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In ferromagnetic metals where the anomalous Hall effect (AHE) occurs, one expects a corresponding thermal
Hall transport due to electrons that may be dubbed the anomalous thermal Hall effect (ATHE). The same
mechanisms that are responsible for AHE, such as the intrinsic Berry curvature effect (usually the most
important) or the side-jump mechanism, should play significant roles in ATHE as well. Despite the obvious
correlations between AHE and ATHE expected on generalized Wiedemann-Franz law, however, the actual
thermal Hall conductivities from each of these contributions have not been evaluated quantitatively. Here, we
investigate the intrinsic and the impurity-scattering-induced side-jump contributions to the AHE and the ATHE
in 3d ferromagnetic metals, bcc Fe, hcp Co, and fcc Ni. We find that the sum of the intrinsic and the side-jump
contributions to anomalous thermal Hall conductivity (ATHC) agrees with the experimental values in Fe and Co
rather well. In Ni, the calculated ATHC is much larger than the experimental value. We attribute this difference
to the importance of electron-phonon scattering in Ni.
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I. INTRODUCTION

The thermal Hall effect (THE), the emergence of transverse
heat current when a longitudinal temperature gradient is ap-
plied, has attracted a lot of recent attention. THE is generally
reported in insulators [1–5], where only the charge-neutral
quasiparticles can transport heat. The carriers are believed
to be magnons [6,7], phonons [4,5,8–10], or some exotic
fractionalized particles [3,11] depending on the material in
question.

In stark contrast to observation and theory of THE in
insulators, analogous discussion for metals has rarely taken
place. This is understandable, given that the carriers are pre-
dominantly electrons, and both electricity and heat are carried
by the same electrons according to the Wiedemann-Franz
law [12]. Indeed, the early measurements on the anomalous
Hall conductivity and the thermal Hall conductivity in mag-
netic metals have been interpreted in this way [13,14]. It
does not imply, however, that the naive application of the
Wiedemann-Franz law is justified in the case of anomalous
Hall electric and thermal transports. The purpose of this paper
is to theoretically investigate this question.

As is well known, electric Hall transport in magnetic met-
als has two parts, one arising from the normal Hall effect
under the magnetic field and the other anomalous part due
to the magnetization [15]. The latter phenomenon is known
as the anomalous Hall effect (AHE) [Fig. 1(a)]. Accordingly,
the thermal Hall conduction must also consist of the nor-
mal and the anomalous parts, with the latter appropriately

*hwl@postech.ac.kr

dubbed the anomalous thermal Hall effect of ATHE [Fig.
1(b)]. It is also natural to infer that various mechanisms re-
sponsible for AHE, such as the Berry curvature effect, skew
scattering, and side jump, will have corresponding contri-
butions to the thermal Hall conduction as well. Although it
has been common to believe that ATHE and AHE together
obey the Wiedemann-Franz law [12], called the anomalous
transverse Wiedemann-Franz law, it was recently reported
that the anomalous transverse Wiedemann-Franz law could
be violated at room temperature [16] due to the effects of
the intricate electronic band structure. Thus, it is of both
fundamental and practical importance to quantitatively check
whether the anomalous transverse Wiedemann-Franz law
holds over various temperatures. The previously calculated
anomalous Hall conductivity (AHC) of 3d ferromagnetic tran-
sition metals such as Fe, Co, and Ni shows a quantitative fit
to the experimental results [17–19]. Here, we ask if a similar
quantitative understanding of the ATHE is also possible.

With this motivation, we calculate the intrinsic and side-
jump contributions to the ATHE for 3d ferromagnetic metals,
bcc Fe, hcp Co, and fcc Ni using the first-principle cal-
culations through the density functional theory with the
on-site Hubbard U correction (DFT+U) [20–22]. In ferro-
magnetic metals with longitudinal electrical conductivity in
the range 103–106 (� cm)−1, which include most moderately
dirty metals, the AHE is dominated by the Berry-curvature-
induced intrinsic mechanism, followed by the contribution
from the side-jump mechanism [15]. Both contributions are
independent of the disorder potential strength. It was both
theoretically predicted and experimentally measured that the
skew scattering mechanism negligibly contributes to the AHE
in T > 100 K [12–14]. The electron self-energy, including
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FIG. 1. Schematic representation of the AHE (a) and the ATHE
(b).

the electron-phonon interaction, can enhance the accuracy of
the AHC calculation. Still, the cost of its application to the
first-principle calculation is expensive [23]. In 3d ferromag-
netic metals, the electron-phonon scattering barely contributes
to the AHC except for fcc Ni, so the DFT+U calculation
is enough to obtain the AHC in accuracy [24]. Thus, the
AHC calculation without considering the skew scattering
or the electron-phonon scattering would be quite accurate
for the experiment, and this would be held in the ATHC since
the ATHC follows the AHC. Here, we simply assume that
the former two mechanisms are the two leading contributions
for the anomalous thermal Hall conductivity (ATHC) κH.
Our findings reveal that when considering both the intrinsic
and impurity-scattering-induced side-jump contributions, the
calculated ATHC agrees well with experimentally measured
values for Fe and Co. With Ni, on the other hand, the collec-
tive effect of intrinsic and impurity-related side-jump factors
leads to a notable deviation from the experimental value. This
discrepancy is attributed to the substantial impact of electron-
phonon scattering on the ATHC in Ni.

Some caveats of our calculations are the following. For
the side-jump contribution, we take into account the elec-
tron side jump caused by impurity scattering but not by
electron-phonon interaction [25]. This restriction to the impu-
rity scattering effects is justified at low temperatures where
the phonon population is small or in materials with weak
electron-phonon coupling. Indeed, in Ni, where the electron-
phonon coupling is strong, the calculated AHE deviates from
the experimental value. In contrast, in the materials where
electron-phonon scattering is weak, like Fe and Co, the cal-
culated AHE quantitatively matches the experimental results.
The ATHE calculation we present follows similar trends.

This paper is organized as follows. In Sec. II, the calcula-
tion methods used in this paper are introduced. In Sec. III,
we compare our calculation results for anomalous Hall

FIG. 2. Band structures of bcc Fe (a), fcc Ni (b), and hcp Co
(c) (d). Each element is magnetized along [001] (a), [111] (b), c axis
(c), and a axis (d). The true Fermi energy is ε = μ.

conductivity (AHC) to the previous calculation results and
experimental results to check the validity of our calculation
scheme. In Sec. IV, we present our calculation results for the
ATHC and argue that our studies for ATHC agree with the
previous experiments. In Sec. V, we quantitatively examine
the validity of the Wiedemann-Franz law for AHC and ATHC.
Section VI summarizes this paper.

II. FORMULATION

We proceed with the DFT+U calculation for bcc Fe,
hcp Co, and fcc Ni in the following manner. Initially, we
obtain the self-consistent electronic structures using QUAN-
TUM ESPRESSO 6.6 [26]. We use Perdew-Burke-Ernzerhof
exchange-correlation functional based on the generalized
gradient approximation (GGA) with norm-conserving pseu-
dopotentials [27,28]. The Brillouin zone is sampled using the
12 × 12 × 12 Monkhorst-Pack k-point mesh [29]. We adopt
Dudarev’s scheme [22] to include the Hubbard term U and
the Hund exchange term J. Specifically, we select the values
for U and J as follows: U = J = 0 for Fe [30], U = 1.6, J
= 0.9 for Co [18], U = 1.9, J = 1.2 for Ni [31] in electron
volts (eV), primarily because using these values reproduce the
measured AHC very well. The lattice constants are a = 2.83
for bcc Fe [32], a = 2.50, c = 4.03 [33] for hcp Co, and
a = 3.52 [34] for fcc Ni in angstrom (Å), respectively. The
resulting bcc Fe, fcc Ni, and hcp Co band structures are
presented in Fig. 2. Co has a large anisotropy between the two
magnetization directions: c axis and a axis. The anisotropy
between a axis and b axis is expected to be much smaller by
comparison, and we calculate the band structures only for c-
and a-axis magnetization.

Next, we obtain the maximally localized Wannier functions
(MLWFs) from the Bloch states with WANNIER90 code [35].
The Brillouin zone is sampled with the equidistant 12 × 12 ×
12 k mesh, including the � point. The Bloch states are initially
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projected into s, px, py, pz, dxy, dyz, dxz, dx2−y2 , and dz2

states. We obtained 18 MLWFs (bcc Fe, fcc Ni) out of 54
bands and 36 MLWFs (hcp Co) out of 108 bands. The frozen
windows for the MLWF determination are set to include a
region 4 eV higher than the true Fermi energy.

We employ the Kubo formula to evaluate the intrinsic por-
tions of AHC (σ int

H ) and ATHC (κ int
H ) given by [36]

σ int
H,αβ = e2

h̄

∑
n �=m

∫
d3k

(2π )3
( fmk − fnk )�αβ

nmk, (1a)

κ int
H,αβ

T
= k2

B

h̄

∑
n �=m

∫
d3k

(2π )3
[c2( fmk ) − c2( fnk )]�αβ

nmk, (1b)

�
αβ

nmk = h̄2 Im

[ 〈unk| vβ |umk〉 〈umk| vα |unk〉
(εnk − εmk )2

]
, (1c)

where n and m are band indices, kB is the Boltzmann con-
stant, vα is α component of the velocity operator, fnk is the
Fermi-Dirac distribution function, |unk〉 is the periodic part of
the Bloch state with the energy eigenvalue εnk, and c2( fnk ) =∫ fnk

0 ( log(t−1 − 1))2 dt .
We also evaluate the impurity-scattering-induced side-

jump contributions to AHC [37] (σ sj
H ) and ATHC (κsj

H). In the
weak disorder limit, this contribution can be evaluated by the
formulas given by

σ
sj
H,αβ = e2

h̄

∑
n

∫
d3k

(2π )3
∂ε fnkReTr

×
{

γc

[γc]nn

[
SnAkα

(1 − Sn)
∂εn

∂εβ

− (α ↔ β )

]}
, (2a)

κ
sj
H,αβ

T
= k2

B

h̄

∑
n

∫
d3k

(2π )3
∂εc2( fnk )ReTr

×
{

γc

[γc]nn

[
SnAkα

(1 − Sn)
∂εn

∂εβ

− (α ↔ β )

]}
, (2b)

Here, γc is a k-dependent matrix defined as γc(k) =
U †(k)γU (k) where γ = π

∑
n

∫
d3k′
(2π )3 U (k′)SnU †(k′)δ(ε −

εnk′ ). The scattering strength does not appear explicitly in
the side-jump formula [38]. The side-jump contribution κ

sj
H,αβ

to the ATHC in Eq. (2b) is evaluated from the generalized
Wiedemann-Franz law [39–41],

κ = 1

e2T

∫
(ε − μ)2 df (ε − μ)

dε
σT =0(ε). (3)

The impurity-scattering-dependent side-jump anomalous
Nernst conductivity was calculated [31] using the same Mott
formula. In the above formulas, [Sn]i j = δi jδin, ε is the Fermi
energy, U (k) is a unitary matrix at point k that diagonalizes
the Hamiltonian H (k), [U †H (k)U ]nm = εnkδnm, and Akα

=
iU †∂kα

U is the interband Berry connection matrix. The k
integration in Eqs. (1) and (2) is calculated using uniformly
distributed 240 × 240 × 240 k-mesh grid. The AHC and
ATHC are calculated by increasing ε from μ − 0.5 eV to
μ + 0.5 eV with 0.01 eV step, where the true Fermi energy
is set to ε = μ. The temperature dependence is included only
in fnk. The electron-phonon interaction is ignored in these
equations.

FIG. 3. The AHC from the intrinsic mechanism (blue line) and
the impurity-scattering-induced side-jump mechanism (red line) of
bcc Fe [001] (a), fcc Ni [111] (b), and hcp Co magnetized along c
axis (c) and a axis (d) at T = 150 K.

III. ANOMALOUS HALL CONDUCTIVITY IN
FERROMAGNETIC METALS

Before getting to our main result for the ATHC, we com-
pare our result for the AHC with previous calculation results
and experimental results to assess the reliability of our cal-
culation. Figure 3 shows the intrinsic AHC (blue lines) and
the side-jump AHC (red lines) of bcc Fe magnetized along
[001] [Fig. 3(a)], fcc Ni magnetized along [111] [Fig. 3(b)],
and Co magnetized along c axis [Fig. 3(c)] and along a axis
[Fig. 3(d)]. The discrepancy of band structures between c-axis
Co and a-axis Co leads to the anisotropy in the AHCs with
respect to the magnetization direction.

Table I summarizes our results for the intrinsic and the
side-jump AHCs at the true Fermi energy. We compare our
results for AHC with previous theories in Appendix A and
demonstrate that our calculation results for both intrinsic and
side-jump AHCs at T = 300 K are quite close to the previ-
ous calculation results. Table I also includes experimentally

TABLE I. The theoretically calculated AHC (σH [(� cm)−1])
for Fe, Co, and Ni from the DFT+U calculation at T = 300 K.
The temperature dependence of σ int

H and σ
sj
H are negligible in our

calculation scheme. Their sum σH = σ int
H + σ

sj
H is compared with the

experimentally measured AHC σ
exp
H .

σ int
H σ

sj
H σH σ

exp
H

bcc Fe [001] 735 112 847 1032 (T = 300 K) [42]
fcc Ni [111] –1332 –286 –1618 –646 (T = 300 K) [43]

–1686 (T = 5 K) [44]
hcp Co (c axis) 629 201 829 813 [45]
hcp Co (a axis) 185 −62 123 150 [45]
hcp Co (poly) 333 26 359 340 [46]
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measured AHCs in its last column for a detailed comparison,
as discussed below.

The intrinsic contribution σ int
H to the AHC is larger than the

side-jump contribution σ
sj
H to the AHC. We thus compare σ int

H
with the experimentally obtained AHC σ

exp
H . For Fe, the calcu-

lated value σ int
H,xy = 735 (� cm)−1 reaches 70% of the experi-

mental value σ
exp
H,xy ≈ 1032 (� cm)−1 [42] in [100] whiskers

at T = 300 K. For Co, σ int
H,xy = 629 (� cm)−1 magnetized

along c axis and σ int
H,yz = 185 (� cm)−1 magnetized along a

axis reach 75% and 120% of the experimental values σ
exp
H,xy ≈

813 (� cm)−1 and σ
exp
H,yz ≈ 150 (� cm)−1 [45], respectively.

For Ni, σ int
H = −1332 (� cm)−1 is twice larger than the ex-

perimental value σ
exp
H = −646 (� cm)−1 at T = 300 K [43].

When both the intrinsic and side-jump contributions to
the AHC are taken into account, our results for Fe and Co
align better with the experimental results at room temper-
ature. The calculated value of the total AHC for bcc Fe
[001] σH,xy = σ int

H,xy + σ
sj
H,xy = 847 (� cm)−1 reaches 85% of

the experimental value σ
exp
H,xy ≈ 1032 (� cm)−1 [42] in [100]

whiskers. We attribute this difference to the electron-electron
interactions. Although the interaction effect is partially taken
into account through U and J, this recipe does not fully cap-
ture the interaction effect. It was reported that considering
the dynamically screened interaction into a Green function
yields a band structure different from that obtained from the
GGA [23]. For the modified band structure and eigenstates,
the intrinsic AHC changes from σ int

H,xy = 735 (� cm)−1 to
σ int

H,xy = 847 (� cm)−1. By combining this modified σ int
H,xy with

the unmodified σ
sj
H,xy, we obtain the modified theoretical result

of σH,xy = 970 (� cm)−1, which reaches 95% of the experi-
mental value [42].

For Co, the calculated AHC for c-axis Co σH,xy =
829 (� cm)−1 and for a-axis Co σH,yz = 123 (� cm)−1 are
close to the experimental values σ

exp
H,xy ≈ 812 (� cm)−1 and

σ
exp
H,yz ≈ 150 (� cm)−1 [45]. The agreement between theoret-

ical and experimental values is reasonably good. The AHC
of polycrystalline Co can be approximately evaluated by the
weighted average of the AHC σH(θ = 0) magnetized along
c axis (θ = 0) and the AHC σH(θ = π/2) magnetized along
a axis (θ = π/2): σpoly ≈ [σH(θ = 0) + 2σH(θ = π/2)]/3.
This approximation results in σpoly ≈ 359 (� cm)−1, which is
close to the experimental value of polycrystalline Co σ

exp
H,poly ≈

340 (� cm)−1 [46].
For Ni, our calculation result σH = −1618 (� cm)−1 is

close to the experimental value σ
exp
H = −1686 (� cm)−1 at

at T = 5 K [44] but quite different from the measured value
σ

exp
H = −646 (� cm)−1 at T = 300 K [43]. The main cause

for this difference is the electron-phonon interaction, which
is not considered in our calculation. According to the previ-
ous calculation [24], Ni is particularly strongly affected by
the electron-phonon interaction. Although the effect of the
electron-phonon interaction on σ int

H,xy in Ni [111] has not been
examined yet theoretically, the theoretical study on Ni [001]
indicates the strong electron-phonon interaction effect on
σ int

H,xy at T = 0 and T = 300 K; as the temperature increases
from 0 to 300 K, the electron-phonon interaction becomes
more significant and modifies the electron band structure so
that σ int

H,xy is altered from σ int
H = −1100 (� cm)−1 at T = 0

FIG. 4. The ATHC from the intrinsic mechanism (blue line) and
the side-jump mechanism (red line) of bcc Fe [001] (a), fcc Ni [111]
(b), and hcp Co magnetized along c axis (c) and a axis (d) at T =
150 K.

to σ int
H = −500 (� cm)−1 at T = 300 K. In our calcula-

tion, however, the electron-phonon interaction has not been
included. The electron-phonon interaction has a much weaker
effect in Fe and Co than in Ni. For instance, Ref. [24] reported
that σ int

H,xy of Fe increases from 707 (� cm)−1 at T = 0 to
770 (� cm)−1 at T = 300 K. Considering this increase in our
σ int

H,xy with summation to σ
sj
H,xy, σH increases to 882 (� cm)−1

at T = 300 K, much closer to the experimental value σ
exp
H =

1032 (� cm)−1 at the same temperature.

IV. ANOMALOUS THERMAL HALL CONDUCTIVITY IN
FERROMAGNETIC METALS

We come to the main theme of the paper—the calculation
of the anomalous portion of the thermal Hall conductivity in
ferromagnetic metals. Figure 4 shows the intrinsic ATHC κ int

H

(blue lines) and the side-jump ATHC κ
sj
H (red lines) of bcc Fe

magnetized along [001] [Fig. 4(a)], fcc Ni magnetized along
[111] [Fig. 4(b)], and Co magnetized along c axis [Fig. 4(c)]
and along a axis [Fig. 4(d)] according to the formulas in
Eq. (2).

The ATHCs for these materials have not been obtained by
other first-principle calculations, and we can only compare
our results with the experimental values at two select tem-
peratures, T = 150 K and T = 300 K. Table II summarizes
the intrinsic and the side-jump ATHCs at the true Fermi level,
along with the experimental values. Here, we obtain the poly-
crystalline ATHCs κH,poly from κH(θ = 0) magnetized along
c axis (θ = 0) and the ATHC κH(θ = π/2) magnetized along
a axis (θ = π/2): κH,poly ≈ [κH(θ = 0) + 2κH(θ = π/2)]/3.
We first compare the intrinsic contribution for ATHC obtained
by our calculations (κ int

H ) with that obtained from previous
experiments ATHC (κexp

H ). At T = 150 K, there are some
discrepancies between κ int

H and κ
exp
H ; for Fe, the calculated
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TABLE II. The ATHC {κ [W/(K m)]} for Fe, Co, and Ni from
DFT+U calculation at T = 150 K and at T = 300 K.

T = 150 K κ int
H κ

sj
H κH κ

exp
H

bcc Fe [001] 0.266 0.042 0.308 0.32 [13]
fcc Ni [111] –0.493 –0.105 –0.598 –0.360 [14]
hcp Co (c axis) 0.230 0.070 0.300
hcp Co (a axis) 0.067 –0.022 0.045
hcp Co (polycrystals) 0.121 0.009 0.130 0.136 [14]

T = 300 K κ int
H κ

sj
H κH κ

exp
H

bcc Fe [001] 0.523 0.083 0.606 0.63 [13]
fcc Ni [111] –0.988 –0.196 –1.184 –0.357 [14]
hcp Co (c axis) 0.456 0.137 0.593
hcp Co (a axis) 0.175 –0.034 0.141
hcp Co (polycrystals) 0.269 0.023 0.292 0.249 [14]

value κ int
H,xy ≈ 0.266 W/(K m) reaches 83% of the experi-

mental value κ
exp
H,xy ≈ 0.32 W/(K m) [13]. For polycrystalline

Co, the calculated value κ int
H,xy ≈ 0.121 W/(K m) reaches 90%

of the experimental value κ
exp
H,xy ≈ 0.136 W/(K m) [14]. In Ni,

the calculated value κ int
H,xy ≈ −0.493 W/(K m) reaches 140%

of the experimental value κ
exp
H,xy ≈ −0.360 W/(K m) [14].

Next, we compare the calculated value of the total ATHCs
κH = κ int

H + κ
sj
H with the experimental values κ

exp
H . For Fe

and Co, the calculated value κH is excellent agreement with
κ

exp
H . For Fe, the calculated value κH,xy = 0.308 W/(K m) and

the experimental value κ
exp
H,xy ≈ 0.32 W/(K m) are very close

to each other. For polycrystalline Co, the calculated value
κH ≈ 0.130 W/(K m) and the experimental value κ

exp
H ≈

0.136 W/(K m) are again very close to each other. For
Ni, however, the calculated value κH ≈ −0.598 W/(K m)
is significantly larger than the experimental value κ

exp
H ≈

−0.36 W/(K m).
At T = 300 K, κ int

H , κ
sj
H, and κ

exp
H for Fe and Co become

almost doubled compared to the corresponding values at T =
150 K. This is expected since it is the ratio κH/T that serves
as the intrinsic measure of thermal conduction rather than κH

itself. For Fe, the calculated value κH,xy ≈ 0.606 W/(K m)
agrees with the experiment κ

exp
H,xy ≈ 0.63 W/(K m). For Co,

the agreement between κH and κ
exp
H still remains reasonably

good. For polycrystalline Co, the calculated value κH,poly ≈
0.292 W/(K m) is slightly larger than the experimental value
κ

exp
H ≈ 0.249 (K m) [14]. But for Ni, the difference between

the theoretical and the experimental value is considerably
enlarged; the calculation value κH ≈ −1.184 W/(K m) at
T = 300 K is roughly twice larger than the correspond-
ing value at T = 150 K, whereas the experimental value
κ

exp
H ≈ −0.357 (K m) at T = 300 K is almost equal to the

corresponding value at T = 150 K [14]. We attribute the
enlarged difference to the enlarged effect of the electron-
phonon interaction at T = 300 K. For Fe and Co, the effect
of electron-phonon interaction on κH seems negligible.

For all 3d ferromagnetic transition metals examined above,
the intrinsic mechanism generates the most important con-
tribution to the ATHC, similar to the situation for the AHC.
Regarding the next most important contribution to the ATHC,
the answer depends on the material as well as the temperature.

For Fe and Co, the impurity-induced side-jump contribution
is subdominant and helps to achieve excellent agreement be-
tween theoretical and experimental values, especially at the
lower temperatures (�150 K). The situation is different for Ni.
Adding the impurity-induced side-jump contribution to the
intrinsic contribution widens the gap between theory and ex-
periment, becoming worse at elevated temperatures (∼300 K).
Based on our experience with the AHC, we argue that an
important source of this deviation is the electron-phonon in-
teraction neglected in our calculation. This is supported by
the observations that the deviation occurs only for Ni (the
material that is the most significantly affected by the electron-
phonon interaction, according to our investigation of the AHC
in Sec. III) and that the deviation is enhanced with increasing
temperature.

Another possible source of the discrepancy is the anoma-
lous thermal Hall current carried by phonons or magnons,
which we do not take into account. However, it is unlikely
that these contributions are relevant in 3d ferromagnetic tran-
sition metal. For thermal Hall transport by phonons, applying
an external magnetic field is a necessary ingredient [1,4,5]
whereas here we are focused on magnetic metals at zero exter-
nal magnetic field. For magnons, the magnon Berry curvature
resulting from noncollinear spins in the ground state [6] is
absent in 3d ferromagnetic transition metal since the magne-
tization there is collinear.

V. VALIDITY OF WIEDEMANN-FRANZ RELATION FOR
AHC AND ATHC

The original Wiedemann-Franz law relates the longitu-
dinal thermal conductivity κ with the longitudinal charge
conductivity σ through the relation L = κ/(σ · T ) = L0 ≡
π2/3(kB/e)2 = 2.44 × 10−8 V2 K−2, where L0 is the Som-
merfeld value [47]. Later, this law was generalized to the
anomalous transverse Wiedemann-Franz law [39] relating the
ATHC κH with the AHC σH via LH = κH/(σHT ). Strictly
speaking, this law holds only when inelastic processes are
vanishingly weak and thermal currents carried by excitations
other than electrons are negligible [48]. In metallic systems, it
is often assumed that this law remains approximately valid in a
wide temperature range since electrons dominate both charge
and energy transport and since the Fermi energy scale of elec-
trons is much larger than characteristic energy scales of other
quasiparticles such as phonons and magnons [14]. None of
the existing considerations have made a careful examination
of the consequence of realistic band structures of magnetic
metals on the transverse Wiedemann-Franz law so far.

Here, we carefully examine its validity for 3d transition
metals. The solid lines in Fig. 5 show the calculated LH for bcc
Fe [001] [Fig. 5(a)], fcc Ni [111] [Fig. 5(b)], hcp Co (c axis)
[Fig. 5(c)]. For bcc Fe [001], LH agrees excellently with L0 in
the entire temperature range examined (5 K to 300 K). Also,
for fcc Ni [111], LH stays close to L0 in the entire temperature
range up to 300 K. In contrast, for hcp Co LH is close to L0

only in the low-temperature range (�150 K) and shows an
upward deviation from L0 by as much as 0.1L0 at T = 300 K.

To examine the origin of the violation, we rewrite
the intrinsic and impurity-scattering-originated side-jump
contributions for AHC and ATHC in Eqs. (1a) and (1b) as
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FIG. 5. The temperature dependence of the calculated results
(blue line) and the experimental results (red dots) [14,48] of the
transverse Lorenz ratio LH for bcc Fe [001] (a), fcc Ni [111] (b), and
polycrystalline hcp Co (c). The dotted lines are L0. (d) The Fermi en-
ergy dependence of ∂ε fnk (red-solid line), ∂εc2( fnk ) (blue-solid line)
at T = 5 K and ∂ε fnk (magenta-dotted line), ∂εc2( fnk ) (green-dotted
line) at T = 300 K. The two curves overlap almost completely at 5 K.

follows:

σ int
H,αβ =

∫
dε∂ε f (ε)σ int,0

H,αβ (ε), (4a)

κ int
H,αβ =

∫
dε∂εc2( f (ε))σ int,0

H,αβ (ε), (4b)

σ
sj
H,αβ =

∫
dε∂ε f (ε)σ sj,0

H,αβ (ε), (4c)

κ
sj
H,αβ =

∫
dε∂εc2( f (ε))σ sj,0

H,αβ (ε), (4d)

where σ int,0
H,αβ (ε) and σ

sj,0
H,αβ (ε) are, respectively, the intrinsic

and impurity-scattering side-jump contributions for AHC at
T = 0. The only difference in the AHC and ATHC formulas is
the use of either ∂ε f (ε) or ∂εc2( fnk ) as distribution functions.

In the low-temperature range, both functions have a narrow
single peak at ε = μ [solid curves in Fig. 5(d)]. One can
show, in the lowest order of the Sommerfeld expansion for
∂ε f and ∂εc2, that the Wiedemann-Franz relation holds as
κH,αβ (μ)/(σH,αβ (μ) · T ) = L0.

At elevated temperatures, ∂εc2( fnk ) develops into double
peaks at ε = μ ± � (� ≈ 2.5kBT ). Again, to the leading
order in the Sommerfeld expansion, we obtain

κH,αβ (μ)

T
≈ L0

2

[
σ 0

H,αβ (μ + �) + σ 0
H,αβ (μ − �)

]
. (5)

If AHC is further assumed to vary slowly so that σ 0
H,αβ (μ ±

�) ≈ σ 0
H,αβ (μ), Wiedemann-Franz law holds. On the other

hand, the leading-order Sommerfeld expansion breaks down
at elevated temperatures and results in deviations from the
strict Wiedemann-Franz relation.

Therefore, in materials where σ int,0
H,αβ (ε) or σ

sj,0
H,αβ (ε) vary

considerably with ε near ε = μ, the value of LH at elevated
temperatures can deviate from L0 considerably. This explains
the deviation of the calculated LH from L0 for hcp Co. Indeed
in Co (a axis), σ int,0

H,αβ (ε) and σ
sj,0
H,αβ (ε) vary considerably with

ε. The AHC σ int,0
H,αβ (ε) and σ

sj,0
H,αβ (ε) in polycrystalline Co has

qualitatively similar dependence on ε since the AHC in poly-
crystalline Co is the weighted average of the AHC in Co (c
axis) and Co (a axis). In summary, we find the theory supports
the validity of anomalous transverse Wiedemann-Franz law
within 3.7%, 1.2%, and 10.8% accuracy for Fe, Ni, and Co,
respectively, over all temperatures (< 300 K).

Next, we discuss the effect of the electron-phonon scat-
tering on LH. When an electron collides with a phonon, the
electron loses its energy both by drastically or barely losing
its momentum [49]. The former decreases both charge and
heat current, while the latter only decreases the heat current.
This different scattering process can result in the violation of
the anomalous transverse Wiedemann-Franz law at elevated
temperatures.

We attempt to assess the electron-phonon scattering ef-
fect on LH through experimental results. The solid circles in
Figs. 5(a)–5(c) show that LH stays close to the ideal value
L0 from the lowest available temperature to T = 150 K. At
higher temperatures, LH exhibits deviations from L0. For bcc
Fe [Fig. 5(a)] and fcc Ni [Fig. 5(b)], LH decreases with in-
creasing T . Such decreases are understandable considering
that the electron-phonon scattering reduces the energy carried
by electrons at elevated temperatures [13,14]. For hcp Co
[Fig. 5(c)], however, LH stays close to L0 even at 300 K. We
attribute this peculiar behavior to the competition of the two
opposite trends: the tendency for electron-phonon scattering
to reduce LH below L0 on one hand, and the tendency for
σ int,0

H,αβ (ε) or σ
sj,0
H,αβ (ε) to increase LH above L0 through the ε

dependence on the other.

VI. CONCLUSIONS

We calculated the intrinsic and the impurity-scattering-
induced side-jump contributions to the AHC and ATHC in
elemental bcc Fe, hcp Co, and fcc Ni using the first-principle
calculations through the DFT+U method. While the AHC
of those materials has been investigated extensively before,
there is very little study on ATHC, and what little is known
about it has been inferred through Wiedemann-Franz law,
whose validity remained uncertain. We found that the ATHC
has the same qualitative dependence on the Fermi energy
as the AHC. For Fe and Co, the sum of the intrinsic and
the impurity-scattering-induced side-jump ATHCs match the
known experimental values quite well, with the intrinsic
contribution being dominant. The impurity-scattering-induced
side-jump contribution is still considerable, but considering
electron-phonon interaction can still enhance the accuracy of
the total ATHC. In Ni, however, the effect of electron-phonon
interaction is significant at elevated temperatures.
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APPENDIX A: COMPARISON OF AHC TO
PREVIOUS CALCULATIONS

The intrinsic AHC σ int
H,xy = 735 (� cm)−1 at the true

Fermi energy for bcc Fe [001] is in excellent agreement
with σ int

H,xy = 734 (� cm)−1 at T = 300 K obtained by the
full-potential linearized augmented plane-wave method [17],
σ int

H,xy = 703 (� cm)−1 at T = 300 K by the norm-conserving
pseudopotentials [50], and σ int

H,xy = 750 (� cm)−1 obtained by
the Korringa–Kohn–Rostoker Green’s function method [24].
Our intrinsic AHC σ int

H,xy ≈ 629 (� cm)−1 for c-axis magne-
tized hcp Co and σ int

H,yz = 185 (� cm)−1 for a-axis magnetized
hcp Co are close to those in the previous AHC calculation
σ int

H,xy = 618 (� cm)−1 at T = 0 implemented by evaluating
the static limit of magneto-optical conductivity [18] and
σ int

H,yz ≈ 100 (� cm)−1 at T = 0 obtained by the full-potential
linearized augmented plane-wave method [37]. Our intrinsic
AHC σ int

H = −1332 (� cm)−1 for fcc Ni [111] agrees with
the previous work σ int

H = −1200 (� cm)−1 at T = 0 obtained
by the FLEUR code [37]. Although some of the previous cal-
culation results are obtained at T = 0, it is still reasonable
to compare these results with our calculation results at T =
300 K since the temperature dependence of σ int

H is weak in
our calculation. It has been well known that σ int

H of Ni is
sensitive to the correlation effects parameterized by U and
J [31,37]. σ int

H changes from −2000 (� cm)−1 at U = 0 to
−850 (� cm)−1 at U = 3.9 eV. σ int

H of Fe and Co are not
sensitive to the correlation effects [18,24].

The side-jump AHCs in our study are also in good
agreement with the previous calculation results [31,37] ob-
tained by the full-potential linearized augmented plane-wave
method. For bcc Fe [001], our side-jump contribution σ

sj
H,xy =

112 (� cm)−1 to the AHC is in excellent agreement to the

FIG. 6. The temperature dependence of the intrinsic (blue line)
and the impurity-scattering side jump (red dots) contributions of the
ATHC to the temperature for bcc Fe [001] (a), fcc Ni [111] (b), and
polycrystalline hcp Co (c).

previous result σ
sj
H,xy = 112 (� cm)−1 at T = 300 K. Our

side-jump contribution to the AHC σ
sj
H,xy = 201(� cm)−1 for

c-axis hcp Co and σ
sj
H,xy = −62(� cm)−1 for a-axis hcp Co are

close to the previous calculation results σ
sj
H,xy = 201, σ

sj
H,yz =

−88 (� cm)−1 at T = 300 K. For fcc Ni [111], our side-jump
contribution to the AHC σ

sj
H = −286 (� cm)−1 agrees with

the previous work σ
sj
H = −250 (� cm)−1.

APPENDIX B: TEMPERATURE DEPENDENCE OF ATHC

Figure 6 shows the temperature dependence of the ATHC
κH to the temperature T . The intrinsic κ int

H (blue line) and
impurity-scattering side jump contributions κ

sj
H (red line) are

linearly proportional to T except for Co [Fig. 6(c)]. In Co,
the linear dependence of the intrinsic contribution κ int

H to T is
violated in T > 150 K as the same reason for the violation of
the Wiedemann-Franz law.
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