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Intertwined fractional quantum anomalous Hall states and charge density waves
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Motivated by the recent experimental breakthrough on the observation of the fractional quantum anomalous
Hall (FQAH) effects in semiconductor and graphene moiré materials, we explore the rich physics associated
with the coexistence of FQAH effect and the charge density wave (CDW) order that spontaneously breaks the
translation symmetry. We refer to a state with both properties as “FQAH crystal.” We show that the interplay
between FQAH effect and CDW can lead to a rich phase diagram including multiple topological phases and
topological quantum phase transitions at the same moiré filling. In particular, we demonstrate the possibility
of direct quantum phase transitions from a FQAH crystal with Hall conductivity σH = −2/3 to a trivial CDW
insulator with σH = 0 and, more interestingly, to a QAH crystal with σH = −1.
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I. INTRODUCTION

The recent advance in the fabrication and control of two-
dimensional (2D) van der Waals heterostructures has enabled
the development of moiré superlattices that feature tun-
able minibands. Topologically nontrivial minibands in moiré
materials provide an ideal avenue to search for topologi-
cal states of matter. As an example, evidence of fractional
quantum Hall effect in fractionally filled moiré band was
observed in twisted bilayer graphene under a magnetic field
above ∼5 T or higher [1,2]. More recently, thermodynamic
and transport measurements revealed the fractional quantum
anomalous Hall (FQAH) effect at zero magnetic field in
twisted TMD homobilayers [3–6] and rhombohedral penta-
layer graphene/hBN superlattice [7].

The discovery of FQAH effect points towards a fertile
ground for studying the strong interaction effect in topological
moiré bands of 2D materials. Twisted TMD homobilayers
feature spin-valley-locked moiré bands with opposite Chern
numbers in the two valleys [8–10]. At finite carrier density,
Coulomb interaction drives spontaneous valley polarization
and FQAH effect is anticipated at fractional fillings of the
valley-polarized Chern band [10–12]. Interaction induced
FQAH states in Chern bands are also known as (zero-field)
fractional Chern insulators in the literature [13–17]. The
highly tunable nature of moiré systems, with abundant tuning
knobs such as twist angle, displacement field, electrostatic
doping, and gate screening, offers a large parameter space to
explore FQAH states and proximate phases [18–30].

In this work, we explore the rich physics of a state with
coexisting FQAH and CDW (a state that we refer to as FQAH
crystal) and its proximate phases that occur at the same moiré
band filling under zero magnetic field. Our study is motivated
by the observed phase transition at hole filling ν = −2/3 in
twisted bilayer MoTe2 under a displacement field from an
FQAH state with quantized Hall conductance σH = −2/3 (in
the unit of e2/h) to an insulating state [5,6]. We consider a

scenario in which the FQAH state spontaneously breaks the
translational symmetry of the moiré lattice. We call this state
a FQAH crystal, analogous to the notion of “Hall crystal”
introduced in Ref. [31]. Our consideration of FQAH crystal is
partly motivated by the recent numerical finding of a softened
magnetoroton gap in σH = −2/3 FQAH states [20], which
suggests incipient CDW order with tripled

√
3 × √

3 moiré
unit cells (as illustrated in Fig. 1) at experimentally relevant
twist angles.

We show by field theory analysis that a variety of strongly
correlated phases can be found in the vicinity of FQAH crys-
tal. These include a trivial CDW insulator with σH = 0 and
a σH = −1 QAH state with CDW order, which we call QAH
crystal. While the QAH-crystal phase has been proposed in
moiré systems under the name of topological charge density
wave [26,32,33], its connection to FQAH physics [34–36] and
phase transitions has received little attention before. All the
phases considered in this work possess the same type of CDW
order, but are distinguished by their different topological prop-
erties.

We further show that direct and (potentially) continuous
phase transitions between these topologically distinct phases
are theoretically allowed. Interestingly, these phase transi-
tions can be described by (2 + 1)D quantum electrodynamics
(QED) with a Chern-Simons (CS) term of the U (1) gauge field
coupled to either fermionic or bosonic charges. In our theory,
the transition from the FQAH crystal with σH = −2/3 to the
trivial CDW insulator is described by a fermionic QED with
two flavors Dirac fermions at low energy coupled with a U(1)
gauge field with a CS term at level 1/2. On the other hand,
its transition to a QAH crystal with σH = −1 is described by
either bosonic or fermionic QEDs. These two descriptions are
dual to each other based on the boson-fermion duality web
that was actively discussed in recent years [37–40].

We note that direct transitions between a standard FQAH
state (without any spontaneous symmetry breaking) and ex-
otic CDW∗ with extra topological order were studied in
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FIG. 1. (Left) Moiré Brillouin zone formed when twisting the
original Brillouin zone (two large hexagons) of each TMD layer.
When charge density wave forms that triples the unit cell, schemati-
cally shown on the right on the moiré superlattices, and the Brillouin
zone is further folded to the center smallest hexagon on the left.

Ref. [28], whereas our work starts from a FQAH crystal (with
σH = −2/3 and CDW order) and obtains different proximate
phases. In particular, we highlight the possibility of a QAH
crystal (with σH = −1 and CDW order) as a proximate phase
and a direct phase transition between FQAH crystal and QAH
crystal at ν = −2/3.

II. PHASES AT ν = −2/3

The most prominent state observed experimentally in the
homobilayer TMD moiré system is the σH = ±2/3 FQAH
state at hole filling nh = 2/3, i.e., at hole density of 2/3 per
moiré unit cell. Since this state is shown to be fully spin/valley
polarized by magnetic circular dichroism measurements, in
the following we consider a spinless electron system at charge
density ν = −2/3.

Throughout the discussion below we postulate the presence
of a charge density wave (CDW) which triples the unit cell
(examples shown in Fig. 1), such that the holes are at integer
filling with respect to the enlarged moiré unit cell. We will
show that under tripling of the unit cell, it is natural to con-
struct phases with Hall conductivity σH = −2/3, −1, 0 in a
unified formalism. Furthermore, there can be direct and (po-
tentially) continuous quantum phase transitions between any
of the two states mentioned above, though a direct transition
between the σH = −2/3 state and the trivial insulator with
σH = 0 requires certain discrete space-time symmetries.

For the purpose of constructing these phases and describing
their properties, it is convenient to use the standard parton
construction. One can formally write the hole operator as
c = � f , where the bosonic parton � carries the physical
electric charge and the charge-neutral parton f is a fermion.
The electric charge can actually be assigned arbitrarily be-
tween � and f , which should not change the final physics.
The parton construction formally enlarges the Hilbert space
of the holes, which can be remedied by coupling � and f
both to an internal dynamical U (1) gauge field a, with charge
±1, respectively. The dynamical U (1) gauge field enforces a
local constraint which equates the local density of f to that
of �. The physical state of holes is obtained by enforcing
the relation of hole density to that of the partons, i.e., νh =
ν� = ν f = 2/3 with respect to the original moiré unit cell.
Importantly, in the presence of a CDW order that triples the

unit cell, both the holes and partons are at integer fillings with
respect to the enlarged unit cell.

A. Phases tuned by fermionic parton f

In the following we will construct a series of states by
making � a bosonic fractional quantum Hall state with Hall
conductivity −1/2. Each state can also be equivalently con-
structed employing the composite fermion picture through
vortex attachment. As is well known in the context of Lan-
dau level systems, composite fermions experience a modified
residual magnetic field and prominent fractional quantum
Hall states are formed at integer filling of composite fermion
Landau levels [41,42]. As we show later, in (moiré) lattice sys-
tems, the mean-field state of composite fermions allows much
richer possibilities, leading to a series of new states [43,44].

σH = −2/3 state. The σH = −2/3 state at filling ν =
−2/3 is the most prominent state observed experimentally in
the homobilayer TMD moiré system. This state can be con-
structed naturally using the parton formalism, where � and f
each forms its own “mean-field state.” With the assumption
of the existence of a background charge density wave that
triples the unit cell, the original Chern band in the moiré
Brillouin zone (BZ) would split into three bands in the folded
moiré BZ and the fermionic parton f would fill two out of
the three bands due to its 2/3 filling. One natural way to
construct the 2/3 state is for the bosonic parton � to form
a ν = −1/2 Laughlin state and at the mean-field level the
fermionic parton f fills two low energy bands in the folded BZ
with Chern numbers +1,+1. As we mentioned previously, the
σH = −2/3 state constructed here has FQAH effect as well as
spontaneous translation symmetry breaking, which we refer to
as FQAH crystal. Later, we will demonstrate with a composite
fermion construction that the existence of the σH = −2/3
state itself does not have to break the translation symmetry.
However, all of the nearby states within our formalism must
break the translation symmetry. This observation motivates us
to focus on the scenario where the translation symmetry is
already broken in the σH = −2/3 state.

Here we would like to demonstrate that the parton con-
struction given above is a natural state for holes at filling 2/3
of the moiré unit cell. We note that the flux φ� per moiré unit
cell felt by the parton � is not necessarily equal to the physical
flux seen by holes φh, due to the internal gauge field a coupled
to both � and f . In the continuum, the total fluxes seen by
the hole and the partons should in general obey the relation
φh = φ� + φ f . In twisted semiconductor bilayers [8,9,45] and
other continuum systems [46] where holes fill a valley po-
larized Chern band, despite being at zero magnetic field, the
holes experience an effective flux φh = −1 per moiré unit cell
produced by the periodic skyrmion spin (or layer pseudospin)
texture in real space [47] and we could further set φ� = −4/3
to allow � to form a Laughlin ν = −1/2 state. This leaves
φ f = 1/3 and ν f = 2/3. The fermionic partons hence are nat-
urally allowed to fill two Landau levels, equivalent to filling
two bands with Chern number +1. In fact, with the CDW
order that triples the unit cell that we postulate, the f fill
φ̃ f = 1 with a filling ν̃ f = 2 per enlarged unit cell; hence f
could naturally form an insulator with total Chern number
C = 2.
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In terms of the Chern-Simons theory, this state corresponds
to the following Lagrangian:

L = − 2

4π
b ∧ db + 1

2π
b ∧ da − 1

2π
a ∧ d (a1 + a2)

+
∑
i=1,2

1

4π
ai ∧ dai. (1)

The gauge field b is the “dual” of the current of the bosonic
parton �; a1 and a2 are the dual of the fermionic parton f
that fills the two Chern bands with Chern number (+1,+1);
a is the gauge field that couples to both � and f . The CS
Lagrangian Eq. (1) can also be written in a more compact form
using the K matrix [48]:

L = 1

4π
K2/3,IJaI ∧ daJ , (2)

where

K2/3 =

⎛
⎜⎜⎝

−2 0 0 1
0 1 0 −1
0 0 1 −1
1 −1 −1 0

⎞
⎟⎟⎠ (3)

and aI = (b, a1, a2, a). We will hereafter abbreviate a ∧ db
as adb without loss of clarity. The topological ground state
degeneracy is given by the determinant of K2/3, which in
this case is 3. To derive the Hall conductivity of this state,
we need to couple aI to the external electromagnetic field A,
through a “charge vector” [48]. In the current construction,
the charge vector is v = (1, 0, 0, 0), meaning that only the
bosonic parton � carries electric charge +1. By integrating
out all the dynamical gauge field aI , one can show that the
total Hall conductivity of the state is σH = −2/3, i.e., σH =
vK−1vT = −2/3.

An alternative picture is that the 2/3 state can be viewed
as holes at filling 1, forming a ν = −1 integer quantum Hall
state, together with electrons at filling 1/3, forming a ν = 1/3
Laughlin state. The K matrix for this construction is

K ′
2/3 =

(−1 0
0 3

)
, (4)

with the charge vector v = (1,−1). The first diagonal element
of K ′

2/3 describes the ν = −1 quantum Hall state and the sec-
ond diagonal element describes the ν = 1/3 Laughlin state.
The K matrix in Eq. (3) is related to the K ′ matrix in Eq. (4)
(up to two extra fields that describe a trivial, neutral sector) by
a similarity transformation in SL(4, Z ):

W T K2/3W =

⎛
⎜⎜⎝

−1 0 0 0
0 3 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠,

W =

⎛
⎜⎜⎝

−1 1 1 0
−1 2 0 0

0 −1 0 0
−2 2 1 −1

⎞
⎟⎟⎠. (5)

The third picture of constructing the 2/3 state is through
the composite fermion (CF) and flux attachment. As we men-
tioned before, when the holes fill a valley polarized Chern

band, the physics is topologically equivalent to an integer
quantum Hall state where a hole “sees” a φh = −1 magnetic
flux quantum through each moiré unit cell. Then a compos-
ite fermion is constructed by binding the hole with two-flux
quanta of a gauge field a, i.e., the composite fermions will
“see” total gauge flux φc f = φh + 2ρc f . When the hole den-
sity is 2/3 per moiré unit cell, the density of φc f would
be 1/3 flux quantum per moiré unit cell. Hence the com-
posite fermions would naturally fill two Landau levels of
φc f and form an integer quantum Hall state with compos-
ite fermion Hall conductivity σc f = 2. When inserting an
extra flux density δφc f into the system, composite fermion
density δρc f = σc f δφc f will be accumulated and the total
Hall conductivity is the ratio between the extra density of
composite fermions and the density of extra magnetic flux:
σH = δρc f /δφh = σc f /(1 − 2σc f ) = −2/3. This composite
fermion construction for the 2/3 state does not break trans-
lation. The composite fermion picture for understanding the
observed FQAH states in twisted bilayer MoTe2 is strongly
supported by recent numerical studies [23,24,27].

To formally implement this flux attachment [49], we intro-
duce a noncompact gauge field b whose charge is the flux of
a. We will demonstrate that a U (1)−2 CS term for b attaches
two units of fluxes of a to the composite fermion, which
also carries charge under gauge field combination a + A. The
Lagrangian of all the field mentioned above reads

L = − 2

4π
bdb + 1

2π
bda + LCF[ψ, a + A], (6)

where the mutual CS term between b, a implies that the flux
of a is charged under b and the last term of Eq. (6) is the CF
Lagrangian capturing the physics that the CF (ψ) is coupled
to a + A.

The equations of motion with respect to b and a lead to the
following relations:

δL
δb0

= 0 → da

2π
= 2db

2π
,

δL
δa0

= 0 → ρc f = db

2π
. (7)

Combining the equations we obtain the relation 2ρc f = da
2π

,
which corresponds to the picture of flux attachment: each CF
is bound with two flux quanta of gauge field a.

When the CF fermion ψ fills Chern bands with total Chern
number Cc f (a nonzero integer), we need to introduce |Cc f |
copies of gauge fields ai, which are dual to the current of the
CFs:

LCF[ψ, a + A] = sgn(Cc f )
Cc f∑
i=1

1

4π
aidai − 1

2π
aid (a + A),

(8)

where each self-CS term of ai describes the CF filling a com-
plete Landau level (or equivalently Chern band with Chern
number 1). The flux current of ai, which is the dual of the CF
current, couples to a + A.

For Cc f = 2, after combining Eq. (6) and Eq. (8) we even-
tually arrive at exactly the same K matrix as that in Eq. (3),
albeit the charge vector now is (0,1,1,0), which corresponds
to shifting the electric charge from the bosonic parton � to
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TABLE I. Summary of the three formalisms that describe the three states with σH = −2/3, −1, 0, respectively. When the composite
fermions (CF) fill Chern bands with total Chern number Cc f , the physical Hall conductivity is σH = Cc f

1−2Cc f
. The charge vector for the left K

matrices are (1, 0, 0, 0)T for the first two rows and (1, 0, 0)T for the last one. The total composite fermion Chern number is given by the sum
of diagonal elements (excluding the first and last rows) of the left K matrices.

Phase CF Parton f (� in Laughlin − 1
2 state) Electron+holes (ν = −1 IQH) K matrix

σH = − 2
3 Cc f = 2 Cf = 2 Electron in 1

3 Laughlin

⎛
⎜⎜⎝

−2 0 0 1
0 1 0 −1
0 0 1 −1
1 −1 −1 0

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

−1 0 0 0
0 3 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠

σH = 0 Cc f = 0 Cf = 0 Electron in ν = 1 IQH

⎛
⎜⎜⎝

−2 0 0 1
0 1 0 −1
0 0 −1 −1
1 −1 −1 0

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠

σH = −1 Cc f = 1 Cf = 1 Electron in trivial insulator

⎛
⎝−2 0 1

0 1 −1
1 −1 0

⎞
⎠ �

⎛
⎝−1 0 0

0 0 1
0 1 0

⎞
⎠

the fermionic parton f , and it still leads to σH = −2/3. The
charge vector could be transformed to (1,0,0,0), by relabeling
a → a − A. Then the two formalisms based on parton and CF
yield exactly identical K matrices and Hall conductivity.

σH = 0 and σH = −1 states. To construct a trivial insulator
phase with σH = 0, we can still fix the bosonic parton at a
ν = −1/2 Laughlin state and let the fermionic parton f fill
two bands with Chern numbers +1,−1, respectively. The K
matrix of this state is similar to Eq. (3), with the diagonal com-
ponent K33 changed to −1. This change will lead to the Hall
conductivity σH = 0, without any topological degeneracy.

An integer QAH state with σH = −1 and coexisting CDW
order (referred to as the QAH-crystal state) can be constructed
by removing the row and column of the K matrix that in-
volves the second band of the fermionic parton, meaning
that the fermionic parton f now fills bands with total Chern
numbers +1.

In the composite fermion picture, when the CF forms a
ν = +1 quantum Hall state, inserting a +1 φh-flux quantum is
accompanied by −2 units of fluxes of a and accumulating −1
charge of CF since there is a total −1 unit of extra flux φc f ,
i.e., the CFs form a ν = −1 state with respect to φh. This state
eventually corresponds to the σH = −1 state. The K matrix
can be similarly deduced and is equivalent to that deduced
from the parton construction.

The trivial insulator with σH = 0 corresponds to the CF
forming a trivial insulator, which leads to trivial electromag-
netic response. The K matrices of the three states constructed
in this subsection are summarized in Table I.

Translation breaking enforced by filling. Importantly, when
the translation symmetry of the moiré superlattice is pre-
served, it is not possible (at least within the CF mean-field
theory) to have a direct transition from a state that fills a
CF band with Chern number Cc f = 2 and correspondingly
Hall conductivity σH = −2/3 to states with Cc f = 1, 0 and
σH = −1, 0. Since the effective field seen by the CFs is φc f =
1/3 flux quanta through each moiré plaquette, the CFs obey
the magnetic translation symmetry: T1T2 = T −1

1 T −1
2 ei2π/3 for

the two elementary translations T1,2 that enclose a moiré unit
cell. The mean-field spectrum of the CFs will be threefold

degenerate as the magnetic translation admits representations
with minimal dimensions of 3 [50].

Therefore, the translation symmetry guarantees that the
change of the Chern number 
Cc f across a transition must
have 
Cc f equal to multiples of 3, as it is given by the
number of gapless Dirac cones in the spectrum. Hence if
the transitions σH = −2/3 → −1 and σH = −2/3 → 0 are
described by changing the band Chern number of the com-
posite fermions, they can only occur when the translation
symmetry of the moiré lattice is broken, i.e., they can only
occur when there is a background charge density wave order.
In particular, the simplest scenario of CDW is to triple the unit
cell, rendering the magnetic translation trivial and permitting a
direct transition with 
Cc f = −1,−2, etc. In the next section,
we shall demonstrate explicitly direct transition from σH =
−2/3 FQAH crystal to either σH = 0 CDW or σH = −1 QAH
crytsal.

B. Phases tuned by bosonic parton �

In all the three states constructed in the last subsection, the
bosonic parton � always forms a ν = −1/2 bosonic Laughlin
state. Starting with the FQAH-crystal state with σH = −2/3,
two more states can be constructed by changing the physics of
the bosonic parton �. These states/phases are summarized in
the global phase diagram Fig. 2.

One such state is an insulator without any Hall conductiv-
ity, but it has a neutral topological order and neutral chiral
edge states, leading to quantized thermal Hall effect. This
quantum thermal Hall insulator can be obtained from the
FQAH crystal, by driving the bosonic parton � into a trivial
insulator. When � is in a trivial insulator, there is no nontrivial
response to the external electromagnetic field as � is the
parton that carries the electric charge. However, this state must
still have a nontrivial topological order, as the K matrix of this
state corresponds to Eq. (3) after removing the components
that involve gauge field b. The determinant of the remaining
3 × 3 K matrix is 2 and it is equivalent to a simple semion
topological order. The semion topological order can also be
revealed by integrating out a1 and a2, which yields a level-2
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FIG. 2. Schematic global phase diagram in terms of the parton
construction, tuned by both physics of bosonic parton � (vertical di-
rection) and fermionic parton f (horizontal directions) starting from
the FQAH crystal. We discuss interesting critical theories among the
phases shown in Sec. III.

CS term for the gauge field a. This semion topological order
with zero Hall conductivity is one of the states discussed in
Ref. [28].

The other state is a QAH-crystal state with Hall conduc-
tivity σH = +2. This state can be constructed from FQAH
crystal by driving the bosonic parton � into a “superfluid”
state. In the condensate of �, the hole operator c is identified
with f and, since f fills two bands with Chern number +1, this
leads to a QAH-crystal state with Hall conductivity σH = 2.
A QAH state without topological order is possible as we
assumed a background CDW that triples the unit cell.

III. QUANTUM PHASE TRANSITIONS

So far, we have constructed five different states centered
around the “2/3” state, in a phase diagram tuned by mean-
field physics of the bosonic parton � and the fermionic parton
f . These states can also be equally well constructed through
other formalisms, including the composite fermions and flux
attachment. In this section, we discuss the quantum phase
transitions between these states. We use the parton formalism
[e.g., Eq. (3)] in the following, while the composite fermion
formalism with a different charge vector could yield identical
results. Here we stress that the FQAH state we start with is
in fact a FQAH crystal, while the starting point of Ref. [28]
was a FQAH state without spontaneous translation symmetry
breaking. Hence different proximate phases and phase tran-
sitions are obtained in these two papers. For example, in our
current case the most natural σH = 0 insulator state next to
the σH = −2/3 state is a trivial insulator with CDW, while in
Ref. [28] the σH = 0 state has a topological order that would
lead to a nontrivial thermal Hall signal.

A. σH = −2/3 → 0 transition

To drive a transition between the FQAH-crystal state with
σH = −2/3 and a trivial CDW insulator with σH = 0, we can
keep the bosonic parton � in the ν = −1/2 state unchanged
and only change the total Chern number of the fermionic
parton bands from C = 2 to C = 0, which can be realized by
changing one of the occupied bands from C = +1 to C = −1.
If there is a direct transition between these two states, it
must involve two Dirac fermions at low energy. The complete

C2yT

FIG. 3. (Left) Zoomed in moiré Brillouin zone with the symme-
try C2yT shown that protects degeneracy of two generic Dirac cones
(black dots) aligned along the vertical axis. The arrows indicate the
action of C2y, which flips the horizontal axis. When combined with
time reversal, C2yT flips the vertical axis of the Brillouin zone and
hence protects the degeneracy of the Dirac cone as plotted. When
charge density wave forms a stripe pattern schematically shown on
the right, the symmetry is preserved and a direct transition from
σH = −2/3 → 0 could be realized.

critical theory reads

L1−2 =
∑
i=1,2

ψ̄iγ · (i∂ − a)ψi + mψ̄ψ − 1

2π
ad (a1 − b)

+ 1

4π
a1da1 − 2

4π
bdb − 1

2π
Adb, (9)

where a1, b are the dual fields associated with the filled C = 1
band of f [hence the U (1)1 for a1] and the boson � currents,
respectively. Two Dirac fermions must exist at low energy at
the transition for one f band to change from C = 1 (m > 0)
to C = −1 (m < 0).

The theory Eq. (9) can be simplified at the cost of los-
ing the proper quantization of the CS terms. Integrating out
a1 generates −1/(4π )ada and integrating out b generates
1/(8π )(A − a)d (A − a). The simplified theory then reads

L2;− 1
2

=
∑
i=1,2

ψ̄iγ · (i∂ − a)ψi + mψ̄ψ − 1

8π
ada

− 1

4π
adA + 1

8π
AdA.

We use the notation LNf ;k to label the QED Lagrangian with
Nf flavors of Dirac fermions and a Chern-Simons term at level
k.

The degeneracy of the two Dirac fermions can be guaran-
teed by extra discrete space-time symmetries. In the absence
of displacement field, the entire homobilayer twisted TMD
moiré system has a C2y symmetry and a twofold rotation along
the vertical axis in Fig. 1, as well as a time-reversal sym-
metry T . Both symmetries exchange the two valleys. Hence
each valley of the system holds a composite symmetry of
C2yT . This composite symmetry sends (kx, ky) → (kx,−ky ).
The degeneracy of the two Dirac fermions that is needed
for a direct “σH = −2/3 → σH = 0” transition in our setup
depends on the type of CDW order. For example, if the CDW
is a stripe order along the y direction with modulation along
the x direction as shown in Fig. 3, the two Dirac points could
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still be located at (kx,−ky) and (kx,−ky ) points of the BZ and
their degeneracy is still protected by the C2yT symmetry. In
contrast, if there is a

√
3 × √

3 CDW order with C3 symmetry
shown in Fig. 1, there is no scenario where C3,C2yT to-
gether protect two and only two degenerate Dirac cones. Here
we note that an out-of-plane displacement field in principle
breaks the C2y symmetry as it exchanges the two layers; hence
under a displacement field the transition may split into two.

Although the microscopic symmetry C2y of the system may
be broken by a displacement field, extra effective symmetries
may still exist in the physics of the moiré minibands. For
example, there is an extra discrete symmetry of the Hamil-
tonian that describes one valley of the system [8], which is a
composite of Rx : y → −y, and a “time reversal” that acts on
this one-valley Hamiltonian. This symmetry still exists with
the presence of the displacement field. If this symmetry is a
good approximate symmetry of the moiré miniband, it can
also protect the degeneracy of two Dirac points and a direct
transition of changing Chern number by 2, as was observed in
model studies in Refs. [8,20].

An alternative description for the same transition from
the σH = −2/3 state to the σH = 0 state can be constructed
using the “electron-hole picture”: the σH = −2/3 state can be
viewed as a composition of holes at the ν = −1 IQH state and
electrons in the Laughlin ν = 1/3 state. To drive a transition
to the σH = 0 state we need a transition of the electrons from
the ν = 1/3 state to the ν = 1 IQH state. The critical theory
reads

L1−2;eh =
∑
i=1,2

ψ̄iγ · (i∂ − a)ψi + mψ̄ψ + 1

2π
adb̃

+ 2

4π
b̃db̃ + 1

2π
Adb̃ + 1

4π
AdA. (10)

The last term + 1
4π

AdA accounts for the hole ν = −1 state
that stays unchanged throughout the transition. The rest of the
Lagrangian describes the transition of the electrons from the
ν = 1/3 state to a ν = 1 IQH state. Note now db̃ is dual to the
bosonic parton of electrons (rather than holes), which carry
charge −1; hence the coupling + 1

2π
Adb̃ has an opposite sign

from the coupling between db and A in Eq. (9). When the two
Dirac cones are gapped out by a mass, integrating out the ψ’s
gives

Lm = −sgn(m)

4π
ada + 1

2π
adb̃ + 2

4π
b̃db̃

+ 1

2π
Adb̃ + 1

4π
AdA. (11)

It is straightforward to verify that, for m > 0 (m < 0), the
theory describes states with Hall responses σH = −2/3 (σH =
0), respectively. Starting with Eq. (10), the theory simplifies
again to L2;− 1

2
after integrating out b̃.

B. σH = −2/3 → −1 transition

From the parton picture, this transition involves changing
a fermion f ’s state from integer quantum Hall state with
ν = +1 to ν = 0. This transition can be described by QED

with one Dirac fermion in the infrared; the critical theory
reads

L1−3 = ψ̄γ · (i∂ − a)ψ + mψ̄ψ − 1

8π
ada − 1

2π
ad (a1 − b)

+ 1

4π
a1da1 − 2

4π
bdb − 1

2π
Adb. (12)

We have added − 1
8π

ada to properly regularize a single Dirac
cone, which arises from another massive Dirac fermion which
must exist in the same band as ψ . Here, the single Dirac
fermion is written in the convention that, by changing the
sign of m, ψ would generate a level ±1/2 CS term for a.
Integrating out b, a1, we obtain a simplified theory (again at
the cost of not properly quantizing the CS term)

L1;−1 = ψ̄γ · (i∂ − a)ψ + mψ̄ψ − 1

4π
ada

+ 1

8π
AdA − 1

4π
adA. (13)

Similarly, when the Dirac cone is gapped out by a positive
mass term mψ̄ψ , integrating out the ψ’s gives

Lm>0 = − 3

8π
ada + 1

8π
AdA − 1

4π
adA, (14)

which generates Hall conductivity σH = −2/3. While m < 0
one has

Lm<0 = − 1

8π
ada + 1

8π
AdA − 1

4π
adA (15)

and integrating out a leaves 1
4π

AdA, describing a state with
σH = −1.

From standard boson-fermion duality [37,38], the critical
theory L1;−1 is dual to

L1;−1 ↔ |(∂ − iβ )φ|2 + 1

4π
βdβ − 1

2π
adβ − 1

8π
ada

+ 1

8π
AdA − 1

4π
adA.

Here β is another gauge field that couples to the dual bosonic
field φ. One could verify that the massive and condensed
phase of φ corresponds to Lm>(<)0, respectively, yielding
σH = −2/3,−1. One can also directly perform the duality
transformation from Eq. (12).

Integrating a in the dual bosonic theory leaves

L1;−1 ↔ |(∂ − iβ )φ|2 + 3

4π
βdβ + 1

2π
βdA + 1

4π
AdA.

(16)

This Chern-Simons-matter theory with φ coupled to a U (1)
gauge field with a CS term with level 3 is the standard
theory that describes a transition between a trivial insulator
and a fractional quantum Hall state with threefold topolog-
ical degeneracy [51]. Combined with the last term 1

4π
AdA,

which corresponds to an extra ν = −1 IQH layer, the theory
describes a transition between states with σH = −2/3 and
σH = −1. This FQAH-crystal to QAH-crystal transition also
admits another description in terms of bosonic partons, which
is a modified version of the FQAH to QAH+CDW transition
discussed in Ref. [28] driven by the condensation of three
“vortex” fields coupled to a U (1)3 Chern-Simons term. It is
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worth noting that this modified vortex condensation theory
takes the same form as Eq. (16) [52].

C. σH = −2/3 → +2 transition

Another potentially direct transition is between states 1
and 5, i.e., a transition from a FQAH-crystal state with σH =
−2/3 to a QAH-crystal state with σH = +2. In the parton
construction, this requires changing the state of � from a
ν = −1/2 Laughlin state to a “superfluid” state. This transi-
tion of � was discussed in Refs. [49,53] and it is described by
a QED with two flavors of Dirac fermions and a CS term at
level −1. In our notation, the critical theory of � is described
by a Lagrangian L2;−1 and the Dirac fermions are charges of
the gauge field b, i.e., the dual of the current of �. To describe
the transition between states 1 and 5, we need to couple b to
several other gauge fields a, ai as in Eq. (1). To wit, the critical
theory reads

L =
∑
i=1,2

χ̄iγ · (i∂ − b)χi + mχ̄χ − 1

4π
bdb − 1

2π
Adb

+ 1

2π
b ∧ da − 1

2π
a ∧ d (a1 + a2) +

∑
i=1,2

1

4π
ai ∧ dai,

where the first line is the critical theory of Laughlin to super-
fluid transition for � and the second line describes the fermion
partons and their coupling to �.

After integrating out the a and ai, we arrive at the critical
theory between states 1 and 5:

L1−5 = L̃2;−1/2

=
∑
i=1,2

χ̄iγ · (i∂ − b)χi + mχ̄χ − 1

8π
bdb − 1

2π
Adb.

(17)

We note that here the Dirac fermion χi is different from the
fermions in the previous sections, as it is charged under b
[hence the critical theory L̃2,−1/2 is different from L2;−1/2 in
Eq. (10) with different charge assignment]. The degeneracy of
two Dirac cones is again protected by C2yT in a stripe order.

Integrating out the fermion χi, we obtain the following
action:

Lm = − sgn(m)

4π
bdb − 1

8π
bdb − 1

2π
Adb. (18)

It is straightforward to verify that, for m > 0 (m < 0), the final
Hall conductivity is σH = −2/3 (σH = +2).

D. Transitions involving quantum thermal Hall insulator

Reference [28] proposed a proximate insulating phase of
the σH = −2/3 FQAH state to be one with vanishing Hall
response and a neutral topological order (TO) described by the
U (1)2 CS terms. In the current framework, this state could be
obtained by putting the bosonic parton � in a Mott insulator
state. Formally, this amounts to eliminating the dual b of the
boson current, i.e., setting b = 0, in the construction of the
2/3 state in Eq. (1). Physically, it means that the bosonic
sectors are trivially gapped in the low energy. Integrating out
a then sets a1 = −a2 and one gets a U (1)2 CS coupling of an

internal gauge field, describing the neutral TO, signified by a
quantized thermal Hall response nevertheless.

The transition from the quantum thermal Hall insulator
to the σH = −2/3 FQAH crystal or σH = +2 QAH crystal
can hence be obtained by tuning the bosonic parton � out
of the Mott phase to a Laughlin −1/2 state (for state 1) or a
superfluid (for state 5), respectively.

The “Laughlin −1/2 to Mott” transition of the bosonic
parton is realized by condensing the “vortices” of the bosonic
partons in the Laughlin −1/2 state [28]. The critical theory
describing the transition from state 1 to state 4 hence reads

L1−4 = |(∂ − ib)�v|2 − 2

4π
bdb − 1

2π
Adb

+ 1

2π
ad (b − a1 − a2) +

∑
i=1,2

1

4π
aidai. (19)

The first term describes the condensation of the vortices �v ,
which is indicated by its coupling to b, whose flux equals
the boson density. As �v condenses, the field b acquires a
gap and could be ignored. Hence one arrives at the quantum
thermal Hall insulator with σH = 0. An insulator phase of �v

just leaves the Lagrangian for the 2/3 state Eq. (1). A similar
transition was discussed in Ref. [28], albeit with three vortex
fields enforced by fractional filling 2/3.

The transition from quantum thermal Hall insulator to
QAH crystal with σH = +2 is given by the standard boson
Mott-superfluid transition,

L4−5 =|(∂ + ia − iA)�|2 − 1

2π
ad (a1 + a2) +

∑
i=1,2

1

4π
aidai.

(20)

When � is gapped, the remaining last two terms describe the
neutral topological order. The condensation of � sets a = A
and the CS terms of ai’s then give a Hall conductivity σH = 2.

As for possible tuning parameters that could induce the
transitions of � among Mott, superfluid, and Laughlin phases,
we highlight bandwidth, controllable by twist angle, pressure,
displacement field, etc., and interaction, controllable by gate
screening. A less flat band may favor � to condense as to
minimize kinetic energy, while a longer range interaction will
favor Mott insulators over Laughlin states, which are exact
ground states for a Hamiltonian with contact interactions [54].
Also, the state with σH = −2/3 can be tuned to the states with
either σH = −1 or 0 by the displacement field [3,55].

IV. SUMMARY

In this work we discussed the phase diagram centered
around a FQAH-crystal state with σH = −2/3 state at filling
−2/3, motivated by recent experiments. Various phases and
phase transitions can be obtained by tuning the physics of the
bosonic and fermionic partons, including a direct transition
between the σH = −2/3 state and a trivial insulating state
with σH = 0 observed in recent experiments. Interestingly, we
also find a direct transition between the σH = −2/3 FQAH
state and a σH = −1 QAH state.

Our formalism and conclusions can easily be generalized
to other FQAH states. For example, if the bosonic parton �

forms a ν = −1/p Laughlin state (with even integer p) and the
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fermionic parton (or composite fermion) f fills Chern bands
with total Chern number Cc f , we would end up with an FQAH
state with Hall conductivity

σH = Cc f

1 − pCc f
. (21)

For example, when p = −2,Cc f = 1, i.e., the composite
fermions fill a Chern band with Cc f = 1, one constructs a
Laughlin state with σH = 1/3. When the CFs go through a
transition from Cc f = 1 → 0, the electronic state transitions
from σH = 1/3 → 0. The critical theory is similar to that of
σH = −2/3 → −1 with the Lagrangian L1;−1 in Eq. (13),
with an only difference of an integer quantum Hall layer de-
scribed by −1/(4π )AdA. The critical theory for the transition
hence reads

L1/3→0 = L1;−1 − 1

4π
AdA. (22)

More states and phase transitions can be constructed by
changing the “mean-field states” of � and f . This general
construction will be useful to understand the growing number
of FQAH states [7] observed in this rapidly developing field.
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