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A platform for the fractional quantum spin Hall effect
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Motivated by recent observation of the quantum spin Hall effect in monolayer germanene and twisted
bilayer transition-metal dichalcogenides (TMDs), we study the topological phases of moiré twisted bilayers
with time-reversal symmetry and spin sz conservation. By using a continuum model description, which can
be applied to both germanene and TMD bilayers, we show that at small twist angles the emergent moiré flat
bands can be topologically nontrivial due to inversion symmetry breaking. Each of these flat bands admits a
lowest-Landau-level description for each spin projection in the chiral limit and at magic twist angle. This allows
for the construction of a many-body Laughlin state with time-reversal symmetry, which can be stabilized by a
short-range pseudopotential, and therefore serves as an ideal platform for realizing the so-far elusive fractional
quantum spin Hall effect with emergent spin-1/2 U(1) symmetry.
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I. INTRODUCTION

Since the discovery of superconducting and correlated
insulating phases in magic-angle twisted bilayer graphene
(TBG) [1–12], the moiré engineering of 2D van der Waals
materials, such as graphene and transition metal dichalco-
genides (TMDs) [13–23], in a host of bilayer and multilayer
heterostructures [24–32], has attracted enormous research at-
tention. Moiré platforms are ideal hubs to forge the interplay
between strongly correlated effects and topological phases,
giving rise to rich phenomena including superconductivity
[1,6–8], strange metal behavior [33–35], magnetic quantum
anomalous Hall effect in TBG [9,36,37] and more recently,
long-sought after fractional Chern insulators (FCI) [38–40]
first observed in twisted bilayer MoTe2 [41–44].

The discovery of FCIs in TMD heterostructures highlights
the importance of moiré flat bands [45–52] in the service of
electron fractionalization without a magnetic field. In partic-
ular, moiré flat bands in the chiral limit [47] share properties
akin to lowest Landau level (LLL) wavefunctions, shedding
light on the stability of time-reversal broken topological states
through local interactions [53–58]. Conversely, a burning
question arises: Can moiré flat bands support time-reversal
symmetric (TRS) fractional topological order? While TRS Z2

flat bands have been theoretically proposed in twisted bilayer
TMDs [59–63], and experimental signatures of the quantum
spin Hall (QSH) effect [64–70] have been noted in twisted
bilayer TMD [71–73], prospects for fractional QSH effect in
moiré systems remain terra incognita.

In this paper, we propose a mechanism to realize TRS
topological Z2 moiré flat bands and establish them as po-
tential platforms to achieve fractional quantum spin Hall
effect [66,74–76] through electron interactions in moiré het-
erostructures. Our point of departure is a continuum model
of small-angle twisted bilayer heterostructures, which can
be applied to bilayer TMD or the paradigmatic Kane-Mele

(KM) model [64]. The KM model was recently realized in
a monoelemental honeycomb material–germanene [77]. Two
layers of KM model are generally expected to be topologically
trivial given the instability of the double pairs of helical edge
modes [64]. However, our analysis of the small-angle twisted
bilayer KM model identifies topological phase transitions,
which can be tuned by the twist angle, interlayer coupling
and sublattice potential. The resulting quasiflat moiré bands
are characterized by a TRS Z2 topological invariant signal-
ing a new pair of helical edge states. Remarkably, in the
chiral limit where the AA interlayer coupling vanishes, the
wavefunction for each flat band behave as a Kramer’s pair
of time-reversal invariant lowest-level Landau (LLL) wave-
functions containing both holomorphic and antiholomorphic
coordinates related by time reversal. As such, our paper iden-
tifies key aspects enabling TRS electron fractionalization in
twisted moiré bilayers. In particular, we propose classes of
many-body wavefunctions hosting fractional QSH, which is
stabilized by certain short-range interactions. This paper thus
puts forth a promising route to explore fractional QSH in Z2

flat bands of moiré heterostructures. Our consideration may
also apply to cold atom platforms for which moiré engineering
has also been made possible recently [78].

II. MODEL

A low-energy description of both monolayer TMD and
germanene with spin s =↑,↓≡ ±1 and valley τ = ±1 rotated
by an angle θ is given by (setting h̄ = 1)

hsτ (θ, k) = τ |k|vF

(
0 e−iτ (θk−θ )

eiτ (θk−θ ) 0

)
+ δσz + λsτγ .

(1)

Here θk is the angle between k and some reference axis.
δ in the case of TMD denotes the sublattice potential
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difference while in germanene it can arise from coupling to
substrate [79]. λ is the spin-orbit coupling (SOC) strength, and
γ = diag(γ1, γ2). For TMDs [80] we have γ = (1 − σz )/2,
while for germanene γ = σz, as in the Kane-Mele model [64].
Equation (1) preserves time-reversal (T ) symmetry, and an
emergent U(1) symmetry for the spin sz component. When
two layers of TMD or germanene described by Eq. (1) are
stacked and twisted by a small angle, the moiré pattern devel-
ops as is shown in Fig. 1(a). The emergent moiré periodicity
gives rise to much smaller moiré Brillouin zone shown in
Fig. 1(b). Following [45], the continuum model for both
twisted bilayer TMD and germanene systems can thus be
described in a uniform way. For spin s and valley τ , the
Hamiltonian written explicitly in the two layer space is

Hsτ =
(

hsτ
(

θ
2 ,∇)

Tτ (r)

T †
τ (r) hsτ

(− θ
2 ,∇)

)
, (2)

where hsτ (θ/2,∇) = −iτvF R[σ · ∇]R−1 + δσz + λsτγ is the
real-space representation of Eq. (1) (with R = e−i θ

4 σz ),
and the local interlayer coupling T (r) captures the moiré
superlattice. The Hamiltonian acts on a spinor ψsτ =
(ψA1, ψB1, ψA2, ψB2)T , where A, B and 1,2 are sublattice and
layer indices, respectively. As in TBG, the interlayer coupling
can be approximated by T+(r) = ∑3

n=1 Tne−iqn·r where q1 =
kθ (0,−1), q2 = kθ (

√
3/2, 1/2) and q2 = kθ (−√

3/2, 1/2)
with kθ = 2kD sin(θ/2) being the moiré Brillouin zone length
scale and kD is the distance between 	 point and K point. Note
that for the other valley T−(r) = T ∗

+ (r). The three coefficients
Tn are Tn+1 = wAAI + w′

AAσz + wAB(σx cos 2nπ
3 + σy sin 2nπ

3 ),
with wAA(w′

AA) and wAB the interlayer tunneling strength in
AA- and AB-stacked areas respectively; w′

AA vanishes for
germanene but remains nonzero for TMD.

Z2 flat bands. Taking twisted bilayer germanene as our
example, the corresponding moiré band structure is shown in
Fig. 1(c), which was obtained by setting vF = 5.6×105 m/s,
and λ = 24 meV [77,81]. Note that vF is around 70% of that
in graphene. Assuming the interlayer coupling is also around
70% of that in TBG, we approximately take wAB = 80 meV
and set r = wAA/wAB as a variable. The two bands marked in
red are the moiré flat bands, separated by a gap due to λ �= 0.
The first magic angle at which the moiré bandwidth gets min-
imized is determined by the condition α := wAB/(vF kθ ) ≈
0.586 [47]. Furthermore, for a given sτ configuration, the flat
bands have nonzero Chern numbers given by Cs,τ = ±sgn(s),
where “+” is for the upper bands and “−” is for the lower
bands. This gives rise to nontrival topology with TRS, which
is characterized by the Z2 topological invariant [68,82]

ν± = C↑,± − C↓,∓
2

mod2. (3)

Thus the upper moiré band has ν± = 1 while the lower moiré
band has ν± = −1. The topological phase can be tuned by θ ,
wAB, and wAA, as shown in Fig. 1(d). We also confirmed that at
even larger θ (not shown) the system becomes trivial as well,
consistent with the Z2 classification of two layer KM model.

The band structure for twisted bilayer TMD are similar
to those shown in Fig. 1(c), except that δ and λ are much
larger than those in germanene, and w′

AA can be nonzero due
to the difference between valence and conduction bands. The

Top

Bottom

(a)

(b)

(c)

(d)

FIG. 1. (a) Moiré pattern with system size given by L1 and L2.
(b) Moiré Brillouin zone at ±K valleys. The definition of ±κ is
chosen in such a way that κ at +K is related to −κ at −K valley
by time reversal. (c) Moiré band structure for +K valley at the first
magic angle θ = 1.09◦, obtained by choosing wAB = 80 meV and
δ = 0. (d) Three-dimensional phase diagram with δ �= 0. The Z2

phase appears as a bulk region, of which the two orthogonal cross
sections are shown in blue. For a fixed wAA and wAB, tuning θ can
result in a topological phase transition from a Z2 band to a trivial
band.
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large band gap resulting from δ in TMD has a remarkable
consequence of large sublattice polarization, which we will
explain in the following.

III. TOPOLOGICAL FLATBAND

The Hamiltonian in Eq. (2) has an emergent chiral sym-
metry when wAA and w′

AA vanish. In this limit and at
the magic twist angle, there are two exactly flat bands
for each spin and valley [see Fig. 1(c)] whose energy
is determined solely by λ and δ. To see this, we can
first rotate the basis to χ̃sτ = diag(eiθσz/4, e−iθσz/4)ψsτ ≡
(χA1, χB1, χA2, χB2)T , and then rewrite the Hamiltonian in a
new basis χsτ = (χA1, χA2, χB1, χB2)T ≡ (χA, χB)T . The re-
sulting eigenvalue equation becomes(

λsτγ1 + δ D∗
τ (−r)

Dτ (r) λsτγ2 − δ

)(
χA

χB

)
= ε

(
χA

χB

)
, (4)

where

D+(r) =
(−2ivF ∂z̄ U+(r)

U+(−r) −2ivF ∂z̄

)
, D−(r) = D∗

+(r), (5)

U+(r) = wAB(e−iq1·r + ei2π/3−iq2·r + e−i2π/3−iq3·r) and ∂z̄ ≡
∂
∂ z̄ = (∂x + i∂y)/2. Equation (4) has an apparent solution in a
fully sublattice-polarized form with either χA = 0 or χB = 0
for all r. If we assume χB = 0, then Eq. (4) is solved by
ε = λsτγ1 + δ and Dτ (r)χA = 0. The latter condition is in
fact identical to the zero-energy flat-band equation for chiral
TBG [47]. The other set of solution with the opposite sublat-
tice polarization is found by assuming χA = 0, which has the
energy ε = λsτγ2 − δ.

The sublattice polarization is not just a fine tuning effect
of the chiral limit and a similar effect has been discussed in
lattice models [83–85]. In Figs. 2(a) and 2(c), we show the
sublattice weight for the top-most flat band for twisted bilayer
TMD and germanene respectively [86]. For TMD bilayers, the
sublattice polarization is always almost maximized for a wide
range of parameters, while for germanene bilayers, it is maxi-
mized only when the system is near the chiral limit and magic
angle (α → αc and r → 0). In Figs. 2(b) and 2(d) we show the
Chern numbers for the four flat bands, which help us to further
identify the Z2 flat bands according to Eq. (3). For TMD
bilayers, since we neglected the SOC in the conduction band,
there are only two Z2 flat bands with B-sublattice polarization,
which are separated from many other bands due to large λ

[gray area in Fig. 2(b)]. In contrast, the germanene bilayers
can host four energetically close Z2 flat bands. If the Fermi
level is located in the middle of the lower two bands, then
tuning δ results in a topological phase transition as indicated
in Fig. 2(e), where in the chiral limit the trivial regime shrinks
to a point at δ = 0.

The wavefunction for these chiral flat bands can be ob-
tained in a similar fashion as for TBG flat bands [47]. For
simplicity, we consider the top-most band. For τ = +1, the
equation D+(r)χA(r) = 0 has a C3-rotation symmetry pro-
tected solution at the moiré Brillouin corner ±κ , which we
denote as χ±κ

↑+ (±κ are related by C3 rotation so below we use
χκ

↑+ only). Because D+(r) contains only the antiholomorphic
derivative ∂z̄, the general solution is χ↑+,k(r) = fk(z)χκ

↑+(r)
where ∂z̄ fk(z) = 0 and z ≡ x + iy is the complex coordinate.

(a)

(c)

(b)

(d)

(e) (f)

FIG. 2. [(a),(b)] Sublattice weight and moiré flat bands for
twisted bilayer TMD. In (a) we choose the upper flat band with
s = + and τ = + and α is reduced by increasing θ . Due to a large
δ and λ in TMD, the sublattice polarization is almost maximized for
different α, r, and r′. The A(B)-sublattice polarized flat bands are
shown in red(purple), and gray regions denote other dispersive moiré
bands. [(c),(d)] Sublattice weight and moiré flat band for twisted
bilayer germanene. We again choose s = + and τ = + for (c). Here
the since δ and λ are much smaller than those in TMD, all the
four resulting Z2 flat bands are energetically close to each other.
(e) Schematics of the phase diagram when the Fermi level is at the
dashed line shown in (d). (f) Plots of the wavefunction amplitude at
the moiré κ point in log scale. The zeros are located at ±(a1 − a2)/3
depending on s and τ .

fk(z) must have simple poles to preserve the moiré lattice
translation symmetry, but remarkably each component of
χκ

↑+(r) has zeros at some particular r0 right at the magic
twist angle. Therefore, one can locate the poles of fk(z) at
these r0 to make χ↑+,k(r) a bounded function. In Fig. 2(f)
we plot |χκ

sτ (r)| on a logarithmic scale. The zeros are located
at either AB- or BA-stacking points, depending on s, τ , and
sublattice. For A-sublattice polarized bands, r0 = (a1 − a2)/3
when measured from the AA center.

The total wavefunction can be more conveniently ex-
pressed when the spatial origin is shifted to r0, so that

χ↑+,k(r) = F↑+(r)N (k)

[
ei k∗z

2 σ

(
z + i

S

2π
k

)]
(6)

where

F↑+(r) = χκ
↑+(r + r0)e− πa∗

1 z2

2Sa1

ϑ1
(

z
a1

, a2
a1

) , N (k) = πϑ ′
1

(
0, a2

a1

)
a1

e
Sa∗

1 k2

8πa1 .

(7)

Here a j ≡ a j x + ia j y for j = 1, 2 and k ≡ kx + iky are the
complex number representations of vectors, and S = |a1×a2|
is the area of the moiré unit cell. ϑ1(u, η) is one of

115111-3



WU, SHAFFER, WU, AND SANTOS PHYSICAL REVIEW B 109, 115111 (2024)

the Jacobi theta functions [87], which has the double-
periodic properties ϑ1(u + n, η) = (−1)nϑ1(u, η) and ϑ1(u +
nη, η) = (−1)ne−iπ (2nu+n2η)ϑ1(u, η) for n ∈ Z, and vanishes
at u = n + mη for n, m ∈ Z such that 1/ϑ1(u, η) has simple
poles at these positions. As a result, F (r) becomes regular.
The universal part, [...] in the above equation, contains a
modified Weierstrass sigma function [88], which has zeros
on the moiré lattice sites, and is related to ϑ1 via σ (z) =
a1
π

exp( πa∗
1z2

2Sa1
)ϑ1( z

a1
, η)/ϑ ′

1(0, η) (see also Appendix A for de-
tails). The time-reversal counterpart χ↓−,k(r) is constructed in
the same manner.

We note that the zeros of χκ
↑+ and χ−κ

↓− coincide in space
[see Fig. 2(f)], and they can be made complex conjugate to
each other. Furthermore, the operator D−(r) contains only
holomorphic derivatives, indicating the wavefunction for τ =
−1 valley contains only antiholomorphic functions. Clearly
this construction is equivalent to taking the complex conjugate
of χ↑+,k, and we thus have

χ↓−,k(r) = F↓−(r)N∗(k)

[
e−i kz∗

2 σ

(
z∗ − i

S

2π
k∗

)]
(8)

with F↓−(r) = F ∗
↑+(r). Using the quasiperiodic properties of

the theta function, it is straightforward to check that both of
these wavefunctions indeed satisfy Bloch’s theorem [89].

Equations (6) and (8) are quite similar to the LLL wave-
function on a torus in the symmetric gauge [90], which is
obtained by taking F (r) = e−|z|2/4 and N (k) = e−|k|2/4 (setting
magnetic length lB = 1 for simplicity), and σ (z) is defined
for an arbitrary lattice as long as the unit-cell area is S = 2π

(one flux quantum per unit cell). In fact, for any 2D ideal
flat band with Chern number C = 1, its wavefunction can be
written in the form of Eq. (6) with some properly chosen F (r)
and N (k) [91,92] (also see Appendix B for details). The flat
band being ideal means that the cell-periodic part, defined as
usτ,k(r) = eiτk·rχsτ,k(r) is (anti)holomorphic in k for spin up
(down). As a key consequence, the quantum geometric tensor
ηαβ (k) := 〈Dαuk|Dβuk〉 has vanishing determinant at every k;
here Dα := ∂kα

− iAα with Aα = i 〈uk|∂kα
uk〉 the Berry con-

nection. This in turn implies that the Fubini-Study metric
gab(k), the real part of η(k), is related to the Berry curva-
ture �(k) = ∇k×A via gαβ (k) = 1

2 |�(k)|δαβ . It is known that
these properties make the flat band an ideal system to mimic
the Girvin-MacDonald-Platzman (GMP) algebra [93] for the
LLL in a strong magnetic field: [ρq1

, ρq2
] = i�q1×q2ρq1+q2

with ρq being the density operator projected to the flat band,
if we identify the average Berry curvature � = 1

SBZ

∫
dk�(k)

as the square of the magnetic length l2
B [94–96]. It is this

similarity that makes it possible to obtain quantum (spin) Hall
effect in the full or partially filled moiré flat bands.

IV. MANY-BODY WAVEFUNCTIONS FOR FQSH

Since � plays the same role as l2
B in the GMP algebra,

we can identify each moiré unit cell as the magnetic unit
cell, which hosts a single magnetic flux. For a parallelogram
system with the widths L1 = N1a1 and L2 = N2a2 as shown
in Fig. 1(a), the general twisted periodic boundary condition
for each particle on the many-body wavefunction implies
�({zi}|z j = L1,2) = eiφ1,2�({zi}|z j = 0), where φ1,2 are not

necessarily zero. Following the logic of Ref. [53,90], we have
for spin-up fermions (see Appendix A for details)

�↑,m({z j}) = eiKZ
Ne∏
j=1

F↑+(r j )
m∏

ν=1

σL(Z − iZν )

×
∏
i< j

[σL(zi − z j )]
m, (9)

where we have assumed there are Ne spin-up fermions so that
the filling fraction is 1/m = Ne/Ns. Note that we need to keep
m an odd integer in order to maintain fermionic properties.
Here Z = ∑

j z j and the values of K and Z0 := ∑
ν Zν are

chosen to satisfy

eiKL1,2 = (−1)Ns+N1,2 ei
πL∗

1,2Z0
NsS +iφ1,2 . (10)

The sigma function with subscript “L” is defined similarly
to the previous discussion, but with the unit cell enlarged to
the whole sample spanned by L1 and L2 instead of a1 and a2.
Since the sigma function vanishes as σL(z) ∼ z when z → 0,
this wavefunction scales as (zi − z j )m whenever there are two
particles approaching each other, so it can be stabilized by
some pseudopotential similar to that of Haldane. The differ-
ence from Haldane’s pseudopotential is that the ideal flat-band
pseudopotential not only depends on the relative angular
momentum between two particles, but also on their center-of-
mass (COM), so that the general form of the interactions can
be written as V (r1, r2) = ∑

M,m vM,mP̂M,m where P̂M,m is the
projector [91]. This can be traced back to the fact that the LLL
wavefunction obeys the magnetic translation group [97] while
the ideal flat-band wavefunction in our case does not. One
simple realization that stabilize the wavefunction in Eq. (9)
is to consider sufficiently short range (Hubbard-like) interac-
tions, for which the COM gets frozen, and the pseudopotential
can be modeled by V (r) = ∑m′<m

m′=0 vm′ (∇2)m′ ∑
i δ(r − Ri )

where Ri denote all lattice sites and all m′ > 0 should be odd.
For the spin-down fermions, the construction is exactly the
same,

�↓,m′ ({w̄ j}) = e−iQ̄W̄
N ′

e∏
j=1

F↓−(r j )
m′∏

ν=1

σL(W̄ − iW̄ν )

×
∏
i< j

[σL(w̄i − w̄ j )]
m′

(11)

with W̄ = ∑
j w̄ j , and Q̄ and W̄0 := ∑

ν W̄ν satisfying condi-
tions similar to Eq. (10).

Upon combining the two spin components (9) and (11), we
identify

�FQSH({z j,w j}) = �↑,m({z j})�↓,m({w̄ j}) (12)

as a candidate wavefunction describing a FQSH state with
spin-filling fraction νspin = 1

m , which hosts conserved spin
current and fractional electronic excitations [66,74–76]. In
short samples compared with the electron mean free path, the
presence of a helical edge state may be revealed by the low-
temperature (compared to the many-body gap) quantization of
the longitudinal conductance G = 2νspine2/h [98], expected
to persist for an interacting Luttinger liquid edge [99]. Fur-
thermore, charge fractionalization could be sensed via shot
noise measurements [100,101], providing two complementary
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experimental signatures of time-reversal symmetric fraction-
alization.

Remarkably, the ideal flat-band condition [53,91] ensures
that (12) is the ground state of a local time-reversal symmet-
ric Haldane pseudopotential interaction, which establishes a
microscopic mechanism for time-reversal invariant fractional
topological order in moiré flat-band systems. The many-body
wavefunction (12) can be generalized by multiplication by
terms ∼ ∏

r<s(zr − w̄s)n, which represent correlations be-
tween opposite spins [66,76]. Achieving such FQSH states
would require different local interactions, a question that mer-
its further investigation.

V. CONCLUSIONS AND DISCUSSION

We have shown that twisted bilayer 2D materials with spin-
orbit coupling (TMD and germanene) can give rise to ideal flat
bands with TRS at magic twist angle and in the chiral limit,
serving as an ideal platform for realizing FQSH effect. There
are, however, two obstacles that can potentially destroy the
FQSH state. The first one is the competition with other sym-
metry breaking phases, including charge density wave due to
long range interactions [102] and ferromagnetism [103]. The
true ground state depends on the details of the interactions,
so given that moiré systems have much higher tunability of
interactions compared to other platforms, we expect that the
FQSH state considered here is indeed in a physically accessi-
ble regime. The second obstacle is that a finite wAA spoils the
ideal flat-band condition and renders the Berry curvature more
inhomogeneous in k space. Comparing energies of different
competing states in this case, e.g., using exact diagonalization
and DMRG, is an interesting question, which we leave for a
future study. We also note that if intervalley coherence that
spoils sz conservation is included, a different type of FQSH
without sz conservation can also be realized.

Note added. Recently, we noticed that the experimental
breakthrough on observing FQSH has been announced, based
on the twisted bilayer MoTe2 system [104].
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APPENDIX A: LLL WAVEFUNCTION ON A TORUS AND
THE CONSTRUCTION OF LAUGHLIN WAVEFUNCTION

The LLL wavefunction on a torus was first studied in
Ref. [90], where the theta function was used to account for
the double-periodicity nature of the wavefunction. There the
theta function is periodic in terms of the boundaries L1 and L2,
which necessarily involves a product of many theta functions.
Alternatively, one can define the problem on a lattice, and
the unit cell is chosen arbitrarily but must enclose an area of
2π l2

B through which a unit flux passes. The introducing of a

lattice makes it easy to compare with real lattice systems with
a flat Chern band. Below we discuss both of these pictures
separately.

1. LLL without lattice

a. Single-particle wavefunction

Here we closely follow the logic of Ref. [90]. The sin-
gle particle LLL wavefunction in Landau gauge A(r) =
(−yB, 0, 0) can be written as

ψ (x, y) = e−y2/2 f (z). (A1)

Here we have set l2
B = 1, and f (z) is a holomorphic function

defined on the whole plane. Due to the presence of the expo-
nentially decaying prefactor e−y2/2, f (z) can be unbounded in
the y direction, so the total wavefunction ψ (x, y) can still be
normalizable. The magnetic translation operator t (L) acting
on a wavefunction is (assuming B is in the z direction)

t (L)ψ (r) ≡ ψ (r + L) = eiL·[−i∇−eA(r)]+ieB·(r×L)ψ (r). (A2)

Suppose we defined the system size as a parallelogram with
width |L1| and |L2| and and angle ϕ between them. Then the
total flux piercing this sample is given by

Ns = A

2π l2
B

= |L1||L2| sin ϕ

2π
. (A3)

The twisted boundary condition on the wave function implies,

ψ (L1,2) = ψ (0)eiφ1,2 . (A4)

Let us further assume L1 is in the x direction without loss of
generality. Then we can immediately see

f (L1) = f (0)eiφ1 . (A5)

The boundary condition in L2 direction also applies to the
prefactor e−y2/2, so we will have

e−(|L2| sin ϕ)2/2 f (L2) = f (0)eiφ2 . (A6)

Using the definition of Ns, we can also write the above expres-
sion as

e−πNs
|L2 |
|L1 | sin ϕ f (L2) = f (0)eiφ2 . (A7)

The solution of the above two boxed equations are given by
the Jacobi theta function,

f (z) = eikz
Ns∏

ν=1

ϑ1

(
z − zν

L1
, η̃

)
, (A8)

where η̃ = L2/L1 and the theta function ϑ1 is defined as

ϑ1(u, η̃) := −i
∑
l∈Z

(−1)l q(l+1/2)2
eiπ (2l+1)u, q := eiπη̃, (A9)

which has the following properties:

ϑ1(u + n, η̃) = (−1)nϑ1(u, η̃),

ϑ1(u + nη̃, η̃) = (−1)ne−iπ (2nu+n2 η̃)ϑ1(u, η̃),

ϑ1(−u, η̃) = −ϑ1(u, η̃),

ϑ1(u, η̃) = 0 for u = n + mη̃, m, n ∈ Z

ϑ1(u, η̃) ∼ u for u → 0. (A10)
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We now need to choose proper k and zν in order to satisfy the
boxed boundary condition in Eqs. (A5) and (A7). Using the
properties of ϑ1 listed above, and defining z0 = ∑Ns

ν zν , it is
easy to see that k and z0 satisfy the following equations:

eikL1 = (−1)Ns eiφ1 ,

eikL2 = (−1)Ns e
i
(
φ2−2πz0/L1+πNs

|L2 |
|L1 | cos ϕ

)
. (A11)

Note that the second equation is slightly different from that in
Ref. [90], to which it reduces when ϕ = π/2, i.e., when the
L1 and L2 are perpendicular to each other. From Eq. (A11)
it is easy to see that, if (k, z0) is the solution, so is (k +
n12π/L1, z0 − n1L2 + n2L1) with n1, n2 ∈ Z. The number of
the linearly independent solutions is equal to the number of
zeros of f (z), which is Ns.

b. The Laughlin wavefunction

The construction of the many-body Laughlin wavefunction
proceeds as follows. Suppose there are Ne electrons, so the
filling factor is given by Ne/Ns = 1/m. We will assume m � 3
is some odd integer. The wavefunction is given by the ansatz,

�({zi}) = F (Z )
∏
i< j

g(zi − z j ), (A12)

where F (Z ) is a function, which depends on the center-of-
mass coordinate Z and g(zi − z j ) is the Jastrow factor, which
only depends on the relative coordinate. Recall the usual
Laughlin wavefunction is

�LW({zi}) = e− ∑Ne
i |zi|2/4

∏
i< j

(zi − z j )
m, (A13)

hence we need

g(zi − z j ) ∼ (zi − z j )
m for zi → z j . (A14)

One possibility is

g(z) =
[
ϑ1

(
z

L1
, η̃

)]m

, (A15)

which leads to the following boundary condition for a generic
single particle, say z1:

g(L1 − z j ) = (−1)mg(−z j ),

g(L2 − z j ) = (−1)me
−imπ

(
−2

z j
L1

+ L2
L1

)
g(−z j ). (A16)

Therefore, for the product of Ne − 1 particles, we have∏
j

g(L1 − z j ) = (−1)Ns−m
∏

j

g(−z j ),

∏
j

g(L2 − z j ) = (−1)Ns−mei2πm Z
L1

−i(Ns−m)π L2
L1

∏
j

g(−z j ).

(A17)

If we require that the total wavefunction satisfies

�LW({z j |zi = L1,2}) = �LW({z j |zi = 0})eiφ1,2 (A18)

then the center-of-mass factor F (Z ) must satisfy

F (Z + L1) = F (Z )(−1)Ns−meiφ1 ,

F (Z + L2) = F (Z )(−1)Ns−me−i2πm Z
L1

+i(Ns−m)π L2
L1 eiφ2 . (A19)

The general solution for F (Z ) can be expressed as

F (Z ) = eiKZ
m∏

ν=1

ϑ1

(
Z − Zν

L1
, η̃

)
. (A20)

Likewise, we need to properly choose K and Z0 := ∑
ν Zν to

solve Eq. (A19). This puts constraints on K and Z0, namely

eiKL1 = (−1)Ns eiφ1 ,

eiKL2 = (−1)Ns e−i2π
Z0
L1 eiNsπη̃eiφ2 . (A21)

2. Another choice: LLL wavefunction with a lattice

a. Symmetric gauge

Here it is useful to switch to symmetric gauge where A =
(−yB/2, xB/2, 0), the magnetic translation operator acting on
ψ (r) has a simple form (again assuming eB = l−2

B = 1)

t (L) = eiL·(−i∇)+ i
2 (r×L)·ẑ. (A22)

The wavefunction that simultaneously diagonalize the
Hamiltonian and this translation operator can be given by the
modified Weierstrass sigma function [88]

σ (z) = a1e
πa∗

1 z2

2Sa1

ϑ1
(

z
a1

, η
)

ϑ ′
1(0, η)

, (A23)

where ϑ1 is the theta function defined above, and ϑ ′
1 denotes

its derivative. S is the area of the unit cell, and in the lattice
spanned by a1 and a2 we have S = 2π . Upon translated by a
lattice l = ma1 + na2 with m, n ∈ Z, it changes as

σ (z + l ) = ξ (l )e
π l∗

S (z+l/2)σ (z), (A24)

where ξ (l ) = 1 if l/2 is also on the lattice and ξ (l ) = −1
otherwise. In particular, if l = aj with j = 1, 2, we have

σ (z + aj ) = −e
a∗

j
2 (z+a j/2)σ (z). (A25)

Now if we write the wavefunction as

ψS (x, y) = e−|z|2/4 fk (z) (A26)

then the holomorphic function fk (z) is given by

fk (z) = σ (z + ik)e−|k|2/4+ik∗z/2. (A27)

An important property of writing the LLL wavefunction using
this modified sigma function is that it does not dependent on
the specific choice of the lattice, i.e., it is modular invariant.
One can design an artificial lattice spanned by the lattice
vector a1 and a2 with the unit cell area being 2π (2π l2

B when
lB is not set to unity). Then the system under consideration
can be described using two integers N1 and N2, such that
L1 = N1a1 and L1 = N2a2, and the total number of fluxes
passing through the system is given by Ns = N1N2. Under
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translation l = ma1 + na2, this wavefunction transforms as

ψS (r + l ) = e−|z+l|2/4 fk (z + l )

= e− |z|2+|k|2
4 − |l|2

4 − z∗ l+l∗z
4 +i k∗z+k∗ l

2 σ (z + l + ik)

= ξ (l )ei k∗ l+l∗k
2 + l∗z−z∗ l

4 ψS (r)

= ξ (l )eik·l+ i
2 (r×l )·ẑψS (r). (A28)

Note this wavefunction transforms in a similar but not exactly
the same way as a Bloch wavefunction transforms under spa-
tial translation. Using this properties, one can explicitly show
that

t (l1)t (l2)ψS (r) = t (l2)t (l1)ψS (r)ei(l1×l2 )·ẑ (A29)

as it should be. The periodic boundary condition in Eq. (A4)
then implies k must obey

k · L1 = 2πn1 + N1π + φ1,

k · L2 = 2πn2 + N2π + φ2, (A30)

with n1, n2 ∈ Z.
Using the relation between the sigma function and the

theta function it is possible to express the wavefunction only
in terms of the theta function. In addition, without loss of
generality, we can always choose a1 to be real. It is then easy
to see

ψS (x, y) = ei k·a1
a1

z a1e− |z|2−z2

4 − |k|2+k2

4

ϑ ′
1(0, η)

ϑ1

(
z + ik

a1
, ω

)
. (A31)

Note this expression is different from Eq. (A8) in the sense
that it contains only one holomorphic theta function. But the
number of zeros enclosed by the sample boundary remains the
same. It is easy to realize that the function

uk := ψS (r)e−ik·r ≡ Nkũk (r) (A32)

is a normalized k-holomorphic function ũk (r) times a
k-dependent complex normalization factor Nk (such that
||uk||2 = |Nk|2). This observation is useful, since the quantum
geometric tensor η(k), defined as

ηab(k) = 〈∂ka uk|∂kbuk〉
|Nk|2 − 〈∂ka uk|uk〉 〈uk|∂kbuk〉

|Nk|4 (A33)

is actually independent of Nk. A simple manipulation shows
that when substituting uk = Nkũk into this definition, the
derivatives of Nk from the first and the second part of
Eq. (A33) cancel out, which leads to

ηab(k) = 〈∂ka ũk|∂kb ũk〉 − 〈∂ka ũk|ũk〉 〈ũk|∂kb ũk〉. (A34)

Therefore, the factor Nk, although depending on k, does not
determine the properties of the ideal flat band.

We close by noting that the wavefunction in Landau gauge
can be readily obtained by applying the gauge transformation,
namely,

ψL(x, y) = ψS (x, y)e−ixy/2

= ei k·a1
a1

z a1e− y2

2 − |k|2+k2

4

ϑ ′
1(0, η)

ϑ1

(
z + ik

a1
, ω

)
. (A35)

b. The Laughlin wavefunction

Using the sigma function, we can write the ansatz for
the many-body wavefunction similar to that in Eq. (A12),
but since we will be using sigma functions, we write the
ansatz as

�({zi}) = e− ∑
i

|zi |2
4 F (Z )

∏
i< j

g(zi − z j ), (A36)

where g(z) is now given by

g(z) = [σL(z)]m (A37)

and

σL(z) = L1

π
e

L∗
1 z2

4NsL1

ϑ1

(
z

L1
, η̃

)
ϑ ′(0, η̃)

. (A38)

Similar to Eq. (A25),

σL(z + L1,2) = −e
L∗

1,2
2Ns

(z+L1,2/2)σ (z). (A39)

Clearly g(z) still scales as zm when z → 0. Then it is easy to
see, similar to Eq. (A17), we now have

∏
j

g(L1 − z j ) = (−1)Ns−me
|L1 |2
4Ns

(Ns−m)− mL∗
1

2Ns
Z
∏

j

g(−z j ),

∏
j

g(L2 − z j ) = (−1)Ns−me
|L2 |2
4Ns

(Ns−m)− mL∗
2

2Ns
Z
∏

j

g(−z j ).

(A40)

Accordingly, the periodic boundary condition on the many-
body wave function, when applied to one of the many
particles, leads to the following constraints for F (Z ):

F (Z + L1)

F (Z )
= (−1)−Ns+me

mL∗
1

2Ns
(Z+ L1

2 )eiφ1 ,

F (Z + L2)

F (Z )
= (−1)−Ns+me

mL∗
2

2Ns
(Z+ L2

2 )eiφ2 . (A41)

These equations are solved by assuming the following general
form

F (Z ) = eiKZ
m∏

ν=1

σL(Z − iZν ). (A42)

Introducing Z0 = ∑m
ν=1 Zν , then the parameter K is deter-

mined via

KL1 = L∗
1Z0

2Ns
+ πNs + φ1 + 2n1π,

KL2 = L∗
2Z0

2Ns
+ πNs + φ2 + 2n2π, (A43)

with n1, n2 ∈ Z. It is also straightforward to see that under
translation operation

t (L1)t (L2)�({zi}) = t (L2)t (L1)�({zi})ei(L1×L2 )·ẑ. (A44)
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APPENDIX B: THE LAUGHLIN WAVEFUNCTION
FOR A GENERIC IDEAL FLAT BAND

From above we see the single particle LLL wavefunction
(in the symmetric gauge) can be conveniently written as

ψ (r) = e− |z|2
4 e− |k|2

4

[
ei k∗z

2 σ

(
z + i

S

2π
k

)]
, (B1)

where we reintroduced S = 2π l2
B but in our convention lB =

1 it reduces to S = 2π . It contains three part. The first one

is the factor e− |z|2
4 , which depends only on r and makes sure

the wavefunction decays at large distances. The second term

e− |k|2
4 is a factor, which depends solely on k. The the last term

inside [...] has the nice property that it becomes a holomorphic
function in k when multiplied by the factor e−ik·r, as

k · r = 1
2 (k∗z + z∗k). (B2)

The many-body Laughlin wavefunction is given by

�({zi}) = eiKZ

(
Ne∏

i=1

e− |zi |2
4

)
m∏

ν=1

σL(Z − iZν )

×
∏
i< j

[σL(zi − z j )]
m, (B3)

with K and Z0 = ∑
ν Zν satisfying Eq. (A43).

In fact, as suggested in Ref. [91], any ideal flat-band wave-
function with Chern number C = 1 can be written in a way
similar to Eq. (B1), namely

ψIFB(r) = F (r)N (k)

[
ei k∗z

2 σ

(
z + i

S

2π
k

)]
, (B4)

where F (r) depends on the lattice details, and N (k) is some
normalization factor, which is less important as we already
see in Eqs. (A33) and (A34).

As an example, now let us come back to the magic-angle
chiral limit flat-band wavefunction for, say C = +1,

χ+,k(r) = eik·a1
z−z0

a1

ϑ1
( z−z0

a1
− k

b2
, η

)
ϑ1

( z−z0
a1

, η
) χκ

+(r)

= eik·a1
z−z0

a1

ϑ1
( z−z0+i S

2π
k

a1
, η

)
ϑ1

( z−z0
a1

, η
) χκ

+(r). (B5)

It is more convenient to work with the wavefunction with ori-
gin shifted to r0, so we define a new χ̃+,k(r) = χ+,k(r + r0).
After some manipulation we rewrite it is as

χ̃+,k(r) = χκ
+(r + r0)e− πa∗

1 z2

2Sa1

ϑ1
(

z
a1

, η
) πϑ ′(0, η)

a1
e

Sa∗
1 k2

8πa1

×
[

ei k∗z
2 σ

(
z + i

S

2π
k

)]
. (B6)

From this expression we can easily read off the factors F (r)
and N (r) introduced in Eq. (B4) in this case.

As a directly generalization of Eq. (B3), the many-
body wavefunction ansatz can be written by modifying
F (r) accordingly. Therefore, for the magic-angle chiral limit
flat band, the many-body Laughlin wavefunction ansatz is
given by

�IFB({zi}) = eiKZ

⎛
⎜⎝ Ne∏

i=1

χκ
+(ri + r0)e− πa∗

1 z2
i

2Sa1

ϑ1
( zi

a1
, η

)
⎞
⎟⎠

×
m∏

ν=1

σL(Z − iZν )
∏
i< j

[σL(zi − z j )]
m. (B7)

Likewise, by using the quasiperiodic properties of σL and ϑ1,
it is easy to see the values of K and Z0 = ∑

ν Zν must satisfy

eiKL1 = (−1)Ns+N1 ei
πL∗

1 Z0
NsS +iφ1 ,

eiKL2 = (−1)Ns+N2 ei
πL∗

2 Z0
NsS +iφ2 , (B8)

in order to meet the periodic boundary conditions, which are
similar to Eq. (A43).
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