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Nonequilibrium symmetry-protected topological order: Emergence of semilocal Gibbs ensembles
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We consider nonequilibrium time evolution in quantum spin chains after a global quench. Usually a nonequi-
librium quantum many-body system locally relaxes to a (generalized) Gibbs ensemble built from conserved
operators with quasilocal densities. Here we exhibit explicit examples of local Hamiltonians that possess
conservation laws with densities that are not quasilocal but act as such in the symmetry-restricted space where
time evolution occurs. Because of them, the stationary state emerging at infinite time can exhibit exceptional
features. We focus on a specific example with a spin-flip symmetry, which is the commonest global symmetry
encountered in spin-1/2 chains. Among the exceptional properties, we find that, at late times, the excess of
entropy of a spin block triggered by a local perturbation in the initial state grows logarithmically with the
subsystem’s length. We establish a connection with symmetry-protected topological order in equilibrium at zero
temperature and study the melting of the order induced either by a (symmetry-breaking) rotation of the initial
state or by an increase of the temperature.
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I. INTRODUCTION

There is no topological order in one-dimensional sys-
tems in equilibrium at zero temperature; the ground states of
gapped spin-chain Hamiltonians are all equivalent to trivial
product states [1]. When restricting to systems with a given
symmetry, however, it becomes possible to distinguish differ-
ent phases. On the one hand there are standard disordered and
ordered Landau phases characterized by symmetry breaking;
on the other hand, there can be nontrivial symmetry-protected
topological phases, in which the order is manifested in ex-
citations, such as the celebrated edge modes [2–7], or in
exceptional entanglement properties [8].

Focusing on symmetry-protected topological order, per-
haps the most prominent feature that is accessible in the bulk
of the system is the so-called string order [9–11]. It refers to
the existence of sequences of bounded operators with arbi-
trarily large support (e.g., strings of spins) whose expectation
values remain nonzero in the limit of infinite support. String
order was shown not to survive an increase in the temperature
[12], and most results pertaining to its fate when the system is
not kept in equilibrium [12–20] seem to point at its melting.

This comes of no surprise for the physical community that
has been working on relaxation in nonequilibrium systems.
Specifically, there has been a lot of progress in predicting
the behavior of local observables in integrable and generic
systems composed of a macroscopic number of degrees of
freedom [21–28]. It is now well accepted that, in an isolated
many-body system, local relaxation occurs: Finite regions of
the full system relax because the rest of the system acts as an
effective bath for them. At late times, local observables can
be effectively described by statistical ensembles incorporating
conservation laws with certain locality properties [29,30], the
simplest example being a conserved operator with a local den-
sity. In the end the effective stationary state can be thought of
as a thermal state of an effective Hamiltonian. Since Ref. [12]
ruled out string order at finite temperature, there is little if any
hope to keep string order out of equilibrium.

In this paper we reconsider symmetry-protected topolog-
ical order from the perspective of local relaxation after a
global quench in a quantum spin chain. We show that string
order does not always melt down and explain a mechanism
behind its persistence. We then study the corresponding exotic
nonequilibrium states emerging at late times. Without aiming
at mathematical rigor, we provide an informal review of the
meaning of locality in a quantum spin chain and discuss how
to expand the conventional representation of local observables
so as to become consistent with the recent hints pointing at
the emergence of symmetry-protected topological order after
global quantum quenches [31].

The systems concerned possess hidden symmetries that
can not be associated with local conservation laws. In infinite
chains the corresponding conservation laws have densities that
are not part of the theory defined on the local operators and
their quasilocal completion. In quantum field theories such
densities would correspond to twist fields with the exceptional
property of satisfying continuity equations. The existence of
such conservation laws invalidates descriptions of local relax-
ation in terms of maximum-entropy statistical ensembles that
only involve quasilocal conserved operators. This is observed

both in generic and integrable systems. In the generic case,
the persistence of topological order impairs local relaxation to
an effective thermal state [32], together with related results
such as the celebrated eigenstate thermalization hypothesis
[32–35]. In integrable systems, instead, we experience what
would seem to be the failure of the generalized Gibbs ensem-
ble [36], the latter not being able to describe the infinite-time
limit even when defined in the refined version that includes
every conserved operator with quasilocal densities [29].

We overcome this problem by introducing two statis-
tical ensembles: the G-semilocal Gibbs ensemble and the
G-semilocal generalized Gibbs ensemble, which live in an
extension of the theory, characterized by the symmetry G.
While from a purely mathematical point of view they could
be considered as a special instance of a generalized Gibbs
ensemble built out of so-called pseudolocal conservation laws
[37], they stand out for their exotic physical properties. In
particular, they are able to capture string order in the setting
of quantum quench protocols, where it is typically absent.
Purely for the sake of simplicity, we focus on the commonest
symmetry in spin-1/2 chains—the invariance under a spin
flip (a Z2 symmetry). We report analytical results for the
simplest integrable model we know to exhibit a Z2-semilocal
generalized Gibbs ensemble, the dual XY model, which, to
the best of our knowledge, has been introduced in Ref. [38].
In addition, we numerically demonstrate the emergence of a
G-semilocal Gibbs ensemble in nonintegrable deformations of
the model.

Within this framework we elaborate on the observations of
Ref. [31] about the macroscopic everlasting effects of local
perturbations connecting different Z2 sectors in the dual XY
model; we understand that effect as a defining feature of
semilocal ensembles and generalise the analysis of Ref. [31]
to reduced density matrices. Specifically, we take inspiration
from Refs. [39,40], on one side, and Ref. [41], on the other,
and investigate the late-time effect of the perturbation on the
Rényi entropies

Sα[A] = 1

1 − α
log tr

(
ρα

A

)
(1.1)

of spin blocks A (ρA is the reduced density matrix of A).
We show that a localized perturbation connecting different
Z2 sectors results in a logarithmic correction to the standard
extensive behavior,

Sα[A]
t→∞−−−→ aα|A| + bα log |A| +O(|A|0), (1.2)

where |A| is the subsystem’s length. In the examples con-
sidered the prefactor bα of the logarithm is computed
analytically. Strictly speaking, bα is neither quantized nor
universal, but it is nevertheless nonzero and depends on only
few system details.

Finally, we address the question of the instability of the
symmetry-protected topological phase from the constructive
point of view of the separation of time scales [42–45].
Specifically, we consider two ways of breaking the relevant
symmetry: applying a weak symmetry-breaking transforma-
tion to the initial state or heating it up to a finite low
temperature. As expected, string order melts down, but it does
so over a time scale that is much longer than the times that
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can be reached, for example, in numerical simulations based
on tensor networks.

II. OVERVIEW AND RESULTS

We consider time evolution after a global quench in an
infinite spin-chain system that, in almost the entire paper, is
assumed to be translationally invariant. That is to say, we in-
vestigate systems prepared in the ground state or in a thermal
state of a given prequench Hamiltonian H0 =∑� h0,� and
then time evolved with a different postquench Hamiltonian
H =∑� h�, e.g.,

|�(t )〉 = e−iHt |�(0)〉 ,

H0 |�(0)〉 = EGS |�(0)〉 , (2.1)

where EGS is the ground-state energy of H0. We restrict our-
selves to local Hamiltonian densities h0,�, h� (see discussion
below). The focus is on systems that are invariant under a
global (sometimes called “on-site”) symmetry characterized
by some global unitary operator U, such that Uh�U† = h� and
Uh0,�U† = h0,�.

We have three main goals:
(1) Show how the picture of local relaxation to a Gibbs or

a generalized Gibbs ensemble consisting of conservation laws
whose densities belong to the algebra of local operators or its
quasilocal completion can fail in symmetric systems;

(2) Uncover the reasons behind the failure and explicitly
construct a family of statistical ensembles able to capture the
stationary values of local operators;

(3) Identify signatures of the exotic nonequilibrium phases
related to such statistical ensembles.

We warn the reader that, in order to achieve our objectives,
we need to distinguish the notion of “local observable” from
that of “local operator”. The latter is for us only a representa-
tion of the former, as will be clarified later.

We now provide an informal overview and contextualiza-
tion of our results.

A. Local observables in spin chains

In quantum mechanics the concept of locality is connected
with the algebra of the operators representing the observables.
In practical terms, an observable is local if it can be associated
with a position in such a way that its measurement does
not affect the measurement of any other sufficiently distant
local observable. We wrote “sufficiently distant” because in
a spin chain local observables are not point-like objects but
have a range corresponding to the size of the finite subsystem
affected by their measurement. Generically local observables
are represented by local operators of the form OA ⊗ IĀ, where
OA has support in some finite connected subsystem A of the
lattice, Ā denoting its complement. The range of the corre-
sponding local observable is then |A|.

1. Quasilocality

Time evolution does not preserve the locality of an op-
erator: If the Hamiltonian is not exceptionally simple, the
Heisenberg representation of an operator that is local at time
t = 0 does not have a finite range at any t �= 0. This problem

can be resolved by weakening the definition of locality so
as to include also observables represented as limits of se-
quences of local operators ordered by their range. For example∑∞

n=1 e−nσz
�−nσ

z
�+n is not local but is quasilocal: it can be well

approximated by the truncated sums, and hence the limit is
well defined. For local Hamiltonians it is actually sufficient
to restrict ourselves to the strong form of quasilocality in
which operators have exponentially decaying tails. A careful
formalization of this intuitive idea eventually results in the
definitions of Refs. [30,37,46–48].

Time evolution with local Hamiltonians preserves strong
quasilocality [49,50], but quantum mechanics is still a nonrel-
ativistic theory: causality, usually expressed as a commutation
of quasilocal operators at space-like distances, does not hold.
Nonetheless, a weaker form of causality still applies: Lieb
and Robinson proved that the commutator of quasilocal op-
erators becomes exponentially small at space-like distances,
providing a bound that plays the role of the speed of light in
relativistic systems [49].

2. Semilocality

Exponentially localized operators are usually regarded as
the quintessential representation of local observables in spin
chains. Still, there are systems with local observables that
escape the boundaries of quasilocality. Let us consider for
example a quantum quench between two Hamiltonians with
local densities invariant under a spin flip P z,

h j = P z[h j] ≡ lim
n→∞

[
n∏

�=−n

σz
�

]
h j

[
n∏

�′=−n

σz
�′

]
,

h0, j = P z[h0, j], (2.2)

where σz
� denotes the operator acting like the Pauli z matrix on

site � and like the identity elsewhere. Suppose that the initial
state is spin-flip symmetric. Thus, the expectation value of
any local observable Oo, which is odd under spin flip, i.e.,
P z[Oo] = −Oo, vanishes. The symmetry of the Hamiltonian
moreover implies that this property holds true at any time.
The system is completely characterized by operators Oe that
are even under spin flip, i.e., P z[Oe] = Oe; without loss of
information, we can restrict the space of operators to the even
ones.

Such a restriction has, however, a subtle byproduct: In the
restricted space there are observables that are not represented
by local operators but that nevertheless behave as such. In this
specific case the prototype of such an observable is repre-
sented by an operator �z( j) that plays the role of a product
of Pauli matrices σz extending from site j to infinity; see
Sec. IV A for a proper definition. As done in Ref. [31], we
refer to �z( j) as semilocal to remember that its action is local
only in the restricted space of even operators (see Fig. 1; see
also Refs. [51–55] regarding semilocality and related concepts
in field theories and lattice models). The above example with
a Z2 (spin-flip) symmetry will be our testing ground, but the
idea can be applied to other symmetries: If every subsystem
has a density matrix that is written at any time in terms of a
restricted set of local operators,

an alternative representation of local observables can be ob-
tained by supplementing the restricted set with operators that
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FIG. 1. (a) Odd operator Oo(x) [Oo(y)] with support to the left
(right) of the site j commutes (anticommutes) with the string �z( j).
For simplicity we assume x 	 j 	 y. (b) Even operator with support
that does not include the site j commutes with the string �z( j).
Restricting to the space of even operators, the strings behave as local
objects.

are not local but behave as such. As in the Z2 case, they are
called “semilocal”.

Duality. We expect quite generally that, once extended to
include also semilocal operators, the restricted space becomes
isomorphic to the original space of quasilocal operators. In
the Z2 case, this is manifested in the existence of a duality
transformation that preserves the locality of the Hamiltonian
and maps even semilocal operators into local ones that are odd
under a spin flip (see Sec. IV A). Analogous duality transfor-
mations exist also when the system exhibits other symmetries
(see, e.g., Refs. [56,57]).

3. Cluster decomposition

Thermal states and ground states of local Hamiltonians
have clustering properties. That is to say, the expectation value
of the product of two local operators far away from each other
factorises,

lim
y→∞( 〈O1(x)O2(x + y)〉−〈O1(x)〉〈O2(x + y)〉 ) = 0. (2.3)

Cluster decomposition is intimately connected with the phe-
nomenon of symmetry breaking in ordered phases: generic
nonsymmetric perturbations break the symmetry of the
ground state in such a way that the state always ends up sat-
isfying clustering [58]. If our system is symmetric, semilocal
operators represent local observables as well, therefore one
requires that

a symmetric physical state satisfies clustering also for semilo-
cal operators.

This additional requirement allows to break completely the
barrier between semilocality and locality: there is no physical
property distinguishing semilocal operators from local ones.
In view of this, local, (strongly) quasilocal, and semilocal
operators can all represent local observables. Incidentally, we
mention that this equivalence becomes natural when taking
the continuum limit close to a critical point, where all the
aforementioned operators become represented by local fields.

In the previous example of the Z2 symmetry, clustering
fixes the expectation value of the semilocal operators up to
an overall sign. Section IV B will show that the auxiliary sign

is determined by how the symmetry is broken in the dual
representation.

4. Semilocal vs symmetry-protected topological order

We are considering noncritical spin-chain Hamiltonians
with discrete global symmetries. If, in equilibrium at zero
temperature, some of the symmetries remain unbroken, the
state can exhibit so-called symmetry-protected topological or-
der [59]. Because of the symmetry of the Hamiltonian, we can
find string operators OA that act differently from the identity
everywhere within a connected region A and commute with
the energy densities h� with support inside A. The order is
manifested in the fact that there are operators of that kind
with a nonzero expectation value in the limit |A| → ∞. This
is usually referred to as “string order” [56].

String order can be reinterpreted as the existence of an alter-
native representation of local observables including semilocal
operators with a nonzero expectation value.

Indeed, it is always possible to reinterpret 〈OA〉 as the
correlation between two semilocal operators positioned at the
boundaries of A. Clustering of semilocal operators together
with the nonvanishing value of 〈OA〉 in the limit |A| → ∞
imply that the expectation values of those semilocal operators
are different from zero. In analogy with the local order pa-
rameters characterizing a phase with a spontaneously broken
symmetry, they are referred to as semilocal order parameters.

The reader can understand this as an alternative way of
presenting the results of Refs. [56,57], which relate symmetry-
protected topological order to a standard Landau phase (with
a broken symmetry) in a dual representation. For example, in
the Z2 case limn→∞ 〈∏�+n

j=�−n σz
j〉 is the natural string-order

parameter and we have
∏�+n

j=�−n σz
j = �z(� − n)�z(� + n +

1).
Since we have not carefully investigated the equivalence

between semilocal order and symmetry-protected topological
order, we will refrain from using the latter terminology when
there is a risk that our claims could not hold in full generality.
We note, however, that the basic property of symmetry-
protected topological order is satisfied: semilocal order is
preserved if the initial state is perturbed without breaking the
symmetry associated with the order. For example, in the case
of a Z2-symmetric initial state |�(0)〉 the transformed state
eiW|�(0)〉 retains the symmetry for any spin-flip invariant
operator W with strongly quasilocal density. The collection
of such states obtained by all possible symmetry-preserving
perturbations forms a symmetry-protected phase [1]. All these
states are characterized by a nonvanishing expectation value
of a semilocal operator.

B. Conservation laws with semilocal densities

Most spin-flip invariant Hamiltonians with local densities
do not admit dynamics in which the expectation values of
semilocal operators remain nonzero also at late times. This
can be readily understood if, like in the Z2 case, there is a
duality transformation mapping semilocal operators into local
ones that break the symmetry. In the dual representation their
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expectation value remains nonzero only if there are conserved
charges that break the symmetry of the dual Hamiltonian.

Conversely, for every symmetric Hamiltonian with at least
one local charge that does not respect the symmetry, there is
a dual Hamiltonian with at least one conservation law with a
semilocal density. In the specific case of spin-flip symmetric
Hamiltonians, the simplest examples of systems of this kind
have dual Hamiltonians that are spin-flip invariant in all the
directions, like the Hamiltonian of the Heisenberg model. In
particular,

any local Hamiltonian with a spin-flip symmetry and a U (1)
charge that breaks spin flip is dual to a model with a semilocal
charge.

The prototypical example of the latter has the following
Hamiltonian:

H =
∑
�∈Z

σx
�−1

(
1 − σz

�

)
σx

�+1 + W�[{σz}], (2.4)

where W� can be any local operator written only in terms of
σz. To the best of our knowledge, for generic W� the model
does not have conservation laws with quasilocal densities. On
the other hand, just using the algebra satisfied by �z( j), the
reader can verify that H has the following conservation law
with a semilocal density:

Q =
∑
�∈Z

�z(�). (2.5)

Naively following Refs. [29,30], we would exclude this
conservation law from the description of the long-time be-
havior of local operators after global quenches. Indeed �z(�)
cannot be written as a limit of a sequence of local operators
and does not even have a nonzero infinite-temperature overlap
with a local operator. While the relevance of such charges
could perhaps be understood within the picture of thermal-
ization based on the so-called pseudolocality [37], an explicit
example of a setting in which they would crucially affect the
relaxation of local observables has, to our best knowledge,
not yet been considered. Herein we provide such examples,
explicitly construct the emergent nonequilibrium statistical
ensembles, and interpret them.

1. Breakdown of maximum-entropy descriptions

After a quantum quench of a global parameter at zero
temperature, the local properties of the state approach those
of an effective stationary state. Typically, the latter is com-
pletely characterized by conserved operators with quasilocal
densities [60], which carry information about the initial state
(see Sec. III B). The emerging state, which is called Gibbs
or generalized Gibbs ensemble, is expected to resemble an
equilibrium state at finite temperature. We remind the reader
that finite-temperature states in one dimension do not gener-
ally exhibit topological order; this was proven, in particular,
for global on-site symmetries [12]. Because of the similarity
between (generalized) Gibbs ensembles and thermal states,
it is reasonable to expect that, in such maximum-entropy
descriptions, the two-point functions of semilocal operators
approach zero at large distances.

Let us now reexamine global quenches in symmetric
systems in the light of our previous considerations about

semilocality. If the state before the quench is not symmetric
(i.e., its density matrix is not even), semilocal operators do
not represent local observables, exactly as in global quenches
without global symmetries. We expect, therefore, the emer-
gence of a standard (generalized) Gibbs ensemble; we will
consider an explicit example in Sec. III B 1.

The situation changes if the initial state exhibits semilocal
order. It is simple to show that

semilocal charges enable the possibility to keep memory of
semilocal order,

that is to say, they allow a symmetry-protected topological
order phase to survive the long-time limit after a quantum
quench.

In the Z2 case, this can be readily proved considering the
fluctuations of a semilocal charge, let it be

∑
j∈Z qsl

j , with a
nonzero expectation value at the initial time. We indeed have

lim
t→∞

1

|A|2
∑
j,n∈A

〈�(t )|qsl
j qsl

n |�(t )〉� 〈�(0)|qsl|�(0)〉2
(2.6)

for every subsystem A, where we used the non-negativity
of fluctuations and 〈�(t )|qsl|�(t )〉 = 〈�(0)|qsl|�(0)〉. In the
limit of large |A| the left-hand side of Eq. (2.6) can only
be nonzero if the state at infinite time exhibits string order,
specifically, if limn→∞ 〈qsl

j qsl
j+n〉 �= 0. Thus, a nonzero initial

expectation value 〈�(0)|qsl |�(0)〉 �= 0 implies survival of
the string order in the limit of infinite time. Being blind to
a string order, a (generalized) Gibbs ensemble constructed out
of the model’s conserved charges, whose densities are limits
of sequences of local operators (see Sec. III B for precise defi-
nitions), cannot describe such a limit. For an explicit example
of the breakdown of the maximum-entropy descriptions in in-
tegrable and generic systems we refer the reader to Sec. III C.

2. Semilocal (generalized) Gibbs ensemble

The charges responsible for the persistent order can be
accommodated in a minimal extension of the standard the-
ory with quasilocal operators, which must now include also
semilocal operators. In such an extended space we consider
two maximum-entropy statistical ensembles: the G-semilocal
Gibbs ensemble and the G-semilocal generalized Gibbs en-
semble, where G refers to the symmetry exploited to enlarge
the theory (e.g., the Z2 symmetry) (see Sec. IV C). The for-
mer emerges in generic systems, in which there is a finite
number of local and semilocal conservation laws; the latter
incorporates instead the richer structure of integrable systems,
where there are infinitely many charges. They are supposed to
capture the infinite-time limit as the corresponding (general-
ized) Gibbs ensembles composed out of quasilocal integrals
of motion do in nonsymmetric systems.

We posit an additional step: The semilocal ensemble
should be projected back onto a theory of local observables.
Indeed, not all operators in the extended theory can represent
local observables (they do not satisfy the causality principle
sketched in Sec. II A) and the choice of which of them can is
ambiguous: in the spin-flip example (G = Z2), odd operators
and even operators with half-infinite strings do not commute
at infinite distance but they both, separately, can supplement
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FIG. 2. Quasilocal theory (red line) and even semilocal theory
(blue-dashed line). Each of them contains operators that are able to
represent local observables, provided that some of the operators of
the other theory are excluded (even semilocal and odd quasilocal
operators can not simultaneously represent local observables—see
Fig. 1).

the even quasilocal operators to represent local observables
(see Fig. 2).

That said, local observables are typically represented by
quasilocal operators (excluding therefore, in the spin-flip case,
operators with half-infinite strings). In such a theory

persistent semilocal order manifests itself in the fact that the
projected ensemble does not maximise the entropy constrained
by the quasilocal integrals of motion.

Note, however, that in all the cases we envisage, there is also
an alternative representation of local observables in which
the projected ensemble is a maximum-entropy state as in
Ref. [61].

In conclusion, symmetric systems allow for multiple repre-
sentations of local observables and only a part of them, which
we will refer to as “canonical” theories, include the densities
of all the operators that are conserved in the extended space
(see Sec. IV C 3).

C. Signatures of semilocal order

The fact that the two-point function of semilocal operators
does not vanish in the limit of infinite distance is arguably the
most evident signature of semilocal order in nonequilibrium
states (see Sec. V C for a study of a semilocal order parameter
in the dual XY model). In this respect, we only add a remark,

the semilocal integrals of motion are semilocal order parame-
ters with the additional property of being stationary.

In fact, this is only part of the story. That a symmetric sys-
tem can be described in alternative ways (e.g., by a quasilocal
vs by a semilocal theory) can have striking consequences.
In particular, perturbations that generally have insignificant
effects can trigger macroscopic changes. Two phenomena of
this kind are described in the following.

1. Excess of entropy

Reference [31] has recently shown that, in a symmetric
quench, a localized perturbation to the initial state affects
the stationary values of local operators. Here we make the
next step, studying the effect of the perturbation on the en-
tanglement properties of large subsystems. We parametrize
the perturbation by an odd transformation U� that connects
different symmetry sectors and is localized around some posi-
tion � (in our specific example we will consider U� = σx

�):
|�(0)〉 → U� |�(0)〉. The reader can think of U� as of the
result of a projective measurement of a local operator (see
also Ref. [62]). Since the perturbation is local, it has a limited
effect on the initial state. In particular, it does not affect at
all the entanglement entropies of subsystems that enclose the
support of U� completely.

After a global quench the entropies of spin blocks grow
in time until reaching an extensive value [63]. If there are
no semilocal charges, the effect of U� approaches zero in the
limit of infinite time. On the other hand, semilocal charges
keep memory of the perturbation and even the entanglement
entropies of large subsystems remain affected. We consider in
particular the excess of entropy, which was recently studied
in states at zero temperature in which a symmetry is spon-
taneously broken [40]. It is defined as the increase in the
entanglement entropies produced by the local perturbation

�U�
SA(t ) = S[trĀ(e−iHt U� |�(0)〉 〈�(0)|U†

�eiHt )]

− S[trĀ(e−iHt |�(0)〉 〈�(0)| eiHt )], (2.7)

where S[ρ] can be any functional of the density matrix ρ that
measures the entanglement between A and the rest. We will
focus on the Rényi entropies S[ρ] = [1/(1 − α)] log tr(ρα ).
Remarkably,

�U�
SA(t ) does not approach zero in the limit of infinite time;

it becomes proportional to the logarithm of the subsystem’s
length

�U�
SA(t ) ∝ log |A|. (2.8)

In Sec. V B we compute the prefactor analytically in systems
that are dual to noninteracting spin models. Despite appearing
universal when considering the dual XY model, which is our
favorite testing ground, we argue that it is not. The prefactor
depends indeed on nonuniversal details that are accidentally
irrelevant in that model.

While the importance of the prefactor could be questioned,
the logarithm growth of the excess of entropy is, to the best of
our understanding, a striking exceptional property of systems
with semilocal conservation laws.

2. Melting of the order

In generic systems after global quenches the energy is
the only information about the initial state that survives the
limit of infinite time; the stationary values of local operators
are then captured by effective Gibbs ensembles. Since finite-
temperature phase transitions in spin chains described by local
Hamiltonians are exceptional if not forbidden [64], the norm
is that the stationary expectation values of local observables
are smooth functions of the initial state.
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The stationary expectation values of local operators are
expected to be described by an effective Gibbs ensemble even
in the presence of semilocal conservation laws, provided that
the initial conditions are generic. Indeed, semilocal charges
are relevant only for symmetric initial states; one could then
argue that the systems we are considering require a fine-tuning
and hence are physically irrelevant.

This unremarkable picture is, however, a consequence of a
naive physical interpretation of asymptotic behavior. In reality
the limit of infinite time is an effective description of times
sufficiently larger than the relaxation time [65]. The latter
diverges in the limit in which the symmetry in the initial
state becomes exact but it is still finite for an exactly sym-
metric initial state. This happens because the limit of exact
symmetry does not commute with the limit of infinite time.
Consequently, for any given arbitrarily large time, the discrep-
ancy between the expectation value of local observable and
its infinite time limit becomes larger and larger the closer the
system is to the symmetric point (see, e.g., Fig. 5 in Sec. III C).
Such a slow relaxation can be understood only taking into
account the existence of semilocal charges at the symmetric
point.

In Sec. V C we consider two simple ways of breaking the
symmetry in the initial state: a global rotation and an increase
of the temperature. In both cases we find a

nontrivial scaling behavior in the limit where the time is
large and comparable with the correlation length of semilocal
operators.

The latter, indeed, diverges in the limit of exact symme-
try (while being finite at the symmetric point): the limit
corresponds to recovering the symmetry without allowing
semilocal operators to have a nonzero expectation value, fi-
nally leading to the breakdown of cluster decomposition.

Organization of the rest of the paper:
Section III: It reviews some established results on re-

laxation after global quenches in quantum spin chains.
Section III A presents the general picture in a descriptive way,
whereas Sec. III B goes into more details about the late-time
description. Two simple examples supporting the validity of
the picture are exhibited. Section III C points out when the
long-time description of the relaxation based on quasilocal
conserved quantities fails, exhibiting also a suspected coun-
terexample in a generic system.

Section IV: It is the core of the paper, where the failure
of the (generalized) Gibbs ensembles composed of quasilocal
integrals of motion is explained and a theory able to overcome
those problems is developed from scratch. Since the issue
has deep roots in the mathematical structure underlying the
representation of local observables in infinite spin chains, the
section is more abstract than the rest of the paper. Section IV A
describes a Kramers-Wannier duality transformation introduc-
ing ingredients that will be used in the following. Section IV B
explains how a state can have distinct representations in dif-
ferent theories of local observables. Section IV C formalises
the structure revealed in the previous section and defines the
semilocal statistical ensembles able to capture the infinite-
time limit.

Section V: It describes some effects of persistent semilo-
cal order. Section V A shows that the notion of subsystem

changes across different theories of local observables, culmi-
nating in a formula that expresses a reduced density matrix
in a theory in terms of reduced density matrices of a differ-
ent theory. Section V B studies the excess of Rényi entropy
induced by a local perturbation. The asymptotic behavior of
the excess of entropy is computed analytically in an exactly
solvable model, exhibiting an unusual log behavior that is
interpreted as a consequence of semilocal order. Section V C
shows that, despite semilocal order being fragile under
symmetry-breaking perturbations, it leaves clear marks in the
time evolution of the expectation value of local operators.

Section VI: It collects additional comments and a list of
open problems.

III. LONG-TIME LIMIT: STATE OF THE ART

This section presents some established results on quench
dynamics in translationally invariant systems described by
Hamiltonians with densities h� that are local. As reviewed in
Sec. III B, this means that each density h� acts nontrivially on
a finite connected subsystem A� of the spin chain, while on the
rest of the system Ā� it acts as an identity.

If the reader is familiar with relaxation in isolated quantum
many-body systems, they can skip Sec. III A. If they are also
familiar with the concept of pseudolocality, they can also
skip Sec. III B. We advise, however, to read Sec. III C, as it
shows when quasilocal integrals of motion are not sufficient to
describe the long-time expectation values of local observables
after quantum quenches.

A. Background

Generally only a tiny part of the excited states of the
Hamiltonian gives a significant contribution to the expectation
values of local observables after a global quench. Even if tiny
with respect to the total Hilbert space, this part is, however,
still exponentially large with respect to the volume of the
system (this can be a-posteriori understood by observing that
the entanglement entropy of subsystems becomes extensive
after global quenches [66]). Consequently, studies of global
quenches are challenging both numerically and analytically.

Quantum quenches in translationally invariant many-body
systems have been intensively investigated in the last two
decades, leading to the following picture:

(i) In finite systems, consistently with the quantum recur-
rence theorem [67], there is no relaxation. The distributions of
the expectation values over time, however, are highly peaked
at values that can be described by the so-called diagonal
ensemble [32].

(ii) In the thermodynamic limit, if the initial state has
clustering properties and the Hamiltonian is local, relaxation
is the norm, and the expectation values of local observables
can be described by Gibbs or generalized Gibbs ensembles
(GGE) [25].

(iii) Generally, the diagonal ensemble and the (general-
ized) Gibbs ensemble are locally equivalent [28]. They belong
to a family of stationary states with the same local properties,
the (generalized) Gibbs ensemble being the state keeping the
least amount of information about the initial state. This equiv-
alence class is sometimes called macrostate [25].
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(iv) Eigenstate thermalization hypothesis [32–35] and its
generalization to integrable systems [68] point at the fact
that the aforementioned family of stationary states includes
excited states, usually referred to as representative states [69].

The diagonal ensemble can be obtained by killing the
nonstationary part of the time-evolving density matrix in a
basis diagonalizing the Hamiltonian [i.e., only the (block)-
diagonal part of the density matrix remains]. In practice this
can only be done in sufficiently small systems. (Generalized)
Gibbs ensembles and representative states are more suitable
for analytical investigations. In integrable systems, in particu-
lar, they can be directly used to compute expectation values.
Generalized Gibbs ensembles rely on the identification of the
smallest set of conserved operators characterizing the sta-
tionary properties of local observables. Representative states
instead require the knowledge of the overlaps between the
initial state and a generic excited state.

Contrary to classical systems, every quantum system has
a number of conservation laws in involution equal to its di-
mension (namely, the projectors on the eigenstates). In the
thermodynamic limit, however, relaxation is a property of a
restricted class of observables, therefore that exponentially
large (in volume) set of conservation laws is redundant, like
in turn is redundant the description in terms of the diagonal
ensemble.

The first studies on local relaxation after global quenches
focused on noninteracting systems of fermions and bosons
[36]. In those cases the Wick’s theorem is sufficient to con-
clude that the mode occupation numbers provide a sufficiently
large set of conserved operators. Having in mind interacting
models, the attention had then moved to reinterpreting the
known results in a way that could be easily generalized in the
presence of interactions.

The importance of locality of the conservation laws [70]
was then pointed out. It sets a clear (in translationally invariant
systems) division between integrable and generic systems.
Such a locality principle was strongly questioned after some
discrepancies between theory and numerics in the Heisen-
berg XXZ spin-1/2 chain were observed. Using the so-called
“quench action” method [27], based on representative states,
it was shown that the generalized Gibbs ensemble constructed
with local charges in the XXZ spin-1/2 chain was inadequate
[71,72]. These problems have been finally resolved with the
discovery of new families of conservation laws [48,73–75],
which had been previously overlooked. Their peculiarity is
that their densities are not strictly local but exhibit exponential
tails. Locality, now including also the new kind of opera-
tors, called pseudolocal [30], had resurrected. Some technical
discussions apart [76–78], the new picture was positively
received, and after the axiomatic definition of generalized
Gibbs ensemble put forward in Ref. [37] the question of the
relevance of conservation laws has been practically archived.

B. Maximum-entropy descriptions

Conserved quantities constrain the dynamics of the system
and prevent the loss of information about the initial state.
An important question of the past decade has been, which of
these quantities enter in the ensemble ρ∞ that describes local

relaxation according to

lim
t→∞〈�(t )|O |�(t )〉 = tr(ρ∞O), ∀O local. (3.1)

We remind the reader again that by “local” we mean that O
acts nontrivially only on a finite connected subsystem A, while
on its complement Ā it acts as an identity. We focus here on
representations of ρ∞ through maximum-entropy ensembles
[61]. In our specific case they are called Gibbs or generalized
Gibbs, depending on whether the system is generic or inte-
grable.

The first assumption behind such a description is that, at
late times, the entanglement entropy

S[ρ] = −tr[ρ log ρ] (3.2)

of subsystems becomes an extensive quantity. One can then
look for a representation of ρ∞ in terms of a state with an
extensive entropy. Thermal ensembles are the typical exam-
ples of such states. Imagine then to use a thermal ensemble
as a testing description of the stationary expectation values
(cf. Ref. [79]). Specifically, we define it in such a way as
to capture the energy of the state. We wonder whether the
presence of an additional conservation law K =∑ j k j could
change the expectation value of local operators. Guided by
statistical physics, we use the Ansatz

ρ∞ = eQ

tr(eQ)
, (3.3)

where Q was originally assumed to be proportional to H and
now is questioned whether to include or not an additional
linear dependence on K. In the absence of K, Q = −βH max-
imises the entropy under the constraint given by the energy
per site 〈h j〉 in the initial state. In order to be relevant, the
introduction of K should result in

(i) a change in the expectation value of local operators;
(ii) an extensive reduction of the entropy.
While (i) is self-explanatory, (ii) is subtler and can be seen

as a condition allowing us to use the principle of maximum
entropy [61].

To be more quantitative, the effect of including K in the
ensemble can be interpreted as the result of a smooth variation
Q = −βH �→ Q(λ) = −β(λ)H + λK that brings the original
ensemble into the new one. The variation of the expectation
value of a local operator O under a small change of λ is

δ 〈O〉λ = 〈δQ(λ), O〉λ , (3.4)

where δQ(λ) = Q′(λ)δλ, and the right-hand side is the
Kubo-Mori inner product. In this specific case ([δQ, Q] = 0)
the latter is reduced to the connected correlation function
〈A, B〉 = 〈AB〉 − 〈A〉 〈B〉; the subscript λ indicates that the
expectation values should be taken in the state ρ∞(λ).

Since the energy density is fixed by the initial state, the
variation should preserve it, hence

〈δQ(λ), h j〉λ = δλ 〈−β ′(λ)H + K, h j〉λ = 0. (3.5)

Condition (i) then requires the existence of a local operator O
satisfying [80]

0 < 〈K, O〉λ < ∞. (3.6)
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On the other hand, the variation of the entropy per unit site
is δs[ρ∞(λ)] = −〈δQ(λ), q j (λ)〉

λ
, where q j (λ) is the density

of Q(λ) [81]. Imposing the energy constraint (3.5) we then
obtain

δs[ρ∞(λ)] = − 1
2δ(λ2) 〈Q′(λ), q′

j (λ)〉
λ
, (3.7)

which is nonpositive along a path with increasing |λ|.
Explicitly it reads δs[ρ∞(λ)] = − 1

2δ(λ2)[〈K, k j〉λ −
(β ′(λ))2 〈H, h j〉λ], where k j is the density of K. In order
to apply the maximum entropy principle, we need the entropy
to be a smooth function of the Lagrange multiplier λ, which
requires [82]

0 < 〈K, k j〉λ < ∞. (3.8)

This is usually referred to as “extensivity condition” and
represents (ii). The generalization to systems with more con-
servation laws is straightforward and results in the same
equations.

As a matter of fact, some of the papers considering pseu-
dolocality of integrals of motion additionally assume [30]

(*) the density k j can be obtained as a limit of a sequence
of local operators.

From our simplified explanation, it might not be evident
where this extra condition comes from. Explaining it goes
beyond the mathematical rigor of this paper; we only mention
that (*) has a role in making sense to the thermodynamic
limit.

In a more formal paper [37] dealing with the emergence
of maximum-entropy ensembles after global quenches the
condition (*) is actually replaced with a weaker one, namely,
that 〈k j, O〉 can be obtained as a limit of the overlaps between
O and an appropriate sequence of local operators. Such a limit
then defines a “pseudolocal charge” associated with k j and
this allows one to build maximum entropy stationary states
starting from susceptibilities, avoiding altogether the problem
of defining pseudolocal operators in the thermodynamic limit.
While the formal framework developed in Ref. [37] may ac-
count also for the semilocal integrals of motion, to the best
of our knowledge no explicit example of a maximum entropy
state incorporating integrals of motion that would satisfy the
weaker and violate the stronger version of condition (*) has
yet been constructed.

Conditions (3.6), (3.8), and (*) define what is known as
pseudolocality. Charges that satisfy them include translation-
ally invariant sums Q =∑� q�, where the density has the
form q� =∑∞

r=1 q�(r) with {q�(r)} being a sequence of local
operators that act on subsystems of increasing size r and are
exponentially suppressed in r, e.g., 〈Q, q�(r)〉 � Ce−r/ξ , for
some C, ξ > 0 [30,48].

In the following we consider two examples of maximum-
entropy descriptions in integrable exactly solvable models.
Note that, since the systems are integrable, the correspond-

ing maximum-entropy ensembles will have to incorporate the
constraints of infinitely many pseudolocal integrals of motion.

1. Example: XY model

To illustrate the validity of the generalized Gibbs ensemble
description we consider quench dynamics in the XY model,
whose time evolution is generated by the Hamiltonian

H =
∑
�∈Z

Jxσ
x
�σ

x
�+1 + Jyσ

y
�σ

y
�+1. (3.9)

This is a very well-known model [83]. We mention that the
ground state is noncritical for |Jx| �= |Jy|. The critical line
separates two ordered phases where spin-flip symmetry is
broken (for Jx > Jy the spins acquire a nonzero x component,
whereas for Jy > Jx they acquire a nonzero y component).

Let the system be prepared in the initial state

|�(0)〉 = | ⇒θ
〉 :=

⊗
�∈Z

(
cos θ

2

sin θ
2

)
, (3.10)

which is the ground state of the Hamiltonian

H0 = −
∑
�∈Z

cos

(
θ

2

)
σz

� + sin

(
θ

2

)
σx

�. (3.11)

For θ /∈ {0, π} the initial state breaks the Z2 symmetry P z

of the postquench Hamiltonian H [see Eq. (2.2)]. The latter
can be conveniently rewritten in terms of Majorana fermions
ax,y

� = ( j<�σ
z
j )σ

x,y
� as [84]

H = 1

4

∑
�,n∈Z

(
ax

� ay
�

)
H�,n

(
ax

n

ay
n

)
, (3.12)

where H�,n = ∫ dk
2π

ei(�−n)kH(k) is the Fourier transform of the
2 × 2 matrix

H(k) = 2(Jx − Jy) sin k σ x − 2(Jx + Jy) cos k σ y. (3.13)

On account of the Toeplitz structure of H, H(k) is also
referred to as the symbol of the Hamiltonian (see, e.g.,
Ref. [85]). The symbol generates the evolution of the two-
point correlations of Majorana fermions according to

�t (k) = e−iH(k)t�(k)eiH(k)t , (3.14)

where �(k) is the symbol of the two-point correlation matrix

��,n = δ�,nI −
〈(

ax
�

ay
�

)(
ax

n ay
n
)〉

, (3.15)

in the initial state. For example, in the ferromagnetic initial
state (3.10) with θ = 0 one has ��,n = δ�,nσ

y and �(k) = σ y.
Under some very mild assumptions on the dispersion rela-

tion, which are practically always satisfied (for example, the
dispersion relation should not be flat), at large time the symbol
of the correlation matrix relaxes to its time-averaged value
�(k) = limT→∞ 1

T

∫ T
0 dt �t (k). In our specific case we find

�(k) =
(cos2 θ + 1) cos2 k − 2 cos θ cos k + Jx−Jy

Jx+Jy
sin2 θ sin2 k

2 cos θ cos2 k − (cos2 θ + 1) cos k

(
0 −i(Jx+Jy ) cos k

(Jx+Jy ) cos k+i(Jx−Jy ) sin k
i(Jx+Jy ) cos k

(Jx+Jy ) cos k−i(Jx−Jy ) sin k 0

)
. (3.16)
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FIG. 3. Relaxation of 〈σz
�〉 towards 〈σz

�〉GGE ≈ 0.466 (0.717)
(dashed lines) in the XY model, computed from Eq. (3.16). The
dots represent the results of the iTEBD simulation, while the solid
curve is the exact time evolution using Eq. (3.14). Parameters in
Eqs. (3.9) and (3.10) are Jx = 1, Jy = 2, and θ = 0.9 (0.3). The
iTEBD evolution uses a second-order Trotter scheme with two-site
quantum gates, time step δt = 0.01, Schmidt values cutoff 10−6 and
maximal allowed bond dimension Mmax = 800.

In a noninteracting model, Ref. [86] established that (3.16)
is actually equivalent to a symbol of the two-point correlation
matrix in a generalized Gibbs ensemble, i.e., �(k) ≡ �GGE(k).
Under some assumptions it was later proven [87,88] that, if the
Hamiltonian generating the time evolution is translationally
invariant, and if the initial state has clustering properties, the
asymptotic state of the system is Gaussian, whence higher-
order correlations can be accessed using Wick’s theorem.
These conditions are satisfied by Hamiltonian (3.9) and our
state (3.10). The time-averaged correlation matrix (3.16) thus
determines not only the two-point correlations of Majorana
fermions at late times (e.g., 〈σz

�〉, shown in Fig. 3), but also
higher-order correlations, as demonstrated in Fig. 4, which
shows the relaxation of 〈σx

�〉 (a string of Majorana fermions).

2. Example: Dual XY model

We now consider a global quench from the same
initial state | ⇒θ

〉 in the model described by the

FIG. 4. Relaxation of 〈σx
�〉 towards 〈σx

�〉GGE ≈ 0 (dashed lines) in
the XY model. Parameters are the same as in Fig. 3.

Hamiltonian

H =
∑
�∈Z

σx
�−1

(
JxI − Jyσ

z
�

)
σx

�+1. (3.17)

To the best of our knowledge, this model has not been stud-
ied much. We mention that the ground state is noncritical
for |Jx| �= |Jy|. As shown in Appendix C, for |Jy| < |Jx| the
ground state is in a Landau phase where both spin-flip sym-
metries over odd and even sites are broken, for |Jy| > |Jx|,
instead, it is in a nontrivial Z2 × Z2 protected topological
phase (see, e.g., Ref. [89] for Jx = 0).

Hamiltonian (3.17) can be mapped into the one of the
quantum XY model, given in Eq. (3.9), by means of a
Kramers-Wannier duality transformation, which will be de-
scribed in detail in Sec. IV A. After the duality transformation
the Hamiltonian (3.17) is therefore quadratic in terms of
Majorana fermions: The time evolution of the n-point correla-
tion functions is determined only by the n-point correlation
functions at the initial time. As reviewed in the previous
section, the asymptotic state is Gaussian and thus determined
by the two-point correlation functions. The generalized Gibbs
ensemble can thus easily be determined from the initial cor-
relation matrix consisting of the initial expectation values of
all local operators mapped by the duality transformation into
operators that are quadratic in Majorana fermions. This allows
one to obtain the stationary values of local operators with
minimal effort. However, since we are considering this model
as a representative of a larger class of systems for which this
procedure would not apply, we describe also an alternative
approach.

Specifically, one could infer that this is an integrable model
from the fact that a boost operator B exists and takes the
standard form

B =
∑
�∈Z

� h�, (3.18)

where h� = σx
�−1(JxI − Jyσ

z
�)σx

�+1. That is to say, we can con-
struct a tower of conserved operators Qn in the following
manner:

Qn+1 = i[B, Qn], Q1 = H. (3.19)

We are then in a position to either guess the corresponding
Lax operator (which, in this model, was obtained in Ref. [90])
and exploit the integrable structure to compute the GGE ex-
pectation values [91], or to construct a truncated generalized
Gibbs ensemble [92] using the most local charges. For generic
θ all these methods converge to the same values.

Relaxation of local observables in the dual XY model is
shown in Figs. 5 and 6. For θ /∈ {0, π} all local observables
eventually relax to their respective GGE predictions. Note,
however, that for some local observables the time scale on
which relaxation happens tends to increase when θ decreases
(see Fig. 5).

C. Failure of the quasilocal (generalized) Gibbs ensemble
in symmetric systems

The Hamiltonians of the XY and the dual XY model have
a Z2 symmetry: P z[H] = 0. If also the initial state is even
under P z (e.g., | ⇒θ

〉 〈 ⇒θ
| for θ ∈ {0, π}), the entire system
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FIG. 5. Numerical (iTEBD) time evolution of 〈σz
�〉 and GGE

predictions (〈σz
�〉GGE ≈ 0.038, 0.0012, and 0.000078 for θ = 0.9,

0.3, and 0.15, respectively) in the dual XY model. Relaxation to-
wards the GGE prediction is slower for smaller θ . Parameters of the
Hamiltonian (3.17) are Jx = 1, Jy = 2. The iTEBD uses second-order
Trotter scheme with four-site quantum gates, δt = 0.01, Schmidt
values cutoff 10−6, and maximum bond dimension Mmax = 1000.
The data converge up to times t ∼ 4.5 (see Appendix A).

is symmetric. Hence, only the even conservation laws are
expected to contribute to the stationary behavior of the local
observables.

Using the even-parity local charges in each model re-
produces the generalized Gibbs ensembles described in the
previous examples. As demonstrated in Fig. 7, the GGE de-
scription is correct in the XY model for θ = 0. In contrast, in
the dual XY model the prediction for the expectation value of
σz

� is zero, while its time evolution approaches a finite value
〈σz

�〉∞ ≈ 0.5625 (see Fig. 8 [93]). The generalized Gibbs en-
semble using the even local charges of the dual XY model thus
fails to capture the asymptotic behavior of σz

�. Normally this
would be indicative of having overlooked some pseudolocal
integrals of motion. As will be explained in Sec. IV, the
discrepancy is due to conserved quantities that do not satisfy

FIG. 6. Relaxation of σx
�−1σ

x
�+1 towards the GGE prediction

(〈σx
�−1σ

x
�+1〉GGE ≈ 0.022808 (0.005646) for θ = 0.3 (0.15), respec-

tively) in the dual XY model. Parameters are the same as in Fig. 5,
except for the maximal bond dimension: here, Mmax = 1000 (θ =
0.3), Mmax = 600 (θ = 0.15).

FIG. 7. Relaxation of 〈σz
�〉 and 〈σz

�σ
z
�+1〉 towards the respective

GGE predictions (dashed lines) in the XY model. Parameters are
Jx = 1, Jy = 2, and θ = 0. The colored-solid lines correspond to
exact calculation using Eq. (3.14), while the dots represent the
iTEBD results. The inset shows the 1/

√
t decay of oscillations (the

differences between the local maxima of oscillations and the GGE
predictions are plotted vs 1/

√
t). The iTEBD uses second order Trot-

ter scheme with a two-site update rule, δt = 0.01, Schmidt values
cutoff 10−5, and maximal bond dimension Mmax = 400.

the strong form of the operator pseudolocality conditions em-
bodied in Eqs. (3.6), (3.8), and (*).

Finally, as a concrete example of a generic system, we
consider Hamiltonian (2.4) with

W�[{σz}] = w1σ
z
� +

∞∑
n=1

w2,nσ
z
�σ

z
�+n (3.20)

and initial state

|�(0)〉 = ei ϕ

2

∑
� σx

�σ
x
�+1 |⇑〉 , (3.21)

where |⇑〉 means that all spins are up. To the best of
our knowledge, there is no (pseudo)local operator commut-

FIG. 8. Numerical evolution of σz
� (points) and the GGE pre-

diction 〈σz
�〉GGE = 0 (blue line) in the dual XY model, for θ = 0,

Jx = 1 and Jy = 2 (1/2). The time evolution relaxes towards the
value 〈σz

�〉 ≈ 0.5625. The iTEBD parameters are the same as in
Fig. 5.
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FIG. 9. Numerical evolution of σz
� in the generic model given

by Eqs. (2.4) and (3.20). Parameters are w2,2 = 1, and w1 = 0.6.
The iTEBD parameters are the same as in Fig. 5, except for the
maximum bond dimension Mmax (here various bond dimensions are
used, yielding comparable results).

ing with this Hamiltonian. The expectation value of the
energy density reads 〈h�〉t = 1 + (w1 + w2,1 − 1) cos2 ϕ +
(
∑∞

n=2 w2,n) cos4 ϕ. We now provide numerical evidence that
the state does not thermalise by comparing the time evolution
of 〈σz

�〉 starting from two initial states with the same energy.
To that aim, we choose the Hamiltonian’s parameters in such
a way that 0 < (1 − w1 − w2,1)/(

∑∞
n=2 w2,n) < 1, so that the

energy is the same for initial states with either cos2 ϕ = 0 or
cos2 ϕ = (1 − w1 − w2,1)/(

∑∞
n=2 w2,n). Figure 9 shows quite

clearly that the infinite-time limit of 〈σz
�〉 depends on the initial

state (at the same energy), in contrast with the eigenstate
thermalization hypothesis and the conjecture of local thermal-
ization.

IV. BEYOND QUASILOCAL (GENERALIZED)
GIBBS ENSEMBLES

We aim at obtaining a canonical description of the
macrostate describing the infinite-time limit after symmetric
quenches in systems such as the dual XY model in which
the quasilocal (generalized) Gibbs ensemble, i.e., the one
incorporating only the conservation laws that satisfy the oper-
ator pseudolocality conditions (3.6), (3.8), and (*), fails (see
Fig. 8). Since the limit of infinite time makes sense only in the
thermodynamic limit, we make an effort to consider infinite
chains directly.

Bearing in mind the duality correspondence highlighted in
Refs. [56,57] between symmetry-protected topological phases
and Landau phases, we start this section describing a duality
transformation. The most important property that we want
to stress since the beginning is that duality transformations
can be used to map algebras of operators representing local
observables into one another. This will prove essential in
unveiling the importance of semilocal integrals of motion on
the relaxation of local observables.

A. Kramers-Wannier duality map

Let us denote by Aql the (C�) algebra of quasilocal opera-
tors in an infinite spin-1/2 chain. This algebra includes local

operators and limits of their sequences that converge in the
operator norm. It is generated by the local spin operators,
which act like Pauli matrices on site j and like the identity
elsewhere; we will denote them either by σα

j or by τα
j .

We consider a duality transformation DZ2 that differs from
the standard Kramers-Wannier duality map, responsible for
the self-duality of the transverse-field Ising model, just in an
additional rotation,

τx
j = σx

j−1σ
x
j, τz

jτ
z
j+1 = σz

j . (4.1)

In order to define it properly in the infinite chain, we exploit
the same trick as Refs. [94], which needed to define a Jordan-
Wigner transformation directly in infinite systems.

In particular, we define Tα
σ,s, where α ∈ {x, z}, s = ±, and

σ ↔ τ , as the Hermitian operators satisfying

[
Tα

σ,s

]2 = I, Tα
σ,sOTα

σ,s = lim
n→∞

[
n∏

�=0

σα
s�

]
O

[
n∏

�=0

σα
s�

]

(4.2)

for all quasilocal operators O ∈ Aql, extended then
by linearity as Tα

σ,s(O1 + O2Tα
σ,s)Tα

σ,s = Tα
σ,sO1Tα

σ,s +
(Tα

σ,sO2Tα
σ,s)Tα

σ,s for O1, O2 ∈ Aql (the role of such an
extension will be discussed in Sec. IV C). We also define the
auxiliary operators

�z
σ,+( j) = Tz

σ,+ ·
⎧⎨
⎩

σz
jσ

z
j+1 · · · σz

−1 j < 0
I j = 0
σz

0σ
z
1 · · · σz

j−1 j > 0
(4.3)

and

�x
τ,−( j) = Tx

τ,− ·
⎧⎨
⎩

τx
j+1τ

x
j+2 · · · τx

0 j < 0
I j = 0
τx

1τ
x
2 · · · τx

j j > 0.

(4.4)

These operators act like a spin flip on the right or left of site j
included and like the identity elsewhere. The rotated Kramers-
Wannier duality map is then an algebra homomorphism
mapping the algebra of operators generated by {τ, Tx

τ,−} to the
one generated by {σ, Tz

σ,+}, both algebras being extensions of
Aql. It reads

�x
τ,−( j) = σx

j,

τ
y
j = σx

j−1σ
y
j�

z
σ,+( j + 1), (4.5)

τz
j = �z

σ,+( j).

We stress that, while Tz
σ,± resembles a string of σz

j with j
extending up to ±∞, the sequence {∏n

�=0 σz
±�} does not con-

verge in the operator norm as n → ∞. This is why we could
not avoid extending the algebra of the quasilocal operators.

The duality transformation (4.5) mixes the local space with
some inaccessible degrees of freedom and only a subset of the
operators remain local under the mapping (see Table I). In the
table we also consider parities under spin flips. Specifically,
even (odd) quasilocal operators obey Pα

ν [O] = O (Pα
ν [O] =

−O), where (α, ν) corresponds to either (x, τ ) or (z, σ ) [cf.
Eq. (2.2)]

Pα
ν [O] = lim

n→∞ �α
ν,sν

(−n)�α
ν,sν

(n)O�α
ν,sν

(−n)�α
ν,sν

(n),

(4.6)
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TABLE I. The duality transformation D. L stands for “local”, Sα

for “semilocal” with a string along the axis α, Eα and Oα for “even”
and “odd”, respectively, with respect to spin flip along the axis α. The
transformation preserves only even locality and odd semilocality.

D LEz LOz SzEz SzOz

LEx •
LOx •
SxEx •
SxOx •

and sσ (τ ) = +(−). The transformations Pα
ν can be extended

by linearity to operators O1 + O2Tα
ν,sν

.
Finally, we report the inverse transformation D−1

Z2
, which

maps the algebra of observables generated by {σ, Tz
σ,+} to the

one generated by {τ, Tx
τ,−},

σx
j = �x

τ,−( j),

σ
y
j = �x

τ,−( j − 1)τy
jτ

z
j+1, (4.7)

�z
σ,+( j) = τz

j .

B. Semilocality and hidden symmetry breaking

When presenting the duality transformation DZ2 we were
forced to consider an extended algebra of operators. Not all
operators of the extended algebra can, however, be associated
with local observables. A theory [95] of local observables,
indeed, requires some basic notion of locality:

(a) the theory is generated by operators that, in the limit of
infinite distance, commute with one another

lim
|x−y|→∞

[O1(x), O2(y)] = 0 ; (4.8)

(b) the state has clustering properties for the aforemen-
tioned operators

〈O1(x)O2(y)〉 |x−y|→∞−−−−−→ 〈O1(x)〉 〈O2(y)〉 . (4.9)

After an inspection of Eq. (4.5), we realize that condition (a)
forces us to exclude either operators with strings or operators
that are odd under spin flip (that is, under Px

τ or P z
σ ). In

either of the cases the remaining operators can represent local
observables. This can be understood by noting that a state can
not simultaneously have clustering properties, i.e., condition
(b), and a nonzero expectation value of two operators that
anticommute at an infinite distance,

〈O1(x)〉 〈O2(y)〉 |x−y|→∞←−−−−− 〈O1(x)O2(y)〉

= − 〈O2(y)O1(x)〉 |x−y|→∞−−−−−→ −〈O1(x)〉 〈O2(y)〉 . (4.10)

Duality transformations such as DZ2 help identify theories
in which local observables are not necessarily represented by
local operators. When that happens the corresponding opera-
tors are called “semilocal”, in order to be distinguished from
the more common local objects representing the local observ-
ables. In the following we will refer to the theory built around

the notion of only quasilocal operators as “quasilocal theory”,
in contrast to “semilocal theories”, which incorporates also
semilocal operators. Specifically, in the Z2 case we identify
two theories of local observables:

(i) Quasilocal theory: It describes quasilocal operators;
(ii) Even Z2-semilocal theory: It describes even quasilocal

operators and operators with even quasilocal “heads” and half-
infinite “tails” (see (4.27) for an example).

Semilocal operators represent information that was lost in
the thermodynamic limit, e.g., anything related to the bound-
aries of the system. This becomes evident when considering
their expectation values. For example, let us take the equilib-
rium state

ρ(σ )(β ) = e−βH(σ )

Zβ

, (4.11)

where H(σ ) = −∑� σz
� + δh σx

�σ
x
�+1, the upper index refer-

ring to the representation of spins through σα
� . Here δh is an

arbitrarily small coupling constant introduced just to avoid
some degeneracy-related pathology of classical Hamiltonians
(see, e.g., Ref. [94] and Sec. 6.2.7 of Ref. [46]). Being even,
i.e., P z

σ [ρ(σ )(β )] = ρ(σ )(β ), this state can be interpreted both
as a part of the quasilocal theory and of the even Z2-semilocal
one, the latter incorporating the operators generated by the
even local ones and the semilocal Tz

σ,+. Indeed, the Hamilto-
nian H(σ ) through which the state is defined belongs to both
theories (see Fig. 2). Since it is gapped with a nondegenerate
ground state, one would be tempted to say that the limits
β → ±∞ of Eq. (4.11) are given by the states |⇑〉 and |⇓〉,
respectively (in the limit δh → 0); one would also conclude
that they are one-site shift invariant. Such a conclusion is
correct within the quasilocal theory, in which we have

lim
β→∞

tr[ρ(β )O] = 〈⇑|O |⇑〉σ , ∀O ∈ A
(σ )
ql . (4.12)

We added the subscript σ in |⇑〉σ to stress that the state can
be represented by all spins up when considering operators in
A

(σ )
ql .
Instead, in the even Z2-semilocal theory semilocal oper-

ators, such as �z
σ,+(�), do not satisfy Eq. (4.12): they are

affected by what is not in the bulk of the system. We denote
this uncertainty by |⇑ •〉σ,sl and |⇓ •〉σ,sl, where • represents
our ignorance of what is not in the bulk. Since we are al-
ready in the thermodynamic limit, this independent degree of
freedom risks to appear very abstract. In order to partially
overcome this problem, it is convenient to map semilocal
operators into local ones through a duality transformation. In
our specific case this is achieved by D−1

Z2
. As in Sec. IV A,

we denote the transformed spins by τα
� ; the reader can think

of the τ representation as of a shortcut for operators that
could be semilocal in the σ representation (the system has not
changed). We then have [see Eq. (4.7)]

ρ(τ )(β ) = e−βH(τ )

Zβ

, (4.13)

with H(τ ) = −∑� τz
�τ

z
�+1 + δhτx

�, which is even under Px
τ .

The limits β → ±∞ now exhibit a completely different phe-
nomenology that uncovers the role of •. Specifically, cluster
decomposition requires spin-flip symmetry Px

τ to be sponta-
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neously broken [58,96] and, for δh → 0, we find

lim
β→∞

tr[ρ(β )O] =
{〈⇑|O |⇑〉τ
〈⇓|O |⇓〉τ ∀O ∈ A

(τ )
ql . (4.14)

(Note that, in the limit β → −∞, the state breaks also one-site
shift invariance and becomes Néel or anti-Néel.) Semilocal
operators, which have vanishing expectation value at any finite
temperature (they are odd under Px

τ while the state is even),
acquire a nonzero expectation value at zero temperature due
to spontaneous hidden symmetry breaking.

We are now in a position to quantify •. We show, in partic-
ular, that the ambiguity hidden behind • is just a global sign.
To that aim, let us consider a triplet of semilocal operators
O(n j )(x j ) ( j ∈ {1, 2, 3}) representing local observables at arbi-
trarily large distances |x2 − x1|, |x3 − x2| and |x3 − x1|. Using
clustering we have

〈O(n2 )(x2)〉 = s(n2 )(x2)

× lim
|x j−xk |→∞

√
〈O(n2 )(x2)O(n3 )(x3)〉 〈O(n1 )(x1)O(n2 )(x2)〉

〈O(n1 )(x1)O(n3 )(x3)〉 ,

(4.15)

which tells us that we can determine the expectation value of
O(n2 )(x2) up to a sign s(n2 )(x2) from the expectation values of
local operators [O(n j )(x j )O(nk )(xk ) are indeed local].

Let us now consider whatever semilocal operator O(n)(x)
with |x − x2| → ∞. Using again clustering we immediately
obtain s(n)(x) = s(n2 )(x2)sgn( 〈O(n)(x)O(n2 )(x2)〉 ), and hence a
single global sign s(n2 )(x2) fixes the expectation value of every
semilocal operator. We can choose, for example, s(n2 )(x2) to be
the sign of the expectation value of the fundamental semilocal
operator Tz

σ,+ [97]. We can then indicate the state in the Z2-
semilocal theory by∣∣⇑; sgn

[ 〈
Tz

σ,+
〉 ]〉

σ,sl
or

∣∣⇓; sgn
[ 〈

Tz
σ,+
〉 ]〉

σ,sl
. (4.16)

Note that the symmetry-breaking states |⇑,±〉σ,sl and
|⇓,±〉σ,sl in the semilocal theory are stable under symmetry-
breaking perturbations, which can now also be semilocal. This
is the hidden symmetry breaking studied in Refs. [56,98,99].
It is hidden because no local operator can distinguish between
|⇑,+〉σ,sl and |⇑,−〉σ,sl (or |⇓,+〉σ,sl and |⇓,−〉σ,sl).

More generally, a pure state that can be written as

|�0〉(σ ) = V(1) |⇑; s〉σ,sl or |�0〉(σ ) = V(1) |⇓; s〉σ,sl ,

i∂τ V(τ ) = W(τ )V(τ ), V(0) = I, (4.17)

where s is the sign ambiguity and W(τ ) an extensive trans-
lationally invariant Hermitian operator with a P z

σ -invariant
local density [100] can be described by the even Z2-semilocal
theory.

C. Semilocal (generalized) Gibbs ensembles

In equilibrium at zero temperature the interplay between
the symmetries of the (ground) state and of the Hamiltonian is
sufficient to discriminate the symmetry-protected topological
phases [1]. After a global quench that is not sufficient any-
more: conserved operators constrain the dynamics as well as
the Hamiltonian, therefore it is reasonable to expect that also
their group of symmetry becomes important.

We have already reviewed that not every conservation law
affects the late-time behavior of local operators. In generic

systems it was shown that the discriminating criterion is pseu-
dolocality, which, in view of condition (*) in Sec. III B, is
related to the fact that the operators we are interested in form
the algebra of quasilocal operators Aql. In the presence of a
symmetry of the system (i.e., initial state and Hamiltonian),
such as the Z2 symmetry taken as an example in this paper,
only a subset of operators is relevant: by symmetry the rest of
them have zero expectation values. In the Z2 case, the relevant
operators form the subalgebra A+

ql ⊂ Aql of the quasilocal
operators that are even under spin flip. We remark that the
full algebra Aql can be obtained as an extension of the even
subalgebra, generated by multiplying the latter by a single
element, which can be whatever invertible local odd operator.
Specifically, denoting the latter by O, one has

Aql = A+
ql ⊕ (A+

qlO). (4.18)

Because of the symmetry, however, this is not the only
extension giving rise to an algebra of operators that represent
local observables. We have indeed shown that also the semilo-
cal operator Tz

+ represents a local observable [which can be
shifted by means of local operators to become �z

+(�), for any
� [Eq. (4.3)], therefore we can use it to extend A+

ql into another
algebra associated with local observables, say

A+
Z2-sl = A+

ql ⊕ (A+
qlT

z
+). (4.19)

This provides a means to specify the notion of a “semilocal
theory”, informally introduced in the previous section, in a
more abstract way: Semilocal theories are associated with
different extensions of the symmetric subalgebra of quasilo-
cal operators through operators that are not local but still
represent local observables. For example, a semilocal theory
built around the algebra A+

Z2-sl is a mathematical framework
within which we can describe relaxation of observables that
are represented by operators in the latter algebra.

We are now in a position to revisit the requisite of pseu-
dolocality [i.e. Eqs. (3.6) and (3.8)] for the relevance of a
conservation law in the framework of semilocal theories. To
that aim, let us call Ti, with i = 1, . . . n, the operators that, in a
given semilocal theory, are added to the symmetric subalgebra
A+

ql to form a representation of local observables. Such an
algebra is supposed to be closed both under time evolution
and under shifts of lattice sites. Without loss of generality we
can assume that Ti commute with every local operator in the
symmetric subalgebra A+

ql as long as the latter’s support is far
enough from position 0. A conservation law is then relevant
if its density around position 0 reads q(0)

0 +∑n
i=1 q(i)

0 Ti, with
q(i)

0 ∈ A+
ql being even (strongly) quasilocal operators. We will

refer to it as a “semilocal conservation law”, to distinguish it
from the more common local conservation laws.

If there are several semilocal theories, it could not be
obvious which theories include all the relevant conservation
laws. One then has to extend the entire algebra of quasilocal
operators by adding all the semilocal operators that generate
the various semilocal theories. In the Z2 case this corresponds
to considering the algebra

AZ2-sl = Aql ⊕ (AqlTz
+), (4.20)

which we have already encountered when we defined the
rotated Kramers-Wannier transformation (4.5).
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We conjecture that in the theory built around such an
extended algebra of observables there exists a maximum-
entropy representation of the macrostate emerging at infinite
time after the global quench. To set it apart from the more
common examples of generalized Gibbs ensembles, consti-
tuting only quasilocal conservation laws, we will refer to it
as G-semilocal (generalized) Gibbs ensemble, where G is the
symmetry used to extend the algebra (e.g., G = Z2 in most
cases considered here). Extending the algebra allows us to
recover a simple description of the late-time stationary values.

There is, however, an inconvenience: In the extended the-
ory there are operators that do not represent local observables.
In fact, except for the operators in the subalgebra that is
common to all theories, there is no unambiguous way to as-
sociate local observables to operators. For example, in the Z2

case, both Aql and A+
Z2-sl, which are subalgebras of AZ2-sl, are

generated by operators representing local observables, but the
operators do not coincide. While the even local operators form
a common subset A+

ql of both algebras (see Fig. 10) and thus
enter the description of the local observables in both theories,
it is less clear how to choose between the even semilocal or
odd local operators (A+

qlT
z
+ or A+

qlσ
x
0, respectively). We will

expand on this in Sec. IV C 3. Before that, we provide an
explicit example of a model with semilocal conservation laws.

1. Example: Dual XY model revisited

Contrary to the transverse-field Ising model, the quantum
XY model

H(τ ) =
∑
�∈Z

Jxτ
x
�τ

x
�+1 + Jyτ

y
�τ

y
�+1 (4.21)

is not self-dual under the Kramers-Wannier transformation.
The duality transformation (4.5) maps its Hamiltonian into the
one of the dual XY model

H(σ ) =
∑
�∈Z

σx
�−1

(
JxI − Jyσ

z
�

)
σx

�+1. (4.22)

We denote the corresponding local Hamiltonian densi-
ties by h(τ )

� = Jxτ
x
�τ

x
�+1 + Jyτ

y
�τ

y
�+1, and h(σ )

� = σx
�−1(JxI −

Jyσ
z
�)σx

�+1, respectively.
Under the duality transformation DZ2 , the spin-flip sym-

metry Px
τ [h(τ )

� ] = h(τ )
� , for any �, becomes the following

invariance of the dual XY model’s local densities:

lim
n→∞

[
σx
−nσ

x
n

]
h(σ )

�

[
σx
−nσ

x
n

] = h(σ )
� , ∀�. (4.23)

While this invariance holds trivially for (quasi)local densities,
the same is not true for the semilocal operators. Considering,

FIG. 10. Representation of local observables in a Z2-symmetric
system. Quasilocal operators (left column, red line) can be extended
to semilocal ones through multiplication by Tz

+. The full semilocal
theory is built around the notion of a semilocal algebra (black frame).
The elements of the latter can be projected either onto the quasilocal
algebra (red frame), consequently giving rise to a quasilocal theory,
or onto the even semilocal algebra (blue dashed frame), yielding an
even semilocal theory. Within both theories one can describe the
relaxation of local observables.

for example, half-infinite strings �z
σ,+(�), we have

lim
n→∞

[
σx
−nσ

x
n

]
�z

σ,+(�)
[
σx
−nσ

x
n

] = −�z
σ,+(�), (4.24)

i.e., �z
σ,+(�) are odd under the operation that is dual to Px

τ .
Indeed, recall that DZ2 maps all operators that are odd under
Px

τ into semilocal operators, as described in Table I. With this
in mind, let us now consider the charges of the XY model and
its dual counterpart.

The quantum XY model is non-Abelian integrable [85].
That is to say, the Hamiltonian commutes with infinitely many
pseudolocal operators, not necessarily commuting with one
another. Its translationally invariant local charges are

Q(n,±;τ ) =
∑
�∈Z

q(n,±;τ )
� , (4.25)

where the local densities (including the Hamiltonian’s one
h(τ )

� ≡ q(2,+;τ )
� ) read (see, e.g., [101])

q(2,+;τ )
� = Jxτ

x
�τ

x
�+1 + Jyτ

y
�τ

y
�+1, q(3,+;τ )

� = (Jxτ
x
�τ

x
�+2 + Jyτ

y
�τ

y
�+2

)
τz

�+1 − (Jx + Jy)τz
�+1,

q(n,+;τ )
� = (Jxτ

x
�τ

x
�+n−1 + Jyτ

y
�τ

y
�+n−1

) n−2∏
j=1

τz
�+ j +

(
Jxτ

y
�τ

y
�+n−3 + Jyτ

x
�τ

x
�+n−3

) n−4∏
j=1

τz
�+ j, for n > 3, (4.26)

q(n,−;τ )
� = (τx

�τ
y
�+n−1 − τ

y
�τ

x
�+n−1

) n−2∏
j=1

τz
�+ j, for n � 2.
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For the product we use the standard convention with∏�−1
j=� τα

j = I. The upper indices n and ± denote, respectively,
the number of sites the charge’s local density acts upon and
the charge’s parity under spatial reflection. Note that the
reflection-odd charges Q(n,−;τ ) do not depend on the coupling
constants Jx and Jy.

Besides the Abelian charges with densities (4.26) the
XY model possesses also local charges of a staggered form∑

�(−1)�w� that do not commute with Q(n,±;τ ) [85]. Since
the expectation value of any staggered operator is zero in
a translationally invariant state, these additional non-Abelian
charges are irrelevant for our discussion and we will therefore
not report their explicit form here.

Consider now the densities (4.26) after the duality
transformation. According to Table I the local densi-
ties {q(2n,+;τ )

� , q(2n+1,−;τ )
� }n∈N remain local even in the σ

representation, since they are even under Px
τ . Instead

{q(2n+1,+;τ )
� , q(2n,−;τ )

� }n∈N are odd under Px
τ and are mapped

into operators with half-infinite strings. Hence, the set
{Q(2n+1,+;τ ), Q(2n,−;τ )}n∈N is mapped into a set of semilocal
charges in the dual XY model. For example, the density of the
charge Q(3,+;τ ) becomes

q(3,+;σ )
� = [σx

�−1

(
Jxσ

x
�σ

x
�+1 + Jyσ

y
�σ

y
�+1

)
σx

�+2 − (Jx + Jy)I
]

× �z
σ,+(� + 1). (4.27)

In the symmetric quench we considered in Sec. III C this is a
special charge: it is the only one with a nonzero expectation
value in the state |⇑〉σ . This is because its density is the only
one among q(n,±;σ )

� containing a term that consists solely of σz
j

matrices.
While conservation laws such as (4.27) violate the stronger

condition of pseudolocality of operators [i.e., Eqs. (3.6), (3.8),
and (*)], showing that they in fact fall under the weaker defi-
nition used in Ref. [37] would require a level of mathematical
rigor that goes beyond the present paper.

2. Example: Generic model revisited

Let us reconsider the generic model of Sec. III C [cf.
Eqs. (2.4) and (3.20)], which is described by the Hamiltonian

H =
∑
�∈Z

σx
�−1

(
1 − σz

�

)
σx

�+1 + w1σ
z
� +

∞∑
n=1

w2,nσ
z
�σ

z
�+n.

(4.28)

As anticipated in Sec. II B, this Hamiltonian has a semilocal
conservation law, namely

Q =
∑
�∈Z

�z(�). (4.29)

The expectation value of this semilocal charge is de-
fined through clustering [i.e., using Eq. (2.3)], which
yields 〈�z( j)〉2

t = cos2 ϕ for its density. The latter pro-
vides a positive lower bound for the string-order parameter
limn→∞ 〈∏n

j=−n σz
n〉 at infinite time through Eq. (2.6). Ac-

cording to Ref. [12], a thermal state cannot exhibit string
order, therefore we can immediately conclude that, for
cos ϕ �= 0, the state at infinite time is not thermal. This is
consistent with the behavior shown in Fig. 9.

3. Canonical and noncanonical descriptions

A priori we do not see any reason to choose one theory
of local observables over the other. However, if we imagine
the theoretical system as an idealization of an experiment and
the experimental apparatus as something that goes beyond
the system under investigation, a theory could be somehow
selected by how the apparatus was designed. For example,
in the Z2 case, if the experimental apparatus is able to pre-
serve spin-flip symmetry with high accuracy, the even Z2

semilocal theory could become a better framework where to
study the effect of noise (even under spin flip) or other blind
spots of the experiment. The question then becomes, how
the G-semilocal (generalized) Gibbs ensemble is represented
within the chosen theory. To answer it, the ensemble should be
“projected” in the following sense: In the series expansion of
the ensemble, only the terms belonging to the subalgebra asso-
ciated with the theory onto which we project should be kept.
Formally this would correspond to applying projectors onto
the subalgebra term-by-term in the operator series expansion
of the ensemble. It is important to keep in mind, however, that
such projectors can not be applied to the full ensemble, since
the latter does not really belong to an operator algebra. There
are now two possibilities:

(1) the charges making up the G-semilocal (generalized)
Gibbs ensemble belong to the subalgebra and are thus not
affected by the projection. The ensemble coincides with the
maximum-entropy ensemble in the theory and we call such
theories “canonical”;

(2) the G-semilocal (generalized) Gibbs ensemble in-
cludes also conserved operators outside the theory and the
associated subalgebra onto which we project; the theory is
termed “noncanonical”.

For example, a Z2-semilocal (generalized) Gibbs ensemble
ρZ2-sl constructed from an even local charge Q+

ql and an even
semilocal charge Q+

Z2-sl can be written as

ρZ2-sl ∝ e−Q+
ql−Q+

Z2-sl . (4.30)

It coincides with its projection onto the theory associated with
the algebra A+

Z2-sl, since the latter contains the ensemble’s
constituting charges. In the quasilocal theory associated with
Aql it instead takes a different form. Specifically, only the first
term in

ρZ2-sl ∝ e−Q+
ql cosh Q+

Z2-sl − e−Q+
ql sinh Q+

Z2-sl (4.31)

survives the projection onto the quasilocal theory (the sec-
ond one consists of odd powers of QZ2-sl and thus contains
strings, which do not belong to Aql). The projected ensem-

ble e−Q+
ql cosh Q+

Z2-sl does not maximize the von Neumann
entropy (3.2) constrained by the charges satisfying the pseu-
dolocality conditions (3.6), (3.8), and (*), on the level of
operators, making the theory noncanonical [102].

Returning to the problem of defining and classifying
nonequilibrium phases after global quenches, the way local
observables are represented in a canonical theory constitutes
a fundamental distinction, which goes much beyond the dif-
ferences associated with the multiplicity and the symmetries
of the conservation laws. It was observed in Ref. [68] that
the generalized eigenstate thermalization hypothesis (gETH),
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according to which all eigenstates with the same local in-
tegrals of motion are locally equivalent, could be sufficient
to prove that a maximum-entropy ensemble description is
possible (the criticism raised in Ref. [103] is resolved once
pseudolocal integrals of motion are taken into account). In
noncanonical theories we claim that gETH fails. As a matter
of fact, the following much weaker assumption fails: In the
limit of infinite time the only information retained from the
initial state is encoded in the conserved operators satisfying
the conditions for pseudolocality of operators, i.e., Eqs. (3.6),
(3.8), and (*).

We have already shown an example of the breakdown of
such a key property in the previous section, when we tried to
describe the infinite-time limit after a symmetric quench in
the dual XY model through the maximum-entropy ensemble
of a noncanonical theory, which in the specific case was the
generalized Gibbs ensemble constituting only charges satisfy-
ing the stronger (operator-level) definition of pseudolocality.
That ensemble was unable to describe even a local observ-
able such as σz

� (Fig. 8). As expected, instead, the stationary
values are described by the Z2-semilocal generalized Gibbs
ensemble (4.30). In that specific case, the relaxation to the
Z2-semilocal GGE is a trivial consequence of the established
result that noninteracting systems relax to generalized Gibbs
ensembles. More generally, if a duality transformation be-
tween a canonical theory and the quasilocal theory is known,
proving relaxation to the (generalized) Gibbs ensemble in the
canonical theory becomes equivalent to proving relaxation of
nonsymmetric states in the standard quasilocal one.

Nonsymmetric states. So far we have assumed that the
entire system (initial state and Hamiltonian) is symmetric.
On the other hand, we defined the semilocal charges in an
extended algebra, which includes also nonsymmetric opera-
tors. It is then natural to wonder whether a semilocal charge
could make sense also with nonsymmetric initial states. To
that aim, we consider again the state |�〉(σ ) = | ⇒θ

〉
σ

and
θ /∈ {0, π}. As discussed in Sec. IV B, we must be careful
about the interpretation of |�〉 when we extend the theory so
as to include also semilocal operators. It is again convenient to
map even semilocality into odd locality. Appendix D 1 proves

|�〉(τ ) = |βθ 〉τ :=
∑

s e−
βθ
2 E (s) |s〉τ∑

s e−βθ E (s)
, (4.32)

where βθ = − log tan(θ/2), s = (. . . , s−1, s0, s1, . . .), with
s j ∈ {−1, 1} denoting the eigenvalues of the spin operator τz

j ,
and E (s) is the energy of the classical Ising model E (s) =
−∑ j s js j+1.

One can show that |β〉τ has clustering properties for any
finite β, i.e., for θ /∈ {0, π} (see Appendix D 2). Importantly,
despite the tilted state not being symmetric, the correspond-
ing state in the dual representation, i.e., |βθ 〉τ , is even under
Px

τ . More generally we can understand this by interpret-
ing |�〉 as the ground state of a symmetric Hamiltonian in
which the symmetry is spontaneously broken at zero temper-
ature in the σ representation (a simple Hamiltonian with this
symmetry-breaking ground state is known [104]: the quantum
XY model in a transverse field, with density h� = Jxσ

x
�σ

x
�+1 +

Jyσ
y
�σ

y
�+1 − 2

√
JxJyσ

z
�, with Jy/Jx = cos2 θ ). It turns out that

the symmetry in the dual Hamiltonian remains unbroken and

the ground state is symmetric. This implies that even semilo-
cal operators have zero expectation values in the original
system, and hence the expectation values of all semilocal
charges vanish in |�〉. On the one hand, this justifies taking
into account semilocal charges also with nonsymmetric initial
states; on the other hands, it shows their irrelevance (as the
corresponding integrals of motion vanish).

As a matter of fact, the naive approach of interpreting half-
infinite strings as infinite products of Pauli matrices gives, in
this case, the correct result: since | ⇒θ

〉 is a product state, for
θ /∈ {0, π} one has | 〈 ⇒θ

| σz
j | ⇒θ

〉 | < 1 for all j, so the strings
are exponentially suppressed. The two approaches give the
same result because the sequence of the expectation values of
{O0

n
�=0σ

z
�} converges (to zero) as n → ∞ for any operator

O0 quasilocalized around 0. This actually allows one to go
even further and conclude that also the expectation values of
odd semilocal operators vanish.

4. Remark

We conclude with a clarification. So far we have presented
(3.17) as a Hamiltonian with a Z2 symmetry, but, in fact, it
exhibits a Z2 × Z2 symmetry. Indeed, the energy density is
also even under

P z
e [h j] = lim

n→∞

[
n∏

�=−n

σz
2�

]
h j

[
n∏

�=−n

σz
2�

]
. (4.33)

The same comment applies to the symmetric initial state stud-
ied in the example of Sec. III C, namely, |⇑〉. The extended
algebra is now obtained by supplementing the local opera-
tors that are even under both spin flips by two (commuting)
semilocal operators Tz

2,0 and Tz
2,1, which play the role of prod-

ucts of Pauli matrices σz over even or odd sites, respectively,
extending from site 0 or 1 to infinity (see Appendix B for a
proper definition).

Let A+•
ql , A•+

ql , A±±
ql , A++

ql be the subalgebras of quasilo-
cal operators even under P z

e , P z
o := P z

e ◦ P z, P z(= P z
e ◦ P z

o ),
both P z and P z

e , respectively (A±±
ql was previously denoted by

A+
ql, since only the symmetry P z was relevant). We identify

five subalgebras generated by operators representing local
observables:

Aql: this is the standard algebra of quasilocal operators,
given by A±±

ql ⊕ (A±±
ql O), with O an invertible local odd

operator;
A+•
Z2-sl: this is the Z2-semilocal algebra even under spin flip

on even sites, and it is given by A+•
ql ⊕ (A+•

ql Tz
2,0);

A•+
Z2-sl: this is the Z2-semilocal algebra even under spin flip

on odd sites, and it is given by A•+
ql ⊕ (A•+

ql Tz
2,1);

A±±
Z2-sl: this is the Z2-semilocal algebra even under spin flip,

and it is given by A±±
ql ⊕ (A±±

ql Tz
2,0Tz

2,1);
A++
Z2×Z2-sl: this is the Z2 × Z2-semilocal algebra even both

under spin flip on odd sites and under spin flip on even
sites, and it is given by A++

ql ⊕ (A++
ql Tz

2,0) ⊕ (A++
ql Tz

2,1) ⊕
(A++

ql Tz
2,0Tz

2,1).
It turns out that the Z2 × Z2-semilocal generalized Gibbs

ensemble emerging after a quench from |⇑〉 belongs to the
intersection of A±±

Z2-sl and A++
Z2×Z2-sl [105]. The latter two al-

gebras represent therefore canonical theories. On the other
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hand, Aql, A+•
Z2-sl, and A•+

Z2-sl are associated with noncanoni-
cal theories. There, the stationary state capturing the infinite
time expectation values is not a maximum-entropy statistical
ensemble. Once projected onto the quasilocal theory (in the
sense described in Sec. IV C 3), the Z2 × Z2-semilocal gen-
eralized Gibbs ensemble has the form cosh Q+

Z2-sl, specific
to the initial state considered, i.e., |⇑〉. Since it is even both
under P z

e and P z
o, the Z2 × Z2-semilocal generalized Gibbs

ensemble belongs to the intersection of the theories associated
with the algebras Aql, A+•

Z2-sl, and A•+
Z2-sl: the three theories

share the same projected ensemble. This makes the algebraic
structure associated with the Z2 × Z2 symmetry of the dual
XY model redundant, and the reader can now understand why
we have completely overlooked this larger symmetry group
when describing the model and its conservation laws.

The remaining question is: Can we realize that the state
does not locally relax to the maximum-entropy state without
comparing the predictions from the maximum-entropy state?
This is the subject of the next two sections.

V. SIGNATURES OF SEMILOCAL ORDER

A way to assess whether a theory is canonical or not is by
perturbing the initial state with an operator that represents a
local observable but does not belong to the common subal-
gebra. Specifically, we consider a unitary transformation with
finite support connecting different symmetry sectors, such as
σx

r in the spin-flip case [31]. Such perturbations are semilocal
in the eyes of charges belonging to a different theory, which
will therefore be affected in a nonlocal way. If the quasilocal
theory is not canonical, we find it reasonable to expect signa-
tures of such a nonlocality in the entanglement of subsystems.

Being the first investigation of this kind in nonequilibrium
symmetry-protected topological order phases, we focus on the
entanglement entropies of connected blocks of spins A, which
in the rest of the paper will be identified with the following set
of sites:

A ≡ {1, . . . , �}. (5.1)

To that aim, we need to construct reduced density matrices
of finite subsystems. Reduced density matrices describe the
expectation values of local observables represented by local
operators with support in the subsystem. In a spin-1/2 chain
they can be expanded in an orthogonal basis of Hermitian
matrices OA (tr[OAO′

A] = δOA,O′
A
tr[IA]) representing local op-

erators OA with support in the subsystem A,

ρA(�) = 1

tr[IA]

∑
OA

〈�|OA|�〉OA, (5.2)

where OA is the operator that acts like OA in the subsystem
and like the identity elsewhere. Reduced density matrices
are therefore embedded in Aql: investigating reduced density
matrices implicitly selects the quasilocal theory of local ob-
servables. The Rényi entanglement entropies are then defined
as

Sα (�,�) ≡ 1

1 − α
log tr

[
ρα

A (�)
]
, (5.3)

which include the von Neumann entropy “S1”, also known as
entanglement entropy, as the limit α → 1+ (this limit makes

sense because the support of the distribution of eigenvalues of
the density matrix is bounded, and hence the Rènyi entropies
with α = 2, 3, . . . characterise the distribution completely
[106]).

A. Reduced density matrices across different theories
of local observables

In a symmetric system ρA(�) is embedded in the subal-
gebra common to all the theories of local observables, which
in the Z2 case is A+

ql [the sum in Eq. (5.2) can be restricted
to matrices associated with operators that are even under spin
flip]. Thus, ρA(�) is also represented in the other theories of
local observables, although, there, its interpretation as a sub-
system’s reduced density matrix breaks down. The simplest
way to understand the representation of a reduced density ma-
trix in a semilocal theory is by mapping semilocal operators
into local operators through a duality transformation. This is
discussed below, where we specify the action of the duality
transformation on the reduced density matrices and show how
to estimate the entanglement entropy in the semilocal theory
using the dual reduced density matrices.

1. Restricted duality transformation

We remind the reader that, when restricted to the even
quasilocal subalgebra, the duality transformation defined in
Eq. (4.5) maps local operators into local operators (see Ta-
ble I). This allows us to use the rotated Kramer-Wannier
duality transformation also in finite subsystems. For a sub-
system Ã of � + 1 sites

Ã = {1, . . . , � + 1}, (5.4)

we define D−1
Z2

(�) as follows:

I⊗( j−1) ⊗ σ z ⊗ I⊗(�+1− j) �→I⊗( j−1) ⊗ (τ z )⊗2 ⊗ I⊗(�− j)

I⊗( j′−1) ⊗ (σ x )⊗2 ⊗ I⊗(�− j′ ) �→I⊗ j′ ⊗ τ x ⊗ I⊗(�− j′ ), (5.5)

where j = 1, . . . � and j′ = 1, . . . � − 1. Note that we have
given up the bold notation because σα are not spin operators
in an infinite system but Pauli matrices spanning the local
2-dimensional Hilbert space.

Since the matrices on the left-hand side of Eq. (5.5) gen-
erate all matrices representing even operators with support in
A [Eq. (5.1)] (acting therefore as the identity on site � + 1),
it is convenient to consider an alternative representation of
Sα (�,�) [cf. Eq. (5.3)],

Sα (�,�) = log tr
[(

ρA(�) ⊗ I
2

)α]
1 − α

− log 2. (5.6)

Remark. Similarly to D−1
Z2

, also D−1
Z2

(�) is an algebra ho-
momorphism, although it is defined only in a subspace of the
full matrix algebra associated with the subsystem. Specifi-
cally, let us introduce the following:

A
(σ )
A : the full matrix algebra generated by the tensor prod-

ucts of Pauli matrices ⊗ j∈Aσ
α j

j , with α j = 0, x, y, z, in the
subsystem consisting of the sites j ∈ A (and analogously for
A

(τ )
Ã

);

A
+(σ )
A : the restriction of A(σ )

A to matrices commuting with⊗
j∈A σ z

j , which we refer to as even;
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A
+(τ )
Ã

: the restriction of A(τ )
Ã

to matrices commuting with⊗
j∈Ã τ x

j , which we refer to as even;
AB ⊗ IC : (with B ∩C = ∅) the matrix subalgebra of AB∪C

consisting of the matrices in AB extended with the identity in
C, to act on sites j ∈ B ∪C.

We recognize D−1
Z2

(�), defined in Eq. (5.5), as the trace-
preserving isomorphism that acts like (4.1) in a restricted
space of matrices with support on Ã,

D−1
Z2

(�) : A+(σ )
A ⊗ I�+1 → Ã

+(τ )
Ã

⊂ A
+(τ )
Ã

. (5.7)

Here the image Ã
+(τ )
Ã

, which is a subalgebra of A+(τ )
Ã

, is iso-

morphic to A
+(σ )
A despite consisting also of operators whose

range extends up to � + 1.
Since we are considering a mapping that spoils the no-

tion of a spatial subsystem, it is convenient to consider a
generalization of reduced density matrices, which, instead of
describing the expectation values of operators with support in
a given region, describes the expectation values of operators
that are represented by matrices belonging to a given algebra.
Specifically, we introduce the following notation:

P̂A(�) = 1

tr[IA]

∑
O∈A

〈�|O|�〉O, (5.8)

where IA is the identity in A and the sum is over an orthogonal
basis of Hermitian matrices, such that tr[OO′] = δOO′ tr[IA]
(we have always in mind operators written as tensor products
of Pauli matrices).

If the reduced density matrix ρA(�) [Eq. (5.2)] of the
subsystem is even, the matrix ρA(�) ⊗ I

2 , which appears in
Eq. (5.6), belongs to A

+(σ )
A ⊗ I�+1,

ρA(�) ⊗ I

2
= P̂

A
+(σ )
A ⊗I�+1

(�), (5.9)

and hence it is in the domain of D−1
Z2

(�).

Since this mapping preserves the trace, D−1
Z2

(�) does not
affect the value of functionals of ρA(�) such as the Rényi en-
tropies (5.6). In light of Eq. (5.7), D−1

Z2
(�) maps ρ

(σ )
A (�) ⊗ I

2

into the projection of ρ
(τ )
A (�) on the subalgebra Ã

+(τ )
Ã

,

D−1
Z2

(�) : ρ
(σ )
A (�) ⊗ I

2
�→ ρ

(τ )
Ã

(�)
∣∣
Ã

+(τ )
Ã

. (5.10)

We will see in a moment how to carry out this projection.

2. Dual reduced density matrices

By construction, the operators O(σ ) that have support in
A and are represented by matrices O(σ ) ⊗ I in the domain of
D−1

Z2
(�) are mapped by the rotated Kramers-Wannier duality

transformation (4.5) into operators Õ that have support in Ã
and are represented by Õ = D−1

Z2
(�)[O(σ ) ⊗ I]. The following

equality holds for them:

〈�|O|�〉(σ ) = 〈�|Õ|�〉(τ )
. (5.11)

Thus, the (extended) reduced density matrix ρ
(σ )
A (�) ⊗ I

2 is
mapped into

ρ
(σ )
A (�) ⊗ I

2
�→ 2−�−1

∑
O∈A+(σ )

A
Õ=D−1

Z2
(�)[O⊗I]

〈�| Õ |�〉(τ ) Õ, (5.12)

which can be compactly written as

P̂
A

+(σ )
A ⊗I�+1

�→ P̂
Ã

+(τ )
Ã

. (5.13)

While the right-hand side of Eq. (5.12) resembles

ρ
(τ )
Ã

(�) := P̂
A

(τ )
Ã

= 2−�−1
∑

Õ∈A(τ )
Ã

〈�| Õ |�〉(τ ) Õ, (5.14)

the sum in Eq. (5.12) does not cover the full matrix algebra of
the subsystem (Ã+(τ )

Ã
is strictly contained in A

(τ )
Ã

). In order to

obtain Eq. (5.12) from ρ
(τ )
Ã

(�) we must therefore project out
all the operators that are not in the image of D−1

Z2
(�). This can

be done by identifying the symmetries characterizing Ã
+(τ )
Ã

:
(1) Only operators even under spin flip Px

τ are represented
in Ã

+(τ )
Ã

;

(2) Operators Õ that are represented on the right hand side
of (5.12) commute both with τz

1 and τz
�+1 [see Eq. (5.5)].

These Z2 symmetries can be enforced by averaging over
the corresponding (Hermitian) flip matrices Pi as follows:

P̂
Ã

+(τ )
Ã

(�) = ρ̄
(τ )
Ã

(�) :=
1∑

j1,2,3=0

P j3
3 P j2

2 P j1
1 ρ

(τ )
Ã

(�)P j1
1 P j2

2 P j3
3

8
,

P1 = (τ x )⊗(�+1), P2 = τ z ⊗ I⊗�, P3 = I⊗� ⊗ τ z

(5.15)

(see Fig. 11 for a graphical representation).
To sum up, we have started with enlarging the subsystem

by one site ρA(�) → ρA(�) ⊗ I
2 ; this has allowed us to apply

the duality transformation (5.5), which alters the meaning
of spatial interval. We have then found a representation of
ρA(�) ⊗ I

2 in terms of reduced density matrices in the semilo-
cal theory with the new notion of spatial subsystem. The final
object, ρ̄

(τ )
Ã

(�) is an average of density matrices selecting the
part that is symmetric under three spin-flip transformations.
Finally, the entanglement entropies can be expressed in terms
of ρ̄

(τ )
Ã

(�) by applying Eq. (5.6),

Sα (�,�) = log tr
[(

ρ̄
(τ )
Ã

(�)
)α]

1 − α
− log 2, (5.16)

where log 2 cancels the effect of the spurious double degener-
acy introduced when the subsystem was enlarged.

Bounds on the entropies of the dual RDMs. We show
here that, up to O(1) corrections, the averaged density matrix
ρ̄

(τ )
Ã

(�) can be replaced by ρ
(τ )
Ã

(�) in Eq. (5.16). Since no
special property of the density matrix and of the Z2 symmetry
we average over is required, we consider a generic density
matrix ρ (Hermitian positive semidefinite operator of trace
one) and the symmetry generated by a Hermitian involution P;
Eq. (5.15) is just a subsequent application of such an average.
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I ⊗ I

τz ⊗ τz

I ⊗ I

σz ⊗ I

τx ⊗ I

τy ⊗ I

τx ⊗ τx

τy ⊗ τy

τz ⊗ τx

τz ⊗ τy

τz ⊗ I

I ⊗ τz

τx ⊗ τy

τy ⊗ τx

τx ⊗ τz

τy ⊗ τz

I ⊗ τx

I ⊗ τy

A
+(σ)
A ⊗ I

A
(τ)

ÃÃ
+(τ)

Ã

D−1
Z2

(�)

FIG. 11. A graphical representation of the mapping (5.12) when
the subsystem A consists of a single site. Operators P1,2,3 are colored
and underlined. They anticommute with the operators in the corre-
spondingly colored circles: their effect is to remove the undesired
terms in the density matrix (5.14).

We define the symmetric density matrix

ρ̄ = ρ + PρP

2
, (5.17)

and we call S̄α its Rényi entropies (Sα indicates instead the
entropies of ρ).

Since ρ̄ can be interpreted as the sum of two den-
sity matrices weighted with the probability distribution
{1/2, 1/2}, general properties of the von Neumann entropy
(see Ref. [107]) imply

S1 � S̄1 � S1 + log 2 . (5.18)

For instance, the lower bound follows directly from the con-
cavity of the von Neumann entropy. We obtain an analogous
result for the Rényi entropies, which satisfy

Sα � S̄α � Sα + α log 2

α − 1
; (5.19)

see Appendix E 1. Returning to Eq. (5.16), these bounds imply

Sα (�,�) = S(τ )
α (� + 1, �) +O(�0), (5.20)

where we have defined the entropy of the subsystem Ã in the
dual representation

S(τ )
α (� + 1, �) = log tr

[(
ρ

(τ )
Ã

(�)
)α]

1 − α
. (5.21)

B. Excess of entropy

The protocol. We consider a system invariant under P z and
compare two quench protocols:

(I) nonequilibrium time evolution of a translationally in-
variant state |�(t )〉 = e−iHt |�(0)〉;

(II) nonequilibrium time evolution of the same state as
in (I) perturbed by a local(ized) unitary operator |�r (t )〉 =
e−iHtσx

r |�(0)〉.
The question is: Do the Rényi entropies of subsystems

discriminate between the two protocols in the limit of infi-
nite time? Inspired by Refs. [39,40], we define the excess of
entropy as

�rSα (�, t ) = Sα (�,�r (t )) − Sα (�,�(t )), (5.22)

where the subsystem of length � is associated with the sites
{1, . . . , �}, that is to say, the reduced density matrix to be
investigated reads

ρA(�) = 1

2�

∑
{α}�

α j=0,x,y,z

〈�|
�∏

j=1

σ
α j

j |�〉
�⊗

j=1

σα j . (5.23)

Here � can be either �r (t ) or �(t ).
In Sec. IV C we have discussed the limit of infinite time

in the quench protocol (I), showing that, in the quasilocal
theory, the state locally relaxes to a projected Z2-semilocal
generalized Gibbs ensemble. In order to compute the excess
of entropy, we should also take the limit of infinite time in the
protocol (II), which, however, goes beyond our assumption
of translational invariance. Although a theory to describe the
infinite-time limit in inhomogeneous systems with semilocal
charges is still missing, this problem can be solved in the dual
representation, where the spin flip is mapped into a topolog-
ical excitation resulting in a domain-wall initial state [31].
Specifically, if the initial state is |⇑〉σ , it follows from the first
equation of (4.7) that after flipping the rth spin the state in the
dual representation becomes |· · · ↓r−1↓r↑r+1↑r+2 · · ·〉τ (or
|· · · ↑r−1↑r↓r+1↓r+2 · · ·〉τ , depending on how the symmetry
is broken). The problem then moves to identifying the station-
ary state describing the limit of infinite time after a quench
from a domain-wall state in a canonical theory, which is a
much more studied situation [108–113]. The drawback is that
we need to express the observable under investigation in the
dual representation; for the Rényi entropies this corresponds
to using Eq. (5.16).

The main effect of the presence of semilocal charges
(namely, odd charges in the dual representation) is that the
stationary states emerging in the protocols (I) and (II) are
macroscopically different [114]. As far as we can see, how-
ever, the two macrostates have generally the same entropy per
unit length, therefore the excess of entropy is expected to be
subextensive. In the examples that we consider, the excess
of entropy still grows with �, therefore we can also replace
Eq. (5.16) by Eq. (5.20) without affecting the asymptotic
behavior. This important simplification allows us to express
the excess of entropy in the dual representation as

lim
t→∞ �rSα (�, t ) = S(τ )

α

(
�, ρ

(τ )
NESS

)− S(τ )
α

(
�, ρ(τ )

∞
)+O(1),

(5.24)

where

ρ
(τ )
NESS = lim

B→∞
lim

t→∞ trB

[
e−iH(τ )t (|⇓⇑〉 〈⇓⇑|)τ eiH(τ )t

]
ρ(τ )
∞ = lim

B→∞
lim

t→∞ trB

[
e−iH(τ )t (|⇑〉 〈⇑|)τ eiH(τ )t

]
. (5.25)
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In order to gain some intuition about the behavior of the
excess of entropy, we follow the suggestion of Ref. [31] and
consider the simplified case in which H(τ ) commutes with
Sz (and hence |⇑〉τ is an eigenstate). We also assume that
|⇑〉τ could be interpreted as the vacuum of stable excitations,
whose number is linear in Sz (this characterizes a class of
integrable systems). In this situation the nonequilibrium sta-
tionary state ρ

(τ )
NESS can be interpreted as a Fermi sea or split

Fermi seas [115], which can be described by a conformal field
theory (see also Ref. [116]). Since in a conformal field theory
the Rényi entropies have a logarithmic dependence on the
subsystem’s length [117], we can expect the excess of entropy
to grow logarithmically in �. Although not a priori evident
(but somehow consistent with the observations of Ref. [31]),
the log behavior survives a symmetry-preserving local unitary
transformation of the initial state, which transforms this pro-
tocol into a genuine global quench. This will be derived in
the next section, in which we will investigate systems that are
dual to Z2-symmetric generalized XY models [118].

1. Example: Dual generalized XY model

In this section we work out the excess of entropy in a
generalization of the dual XY model that preserves the nonin-
teracting structure and the existence of a family of semilocal
conservation laws. We do not focus only on the dual XY
model because, as will be clear later, the dual XY model is
rather special and one could read the outcome of the inves-
tigation as an indication of a universality that instead is not
present. In its most general form the Hamiltonian reads

H =
∑

α∈{x,y}

∞∑
n=1

J (n)
α

∑
j∈Z

h(α,n)
j , (5.26)

where the coupling constants J (n)
α are assumed to approach

zero in the limit n → ∞ exponentially fast in n. The opera-
tors h(α,n)

j are Hermitian and local, with support including j
and extending over n + 1 sites; their explicit form in the σ

representation is not essential for the discussion but we report
it for the sake of completeness,

h(x,1)
j = σx

j−1σ
x
j+1 = τx

jτ
x
j+1

h(y,1)
j = −σx

j−1σ
z
jσ

x
j+1 = τ

y
jτ

y
j+1 (5.27)

h(α,n)
j = σx

j−1σ
α
j

⎧⎪⎨
⎪⎩
∏ n+1

2 −α

l=1 σz
j+2(l−1)+α

σα
j+n−1 n odd∏ n

2 −1

l=1 σz
j+2(l−1)+α

σ3−α
j+n−1 n even

⎫⎪⎬
⎪⎭σx

j+n = τα
j

n−1∏
l=1

τz
l

{
τα

j+n n odd

τ3−α
j+n n even

n > 1,

where α ∈ {x ≡ 1, y ≡ 2} and we abused the notation by us-
ing the letter or the number depending on what is convenient
in each case.
The dual XY model corresponds to J (n)

α = δn1Jα . More gen-
erally, the model with Hamiltonian (5.26) is the dual of a
generalized XY model (introduced by Suzuki in Ref. [118])
with Px

τ [H] = H and P z
τ [H] = H. In the explicit examples,

we will only consider the effect of having also J (2)
α and J (4)

α

different from zero (besides J (1)
α ). However, since it is not

convenient to write the explicit dependence on the coupling
constants, we will still treat the dual generalized XY model in
(almost) full generality.

When written in the τ representation, the Hamiltonian
has the form (3.12) with ax,y

� = ( j<�τ
z
j )τ

x,y
� . As done in

Sec. III B 1, it is convenient to express the matrices H�,n

characterizing the Hamiltonian in terms of the symbol H(p)
as H�,n = ∫ dk

2π
ei(�−n)pH(p), where

H†(p) = H(p) = −HT (−p). (5.28)

The symbol of H [Eq. (5.26)] has the additional property of
being a smooth matrix-valued function of p satisfying

H(p + π ) = σ zH(p)σ z. (5.29)

Under close scrutiny, we realize that this condition repre-
sents evenness under Px

τ , which is required in order for
the Hamiltonian density to remain (strongly) quasilocal also
in the σ representation. For the sake of simplicity, we are
going to restrict ourselves to reflection symmetric systems

(J (2n)
x = J (2n)

y ), whose symbol has the additional property(
J (2n)

x = J (2n)
y ∀n

) ⇒ tr[H(p)] = 0. (5.30)

Incidentally, the dispersion relation of the quasiparticle exci-
tations, which can be identified with the positive eigenvalues
of the symbol, can be written as

ε(p) =
√

tr[H(p)2]

2
. (5.31)

As mentioned in Sec. III B 1, the symbol of the Hamil-
tonian generates the time evolution of the symbol of the
correlation matrix (3.14) and of the operators (in the
Heisenberg representation) with a quadratic fermionic repre-
sentation.

2. Free-fermion techniques for the entropies

Since H is noninteracting in the dual representation, if the
initial state |�(0)〉(τ ) is Gaussian, Wick’s theorem implies
that every expectation value can be written in terms of the
correlation matrix �t=0 capturing the expectation values of
quadratic operators. As long as the subsystem is connected,
this statement holds true even if both the operators and the
correlation matrix are restricted to the subsystem. As a result,
the density matrices ρ

(τ )
Ã

(�(t )) and ρ
(τ )
Ã

(�r (t )) are Gaussian
at any time, that is to say

ρ
(τ )
Ã

(�) ∝ exp

(
1

4

�+1∑
m,n=1

�aT
mWm,n(�)�an

)
(5.32)
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with �am = (ax
m ay

m)T , ax,y
m being the Majorana (Jordan-

Wigner) fermions defined in Ã = {1, . . . , � + 1},
ax,y

m = (τ z )⊗(m−1) ⊗ τ x,y ⊗ I(�+1−m). (5.33)

The Gaussian structure is very useful also to compute the
Rényi entropies, which can be expressed in terms of the cor-
relation matrix as [119,120]

S(τ )
α (� + 1; �) = log det

[( I+�Ã
2

)α + ( I−�Ã
2

)α]
2(1 − α)

, (5.34)

where �Ã is the correlation matrix of |�〉 restricted to Ã.
Therefore, using the approximation (5.24), as � → ∞, the
unbounded part of the excess of entropy can be expressed in
terms of the correlation matrices of ρ

(τ )
NESS and ρ

(τ )
∞ . They are

reported in the following, together with the correlation matrix
of the initial state, �0(p), to which they are related.

Correlation matrix of |�(0)〉(τ ). In the numerical investiga-
tions we have focused on the initial state |⇑〉τ , which is one
of the two representations of |⇑〉σ with the hidden symmetry
broken (see Sec. IV B). Its correlations matrix has the symbol
�0(p) = σ y.

Correlation matrix of ρ
(τ )
∞ . We have already reviewed how

to obtain the correlation matrix of ρ
(τ )
∞ after a global quench

(see Sec. III B 1). In our specific case with reflection symmetry
(and one-site shift invariance), the symbol of the correlation
matrix of ρ

(τ )
∞ can be written as

�∞(p) = tr[�0(p)H(p)]H(p)

2ε2(p)
, (5.35)

where we used that the only matrix commuting with H(p)
different from the identity {which is excluded because the
initial state is reflection symmetric and hence tr[�0(p)] = 0;
see also (5.30)} is proportional to H(p). From �∞(p) we
can then obtain �Ã;∞ by Fourier transforming �∞(p) and
restricting the indices to the subsystem Ã.

Correlation matrix of ρ
(τ )
NESS. We can not apply the same

technique for the correlation matrix of ρ
(τ )
NESS: The time

evolved domain wall |�r (t )〉(τ ) is not translationally invari-
ant, so the symbol is not even defined. This problem can
be exactly solved by redefining the symbol so as to incor-
porate the inhomogeneities of the Gaussian state [108]. As
generally expected in bipartitioning protocols in integrable
systems, however, |�r (t )〉(τ ) locally relaxes along rays at fixed
ζ = (x − r)/t [108,121]. It is then easier (and asymptotically
correct in the limit t → ∞) to associate a translationally
invariant macrostate with each ray. Being translationally in-
variant, the macrostate is characterized by a symbol as defined
before. Finally, a generalized hydrodynamic equation pro-
vides the connection between the macrostates at different rays
[122,123], and one can easily extract the symbol associated
with the ray ζ = 0, which corresponds to the infinite-time
limit that we indicated with ρ

(τ )
NESS. Specifically, Appendix E 2

shows

�NESS(p) = −sgn[v(p)]
tr[�0(p)H(p)]I

2ε(p)
, (5.36)

where v(p) = ε′(p) is the velocity of the quasiparticle excita-
tions.

We now have all the ingredients to work out Eq. (5.24) and
to obtain analytical asymptotic results for large �. In the next
paragraph we show how, for α = 2, 3, . . ., one can also obtain
exact numerical results.

Exact numerical evaluation of the entropies. In order
to evaluate the Rényi entropies exactly, we use Eq. (5.16),
which is written in terms of the averaged density matrix
ρ̄

(τ )
Ã

(�) [Eq. (5.15)]. The method is explained in details in
Appendix E 4 and is based on the realization that each term of
the sum in Eq. (5.15) is Gaussian. The Rényi entropies are
expressed as traces of powers of ρ̄

(τ )
Ã

(�), which are linear
combinations of Gaussians. The trace of a product of Gaus-
sians can be expressed as the square root of a determinant
of a 2(� + 1) × 2(� + 1) matrix [124,125] and can therefore
be computed efficiently. There is only a subtlety related to
the sign ambiguity of the square root. For a product of two
Gaussians (which appears in the expression for the second
Rényi entropy) the sign problem is resolved by using the prop-
erty that the trace of a product of two positive semidefinite
Hermitian operators is non-negative [126]. For higher-order
Rényi entropies the sign is fixed in a less straightforward way,
as discussed in Ref. [124].

3. Results

Both with and without the local spin flip in the initial state,
the quench is global and the Rényi entropies grow linearly
in time until they saturate to an extensive value. In nonin-
teracting models this was established in Refs. [66,108,127];
it was later generalized to interacting integrable models in
Refs. [128–130]. Less is known in regards to the subleading
behavior.

For the quench from the initial state |⇑〉τ we find

lim
t→∞ S(τ )

α (� + 1; �(t )) = aα� +O(1), (5.37)

with positive constants aα , whose values can be determined
analytically using the integral representation for the entropies
[119] and the Szegő-Widom theorem [131,132]. Their values
are reported in Appendix E 3.

For the quench from the domain-wall state (the dual rep-
resentation of the state σx

r |⇑〉σ ) we instead find a subleading
term that is logarithmic in �,

lim
t→∞ S(τ )

α (�; �r (t )) = aα� + bα log � +O(1), (5.38)

with positive constants bα . This result is obtained using the
asymptotic formula for the determinant of a block Toeplitz
matrix with piecewise-continuous symbols, conjectured and
checked numerically in Refs. [133,134]. The values of bα are
related to the discontinuities of the symbol (5.36), which co-
incide with the zeros of the velocity v(p) of the quasiparticle
excitations. For instance, for α = 2 we have

b2 = 2

π2

∑
p∈(−π,π]: v(p)=0

Arg2

(
1 + i

tr[�(p; 0)H(p)]

2ε(p)

)
,

(5.39)

where Arg denotes (the principal value of) the argument, and
the sum is over the zeros of v(p). For general α the expression
can be found in Appendix E 3.
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FIG. 12. Time evolution of the excess of the second Rényi en-
tropy, generated in the XY model (3.9) and in the dual XY model
(3.17). For large times the excess in the XY model reaches a zero
value, while in the dual XY model its asymptotic value is nonzero.
It is in agreement with the result obtained via the method used also
in Fig. 13 (here the latter results are presented as dashed lines). The
spin flip occurs in the middle of the subsystem A (r = 5, |A| = 10).

In the symmetric generalized XY model there are always
zeros of v(p) at the momenta p = −π/2, 0, π/2, π , and ad-
ditional ones can appear depending on the coupling constants
J (n)
α . In the special case of the XY model these four zeros are

the only ones and we find

b(XY)
α = 1

6

(
1 + 1

α

)
. (5.40)

For more general coupling constants J (n)
α this expression is

only a lower bound, i.e., bα � b(XY)
α .

From Eqs. (5.38) and (5.39) it follows that the excess (5.22)
of Rényi entropies grows logarithmically with �,

lim
t→∞ �rSα (�, t ) = bα log � +O(1). (5.41)

This prediction is compared against exact numerical data for
α = 2: Figure 12 shows the time evolution of �rSα (�, t ),
while in Fig. 13 its dependence on � is presented.

Finally, the von Neumann entropy is obtained by taking
the limit α → 1+; in the dual XY model it is given by b(XY)

1 =
1/3.

In the next section we conclude our preliminary study of
the signatures of semilocal order after global quenches by
showing that the order melts down over large time scales when
the initial state is not symmetric.

C. Melting of the order

Just as a continuous phase transition is characterized by
the behavior of the system when the critical point is ap-
proached, so is the symmetry-protected topological order
when the symmetry is only approximate. We are familiar
with an example of this: in Fig. 5 we showed that, after a
quench from the tilted state | ⇒θ

〉, the time scale on which
local observables relax towards the predictions of the (gener-
alized) Gibbs ensemble grows as θ approaches 0. In the limit
θ → 0 the relaxation time diverges: the canonical form of a
quasilocal ensemble, valid for any finite θ , yields a wrong

FIG. 13. Exact results for the excess of the second Rényi entropy
after the quench, for different values of model’s parameters. The
excess grows logarithmically with the subsystem size (the x axis is
in log scale). The analytical results for the coefficients bα (i.e., the
slopes), given by Eq. (5.39), are in agreement with the numerical
data and indicated in the plot.

prediction when θ = 0. At the symmetric point, instead, the
correct prediction is given by the Z2-semilocal ensemble,
and the corresponding relaxation time is again finite. This
implies that the limits t → ∞ and θ → 0 do not commute
(note that the existence of noncommuting limits is one of
the hallmarks of spontaneous symmetry breaking [58] as well
as of prethermalization/prerelaxation behaviors after global
quenches [42–45]).

Signatures of semilocal order thus exist also in states that
weakly break the symmetry with which the order is associ-
ated. In particular, we envisage the existence of a scaling limit
with t → ∞ and θ → 0, in which local observables exhibit
some form of prerelaxation. This scaling limit is discussed in
Sec. V C 1.

Symmetric initial states exhibiting semilocal order can be
regarded as ground states of prequench Hamiltonians H0 (see
Sec. IV B). Since string order does not survive nonzero tem-
peratures [12], the prerelaxation behavior mentioned above is
expected also for sufficiently low, but nonzero temperatures.
We will see in Sec. V C 2 that the melting of the order arising
at small nonzero temperatures has essentially the same origin
as the prerelaxation occurring for small symmetry-breaking
unitary perturbations of the initial state.

1. Slow relaxation after weak symmetry breaking

Being interested in the time scales on which semilocal
order disappears after a weak symmetry breaking, we consider
an initial state prepared close to the symmetric point, i.e.,
| ⇒θ

〉 for small θ > 0.
Since 〈 ⇒θ

|σy
�| ⇒θ

〉 = 0 and 〈 ⇒θ
|σx

�| ⇒θ
〉 = sin θ → 0 as

θ → 0, the local operators to consider in order to explore the
melting of the order consist solely of products of σz. This
includes, in particular, the strings

∏n−1
�=0 σz

j+�, which, when
evaluated in a particular state, can be regarded as truncations
of a semilocal order parameter, corresponding to the limit
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n → ∞. They satisfy

〈 ⇒θ
|

n−1∏
�=0

σz
j+�| ⇒θ

〉 = cosn θ. (5.42)

The inverse duality transformation (4.7) maps operators com-
posed solely of σz

j into operators consisting of an even
number of τz

j . Specifically, the strings appearing in Eq. (5.42)
are mapped into τz

jτ
z
j+n, which are the 4-fermion operators

−ax
ja

y
ja

x
j+nay

j+n. To describe the expectation values of such
operators we introduce an effective density matrix ρeff that
is only asked to capture the expectation value of 4-fermion
operators O,

〈 ⇒θ
|O(σ )(t )| ⇒θ

〉 = tr[ρeff (t )O], (5.43)

where O(σ )(t ) = eiH(σ )t Oe−iH(σ )t is the time evolution of O
in the Heisenberg picture, and H(σ ) is the dual XY model’s
Hamiltonian, given in Eq. (3.17).

For each t we can expand O(σ )(t ) in the operator basis
{eα} as O(σ )(t ) =∑α (tr[O(t )eα]/trI) eα , where eα can be
chosen, for example, to be strings of Pauli matrices of various
lengths. The time evolution preserves the number of fermions,
so the expansion of O(σ )(t ) retains only the basis elements
eα corresponding to 4-fermion operators. Moreover, since in
Eq. (5.43) we project onto the tilted initial state, we can keep
only the basis elements for which 〈 ⇒θ

|eα| ⇒θ
〉 �= 0. The latter

again correspond to strings of σz
j , whence we obtain

〈 ⇒θ
|O(σ )(t )| ⇒θ

〉 =
∑
j∈Z

∑
n�1

〈 ⇒θ
|

n−1∏
�=0

σz
j+�| ⇒θ

〉

× tr
[
O(τ )(t )τz

jτ
z
j+n

]
trI

. (5.44)

The effective density matrix for small θ is thus [135]

ρeff (t ) ∼ e−iH(τ )t

[
1

trI

∑
j∈Z

∑
n�1

e−nθ2/2τz
jτ

z
j+n

]
eiH(τ )t , (5.45)

where we used Eq. (5.42) with its right-hand side rewritten,
for small θ , as cosn θ = e−nθ2/2[1 +O(θ4)].

The right-hand side of Eq. (5.45) is in τ representation:
H(τ ) corresponds to an XY Hamiltonian (3.9), so the stan-
dard free-fermionic techniques apply for calculation of the
expectation values (see Appendix F). For example, the trun-
cated string-order parameter Zn = 〈∏n−1

�=0 σz
j+�〉, which, in the

fermionic language, corresponds to −〈ax
1ay

1ax
n+1ay

n+1〉, can be
efficiently computed by invoking Wick’s theorem: the full
expression derived in the scaling limit t → ∞, θ → 0, at fixed
finite 0 < θ2t < ∞ for any n � 1 is reported in Appendix F.
It can be simplified in the limit n → ∞, where it becomes

Z∞ = 1

2

∫
d2k

(2π )2

(
e−|v(k1 )−v(k2 )| θ2t

2 + e−|v(k1 )+v(k2 )| θ2t
2
) (Jx + Jy)4 cos2 k1 cos2 k2[

J2
x + J2

y + 2JxJy cos(2k1)
][

J2
x + J2

y + 2JxJy cos(2k2)
] . (5.46)

From this expression one can read off the time scale ξ

on which the order melts: ξ ∼ θ−2. In fact this time scale
is inherent to the behavior of the effective density ma-
trix ρeff (see Appendix F) and is therefore exhibited also
by the time evolution of Zn for finite n. Figure 14 cor-
roborates it numerically for n = 1, i.e., in the case of
Z1 = 〈σz

�〉.
We warn the reader that setting θ2t = 0 in Eq. (5.46) does

not correspond to the expectation value of the string-order
parameter at the initial time, it is rather the starting value from
which the prerelaxation behavior ensues. This is because the
derivation is based on asymptotics for large t > 0 and small
θ > 0. Despite this, setting θ2t = 0 in Eq. (5.46) correctly
reproduces the large time value of the string-order parameter
for θ = 0.

2. Melting at low finite temperatures

The simplest example of a finite-temperature initial state
reads

ρ(0) = eβ
∑

� σz
�

tr
[
eβ
∑

� σz
�

] . (5.47)

In the limit β → ∞ this thermal state reproduces the symmet-
ric state with semilocal order, as considered in Sec. IV B. For
any finite β ρ(0) contains only terms composed of products
of σz

j . Hence, focusing again only on 4-fermion operators,

the only relevant operator with a nonzero expectation value is
again ax

�ay
�ax

�+nay
�+n, i.e., a fermionic representation of a string

of Pauli matrices σz
j . This time its expectation value reads

− 〈ax
�ay

�ax
�+nay

�+n

〉 = tanhn β. (5.48)

For large β and small θ , this is equivalent to setting the
rotation angle in the tilted initial state | ⇒θ

〉 to be

θβ ≈ 2e−β. (5.49)

Having established a connection with the tilted initial state, we
can retrace the steps in the previous section and observe that
the nontrivial scaling limit is now t → ∞, β → ∞, at fixed
finite 4e−2βt . The time scale ξ on which the order melts at a
low, but finite temperature, after the system has been prepared
in the state ρ(0), is thus ξ ∼ θ−2

β = (eβ/2)2.
Finally, we observe a similarity with the findings of

Ref. [44], in which an analogous scaling behavior was ob-
served at low temperature in a phase in which a symmetry
is spontaneously broken at zero temperature. The reader can
understand this connection as a manifestation of the duality
between the quasilocal theory and the even Z2-semilocal the-
ory, the latter being characterized by a spontaneous symmetry
breaking at zero temperature [see cf. Eq. (4.7)].
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VI. DISCUSSION

We have shown that symmetry-protected topological
phases of matter can emerge also at infinite times after
quenches of global Hamiltonian parameters in isolated many-
body quantum systems. We have traced this phenomenon back
to the existence of conserved operators (semilocal charges)
that do not belong to the natural theory in which local observ-
ables are represented by local operators and their quasilocal
completion. From that perspective, the topological character
of the system is manifest: Different theories of local observ-
ables are associated with different concepts of locality for
the operators; being outside the quasilocal theory, semilocal
charges can keep memory of information that is not contained
in the bulk of the system.

We aimed at reconciling the observation that semilocal
charges affect the stationary values of local operators with the
established belief that the those values are solely determined
by the local conserved quantities. This has led us to con-
sider statistical ensembles sensitive to string (semilocal) order,
which we called semilocal (generalized) Gibbs ensembles, in
order to distinguish them from the usual (generalized) Gibbs
ensembles that have been considered in the literature so far,
and which consist of only quasilocal conserved operators.

Finally, we have reported signatures of semilocal order
in the entropies of subsystems and in the time evolution of
systems that are not exactly symmetric. In particular, we have
found that a perturbation with a finite support affects the
entanglement entropies of subsystems with an exceptional
leading correction scaling as the logarithm of the subsystem’s
length.

FIG. 14. Magnetization 〈σz
�〉 vs θ2t ; the data (iTEBD) are con-

sistent with the scaling prediction derived in Appendix F. In the limit
θ → 0 the scaling prediction yields 〈σz

�〉 ≈ 0.5626, which is also
the GGE prediction for the expectation value of 〈σz

�σ
z
�+1〉 in the XY

model prepared in the initial state |⇑〉 (see Fig. 7). The magnetization
in the GGE with the standard pseudolocal charges of the dual XY
model is instead zero. The inset is in logarithmic scale.

Semilocal charges act as pseudolocal ones in a restricted
space. We have nevertheless opted for keeping a distinction in
the name itself for essentially two reasons:

(i) Contrary to the conventional pseudolocal conservation
laws, the expectation value of a semilocal charge is only par-
tially accessible even knowing the expectation value of every
local operator. For example, we have seen in Sec. IV B that in
the Z2 case the expectation value of a semilocal charge can be
determined only up to an overall sign that depends on how the
hidden symmetry is broken.

(ii) The expectation values of pseudolocal charges that we
are used to encounter from previous works in the literature
can be zero by symmetry; the expectation value of a semilocal
charge is zero in the absence of symmetry.

Open problems

(1) The description we have proposed relies on transla-
tional invariance. If we break it, the state can be globally
nonsymmetric still exhibiting the local symmetries character-
izing semilocal order, in the sense that the two-point functions
of semilocal operators could approach nonzero values at inter-
mediate distances. In addition, since the expectation values of
semilocal charges are also affected by local inhomogeneities,
the latter could look relevant despite the Lieb-Robinson
bounds ruling out their importance at space-like distances. A
theory that could capture time evolution of inhomogeneous
states goes beyond the purposes of this paper and will be
addressed in separate investigations.

(2) We define the G-semilocal (generalized) Gibbs ensem-
ble in an extended theory that includes operators that do not
represent local observables. Having realized the existence of
an ambiguity in what should be called “local observable” in
the extended theory, we propose to “project” the ensemble
back onto a theory of local observables. Taking into account
that similar situations seem to occur in quantum field theories,
where fields that are semilocal with respect to each other are
part of the theory, we wonder whether such a projection is
really required. Perhaps a more rigorous treatment along the
lines of the algebraic formulation of local quantum theories
[46,136] could clarify this issue. Incidentally, we wonder
whether the finding of Ref. [137] could be connected with the
picture presented here.

(3) We show that, in the presence of semilocal order, the
excess of entropy triggered by a local perturbation of the
initial state develops a logarithmic dependence on the subsys-
tem’s length. We expect that even the entanglement properties
of the symmetric translationally invariant system (without any
perturbation) should exhibit exceptional properties, but, at the
moment, this is still an open question.

(4) Macroscopic effects triggered by a local perturbation
had been observed before in the case of symmetry-breaking
perturbations of ground states [138,139], and excited states
in a jammed sector [62,140]. Whether they are just a differ-
ent facet of the same phenomenon as described herein, and
characterized by the logarithmic scaling of the excess entropy,
remains unclear.

(5) Despite our description applying to more general
situations, the explicit examples that we consider are not inter-
acting. This choice has a twofold motivation: On the one hand,
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FIG. 15. Differences between the results of the calculation with
Mmax = 1000 and smaller maximum bond dimensions. Red circles
denote when the differences become noticeable: the corresponding
times grow linearly.

we aim at providing the cleanest examples exhibiting the ex-
otic phenomenology of semilocal order after global quenches;
on the other hand, interactions could introduce complications
that need clues from simpler models in order to be solved.
Whether the interplay between interactions and semilocality
could enable additional phenomena is an open problem.

(6) We discuss semilocal order both in generic and in
integrable systems. Extending the theory to non-Abelian inte-
grable structures remains an intriguing development, in which
semilocal dynamical symmetries could play an important role
[141].
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APPENDIX A: CONVERGENCE OF THE iTEBD DATA

Here we estimate the times t up to which the results of
the iTEBD time evolution in Fig. 5 are virtually indistin-
guishable from those of the exact calculation. By “virtually
indistinguishable” we mean, that the difference between the
numerically computed and the exact expectation value 〈σz

�〉
at any particular time should be smaller than some accuracy,
which we choose to be 0.01 in Fig. 5.

We compare the data from calculations with maximum
bond dimensions that are increasing exponentially up to the
largest one, Mmax = 1000 (bond dimension is expected to
increase exponentially with t). The results of the calculation
with Mmax = 1000 are assumed to match the exact time evo-
lution longer than those at smaller Mmax, which is why we
take them as a reference. Figure 15 shows the differences
〈σz

�〉1000 − 〈σz
�〉Mmax

, where the subscript denotes the maxi-
mum bond dimension in the calculation. From the times at
which these differences become virtually discernible (i.e.,
larger than 0.01), we estimate that the calculations with
Mmax = 1000 can be trusted up to times t ∼ 4.5.

APPENDIX B: Z2 × Z2 DUALITY

We report here what could be considered as a double
application of the rotated Kramers-Wannier duality trans-
formation. We denote it by DZ2×Z2 and it is an algebra
homomorphism mapping the algebra of observables gen-
erated by {τ, Tx

τ ;−2,0, Tx
τ ;−2,1} into the one generated by

{σ, Tz
σ ;2,0, Tz

σ ;2,1}. Here again σα
j and τα

j act like Pauli ma-
trices on site j and like the identity elsewhere. The additional
operators Tα

σ ;2s,y are instead defined by the following condi-
tions: [

Tα
σ ;2s,y

]2 = I, Tα
σ ;2s,1Tα

σ ;2s,0 = Tα
σ ;2s,0Tα

σ ;2s,1 = Tα
σ ;s,

Tα
σ ;2s,yOTα

σ ;2s,y = lim
n→∞

[
n∏

�=0

σα
s(2�+y)

]
O

[
n∏

�=0

σα
s(2�+y)

]
,

(B1)

for all local operators O, extended then by linearity as in the
case of DZ2 , in such a way that O1 + O2Tα

σ ;2s,0 + O3Tα
σ ;2s,1 +

O4Tα
σ ;s is transformed by the adjoint action of Tα

σ ;2s,y into
an analogous operator in which the local operators O j are
replaced by Tα

σ ;2s,yO jTα
σ ;2s,y. Explicitly, the duality transfor-

mation DZ2×Z2 reads

�x
τ,−2( j) = σx

j,

τ
y
j = σx

j−2σ
y
j�

z
σ,+2( j + 2), (B2)

τz
j = �z

σ,+2( j),

where �x
τ,−2( j) and �z

σ,+2( j) are defined as �α
σ,s( j) in the

sublattice of sites with the same parity of j. This is obtained
using Tα

σ ;2s, j mod 2 instead of Tα
σ ;s. In the bulk the transforma-

tion can be expressed in the more standard form

τx
j = σx

j−2σ
x
j, τz

jτ
z
j+2 = σz

j, (B3)

which corresponds to two independent rotated Kramers-
Wannier duality transformations on the sublattices consisting
of the sites labeled by numbers with the same parity.

Finally, the inverse duality D−1
Z2×Z2

reads

σx
j = �x

τ,−2( j),

σ
y
j = �x

τ,−2( j − 2)τy
jτ

z
j+2, (B4)

�z
σ,+2( j) = τz

j .

APPENDIX C: ZERO-TEMPERATURE PHASES
OF THE DUAL XY MODEL

Since the (rotated) Kramers-Wannier transformation maps
the Hamiltonian (3.17) of the dual XY model into the Hamil-
tonian (3.9) of the XY model, we can immediately infer that
the model is noncritical for |Jx| �= |Jy| and critical for |Jx| =
|Jy|.

For |Jy| < |Jx| it should thus be possible to connect
smoothly the ground state(s) of the model to the one(s) at the
classical point Jy = 0,

H(Jx, 0) = Jx

∑
�

σx
�−1σ

x
�+1, (C1)

above which there is a finite energy gap to the first excited
state(s) in the thermodynamic limit. It is easy to see that this
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smooth connection selects a ground state of the classical point
exhibiting magnetic order with translational invariance under
a shift by one or several sites in the bulk, the simplest being
the ferromagnetic ground state ⊗ j |←〉 j for Jx < 0 (and the
one related by the spin-flip symmetry). A symmetry breaking
field [58] can then select a ground state with a particular
pattern of the magnetic order and we are in the standard
Landau phase. Specifically and just for the sake of an exam-
ple, the symmetry-breaking states of H(Jx, 0) with clustering
properties are mapped into the analogues with Jy �= 0 (and
|Jy| < |Jx|) by the transformation e−iW, where W is a dual
generalized XY model (Sec. V B 1 and Appendix E 2) charac-
terized by the symbol

W (p) = −1

2
arctan

2Jy tan p

Jx + Jy + (Jx − Jy) tan2 p
σ z. (C2)

Concerning the dual XY model with |Jy| > |Jx|, there
exists a mapping into an operator, with strongly quasilocal
densities, that commutes with

H(0, Jy) = −Jy

∑
�

σx
�−1σ

z
�σ

x
�+1 (C3)

and shares the same ground state of H(0, Jy). As discussed in
Ref. [89], the latter Hamiltonian has the ground state in a non-
trivial Z2 × Z2 protected topological phase, which therefore
describes the entire parameter space |Jy| > |Jx|.

Finally, we mention that, besides (hidden) symmetry
breaking, there could be other ambiguities in the zero-
temperature limit. For example, for Jy > 0, imposing periodic
boundary conditions on a chain with an odd number of sites
frustrates the system, with consequences on the properties of
the state that survive the thermodynamic limit [142–144].

APPENDIX D: TILTED INITIAL STATE

This section discusses the mapping of the tilted initial
state into the τ representation [see Eq. (4.32)], the decay of
correlations in the state, and its clustering properties.

1. Dual representation

The mapping of the tilted initial state (3.10) is perhaps most
conveniently performed on a finite lattice of size L. To this end
we report the finite-system inverse duality transformation

σx
j = �x

τ,−( j),

σ
y
j =

⎧⎪⎨
⎪⎩

τx
1τ

z
2 j = 1

�x
τ,−( j − 1)τy

jτ
z
j+1 1 < j < L

−τz
L j = L,

(D1)

σz
j =

{
τz

jτ
z
j+1 1 � j < L

�x
ττ

z
1τ

z
L j = L,

where

�x
τ,−( j) = −τ

y
1

j∏
�=2

τx
�, �x

τ =
L∏

�=1

τx
�. (D2)

The state

| ⇒θ
〉
σ
≡

L⊗
j=1

(
cos θ

2

sin θ
2

)
(D3)

is an eigenstate of all η
(σ )
j (θ ) = cos θσz

j + sin θσx
j for j =

1, . . . L, with eigenvalue 1. Applying the inverse duality trans-
formation on a finite system (D1), we have

η
(τ )
j (θ ) =

{
cos θτz

jτ
z
j+1 + sin θ�x

τ,−( j) 1 � j < L

cos θ�x
ττ

z
1τ

z
L − i sin θ�x

ττ
z
1 j = L.

(D4)

In the basis of all τz
j (their eigenvalues being denoted by

s j ∈ {−1, 1}) the tilted state reads

| ⇒θ
〉
σ
=

∑
s∈{−1,1}×L

c(s) |s〉τ . (D5)

Applying the operator (D4) we now obtain relations

c(−s1, . . . − s j, s j+1, . . . sL )

c(s)
=
{

1−s j s j+1 cos θ

is1 sin θ
1 � j < L

s1sLe−iθsL j = L,

(D6)

which are solved by

c(s) = 1√
Z

ei π
4 (s1−sL )+i θ

2 sL e−
β

2 E (s). (D7)

Here E (s) = −∑L−1
j=1 s js j+1, β = − log tan(θ/2), and

Z =
∑

s∈{−1,1}×L

e−βE (s). (D8)

We recognize that the squared absolute value |c(s)|2 yields
the canonical ensemble probability distribution for the one-
dimensional classical Ising model with free boundary con-
ditions: β plays the role of an effective inverse temperature,
while Z is the corresponding partition function. In this regard
a nonzero angle θ corresponds to a nonzero temperature.

Finally, the partition function (D8) can be evaluated using
the transfer matrix formalism (see, e.g., Ref. [145]). We define
transfer matrix

T = 1 + σ x

2
+ 1 − σ x

2
cos θ (D9)

with elements Ts,s′ = (1/2)eβss′ sin θ , s, s′ ∈ {−1, 1}, and use
it to rewrite the partition function,

Z =
(

2

sin θ

)L−1 ∑
s1,sL∈{−1,1}

[T L−1]s1,sL . (D10)

The powers of the transfer matrix are readily obtained, i.e.,
T n = (1 + σ x )/2 + [(1 − σ x )/2] cosn θ , whence

Z = 2

(
2

sin θ

)L−1

. (D11)

2. Decay of correlations

Let us now consider the decay of correlations and clus-
tering properties in the tilted state. The transfer matrix (D9)
enables an efficient method for calculation of local opera-
tors that act in the bulk of the spin chain, i.e., far from
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the boundaries, which will eventually be sent to infinity as the thermodynamic limit is taken. The expectation value of a local
operator O acting on the sites j, . . . j + r − 1, where r � 1 is its range, reads

〈O〉 = 1

Z

∑
s,s′

〈s|O |s′〉 e
β

2 [E (s)+E (s′ )]. (D12)

We have used s1 = s′1 and sL = s′L to cancel the phases coming from the coefficients (D7). This is possible since spins in positions
1 and L are not affected by the action of O,

〈s|O |s′〉 =
j−1∏
�=1

δs�,s′�

L∏
m= j+r

δsm,s′m 〈s j, . . . s j+r−1|O |s′j, . . . s′j+r−1〉 . (D13)

In fact, this formula allows us to simplify Eq. (D12) even further. Defining a 2 × 2 matrix with elements

Osj−1,s j+r =
(

sin θ

2

)r+1 ∑
s j ,...s j+r−1,s

′
j ,...s

′
j+r−1

〈s j, . . . s j+r−1|O |s′j, . . . s′j+r−1〉

× exp

{
β

[
s j−1(s j + s′j ) + s j+r (s j+r−1 + s′j+r−1) +

j+r−2∑
�= j

(s�s�+1 + s′�s′�+1)

]}
, (D14)

we can rewrite the expectation value of O as

〈O〉 = 1

2

∑
s1,sL

[T j−2OT L− j−r]s1,sL . (D15)

Assuming θ /∈ {0, π}, the thermodynamic limit suppresses the
powers of cos θ , originating in the second term of Eq. (D9).
We finally obtain

〈O〉 = 1

2

∑
s1,sL

[
1 + σ x

2
O

1 + σ x

2

]
s1,sL

= 1

2
(1 1)O

(
1
1

)
.

(D16)

Consider now two operators O1 and O2, acting on regions
that are separated for d sites. Using the same argument as
above, the thermodynamic limit now yields

〈O1O2〉 =
[

1

2
(1 1)O1

(
1
1

)][
1

2
(1 1)O2

(
1
1

)]

+O(cosd θ ), (D17)

implying

〈O1O2〉 − 〈O1〉 〈O1〉 = O(cosd θ ) (D18)

for the connected 2-point correlation function. The expo-
nential decay of the correlations between any distant local
operators in the τ representation signifies clustering properties
of the tilted state | ⇒θ

〉
σ

for even local and even semilocal
operators in the σ representation.

Note that, for diagonal local operators O (which are written
solely in terms of {τz

j}), Eq. (D12) becomes

〈O〉 =
∑

s 〈s|O|s〉 eβE (s)∑
s eβE (s)

, (D19)

i.e., a thermal expectation value. In the infinite system such
operators include, for example, �z

σ,+( j) [the latter is mapped
into τz

j by the inverse duality transformation (B4)]. Equa-
tion (D18) can then simply be seen as a consequence of the
absence of finite-temperature phase transitions in the one-
dimensional classical Ising model.

APPENDIX E: EXCESS OF ENTROPY

1. Bounds on Rényi entropies

Here we prove Eq. (5.19) by showing

2−αtr(ρα ) � tr(ρ̄α ) � tr(ρα ). (E1)

Taking the logarithm and multiplying the inequalities by
1/(1 − α) yields Eq. (5.19).

We prove both inequalities in Eq. (E1) using the inequal-
ity of Ault [146,147], which says that, given arbitrary n × n
complex matrices A1, A2, . . . , Am, one has

tr

(
B + B†

2

)
� 1

m
tr

(
m∑

j=1

(AjA
†
j )

m
2

)
(E2)

for B = A1A2 · · ·Am.
To show the upper bound in (E1) we write

trρ̄α = tr

(
ρρ̄α−1 + H.c.

2

)
, (E3)

which follows from the definition (5.17) of ρ̄, using the cyclic
property of the trace and the invariance of ρ̄ under the Her-
mitian involution P. The inequality of Ault for A1 = ρ, A2 =
A3 = . . . = Aα = ρ̄ then yields

trρ̄α � 1

α
[tr(ρα ) + (α − 1)tr(ρ̄α )]. (E4)

Rearranging the terms proves the second inequality in
Eq. (E1).

To prove the lower bound in Eq. (E1) we introduce projec-
tors P± = (I ± P)/2 and write

ρ̄ = P+ρP+ + P−ρP−. (E5)

Note that the operators P+ρP+ and P−ρP− are Hermitian and
positive semidefinite. Since P+P− = 0 it follows

ρ̄α = (P+ρP+)α + (P−ρP−)α. (E6)

Since tr[(ρPs)α] = tr[(PsρPs)α], we then see

0 � tr[(ρPs)α] � trρ̄α, s = ±1. (E7)
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On the other hand using P+ + P− = I we have

trρα =
∑

s1,...α=±1

tr(Ps1ρPs2ρ . . . Psα
ρ), (E8)

which can be rewritten, using the cyclic property of the trace,
as

trρα =
∑

s1,...α=±1

tr

[
(
√

ρPs1

√
ρ ) · · · (

√
ρPsα

√
ρ ) + H.c.

2

]
.

(E9)

Here,
√

ρ denotes the square root of the positive semidefi-
nite operator ρ. Applying the inequality of Ault with Aj =√

ρPsj

√
ρ for j = 1, . . . α now yields

trρα �
∑

s1,...α=±1

1

α

α∑
j=1

tr
[(

ρPsj

)α]
. (E10)

Finally, using (E7) we obtain

trρα � 2αtrρ̄α, (E11)

which proves the lower bound in Eq. (E1).

2. Correlation matrix after the quench

The purpose of this section is to derive Eq. (5.36). At time
t the correlation matrix symbols for the initial states |⇑〉τ and
|⇓〉τ read, respectively,

�(p) = ±e−iH(p)tσ yeiH(p)t , (E12)

where H(p) = f0(p)I + f1(p)σ x + f2(p)σ y + f3(p)σ z is the
symbol of the Hamiltonian. For the generalized XY model
functions f j (p), j ∈ {0, 1, 2, 3}, read

f0(p) = 2
∞∑

k=1

(
J (2k)

x − J (2k)
y

)
sin(2kp),

f1(p) = 2
∞∑

k=0

(
J (2k+1)

x − J (2k+1)
y

)
sin [(2k + 1)p],

f2(p) = −2
∞∑

k=0

(
J (2k+1)

x + J (2k+1)
y

)
cos [(2k + 1)p],

f3(p) = −2
∞∑

k=1

(
J (2k)

x + J (2k)
y

)
sin(2kp). (E13)

Focusing on the reflection symmetric system, for which
J (2k)

x = J (2k)
y for all k, we have simplification f0(p) = 0. For

t → ∞, due to dephasing, the symbol can be effectively re-
placed by its time average, equal to

�(p) = ± f2(p)

ε2(p)
H(p). (E14)

This yields Eq. (5.35).
In order to derive Eq. (5.36) it is now useful to determine

from Eq. (E14) the so-called “root density” �(p), which en-
codes the distribution of the occupied momenta in a particular
state. It can be shown (see Ref. [108]) that for translationally
invariant and reflection symmetric free-fermionic models the

symbol �(p) of the correlation matrix is related to the root
density �(p) as follows:

V (p)�(p)V †(p) = 4π�o(p)I + (4π�e(p) − 1)σ y

+ 4πψR(p)σ z − 4πψI(p)σ x. (E15)

Here, �o(p) and �e(p) are, respectively, the odd and the even
part of the root density, ψ (p) = ψR(p) + iψI(p) is a field
related to the off-diagonal elements of the density matrix (this
field can be neglected in the limit t → ∞), while V (p) is
a unitary transformation related to Bogoliubov rotation. The
action of the latter on the symbol of the Hamiltonian reads

V (p)H(p)V (p)† = ε(p)σ y. (E16)

In the limit t → ∞ we thus simply have

�(p) = 4π�o(p)I + (4π�e(p) − 1)
H(p)

ε(p)
, (E17)

so, comparing with Eq. (E14), we find

4π�(p) − 1 = ± f2(p)

ε(p)
, (E18)

where �(p) = �e(p), since the state is reflection symmetric.
When the initial state is a domain wall |· · · ↓↓↓r↑↑↑ · · ·〉τ

the system reaches stationarity along rays ζ = x/t , where x is
the distance from the junction of the two domains [108,121].
Along a given ray, in the limit of infinite time, one can de-
scribe the observables by an effective space-time dependent
root density �x,t (p) [or the correlation matrix symbol �x,t (p)]
through Eq. (E17), which holds asymptotically along the ray.
Specifically, the late-time dynamics is described by the hydro-
dynamic equation [108,122,123]

∂t�x,t (p) + v(p)∂x�x,t (p) = 0, (E19)

where v(p) = ε′(p) is the velocity of the excitations. In this
simple case (in which the velocity is state independent) the
solution can be written as �x,t (p) = F (x − v(p)t ; p). At x >

maxp v(p)t [x < minp v(p)t], the information about the junc-
tion has not yet arrived, therefore the problem is equivalent
to replacing the initial state by |⇑〉τ [|⇓〉τ ]; this provides
the boundary conditions that fix the function F (x − v(p)t ; p).
Specifically, we obtain

4π�x,t (p) − 1 = sgn[x − v(p)t]
f2(p)

ε(p)
. (E20)

Since we are interested in the limit of infinite time for a
finite subsystem at a given position, we can send t → ∞ in
Eq. (E20), whence

4π lim
t→∞ �x,t (p) − 1 = −sgn[v(p)]

f2(p)

ε(p)
. (E21)

Finally, using Eq. (E17) we now find the correlation matrix
symbol for the subsystem A to be

�ζ=0(p) = −sgn[v(p)]
f2(p)

ε(p)
I. (E22)

3. Asymptotic results for Rényi entropies

This section reports the computation of the prefactors aα

and bα of the leading and subleading contributions to the
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entropy (5.38). The Rényi entropy can be expressed as an
integral [119]

S(τ )
α (�,�) = lim

ε→0+

1

2π i

∮
Cε

Fα (z)
d

dz
log det [zI − �]dz,

(E23)

where

Fα (z) = 1

2(1 − α)
log

[(
1 + z

2

)α

+
(

1 − z

2

)α]
, (E24)

and the integration curve Cε encloses the interval [−1, 1] on
the real axis, at a distance ε from it. The information about the
state |�(t )〉 is encoded in the correlation matrix �.

We note that zI − � is a block Toeplitz matrix. In general,
a block Toeplitz matrix T�(M) with a 2 × 2 matrix symbol
M(p) is defined by the elements

[T�(M)]2 j+m,2l+n =
∫ π

−π

M(p)eip( j−l ) d p

2π
(E25)

for 0 � j, l � � − 1, 0 � m, n � 1. For a piecewise contin-
uous symbol, such that det M(p) is nonzero, has a zero
winding number, and jump discontinuities at points pr for
r = 1, 2, . . . , R, we use the asymptotic formula for large �,

log det T�(M)

=
∫ π

−π

log det M(p)
d p

2π
+ log(�)

R∑
r=1

Br +O(1). (E26)

Without discontinuities, the second term is not present. The
leading term grows linearly with � and its value comes from
the Szegő-Widom theorem [131,132]. It has been conjectured
and checked numerically in Refs. [133,134] that with disconti-
nuities there is a subdominant term that grows logarithmically
with �. Denoting by μ±

r, j for j = 1, 2 the eigenvalues of the
limits limp→p±

r
M(p), the conjecture states that the logarith-

mic coefficients Br are given by

Br = 1

4π2

2∑
j=1

(
log

μ−
r, j

μ+
r, j

)2

. (E27)

Note that the formula generalizes straightforwardly to a sym-
bol of arbitrary size.

The asymptotic results for the Rényi entropies are obtained
by using the asymptotic formula (E26) to compute the deter-
minant of the Toeplitz matrix zI − � in Eq. (E23). The latter
is associated to the symbol M(p) = zI − �(p), where �(p)
is the symbol of the correlation matrix, given in Eq. (5.35) for
a quench from a state with all spins up, and in Eq. (5.36) for
a quench from a domain-wall state. In this way we find that
the leading term both in Eq. (5.37), as well as in Eq. (5.38), is
given by

aα = 1

1 − α

∫ π

−π

d p

2π
log

([
1 + f2(p)

ε(p)

2

]α

+
[

1 − f2(p)
ε(p)

2

]α)
,

(E28)

where f2(p) = tr[σ yH(p)] is reported in Eq. (E13) for the
generalized XY model.

The discontinuities p1, p2, . . . , pR ∈ (−π, π ] of the sym-
bol (5.36) are the zeros of the velocity, i.e., points for which

v(pr ) = 0. By the asymptotic formula (E26), the logarithmic
coefficient in Eq. (5.38) can be computed as

bα = lim
ε→0+

R∑
r=1

1

2π i

∮
Cε

Fα (z)
d

dz
logBr (z)dz, (E29)

where

Br (z) = 1

2π2

(
log

[
z − f2(pr )

ε(pr )

z + f2(pr )
ε(pr )

])2

. (E30)

To evaluate the integral we use partial integration,

bα = − lim
ε→0+

R∑
r=1

1

2π i

∮
Cε

[
d

dz
Fα (z)

]
Br (z)dz, (E31)

and deform the contour around the poles of

d

dz
Fα (z) = α

2(1 − α)

(1 + z)α−1 − (1 − z)α−1

(1 + z)α + (1 − z)α
, (E32)

which are given by

z j = i tan

[
(2 j − 1)π

2α

]
, j = 1, 2, . . . , α, j �= α + 1

2
.

(E33)

As z → z j , we have

d

dz
Fα (z) = 1

2(1 − α)(z − z j )
(1 +O(z − z j )), (E34)

whence we obtain

bα = − 1

4π2(α − 1)

×
R∑

r=1

∑
j=1,2,...,α

j �= α+1
2

(
log

[
i tan

( (2 j−1)π
2α

)− f2(p)
ε(p)

i tan
( (2 j−1)π

2α

)+ f2(p)
ε(p)

])2

.

(E35)

Since the term inside the logarithm is just a phase factor, the
squared logarithm is real and negative. Because of the nega-
tive overall prefactor, every term in the sum yields a positive
contribution to bα . For instance, for α = 2 this expression
simplifies to Eq. (5.39).

The velocity of excitations is given by

v(p) =
∑3

j=1 f j (p) f ′
j (p)

ε(p)
. (E36)

For the XY chain the velocity has four zeros, given by p1 =
−π/2, p2 = 0, p3 = π/2, p4 = π . Since f2(p) = 0 for p ∈
{p1, p3}, these two points do not contribute in Eq. (E35).
As a matter of fact, since f2(p) = 0, there is no discontinu-
ity in the symbol at these points. For p ∈ {p2, p4} we have
f2(p)/ε(p) ∈ {−1, 1}, so the contribution of these two points
is the same. From Eq. (E35) we now find the logarithmic
coefficient (5.40). A general model under consideration can,
in addition to the aforementioned four zeros of the velocity,
contain also other zeros. Therefore, in general, the logarith-
mic coefficient for the XY chain is only a lower bound, i.e.,
bα � b(XY)

α .
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4. Exact procedure

In this section we show how to compute exactly the second
Rényi entropy in systems that can be mapped to free fermions,
starting from Eq. (5.15). Let us denote shortly ρτ ≡ ρ

(τ )
Ã

(�)

and ρ̄ ≡ ρ̄
(τ )
Ã

(�).
The density matrix ρτ can be expressed as a Gaussian in

terms of Majorana fermions (5.33), following the standard
techniques [120,124,148] based on Wick’s theorem [149].
Specifically, defining the 2(� + 1) × 2(� + 1) correlation ma-
trix with elements

�2 j+α,2l+β = δ j,lδα,β − 〈�(t )| aα
j aβ

l |�(t )〉,
0 � j, l � �, 1 � α, β � 2 (E37)

(with the usual identification x ≡ 1, y ≡ 2), and the matrix
function

W (�) = log[(I + �)(I − �)−1], (E38)

we have

ρτ = 1

Z (�)
exp

( �aTW (�)�a
4

)
, (E39)

where �a = (ax
1, ay

1, ax
2, ay

2, . . . , ay
�+1) is a vector of Majorana

fermions defined in Ã = {1, . . . , � + 1} [see Eq. (5.33)]. The
normalization is given by the function

Z (�) =
[

det

(
I − �

2

)]− 1
2

(E40)

and can be computed from Eq. (E45) that will be reported in
the following.

The effects of the transformations Pi on the Gaussian in
Eq. (5.15) are completely determined by their effects on the
two-point products of Majorana fermions, i.e., by Pia

x,y
j ax,y

l Pi.
We thus find

Piρτ Pi = 1

Z (Fi(�))
exp

( �aTW (Fi(�))�a
4

)
, (E41)

where we define functions Fi by their action on the matrix
elements of the correlation matrix,

� j,l
F1−→ (−1)δ j,1+δ j,2+δl,1+δl,2� j,l , (E42)

� j,l
F2−→ (−1)δ j,2�+1+δ j,2�+2+δl,2�+1+δl,2�+2� j,l , (E43)

� j,l
F3−→ (−1) 

j
2 !+ l

2 !� j,l . (E44)

For products of transformations, such as in PiPjρτ PjPi, one
has to consider compositions of the form Fi ◦ F j .

By Eq. (E41) we see that the density matrix in Eq. (5.15)
is expressed as a sum of Gaussians. The Rényi entropies can
thus be computed by exploring the formula for the trace of a
product of Gaussians, given by [125]

tr
(
e

�aT W1 �a
4 · · · e

�aT Wn �a
4
) = ±

√
det(I + eW1 · · · eWn ), (E45)

for antisymmetric matrices W1, . . . ,Wn, which are always
Hermitian in our problem. The formula in Eq. (E45) has
a sign ambiguity that can be resolved when computing the
second Rényi entropy. Indeed, in the expression for the latter a
product of two Gaussians appears and the trace of a product of

two positive semidefinite Hermitian operators is non-negative
[126]. The normalization function (E40) is obtained from the
formula in Eq. (E45) by taking n = 1.

Now, from the invariance Pj ρ̄Pj = ρ̄ for j = 1, 2, 3 [which
follows from Eq. (5.15)] we obtain simplification

tr[ρ̄2] = tr[ρτ ρ̄]. (E46)

Using Eq. (5.15) again, we can write this as a sum of eight
non-negative terms

tr[ρ̄2] = 1

23

1∑
j1,2,3=0

tr
[
ρτ

(
P j3

3 P j2
2 P j1

1 ρτ P j1
1 P j2

2 P j3
3

)]
. (E47)

Each of the eight terms can be evaluated using Eq. (E41) and
formula (E45) for the trace of a product of Gaussians. Using
the identity

det(I + eW (�1 )eW (�2 ) )

det (I + eW (�1 ) ) det (I + eW (�2 ) )
= det

(
I + �1�2

2

)
, (E48)

and Eq. (5.16) we then obtain the second Rényi entropy,

S2(�,�) = 2 log 2 − log

[
G
(
�,�

)+ 3∑
i=1

G(�,Fi(�))

+
∑

1�i< j�3

G(�,Fi ◦ F j (�))

+ G(�,F1 ◦ F2 ◦ F3(�))

]
, (E49)

where

G(�1, �2) :=
√

det

(
I + �1�2

2

)
. (E50)

APPENDIX F: MELTING OF THE ORDER AND
SCALING LIMITS

This section provides details on the calculation of expec-
tation values of local observables (e.g., strings of σz

j) in a
time-evolved weakly tilted state | ⇒θ

〉. The first part of the sec-
tion discusses the effective density matrix given in Eq. (5.45),
from which expectation values of semilocal order parameters
can be calculated; the latter are discussed in the second part.

1. Effective density matrix

In the fermionic representation we have

e−iH(τ )tτz
je

iH(τ )t = 1

2

∑
j1, j2

∫ π

−π

d2k

(2π )2
ei[k1( j1− j)+k2( j− j2 )]

× �aT
j1 · [e−iH(k1 )tσ yeiH(k2 )t ] · �a j2 , (F1)

where �a j = (ax
j ay

j )
T

and H(k) is the symbol of the Hamil-
tonian, defined in Eq. (3.13). Using this representation in the
expression (5.45) for the effective density matrix, performing
the sums over j and n, and changing the integration variables
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as k1 → k2 − k1, k2 → k2, k3 → k3, k4 → k3 − k4, we obtain

ρeff (t ) ∼ 1

4trI

∑
j1,2,3,4

∫
d3k

(2π )3

ei[( j4− j1 )k1+( j1− j2 )k2+( j3− j4 )k3]

e
θ2
2 +ik1 − 1

× �aT
j1 · [e−iH(k2−k1 )tσ yeiH(k2 )t ] · �a j2

× �aT
j3 · [e−iH(k3 )tσ yeiH(k3−k1 )t ] · �a j4 , (F2)

for the effective density matrix.
Being interested in the expectation value of local opera-

tors at large times after a weak symmetry breaking, we will
assume that t and θ are the only large and small parameter,
respectively, in Eq. (F2). We can assume this because local
operator O in tr[ρeff (t )O] is characterized by indices j1, j2, j3,
and j4, confined to some finite interval. In order to obtain the
asymptotic behavior of the integral in Eq. (F2) one now has to
consider the pole in k1. The first step consists of deforming the
integration path in k1 into a piecewise linear curve with lines
parallel to the axes, in such a way that the horizontal lines give
exponentially decaying contributions.

We start from the relation

e−iH(k2−k1 )t =
∑

s1=±1

Ps1 (k2 − k1)e−iε(k2−k1 )s1t , (F3)

where Ps(k) are the projectors on the eigenstates of H(k) with
eigenvalues ±ε(k),

Ps(k) = 1

2

(
I + s

H(k)

ε(k)

)
. (F4)

Denoting the real and imaginary part of k1 by kR
1 , kI

1 re-
spectively, assuming the imaginary part kI

1 to be small, and
expanding in it, we obtain

e−iH(k2−k1 )t ∼
∑

s1

Ps1 (k2 − k1)e−iε(k2−kR
1 )s1t−kI

1v(k2−kR
1 )s1t ,

eiH(k3−k1 )t ∼
∑

s2

Ps2 (k3 − k1)eiε(k3−kR
1 )s2t+kI

1v(k3−kR
1 )s2t . (F5)

where v(k) := ε′(k). The expressions in each line of
Eq. (F5) are multiplied in Eq. (F2). In particular, the real
parts of each exponential in Eq. (F5) together yield a
factor

ekI
1[v(k3−kR

1 )s2−v(k2−kR
1 )s1]t . (F6)

Assuming θ2t to be fixed, we deform the integration path in k1

so that θ2 	 |kI
1| 	 1 and we choose the sign of kI

1 so that the
factor multiplying t in Eq. (F6) is always negative and the hor-
izontal lines in the contour are exponentially suppressed (the
choice of the integration contour thus depends also on s1, s2).
The contours that we work with are therefore determined by
the sign of v(k3 − kR

1 )s2 − v(k2 − kR
1 )s1, and are presented in

Fig. 16.
The pole is at kR

1 = 0 and there are two possible placements
of the obtained contour with respect to the pole, depending on
the exponent in Eq. (F6):

(a)

kR
1

kI
1

−π π

i θ2

2

(b)

kR
1

kI
1

−π π

i θ2

2

FIG. 16. The integration path over the interval [−π, π ] on the
real axis is deformed depending on the sign of v(k3 − kR

1 )s2 − v(k2 −
kR

1 )s1, to make the exponent in (F6) negative on the horizontal lines.
(a) A contour that is deformed without crossing the pole. (b) A
contour that is deformed crossing the pole.

(1) For v(k3)s2 − v(k2)s1 > 0 we have kI
1 < 0 on the de-

formed contour when kR
1 = 0. In this case we do not have a

pole contribution [see Fig. 16(a)].
(2) For v(k3)s2 − v(k2)s1 < 0 we have kI

1 > 0 on the de-
formed contour when kR

1 = 0. In such a case the contour has to
be extended across the pole [see Fig. 16(b)]. In order for the
integral along the extended contour to reproduce the correct
result, the pole contribution has to be subtracted.

In the first case the integral is exponentially suppressed
along the entire contour and it yields zero. In the second
case only the subtracted pole contribution remains of the
integral. This can be described simply by including the factor
θH(v(k2)s1 − v(k3)s2) in the integral, where θH is the Heav-
iside step function. Assuming θ2(θ2t ) → 0, we then include
into Eq. (F2) the pole contribution

e−iH(k2−i θ2

2 )t =
∑

s1=±1

Ps1 (k2)e−iH(k2 )s1t−v(k2 ) θ2

2 s1t

× (1 +O(θ2)), (F7)
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and an analogous one for exp[iH(k3 − iθ2/2)t], to get

ρeff (t ) ∼ 1

4 trI

∑
j1 , j2 ,

j3 , j4

∫
dk2dk3

(2π )3

∑
s1,s2=±1

ei[( j1− j2 )k2+( j3− j4 )k3]e−
θ2

2 t (v(k2 )s1−v(k3 )s2 )θH (v(k2)s1 − v(k3)s2)

× �aT
j1 · [Ps1 (k2)�t (k2)] · �a j2 �aT

j3 · [Ps2 (k3)�t (k3)] · �a j4 . (F8)

Here we denoted �t (k) = e−iH(k)tσ yeiH(k)t . In the limit t → ∞ we can replace the latter by its time average

�̄(k) = −2(Jx + Jy) cos k

ε2(k)
H(k), (F9)

ending up with

ρeff (t ) ∼ 1

trI

∫
d2k

(2π )2

(Jx + Jy)2 cos k1 cos k2

ε(k1)ε(k2)

∑
s=±1

se−|v(k1 )−sv(k2 )| θ2t
2

×
∑
j1, j2

ei( j1− j2 )k1 �aT
j1 · Psgn[v(k1 )−sv(k2 )](k1) · �a j2

∑
j3, j4

ei( j3− j4 )k2 �aT
j3 · Psgn[sv(k1 )−v(k2 )](k2) · �a j4 . (F10)

For sufficiently large θ2t this generically decays as 1/(θ2t ).

2. Semilocal order parameter

Having obtained the effective reduced density matrix, we are now ready to investigate the expectation values of the string∏n−1
�=0 σz

j+�, which corresponds to a product of four Majorana fermions. For n = 1 this is the simplest local operator sensitive to
the semilocal order [31], while in the limit n → ∞ it can be regarded as a string-order parameter.

Let us then consider Zn = 〈∏n−1
�=0 σz

j+�〉 = − 〈ax
1ay

1ax
n+1ay

n+1〉. This can be computed from Eq. (F10) using Wick’s theorem,

Zn =
∫

d2k

(2π )2

2(Jx + Jy)2 cos k1 cos k2

ε(k1)ε(k2)

∑
s,s′=±1

se−|v(k1 )−sv(k2 )| θ2t
2 sin2

[
n

k1 + s′k2

2

]

×
(
−s′ + 4s

(Jx + Jy)2 cos k1 cos k2 + s′(Jx − Jy)2 sin k1 sin k2

ε(k1)ε(k2)

)
. (F11)

This expression simplifies in the limit n → ∞ (bear in mind that this limit has been taken after the limit of large time and small
angle at fixed θ2t), in which we obtain Eq. (5.46).
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