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Waves in a variety of fields in physics, such as mechanics, optics, spintronics, and nonlinear systems, obey
generalized eigenvalue equations. To study non-Hermitian physics of those systems, in this paper, we construct a
non-Bloch band theory of generalized eigenvalue problems. Specifically, we show that eigenvalues of a transfer
matrix lead to a certain condition imposed on the generalized Brillouin zone, which allows us to develop a
theory to calculate the continuum bands. As a concrete example, we examine the non-Hermitian skin effect of
photonic crystals composed of chiral metamaterials by invoking our theoretical framework. When the medium
has circularly polarized eigenmodes, we find that each eigenmode localizes at either of the edges, depending
on whether it is left- or right-circularly polarized. In contrast, when the medium only has linearly polarized
eigenmodes, every eigenmode localizes to the edge of the same side independent of its polarization. We
demonstrate that the localization lengths of those eigenmodes can be determined from the chiral parameters
and eigenfrequencies of the photonic crystal.
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I. INTRODUCTION

Non-Hermitian physics has been gaining growing interest
over the past few years, in which one can find rich phe-
nomena with no counterparts in Hermitian regimes [1,2].
Non-Hermitian systems belong to a class of nonequilibrium
systems which can be described by certain non-Hermitian
operators, whose eigenvalues characterize the dynamical be-
haviors. A prominent example is the non-Hermitian skin
effect, in which numerous eigenstates are localized at bound-
aries of non-Hermitian systems [3–21]. Accordingly, it must
be necessary to modify the conventional Bloch band theory
in such a way that the continuum energy bands reproduce the
energy levels of non-Hermitian systems with open boundary
conditions. The resulting theory is called the non-Bloch band
theory, which has been successful to calculate the contin-
uum energy bands in the presence of the non-Hermitian skin
effect [5,22–27].

On another front, there exist several physical platforms that
can be described by generalized eigenvalue equations in, e.g.,
mechanics [28], optics [29,30], spintronics [31,32], and non-
linear systems [33]. Notably, even if all operators appearing
in generalized eigenvalue equations are Hermitian, the corre-
sponding eigenvalues can be complex-valued [34,35]. Indeed,
it has been proposed that bosonic Bogoliubov–de Gennes
systems exhibit the non-Hermitian skin effect in the regime
where the pseudo-Hermiticity is broken [36,37]. Aside from
this example, several non-Hermitian phenomena in various
systems described by generalized eigenvalue equations have
been investigated [38–40]. It remains, however, unclear how
and even whether the non-Bloch band theory can be extended
to generalized eigenvalue problems.

In our paper, we develop a non-Bloch band theory
to study non-Hermitian waves in a one-dimensional (1D)

periodic medium described by a generalized eigenvalue equa-
tion. In the context of the non-Bloch band theory, the
continuum bands can be obtained by determining the gen-
eralized Brillouin zone for the complex-valued Bloch wave
number. We show that the eigenvalues of a transfer matrix
of the medium lead to a certain condition imposed on the
generalized Brillouin zone. The generalized theory proposed
here allows us to explore the non-Hermitian skin effect in
photonic crystals composed of chiral metamaterials. While
parity-time-symmetric metamaterials have been investigated
in, e.g., Refs. [41,42], our motivation is to go beyond the pre-
vious works. We confirm that the continuum bands obtained
from the generalized Brillouin zone reproduce the eigenvalues
of finite-size systems. In particular, when the medium has
circularly polarized eigenmodes, we find that each eigenmode
can localize at either of the edges, depending on whether
it is left- or right-circularly polarized. This finding suggests
the interesting possibility of controlling which side excitation
modes localize at simply by changing a polarization of inci-
dent light while keeping the medium unchanged. In contrast,
when the medium only has linearly polarized eigenmodes, our
analysis shows that every eigenmode localizes at one edge of
the system.

Before concluding this section, we shall compare the
present paper with previous studies [26,43]. The latter fo-
cused on dielectric media with optical loss and investigated
electromagnetic waves in the two-dimensional plane where
the dielectric tensor is anisotropic. There, one of the key
findings was that the combination of the anisotropy and the
loss gives rise to the non-Hermitian skin effect, and the re-
sulting localization depends on wave numbers of a specified
direction. In photonic crystals composed of the dielectric
media, for instance, the non-Bloch band theory has revealed
that all the continuum bands share the common generalized
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Brillouin zone. Meanwhile, in the present paper, we investi-
gate standing waves of electromagnetic waves forming along
the stacking direction of photonic crystals composed of chiral
metamaterials. Here, the key ingredient of the occurrence of
the non-Hermitian skin effect is chirality. Indeed, the localiza-
tion lengths of the skin modes depend on chirality parameters
and eigenfrequencies of the photonic crystals. In addition, it
is remarkable that the multiple generalized Brillouin zones
appear, depending on the continuum bands, in contrast to the
previous studies.

The rest of this paper is organized as follows. We introduce
a generalized eigenvalue equation, explain the construction of
a transfer matrix, and show the condition for the generalized
Brillouin zone in Sec. II. We next study the non-Hermitian
skin effect of linearly and circularly polarized eigenmodes of
the photonic crystals by invoking the non-Bloch band theory
in Sec. III. Finally, in Sec. IV, we summarize the results and
comment on the perspective of this paper.

II. NON-BLOCH BAND THEORY

We develop a theory to calculate the continuum bands in
1D continuous periodic models described by a generalized
eigenvalue equation. Our framework is based on a transfer
matrix method, where the eigenvalues of a transfer matrix lead
to the condition for the generalized Brillouin zone.

A. Generalized eigenvalue equation

We study the waves in a 1D spatially periodic medium
which can be modeled by a generalized eigenvalue equation.
We denote a lattice constant by a and take the convention
of the time dependence of the wave function to be e−iωt .
Furthermore, we assume that the wave function is written as
a multicomponent vector, �(z) = (ψ1(z), . . . , ψ2n(z))T, with
n ∈ N and z ∈ R. The generalized eigenvalue equation gov-
erning our setup then reads

d

dz
�(z) = i

ω

c
A(z)�(z), (1)

where c is a positive constant and A(z) is a 2n × 2n matrix
satisfying A(z + a) = A(z). The form of Eq. (1) naturally ap-
pears by rewriting the Maxwell’s equations, as demonstrated
later.

We aim to investigate a method to calculate the continuum
bands, including the asymptotic eigenvalues of the system
with open boundary conditions in the limit of a large system
size. To this end, we focus on the plane-wave expansion of the
wave function given by

�(z) =
∑

n

�̃

(
k + 2nπ

a

)
exp

[
i

(
k + 2nπ

a

)
z

]
, (2)

where k represents the Bloch wave number. The generalized
eigenvalue equation can then be rewritten in the form of a
secular equation as follows:(

k+ 2nπ

a

)
�̃

(
k+ 2nπ

a

)
− ω

∑
n′

Ãn−n′�̃

(
k+ 2n′π

a

)
= 0,

(3)

where Ãn is a Fourier coefficient of A(z). The localized na-
ture due to the non-Hermitian skin effect can be taken into
account by considering a complex-valued Bloch wave number
k [5,22]. Therefore, it is necessary to determine the general-
ized Brillouin zone to obtain the continuum bands by solving
Eq. (3).

B. Transfer matrix

We next utilize a transfer matrix to develop the non-Bloch
band theory which is applicable to the system described by
Eq. (1). Specifically, we can define the transfer matrix as
follows:

�(z + a) = T �(z), (4)

where the wave function in a unit cell is transferred to that
in the next unit cell by the transfer matrix T , i.e., the transfer
matrix plays the same role as a translation operator. The eigen-
values of the transfer matrix construct a set of eika (k ∈ C),
which gives the generalized Brillouin zone. We note that,
when there is a translation symmetry, eigenvalues of a transfer
matrix belong to a set of eika (k ∈ R) [44,45].

The explicit form of the transfer matrix in our setup can be
obtained by

T = P exp

(
i
ω

c

∫ a

0
dzA(z)

)
, (5)

where P is a path-ordered product. Importantly, we find that
the generalized Brillouin zone is formed by the eigenvalues of
the transfer matrix satisfying

|ρn| = |ρn+1|, (6)

where we number 2n eigenvalues so as to satisfy

|ρ1| � · · · � |ρ2n|. (7)

The trajectories of β = reiRe(k)a with r ≡ |ρn| = |ρn+1| give
the generalized Brillouin zone. Thereby, one can calculate the
continuum bands by solving Eq. (3) with the complex-valued
Bloch wave number. We note that Eq. (6) can be proved by
using tight-binding models as shown in the Appendix, and it
has also been recently proved in continuous models [27]. In
Sec. III, we shall demonstrate that the calculated continuum
bands indeed reproduce the discrete eigenvalues of photonic
crystals.

III. PHOTONIC CRYSTAL

Our main interest in this section lies in a chiral meta-
material which exhibits the magnetoelectric coupling via
subwavelength structures. We then apply the non-Bloch band
theory developed in Sec. II to photonic crystals composed of
chiral metamaterials, which allows for investigating the non-
Hermitian skin effect in the medium with linearly or circularly
polarized eigenmodes.

A. Setup

We consider the photonic crystal in which two media ex-
hibiting the magnetoelectric coupling are alternately stacked
in a periodic manner, where the layers 1 and 2 have the
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FIG. 1. Schematic figures of the photonic crystal. (a) Unit cell to
calculate the generalized Brillouin zone. The constitutive parameters
and thickness of the layer j ( j = 1, 2) are set to be (ε j, ξ j, ζ j, μ j ) and
aj , respectively. The lattice constant a is given by a1 + a2. (b) Finite-
size photonic crystal. The black box represents the unit cell. We
impose the perfect electric conductor (PEC) boundary condition on
both ends of the system.

thicknesses a1 and a2, respectively [see Fig. 1(a)]. We then
investigate the eigenmodes of the photonic crystal surrounded
by perfect electric conductors (PECs) without external exci-
tation [see Fig. 1(b)]. We note that the x and y components
of the electric fields vanish at the ends of the system. Let us
suppose that the electromagnetic waves form standing waves
along the z direction and the polarization is perpendicular
to the stacking direction. The electromagnetic waves in the
photonic crystal can be described by the Maxwell’s equations

∇ × E = iωB, ∇ × H = −iωD, (8)

associated with the constitutive relation at each layer(
D
B

)
=

(
ε0ε̂ j ξ̂ j/c
ζ̂ j/c μ0μ̂ j

)(
E
H

)
, ( j = 1, 2), (9)

where ε0, μ0, and c are the vacuum permittivity, the vacuum
permeability, and the vacuum speed of light, respectively.
Furthermore, ε̂ j and μ̂ j are the relative permittivity and
permeability tensors, respectively, and ξ̂ j and ζ̂ j are the chi-
rality tensors expressing the degrees of the magnetoelectric
coupling. One can then rewrite the Maxwell’s equations as
follows:

d

dz

⎛
⎜⎜⎜⎝

√
ε0Ex(z)√
ε0Ey(z)√
μ0Hx(z)√
μ0Hy(z)

⎞
⎟⎟⎟⎠ = i

ω

c
A(z)

⎛
⎜⎜⎜⎝

√
ε0Ex(z)√
ε0Ey(z)√
μ0Hx(z)√
μ0Hy(z)

⎞
⎟⎟⎟⎠, (10)

where A(z) is represented by

A(z) = i

(
σyζ̂ j σyμ̂ j

−σyε̂ j −σyξ̂ j

)
, (11)

when z is in the layer j. We note that σ0 and (σx, σy, σz ) denote
a 2 × 2 identity matrix and the Pauli matrices, respectively.

Throughout our paper, we study the case where the relative
permittivity and permeability tensors satisfy ε̂ j = ε jσ0 and
μ̂ j = μ jσ0, respectively, and iξ̂ jσy and −iσyζ̂ j are simultane-
ously diagonalizable. Let Pj denote the matrix diagonalizing
iξ̂ jσy and −iσyζ̂ j . The linear transformations of the electric
and magnetic fields at each layer,(

Ẽ+(z)
Ẽ−(z)

)
= P−1

j

(
Ex(z)
Ey(z)

)
,

(
H̃+(z)
H̃−(z)

)
= P−1

j σy

(
Hx(z)
Hy(z)

)
,

(12)

then allow us to derive the block diagonalization form of
Eq. (10) as follows:

d

dz

⎛
⎜⎜⎜⎝

√
ε0Ẽ+(z)√
μ0H̃+(z)√
ε0Ẽ−(z)√
μ0H̃−(z)

⎞
⎟⎟⎟⎠ = i

ω

c

(
Ã+(z) O

O Ã−(z)

)⎛
⎜⎜⎜⎝

√
ε0Ẽ+(z)√
μ0H̃+(z)√
ε0Ẽ−(z)√
μ0H̃−(z)

⎞
⎟⎟⎟⎠,

(13)
where Ã±(z), with z being in the layer j, are represented by

Ã±(z) =
(−ζ j,± iμ j

−iε j −ξ j,±

)
. (14)

Here, ξ j,± and ζ j,± are the eigenvalues of iξ̂ jσy and −iσyζ̂ j ,
respectively. It is worthwhile to mention that the eigenvectors
of iξ̂ jσy or, equivalently, −iσyζ̂ j , determine polarizations of
the eigenmodes. For the sake of later convenience, we denote
the eigenvalues of Eq. (14) by λ j,±, λ̄ j,±.

B. Transfer matrix and generalized Brillouin zone

According to Eq. (13), the transfer matrix of the photonic
crystal also has the block diagonalization form, which is given
by

T =
(

T+ O
O T−

)
, (15)

where

T± = P exp

(
i
ω

c

∫ a

0
dzÃ±(z)

)
. (16)

To obtain the generalized Brillouin zone, we calculate the
determinants of the block transfer matrices T±. Let Uj,± ( j =
1, 2) denote the matrices diagonalizing T±. Equation (16) can
then be written as

T± = U2,±

(
eiωλ2,±a2/c 0

0 eiωλ̄2,±a2/c

)
U −1

2,±

×U1,±

(
eiωλ1,±a1/c 0

0 eiωλ̄1,±a1/c

)
U −1

1,±, (17)

and one can obtain

det T± = exp

⎡
⎣i

ω

c

2∑
j=1

(
λ j,± + λ̄ j,±

)
a j

⎤
⎦. (18)

We note that, in this case, the following facts enable us
to straightforwardly calculate the generalized Brillouin zone.
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First, each of the eigenvalues ρ1,±, ρ2,± of the block transfer
matrices T± induces the condition for the generalized Bril-
louin zone, which means that

|ρ1,±| = |ρ2,±|. (19)

Second, the product of the eigenvalues is equal to the deter-
minant of the block transfer matrix. Therefore, one can get
the generalized Brillouin zones as closed loops formed by
r±eiRe(k)a, where r± are given by

r± =
√

|det T±|. (20)

C. Linearly polarized eigenmodes

We first investigate the case where the eigenmodes of the
photonic crystal are linearly polarized. The chirality tensors
are then given by

ξ̂ j =
(

0 ξxy, j

ξyx, j 0

)
, ζ̂ j =

(
0 ζxy, j

ζyx, j 0

)
, (21)

with j = 1, 2. One can easily check that the eigenvectors
of iξ̂ jσy and −iσyζ̂ j are indeed linearly polarized, i.e., they
are proportional to (1, 0)T and (0, 1)T. The correspond-
ing eigenvalues are given by (ξ j,+, ξ j,−) = (−ξxy, j, ξyx, j ) and
(ζ j,+, ζ j,−) = (−ζyx, j, ζxy, j ). We focus on the governing equa-
tion obtained from one block of Eq. (13), which can be written
as

d

dz

(√
ε0Ex(z)√
μ0Hy(z)

)
= i

ω

c
A(z)

(√
ε0Ex(z)√
μ0Hy(z)

)
, (22)

where A(z) is represented by

A(z) =
(

ζyx, j μ j

ε j ξxy, j

)
, (23)

when z is in the layer j. We note that Eq. (22) and the other
block of Eq. (13) describe the linearly polarized eigenmodes
whose polarization vectors lie in the x and y axis, respectively.
Clearly, these eigenmodes are independent of each other.

As shown in Sec. III B, the generalized Brillouin zone can
be obtained by reiRe(k)a, where r is given by

r = exp

⎡
⎣− 1

2c
Im

⎛
⎝ω

2∑
j=1

(
ξxy, j + ζyx, j

)
a j

⎞
⎠

⎤
⎦. (24)

We note that Eq. (24) reproduces the result obtained in
Ref. [40] when ξxy, j = ζyx, j . One can infer from Eq. (24) that
not only the chirality parameters but also the eigenfrequencies
contribute to the localization of the non-Hermitian skin effect.
Meanwhile, the non-Hermitian skin effect disappears when
the system becomes reciprocal, i.e., ξ̂ = −ζ̂ T.

Equation (24) allows us to determine the generalized
Brillouin zones [see Fig. 2(b)], which deviate from the con-
ventional Brillouin zone. We then calculate the continuum
bands from the generalized Brillouin zones [red lines in
Fig. 2(a)] and confirm that the continuum bands reproduce
the eigenvalues of a finite-size system [red dots in Fig. 2(c)].
We note that the red continuum bands are distinct from the
ones obtained from the real-valued Bloch wave number [black
curves in Fig. 2(a)]. Finally, Fig. 2(d) shows that the eigen-
modes are localized due to the non-Hermitian skin effect, and
this localization occurs at only one side of the system.

(a) (b)

(c) (d)

Band1

Band2
Band3

Band4

FIG. 2. Non-Hermitian skin effect of the linearly polarized
eigenmodes. (a) Continuum bands calculated from the complex-
valued Bloch wave number (red) and real-valued Bloch wave
number (black). (b) Generalized Brillouin zones (color loops) and
conventional Brillouin zone (black dashed circle). (c) Eigenval-
ues of a finite-size system under the perfect electric conductor
(PEC) boundary condition (red) and a periodic boundary condi-
tion (PBC) (black). The system size is set to be 20a. (d) Spatial
profiles of all eigenmodes included in band 1. We set the pa-
rameters as ε1 = μ1 = 1, ξxy,1 = ζyz,1 = 0, ε2 = 4, μ2 = 1, ξxy,2 =
−0.3i, ζyx,2 = 0.1, and a1 = 0.75a.

D. Circularly polarized eigenmodes

We next investigate the case where the eigenmodes of the
photonic crystal are circularly polarized. The chirality tensors
are given by

ξ̂ j = ξ jσ0, ζ̂ j = ζ jσ0, ( j = 1, 2), (25)

for which the eigenvectors of iξ̂ jσy and −iσyζ̂ j are propor-
tional to (1,±i)T. The corresponding eigenvalues are given by
(ξ j,+, ξ j,−) = (−iξ j, iξ j ) and (ζ j,+, ζ j,−) = (iζ j,−iζ j ). The
governing equations then read

d

dz

(√
ε0E±(z)√
μ0H±(z)

)
= i

ω

c
A±(z)

(√
ε0E±(z)√
μ0H±(z)

)
, (26)

where A±(z) is represented by

A±(z) =
(∓iζ j iμ j

−iε j ±iξ j

)
(27)

when z is in the layer j. We note that (E+(z), H+(z)) and
(E−(z), H−(z)) correspond to the left- and right-circularly
polarized eigenmodes, respectively. In contrast to the linearly
polarized case discussed in Sec. III C, these circularly polar-
ized eigenmodes are not independent of each other, which
means that the corresponding eigenvalues are degenerate.
Equation (20) allows us to calculate the generalized Brillouin
zones of the left- (+) and right- (−) circularly polarized
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(a)

(b1) (b2)

(c) (d)

Band1

Band2
Band3

Band4

FIG. 3. Non-Hermitian skin effect of the circularly polarized
eigenmodes. (a) Continuum bands calculated from the complex-
valued Bloch wave number (red) and real-valued Bloch wave number
(black). (b) Generalized Brillouin zones (color loops) and conven-
tional Brillouin zone (black dashed loop). The generalized Brillouin
zones of the left- and right-circularly polarized eigenmodes are
shown in (b1) and (b2), respectively. (c) Eigenvalues of a finite-
size system under the perfect electric conductor (PEC) boundary
condition (red) and a periodic boundary condition (PBC) (black).
The system size is set to be 20a. (d) Spatial profiles of the
left- (red) and right- (blue) circularly polarized eigenmodes with
ωa/2πc = 0.2523. We set the parameters as ε1 = μ1 = 1, ξxy,1 =
ζyz,1 = 0, ε2 = 4, μ2 = 1, ξ2 = 0.1, ζ2 = −0.1, and a1 = 0.75a.

eigenmodes, where r± reads

r+ = exp

⎡
⎣− 1

2c
Re

⎛
⎝ω

2∑
j=1

(
ξ j − ζ j

)
a j

⎞
⎠

⎤
⎦, r− = 1

r+
.

(28)
We show the generalized Brillouin zones of the left-

and right-circularly polarized eigenmodes in Figs. 3(b1) and
3(b2), respectively, and the corresponding continuum bands
are shown in Fig. 3(a). One can confirm that the eigenvalues
of the two circularly polarized eigenmodes are degenerate,
while the generalized Brillouin zones are distinct from each
other. Figures 3(a) and 3(c) indicate that the continuum bands
indeed reproduce the eigenvalues of a finite-size system. Fur-
thermore, as shown in Fig. 3(d), the left-circularly polarized
eigenmode (red) is localized at the right boundary, while the
right-circularly polarized eigenmode (blue) is localized at the

opposite boundary. These localization behaviors are in a stark
contrast to the case of the medium with the linearly polarized
eigenmodes; in the latter, all the eigenmodes localize to the
edge of the same side. We emphasize that this qualitative
difference originates from the reciprocity operation defined
in Ref. [40]. Indeed, the medium considered here is invari-
ant under the reciprocity operation, which converts the right-
(left-) circularly polarized eigenmodes to the left (right) ones.
Thereby, the non-Hermitian skin effect persists even if the
system is reciprocal, i.e., ξ̂ = −ζ̂ T.

IV. SUMMARY AND DISCUSSIONS

In this paper, we develop the non-Bloch band theory of
non-Hermitian systems described by the generalized eigen-
value equation. One can calculate the generalized Brillouin
zone from the eigenvalues of the transfer matrix. The theory
allows us to investigate non-Hermitian physics of multicom-
ponent wave functions exhibiting the non-Hermitian skin
effect, in contrast to Refs. [26,27] which have studied the non-
Hermitian skin effect of single-component wave functions.
Indeed, we demonstrate that the theory is applicable to elec-
tromagnetic waves in the photonic crystals composed of the
chiral metamaterials. As a result, we find that the localization
properties of the skin modes can qualitatively change depend-
ing on the polarization of the eigenmodes. Notably, when the
medium has circularly polarized eigenmodes, the skin modes
can localize at either of edges depending on whether it is left-
or right-circularly polarized.

We remark that there is plenty of room to extend the theo-
retical analysis performed in the present paper. While we have
focused on the case where the medium has linearly or circu-
larly polarized eigenmodes, one can study the non-Hermitian
skin effect of elliptically polarized eigenmodes by setting the
chirality tensors to be

ξ̂ j =
(

ξxx, j 0
0 ξyy, j

)
, ζ̂ j =

(
ζxx, j 0

0 ζyy, j

)
, (29)

satisfying ξxx, jζxx, j = ξyy, jζyy, j with j = 1, 2. Additionally,
the non-Hermitian skin effect of various polarized eigen-
modes can be explored by changing the forms of ε̂, ξ̂ , ζ̂ , and
μ̂ instead of the present setup. We expect that one can study
topological edge states of the photonic crystal by defining
topological invariants from the generalized Brillouin zone,
similar to the way discussed in Refs. [26,40].

It merits further study to analyze how the eigenmodes of
the photonic crystal with open boundary conditions can actu-
ally be excited by incident light. We point out that the results
revealed in this paper suggest the possibility of controlling the
localization properties of excitation modes simply by chang-
ing a polarization of incident light while keeping the medium
unchanged. Indeed, there has been an experimental proposal
to modulate excitation modes by circularly polarized incident
light [46]. For example, in the photonic crystal investigated in
Sec. III D, we expect that a modulation of incident light from
a linear polarization to a circular polarization would change
the localization positions of the excitation modes from both
ends to one end.

In practice, photonic crystals have complex-valued eigen-
frequencies because optical gain and loss are unbalanced,
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unlike the photonic crystal considered in this paper. Our
previous work has investigated the excitation of the cor-
responding eigenmodes by incident light with real-valued
frequencies [43]. Meanwhile, it is intriguing to study the
localization behavior of those excited modes. Indeed, the
non-Hermitian skin effect in the transient regime has been
experimentally observed in acoustics [21]. The investigation
of the transient non-Hermitian skin effect in photonics is left
as a future work.

Finally, we comment on the feasibility of the photonic crys-
tals and the measurement possibility of the skin modes. We
remark that Refs. [42,47] proposed a chiral metamaterial slab
which has circularly polarized eigenmodes. Hence, the peri-
odic arrangement of the chiral metamaterial would realize the
photonic crystal considered in Sec. III D. Meanwhile, to our
knowledge, there have been no proposals for chiral metamate-
rials which have linearly polarized eigenmodes. Nevertheless,
multiferroic materials would allow us to realize the photonic
crystal considered in Sec. III C. Furthermore, it would be
possible to observe the skin modes emerging in the photonic
crystals in the same way as the measurements of topological
edge states, directly [48] or indirectly [49].
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APPENDIX: TRANSFER MATRIX IN TIGHT-BINDING
MODELS

In this Appendix, we discuss a method to construct a
transfer matrix in 1D non-Hermitian tight-binding systems
along the lines of Ref. [45]. We derive the condition for
the generalized Brillouin zone in terms of the eigenvalues
of the transfer matrix. One can indeed see that the band
structure calculated from the generalized Brillouin zone
reproduces the energy eigenvalues under open boundary con-
ditions.

1. Setup

We start from 1D non-Hermitian tight-binding systems
which are described by

H =
∑

i

N∑
j=−N

q∑
μ,ν=1

t j,μνc†
i+ j,μci,ν , (A1)

where ci,ν is an annihilation operator of a particle at sublattice
ν in the ith unit cell, and t j,μν is not equal to t∗

− j,νμ. We
assume that the particles hop to the N th-nearest unit cell. In
Eq. (A1), sublattice sites in a unit cell are connected to up
to the 2N th-nearest-neighbor unit cells via the hopping am-
plitudes. Meanwhile, we can enlarge a unit cell so sublattice
sites in a given cell are connected to only the nearest-neighbor

FIG. 4. Schematic figures, generalized Brillouin zones, and
eigenenergies of the non-Hermitian Su-Schrieffer-Heeger model.
(a) Unit cells represented by the dashed boxes. (b) Supercell of
our choice represented by the box. (c) Generalized Brillouin zones.
(d) Continuum energy bands (red) and eigenenergies of a finite-size
system with open boundary conditions (black). The system size is set
to be L = 50. We set the system parameters as t1 = 1, t2 = 0.7, t3 =
1.2, and γ = 4/3.

cells [44,45]. The enlarged unit cell is called a supercell,
including s � qN degrees of freedom, the definition of which
is not unique. Let cn denote a vector of the annihilation op-
erators of the particles in the nth supercell. Equation (A1)
can then be rewritten as the reduced form including only the
nearest-neighbor hopping amplitudes,

H =
∑

n

(c†
nJLcn+1 + c†

nMcn + c†
n+1J†

Rcn), (A2)

where JL and JR are hopping matrices and M is an on-site
matrix. The reduced form of the real-space eigenequation
reads

JL�n+1 + M�n + J†
R�n−1 = E�n, (A3)

where �n is a wave function for the nth supercell. We note
that the systems become Hermitian when JL = JR and M is a
Hermitian matrix.

In the following, we focus on the systems with bidi-
rectional hopping amplitudes, e.g., the non-Hermitian Su-
Schrieffer-Heeger (SSH) model [see Fig. 4(a)]. The hopping
matrices JL and JR are then written in the form of a lower
or upper triangular matrix with zero diagonal elements,
satisfying

J2
L = J2

R = O. (A4)

We note that taking a sufficiently large supercell ensures
Eq. (A4). Indeed, the physical interpretation of Eq. (A4) is
that, in a given supercell, no sublattice sites are connected
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to both the left and right adjacent supercells. For the sake of
simplicity, we further assume that

rank(JL ) = rank(JR) = r, (A5)

which means that, in a given supercell, r sublattice sites
are connected to the adjacent supercell. In that situation, we
derive the transfer matrix of the systems from Eq. (A3). To
this end, we utilize the singular value decompositions of the
hopping matrices given by

JL = X�LY †, JR = V �RW †, (A6)

where �L and �R are r × r diagonal matrices including the
singular values of JL and JR, respectively, and X,Y,V , and W
are s × r matrices satisfying

X †X = Y †Y = V †V = W †W = 1l (A7)

and

X †Y = V †W = O. (A8)

It is worth noting that Eq. (A8) is always ensured because of
Eq. (A4). We can then rewrite Eq. (A3) as

�n = GX�Lβn+1 + GW �Rαn−1, (A9)

where αn = V †�n, βn = Y †�n, and G = (E − M )−1. For the
sake of convenience, let Gab denote B†GA for s × r matrices
A, B. Equation (A9) leads to the recursion equation for αn and
βn given by (

βn+1
αn

)
= T

(
βn

αn−1

)
, (A10)

where T is the transfer matrix explicitly written as

T =
(

�−1
L G−1

xy −�LG−1
xy Gwy�R

GxvG−1
xy

(
Gwv − GxvG−1

xy Gwy
)
�R

)
. (A11)

We note that the size of the transfer matrix is independent of
the choice of a supercell.

2. Condition for the generalized Brillouin zone

We show that the condition for the generalized Brillouin
zone can be obtained from the eigenvalues of the transfer
matrix. For the sake of simplicity, we suppose that the transfer
matrix is a diagonalizable matrix, for which the eigenvalue
problem is written as

T ϕ(l ) = ρlϕ
(l ), (A12)

with l = 1, · · · , 2r, where we number the eigenvalues so as
to satisfy |ρ1| � · · · � |ρ2r |. In the following, we focus on a
finite-size system with open boundary conditions expressed
by

�0 = �L+1 = 0, (A13)

where L is a system size. One can immediately obtain the
boundary equation from Eq. (A10) as follows:(

0
αL

)
= T L

(
β1
0

)
. (A14)

We note that one can take αL and β1 to be arbitrary vectors.
To solve Eq. (A14), we expand the vectors included in this
equation in terms of the eigenvectors of the transfer matrix,
which leads to (

β1
0

)
=

2r∑
l=1

alϕ
(l ), (A15)

(
0
αL

)
=

2r∑
l=1

al (ρl )
Lϕ(l ). (A16)

Let Pα = (O, 1l) and Pβ = (1l, O) denote r × 2r matrices.
Acting Pα and Pβ on Eqs. (A15) and (A16), respectively, we
get

2r∑
l=1

alPαϕ(l ) = 0,

2r∑
l=1

al (ρl )
LPβϕ(l ) = 0. (A17)

Equation (A17) is a set of algebraic equations for a1, · · · , a2r ,
and we can recast it to the form of a matrix equation as
follows:

(
R1ϕ

(1) · · · R2rϕ
(2r))

⎛
⎜⎝ a1

...

a2r

⎞
⎟⎠ = 0, (A18)

where Rl are 2r × 2r matrices defined by

Rl =
(

(ρl )L1l O
O 1l

)
. (A19)

The condition that Eq. (A18) has a nontrivial solution finally
reads ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ
(1)
1 (ρ1)L · · · ϕ

(2r)
1 (ρ2r )L

...
...

...

ϕ(1)
r (ρ1)L · · · ϕ(2r)

r (ρ2r )L

ϕ
(1)
r+1 · · · ϕ

(2r)
r+1

...
...

...

ϕ
(1)
2r · · · ϕ

(2r)
2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A20)

We remark that one can get the eigenenergies of a finite-size
system with edges by solving Eq. (A20), since this equation is
defined only by the eigenvalues and eigenvectors of the trans-
fer matrix.

To study the condition for the generalized Brillouin zone,
we expand Eq. (A20) as follows:∑

P,P′

∑
Q,Q′

F
(
ϕ

( j∈P)
i∈Q , ϕ

( j′∈P′ )
i′∈Q′

) ∏
i∈P

(ρi )
L = 0, (A21)

where P and P′ denote two disjoint subsets of the set
{1, · · · , 2r} with r elements, Q = {1, · · · , r}, and Q′ = {r +
1, · · · , 2r}. While it is difficult to get the exact solutions
of Eq. (A21), in general, one can investigate the asymptotic
behavior of the eigenenergies in L → ∞. The key observation
is that, when

|ρr | = |ρr+1| (A22)

is satisfied, the dominant contributions to the left-hand side
of Eq. (A21) are the term including (ρrρr+2 · · · ρ2r )L and the
one including (ρr+1ρr+2 · · · ρ2r )L in the limit of a large system
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size. As a result, the asymptotic form of Eq. (A21) can be
obtained by

(
ρr

ρr+1

)L

= −
F

(
ϕ

( j∈P0 )
i∈Q , ϕ

( j′∈P′
0 )

i′∈Q′

)
F

(
ϕ

( j∈P1 )
i∈Q , ϕ

( j′∈P′
1 )

i′∈Q′

) , (A23)

where P0 = {r + 1, · · · , 2r}, P′
0 = {1, · · · , r}, P1 =

{r, r + 2, · · · , 2r}, and P′
1 = {1, · · · , r − 1, r}. Thus, one

can get the continuum energy bands, since the change of the
relative phase between ρr and ρr+1 produces dense sets of
the eigenenergies. Accordingly, the sets of the eigenvalues of
the transfer matrix satisfying Eq. (A22) form the generalized
Brillouin zone.

3. Non-Hermitian Su-Schrieffer-Heeger model

We show that Eq. (A22) allows us to calculate the gen-
eralized Brillouin zone and the continuum energy bands
by using the non-Hermitian SSH model with asymmetric
next-nearest-neighbor hopping amplitudes [Fig. 4(a)]. The
real-space Hamiltonian of this system reads

H =
∑

n

[
t1(c†

n,αcn,β + c†
n,βcn,α )

+ t2(c†
n,βcn+1,α + c†

n+1,αcn,β )

+
(

t3 + γ

2

)
c†

n,αcn+1,β +
(

t3 − γ

2

)
c†

n+1,βcn,α

]
, (A24)

where all the parameters take positive values, and we assume
t3 > γ/2 for simplicity. We note that Eq. (A24) has the form
of Eq. (A1) with N = 1 and q = 2.

To calculate the transfer matrix of the system in the manner
explained in Sec. 1 of this Appendix, we take a supercell

including four sublattices [Fig. 4(b)]. One can then obtain
the reduced Hamiltonian in the form of Eq. (A2) and also
the reduced real-space eigenequation for the wave function
�n = (�n,A, �n,B, �n,C, �n,D) in the form of Eq. (A3). Here,
the hopping matrices and on-site matrix are given by

J†
R =

⎛
⎜⎜⎝

0 0 0 t2
0 0 t3 − γ /2 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (A25)

JL =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 t3 + γ /2 0 0
t2 0 0 0

⎞
⎟⎟⎠, (A26)

M =

⎛
⎜⎜⎝

0 t1 0 t3 + γ /2
t1 0 t2 0
0 t2 0 t1

t3 − γ /2 0 t1 0

⎞
⎟⎟⎠. (A27)

We note that the rank of both the hopping matrices is 2,
which means that the size of the transfer matrix becomes 4.
Let ρr (r = 1, . . . , 4) denote the eigenvalues of the transfer
matrix. The condition for the generalized Brillouin zone can
be obtained as follows:

|ρ2| = |ρ3|, (A28)

where |ρ1| � · · · � |ρ4| is satisfied.
We calculate the generalized Brillouin zone [Fig. 4(c)] and

the continuum energy bands [Fig. 4(d)] based on Eq. (A28).
We indeed confirm that the continuum energy bands repro-
duces the eigenenergies of a finite-size system with open
boundary conditions.
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