which are either in nonmagnetic systems or require
nonsymmorphic symmetries [7,8,14]. As we discussed, the
ENPs here are realized in AFM state and require only sym-
morphic spin-group symmetries. It follows that they appear
in a pair, rather than a single point in previous examples.
The AFM quadratic Dirac point is another interesting discov-
ery. It should be noted that all Dirac points here have zero
Chern numbers, because the system has both T t00 1

2
and P

symmetries.
Experimentally, single-crystal MnB2 has already been syn-

thesized [37]. The nodal features predicted here can be imaged
by the angle-resolved photoemission spectroscopy (ARPES)
technique. Note that the AFM phase exists between 157 K
and 760 K. In this range, the SOC-induced splitting in low-
energy bands are comparable or even less than the temperature
broadening. Hence, the small SOC gap may not be resolved in
ARPES images, so nodal features like ENP and nodal network
can be well perceived. Finally, the anomalous Hall response
can be studied with the standard Hall bar configuration.

In conclusion, we discover topological semimetal states
in an existing magnetic material MnB2. In the AFM phase

above 157 K, we reveal a pair of ENPs coexisting with a nodal
network. The ENPs are protected by symmorphic spin-group
symmetries and located on a high-symmetry path, distinct
from previous cases. The nodal network is composed of three
types of nodal loops, and each loop enjoys a double-symmetry
protection. SOC may open a small gap at these degenera-
cies. In the AFM-z state, a pair of nodal rings are robust
against SOC, and the ENP splits into three Dirac points, one
of which is a magnetic quadratic Dirac point. For the wFM
phase below 157 K, we predict a sizable anomalous Hall
response ∼200 (� cm)−1, which contrasts to the AFM phase
with the response forbidden by symmetry. Our work reveals a
concrete material platform for studying magnetic topological
semimetal states with unconventional emergent fermions. The
jump in anomalous Hall signal could be used to probe the
magnetic transition and may be useful for designing new
spintronic devices.
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