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We present a comparative investigation of singlet ground state induced magnetism for singlet, doublet, and
triplet excited CEF states of non-Kramers f electrons relevant primarily for Pr- and U-based compounds. This
type of magnetic order is of the intrinsic quantum nature because it requires the superposition of singlet ground
state with excited states due to nondiagonal matrix elements of the effective intersite exchange to generate local
moments. In contrast to conventional magnets, the local moments and their ordering appear simultaneously at
the transition temperature. It is finite only if the control parameter proportional to the ratio of exchange strength
to level splitting exceeds a critical value marking the quantum critical point of the models. We determine the
dependence of transition temperature, saturation moment, renormalized level splitting, specific heat jumps, and
low-temperature susceptibility as a function of control parameters. Furthermore, the temperature dependence
of these quantities is calculated for control parameters above and below the quantum critical point and the
distinction to conventional magnetism is discussed. In addition, we investigate the dynamical properties of the
three models, deriving the magnetic exciton dispersion and their critical behavior. In particular, the conditions
for true and arrested soft-mode behavior at the ordering wave vector are identified.
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I. INTRODUCTION

The majority of magnets with local moments can be under-
stood within the context of semiclassical approach sufficiently
below the ordering temperature Tm [1,2]. The formation of a
collective moment and molecular field is due to the exchange
coupling of stable local moments that exist already above Tm

and order spontaneously at this temperature, breaking time
reversal and possibly spatial symmetries. The ordered mo-
ment is treated as a classical variable and the quantum effects
are included by considering the effect of a small number
of bosonic excitations, i.e., magnons that reduce the ordered
moment below the classical value by a certain amount. This
reduction is moderate, e.g., in the three dimensional case,
unless lower dimension and/or the effect of frustration leads
to possibly divergent corrections heralding the breakdown of
magnetic order and the appearance of a nonmagnetic “spin
liquid” ground state. Except for 1D magnetic chains such a
state can exist only in tiny parts of the exchange parameter
space [3] and mostly the semiclassical picture is valid, even
when the ordered moment reduction by quantum fluctuations
and transition temperature suppression may be quite large [4].

There is, however a class of magnetic materials with non-
Kramers 4 f or 5 f ions (with integer total angular momentum
J) where the quasiclassical picture of ordering is per se in-
valid. This is the case when the crystalline electric field (CEF)
splits the (2J + 1)-fold degenerate J multiplet into a series of
CEF multiplets such that the ground state |0〉 is a singlet which
has no magnetic moment, i.e., 〈0|J|0〉 = 0. In this situation,
the appearance of magnetic order is a true quantum effect,

it can only happen if at least one of the J components has
nondiagonal matrix elements with nearby excited multiplets.
Then a sufficiently strong intersite exchange may lead to the
creation of an ordered moment by spontaneous formation of
a new ground state which is a superposition of singlet ground
state and first excited multiplet state at an energy �. If we as-
sume an ideal situation where the latter is separated from other
much higher lying CEF levels and the transition temperature
Tm is small then in an intermediate temperature range Tm <

T < � there will be no paramagnetic moment (just vanVleck
terms) in the susceptibility. The moment then appears at Tm as
a collective ordered moment self-consistently determined by
the singlet-singlet mixing in the ordered phase which cannot
be viewed quasiclassically as alignment of preexisting param-
agnetic moments. The condition for the necessary strength of
the intersite coupling is determined by a dimensionless control
parameter composed of coupling strength, level splitting and
the nondiagonal matrix elements [Eq. (6)]. The critical value
of the control parameter, equal to one, defines the quantum
critical point (QCP) separating the paramagnetic (less than
one) from the induced magnetic moment (larger than one)
regime.

The thermodynamic signatures, as expressed by behav-
ior of critical temperature, saturation moment, specific heat
anomalies. and susceptibility are quite distinct from the quasi-
classical magnets. Furthermore the dynamical characteristics
show pronounced differences. In the latter coherent prop-
agating magnons; i.e., quasiclassical precessing moments
naturally can only appear in the ordered phase; requesting the
presence of a molecular field. On the other hand in the induced
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moment magnets collective “magnetic exciton” modes are
present already in the paramagnetic phase due to the possi-
bility of dispersive inelastic CEF excitations between singlet
ground state and excited multiplet. The dispersion of mag-
netic excitons is strongly temperature dependent controlled
by the thermal population difference of CEF levels. Under
suitable conditions, it may turn into a soft mode at the in-
cipient ordering wave vector as a precursor to spontaneous
induced order. However, it is frequently arrested at a finite
energy at the ordering temperature. Below the ordering tem-
perature, it reemerges as a strongly renormalized magnonic
mode (possibly split into several branches) where the induced
order parameter together with the molecular-field renormal-
ized CEF level splitting determine the dispersion.

This type of induced moment quantum magnetism, differ-
ent from the common semiclassical variety has been known
for some time but its possibility and distinction to quasi-
classical magnetism is not commonly appreciated. It appears
primarily in compounds with J = 4 4 f or 5 f ions such as
PrSb [5], Pr3Tl [6,7], PrCu2 [8], PrNi [9], Pr metal un-
der pressure [10–12] but also Tb (J = 6) compound TbSb
[13]. Furthermore 5 f candidates for induced order are UGa2

[14], UPd2Al3 [15–17], and URu2Si2 [18] (and references
cited therein), also Fe-substituted [19]. The latter example
(when considered within the localized 5 f scenario) and also
the (Kramers ion) compound YbRu2Ge2 show that the in-
duced order mechanism not only works for magnetism but
also for multipolar [20,21] and quadrupolar [22,23] order,
respectively. Finally another aspect of the singlet ground
state induced magnetism has been discovered. For CEF sin-
glet ground state f electrons on suitable 2D lattices like
honeycomb or kagome, the magnetic excitons may develop
a nontrivial topological character with nonvanishing Chern
number which would entail the existence of magnetic ex-
citonic edge modes in the paramagnetic state [24]. This
possibility has previously only been considered for ferro- or
antiferro-ordered 2D lattices [25,26].

Another highly interesting aspect of induced moment mag-
netism is the possible influence of nuclear hyperfine coupling
on the magnetic transition and order. The effects of hyperfine
coupling and level splitting in thermodynamic properties of
4 f systems appear in the 102 mK regime [27] in particular
in Pr compounds since the Pr141 isotope has the largest hy-
perfine coupling in the 4 f series. When an induced moment
system is accidentally close to the quantum critical point with
zero or small ordering temperature the effect of the hyper-
fine coupling on the induced order may become essential. A
prominent example is Pr metal which has slightly subcritical
control parameter for purely 4 f induced moment order, which
may, however, be rapidly pushed above the critical parameter
leading to finite transition temperature by applying uniaxial
pressure [28]. It has been suggested [10,29–31] that as a
result of hyperfine coupling between nuclear and 4 f moments
it nevertheless shows combined nuclear-electronic magnetic
order around 50–60 mK already at ambient pressure. The
importance of hyperfine coupling has also been proposed for
to explain the singlet ground state magnetism (TN � 0.25 K)
of Tb3Ga5O12 and its excitations [32]. Theoretical treatments
of the combined effects of electronic exchange and nuclear
hyperfine coupling were given e.g., in Refs. [10,33,34]. In this

work, we will not consider these further complications for the
close-to critical induced moment magnets and focus only the
purely electronic mechanism.

Although the above mentioned compounds are known to
have a singlet CEF ground state the type of the first excited
state whether singlet, doublet or triplet (in cubic site symmetry
only) is not always known with certainty, in particular in the
U compounds. However the quantitative and even qualitative
aspects of induced moment magnetic order will be different in
these three cases. Although they have been considered before
in the references above there is no systematic comparison
concerning their thermodynamic (specific heat, susceptibil-
ity etc.) or dynamic properties like distinct magnetic exciton
dispersion and differences in temperature dependence and
soft mode behavior. In this work, we undertake this effort to
improve understanding of these physical properties of singlet
ground state quantum magnets and give a better foundation
for possible judgment of experimentally observed properties.
We will do this for three generally applicable models: The
singlet-singlet, doublet, or triplet models (SSM, SDM, and
STM, respectively) which may be commonly realized in uni-
axial (the two former) or cubic symmetry (the latter), see also
Appendix A.

Our approach is analytical based on molecular field (MFA)
and random phase (RPA) approximations as far as it can be
carried out. We emphasize as a unifying concept the central
role of the control parameter of the three models defining
the QCP and separating paramagnetic and magnetic phases.
All physical properties will be expressed in terms of these
control parameters. It has the further advantage that one
can continuously approach the common magnetic order with
(quasi) degenerate ground state by tuning the control param-
eter to large values far away from the QCP. In particular, we
shall focus on the temperature behavior of susceptibility and
specific heat in the ordered phase and on the concomitant
control parameter dependence of ordered moment, ordering
temperature and specific heat anomalies which show a clear
distinction between the induced order quantum regime and the
(asymptotic) quasiclassical regime. Furthermore, we calculate
the magnetic excitation spectrum of the three models across
the disordered and induced order regimes and demonstrate
their striking differences. In particular, we give an explicit
demonstration how the simple soft mode picture is modified
in the STM model leading to an arrested soft mode at the true
transition temperature which is also of more general signifi-
cance. This investigation is not focused on a specific material
but rather on the comparative analysis of generally important
singlet ground state CEF models. To keep the results from
the three models distinct and avoid confusion, we dedicate
separate sections to them. This entails some redundancy but
supports clarity of presented results.

II. MODELS FOR INDUCED QUANTUM MAGNETISM

We consider three types of singlet ground state level sys-
tems. The first two are a singlet-singlet model (SSM) and
a singlet-doublet model (SDM) frequently appropriate for
uniaxial symmetry and a singlet-triplet model (STM) only
possible for cubic symmetry. They correspond to simplified
low energy CEF schemes consisting of just two levels whose
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FIG. 1. Behaviour of singlet ground and excited multiplet level
energies ε� − �

2 for the three models under the induced magnetic or-
der (shifted by �

2 ). Note that for SDM we use ε1 = ε− and ε3 = ε+ in
the related parts of the text. Here ξs,d,t = 1.5 corresponding to Tm =
0.62, 0.51, 0.47 consecutively. Nondiagonal matrix elements ms,d,t

of moment operator necessary for induced order are indicated. In
the STM, a diagonal triplet matrix element ±m′

t = ±1 occurs which
leads to an enhancement of the transition temperature [Fig. 2(a)] and
an arrested mode softening (Fig. 9). Energy and temperature unit is
� ≡ 1 here and in all following graphs.

splitting is considerably smaller than the excitation energies
to the higher lying CEF states. Such systems are encountered
for even-numbered f -electron shells with integer total angular
momentum like Pr, U (J = 4), Tm, Tb (J = 6), and Ho (J =
8) with examples given above. For the theoretical treatment
of magnetic order and excitations, it is a prerequisite to know
the matrix structure of the angular momentum operators in
the reduced SSM, SDM, and STM level schemes. For uniaxial
symmetries there are two possibilities, corresponding to Ising-
type where only one operator, by convention Jz, or xy-type
where two operators (Jx, Jy) have nonzero matrix elements
between the ground and excited CEF states of the reduced
level scheme. Which one is realized depends on the Stevens
parameters Bm

n of the CEF potential and consequently the type
of irreducible representations of low lying CEF states. Here
we consider the Ising-type SSM, the xy-type SDM, and the
cubic STM cases. The CEF singlet ground state is denoted by
|0〉. In the SSM, the excited singlet is denoted by |1〉 and in the
SDM the doublet states by |1σ 〉, σ = ±, for STM see below.
In all cases, the CEF splitting energy is � (Fig. 1). The angular
momentum operators for the xy-type models within these low
energy CEF subspaces have the general structure (in |0〉, |1〉
sequence):

Ising − type SSM :

Jz = ms

2

(
0 1
1 0

)
= msSx; (1)

where J operators refer to the free |JM〉 states and S are the
pseudospin operators in the reduced subspace of CEF states.
Likewise in the singlet-doublet xy-type model the general

form of J operators is given by (in |0〉, |1+〉, |1−〉 sequence):

xy-type SDM:

Jx = md√
2

⎛
⎝0 1 1

1 0 0
1 0 0

⎞
⎠ = md Sx;

Jy = md√
2

⎛
⎝ 0 i −i

−i 0 0
i 0 0

⎞
⎠ = md Sy. (2)

Here we defined ms, md in such a way that Sx, Sy corre-
spond to the canonical (pseudo) spin matrices for S = 1

2 , 1,
respectively (with reordered sequence of states for the latter).
The numerical values of ms, md are to be obtained from the
diagonalization of the full CEF Steven’s Hamiltonian in a
concrete case.

For the cubic STM, we take as a model the most important
�1–�4 level scheme of J = 4 whose states are fully deter-
mined by symmetry and therefore do not depend on the CEF
potential parameters. Since the cubic axes are equivalent, we
restrict to the Jz matrix where indices n = 0–3 correspond to
the singlet �1 ground state |ψ0〉 and triplet �4 excited states
|ψ1−3〉, respectively. It is given by

cubic-type STM:

Jz = 1

2

⎛
⎜⎜⎝

0 0 mt 0
0 m′

t 0 0
mt 0 0 0
0 0 0 −m′

t

⎞
⎟⎟⎠ = mt

(
1

2
σx

)
⊕ m′

t

(
1

2
τz

)
,

(3)

where σx and τz are Pauli matrices in the (0, 2) and (1, 3) sub-
spaces, respectively. For J = 4, we have [35] mt = 4

3

√
15 =

5.16 for the nondiagonal element and m′
t = 1 for the diagonal

one. The ratio m′
t : mt = 0.19 controls to which extent the

induced magnetic order is influenced by the excited magnetic
�4 triplet. This influence occurs only in the STM and has
also important consequences for the softening behavior of the
magnetic exciton spectrum as a precursor to the induced order
(Sec. IV C). This ratio is fixed by symmetry in the case of
J = 4 because �1, �4 representations occur only once. For
higher J = 6, 8, they occur multiple times and therefore the
ratio m′

t : mt depends on the CEF potential parameters which
may then be considered as an additional variable parameter.

The effective intersite exchange interactions (mediated,
e.g., by conduction electrons) together with the CEF potential
is described by the Hamiltonian

H =
∑
�,i

ε�|�, i〉〈�, i| − 1

2

∑
〈i j〉

Ji jJi · J j, (4)

where � = 0, 1 or 0, (1+, 1−) or 0, (1, 2, 3) labels the CEF
states of the three models, respectively and i, j denote the
lattice sites. We restrict to only nearest neighbor 〈n.n.〉 ex-
change interaction Ji j = I0 for in-plane bonds and Ji j = κI0

for out-of plane bonds (along c-axis), thus κ controls the real-
space anisotropy of the model and may be tuned continuously.
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We disregard possible spin-space anisotropies of the exchange
term to limit the number of parameters. The two CEF en-
ergy levels are given by ε0 = 0 and ε1, ε(1+,1−) or ε(1−3) =
�, respectively. Frequently it will be convenient to use the
more symmetrical shifted energy levels ε� − �/2 (without
introducing a new symbol). For simplicity, we consider the
localized f electrons and CEF states on a simple tetragonal
lattice. The corresponding (normalized) Fourier transformed
n.n. exchange function is then given by (wave vectors in units
of π/a or π/c)

Î (q) = sign[I0]

(2 + κ )
(cos qx + cos qy + κ cos qz ), (5)

where Î (q) = I (q)/Ie and the effective exchange coupling
strength is given by Ie = z

3 |I0|(2 + κ ) with z = 6 denoting the
n.n. coordination. According to the sign of the exchange part
in Eq. (4), we use the convention that I0 > 0 corresponds to
FM coupling and I0 < 0 to AF coupling.

Instead of the individual model parameters contained in the
Hamiltonian of Eq. (4), it will turn out that in each of the three
models one has only a single dimensionless control parameter
given by

ξs,t = m2
s,t Ie

2�
; ξd = 2m2

d Ie

�
, (6)

characterizing the relative strength of effective intersite ex-
change Ie and local CEF splitting �. The slightly different
definition of ξd is due to two facts. In the SDM, two excited
states are connected to the ground states and the prefactor of
the matrix is chosen differently to comply with pseudospin
conventions for S = 1. As it will turn out the above definition
of the control parameters leads to identical quantum critical
point ξ c

s,d,t = 1 for all three models within the molecular field
- RPA approach. This may possibly change when considering
the influence of interacting exciton modes beyond RPA on the
QCP position. We will commonly suppress the s, d, t indices
when we talk about generic properties of all three models.
We will strive to express all relevant calculated quantities in
terms of ξ that controls the quantum phase transition from
paramagnetic to induced moment phase. The conventional
quasiclassical magnetism in 3D is approached when ξ 	 1
and the CEF splitting becomes very small as compared to
the exchange energy scale so that the first term in Eq. (4)
corresponds effectively to a quasidegenerate multiplet.

The molecular field (MF) treatment of Eq. (4) delivers the
basic quantities of induced order parameter, transition temper-
ature and level splitting and state superposition in the induced
moment phase. Assuming that we either have possible fer-
romagnetic (FM) or antiferromagnetic (AFM) induced order
(the only two possibilities for n.n. exchange) the effective
molecular fields are given by hλ

e = Ie〈Jα〉λ̄ (α = z for Ising-
SSM and STM) and we choose the moment direction for the
xy-SDM along α = x. Furthermore λ = A, B; λ̄ = B, A is the
sublattice index such that hλ

e = he for FM and hA
e = −hB

e = he

for AFM cases. Then, e.g., for the SDM the molecular field
Hamiltonian for each sublattice is given by

Hλ
MF =

∑
i

[ ∑
�

ε�|�, i〉〈�, i| − hλ
e Jx(i)

]
. (7)

After determination of the MF eigenvectors, energy eigenval-
ues, and their thermal occupations, the induced moments 〈Jα〉
may be computed self-consistently in the following.

III. THERMODYNAMIC PROPERTIES: ORDER
PARAMETER, SPECIFIC HEAT, AND SUSCEPTIBILITY

The basic mechanism of induced order in singlet ground
state systems is in contrast to the quasiclassical case with
(Kramers) degenerate ground state as outlined in the Introduc-
tion. In the three singlet models there are no preformed ground
state moments, therefore magnetic order is only possible due
to a nondiagonal quantum mixture of singlet ground state
with the excited multiplet states due to intersite exchange.
This is a distinctly quantum mechanical origin of magnetic
order caused by the superposition of nonmagnetic ground and
excited states forming spontaneously a new magnetic ground
state below Tm. It is natural for this mechanism to work that
the intersite exchange driving the moment formation from the
split states must be sufficiently large to overcome the CEF
splitting stabilizing the nonmagnetic state as controlled by the
dimensionless parameters defined in Eq. (6). The technical
treatment of the SSM, SDM, and STM models will be rather
similar. However, for the sake of clarity of results, we treat
them in the separate following sections.

A. Ising-type singlet-singlet model

In the SSM, the MF Hamiltonian of Eq. (7) has the
sublattice-independent eigenvalues

ε± = ±1

2
�T = ±�

2
[1 + γ 2〈Jz〉2]

1
2 (8)

leading to a renormalized (dimensionless) singlet-singlet
splitting in the ordered state according to

�̂T = 1

�
(ε+ − ε−) = �T

�
= [1 + γ 2〈Jz〉2]

1
2 ;

γ = msIe/� = (2/ms)ξs,

(9)

which depends on temperature T through the order parameter
〈Jz〉 as shown in Fig. 1(a). The latter also leads to a coherent
mixing of ground and excited states to the new eigenstates.
Since the Hamiltonian is real symmetric they are given by the
real orthogonal transformation

|ε+〉 = cos θλ|1〉 − sin θλ|0〉,
|ε−〉 = sin θλ|1〉 + cos θλ|0〉, (10)

where tan 2θλ = γ 〈Jz〉λ with θλ = θ ; 〈Jz〉λ = 〈Jz〉 for FM and
θA,B = ±θ ; 〈Jz〉A,B = ±〈Jz〉 for AFM. The mixing of singlets
is the essential mechanism to create a self-consistent ground
state induced moment out of the singlet states due to the
nondiagonal dipolar matrix element ms. This means that the
mixing angle θλ and 〈Jz〉λ can only be simultaneously nonzero.

1. Order parameter and transition temperature for SSM

From Eq. (10), the self-consistent equation for the order
parameter induced by nondiagonl matrix element ms may
be derived. Its temperature dependence originates from the
thermal populations p± = Z−1 exp(∓�T /2T ) of the two sin-
glet states with energies ε± where Z = 2 cosh(�T /2T ) is the
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partition function. For the evaluation of the order parameter
〈Jx〉 and later susceptibility χ̂αα components, we need the form
of Jα in Eq. (1) in the eigenvector basis of Eq. (10) as given
by

Jz = ms

2

(
sin 2θ cos 2θ

cos 2θ − sin 2θ

)
. (11)

The matrix elements for Jz are determined by cos 2θ = [1 +
γ 2〈Jz〉2]−

1
2 and sin 2θ = γ 〈Jx〉[1 + γ 2〈Jz〉2]−

1
2 . For 〈Jz〉 =

ms〈Sx〉, we then can write

〈Jz〉T = ms

2

1

ξs

[
ξ 2

s f 2
s (T ) − 1

] 1
2 = ms

2

1

ξs

[
�̂2

T − 1
] 1

2 ,

fs(T ) = tanh

[(
�0

2T

)
fs(T )

]
= p− − p+. (12)

Here �0 = ξs� = m2
s Ie/2 is the zero temperature splitting and

�̂T ≡ �T /� = ξs fs(T ) the normalized T -dependent split-
ting. It is determined by the difference of thermal level
occupations fs(T ) for T � Tm as obtained from the solution
of the second equation for a given ξs. In the paramagnetic
regime (T > Tm), we simply have fs(T ) ≡ f 0

s (T ) = tanh �
2T .

This means fs(0) = 1 and the transition temperature Tm is
reached for fs(Tm) = 1

ξs
, leading to

Tm = �

2 tanh−1
(

1
ξs

)
=

{
�

| ln δ
2 | ξs = 1 + δ (δ � 1)

1
2ξs� ξs 	 1

, (13)

where the asymptotic limits are given to the right, the up-
per one corresponding to closeness to the QCP, the lower
one approaching the conventional degenerate ground state
magnetism. This means for a finite Tm for induced quantum
magnetic order one must have a control parameter ξs > 1, i.e.,
according to Eq. (6) an intersite exchange Ie which must be
sufficiently large compared to the singlet-singlet CEF splitting
as determined by the nondiagonal matrix element according
to Ie/� > 2/m2

s . Therefore ξ c
s = 1 marks the quantum critical

point (QCP) between paramagnetism (ξs < ξ c
s ) and induced

magnetic order (ξs > ξ c
s ). The normalized moment and the

saturation moment 〈Jz〉0 are given by

〈Ĵz〉T = 〈Jz〉T

〈Jz〉0
=

[
ξ 2

s f 2
s (T ) − 1

] 1
2[

ξ 2
s − 1

] 1
2

,

〈Jz〉0 = ms〈Sx〉0 = ms

2

1

ξs

[
ξ 2

s − 1
] 1

2

=
{

ms

√
δ
2 ξs = 1 + δ (δ � 1)

ms
2 ξs 	 1

. (14)

Transition temperature and induced moment are shown in
Fig. 2 and discussed further in Sec. V. It is also instructive
to consider the ratio of (pseudospin) moment to (normalized)

FIG. 2. (a) Critical temperature for induced magnetic order as
a function of control parameter ξ . The QCP value ξc = 1 sepa-
rates paramagnetic (PM, ξ < 1) from induced moment (IM, ξ >

1) regime. For STM both exact Tm [Eq. (46)] and approximate
T 0

m [Eq. (47)] are shown. (b) Temperature dependence of popula-
tion functions fs,d,t and corresponding normalized order parameter
〈Sx〉s,d and 〈Sz〉t for SSM, SDM, and STM cases scaled by Tm =
0.62, 0.51, and 0.47, respectively.

transition temperature given by

〈Sx〉0

(Tm/�)
= 1

ξs

[
ξ 2

s − 1
] 1

2 tanh−1

(
1

ξs

)

=
{√

δ
2

∣∣ ln δ
2

∣∣ ξs = 1 + δ (δ � 1)

ξ−1
s ξs 	 1

. (15)

Close to the QCP (upper limit) this ratio decreases steeply
to zero [19], as opposed to the conventional magnetism limit
ξs 	 1 where 〈Sx〉0 ≈ 1

2 corresponding to proportionality of
transition temperature Tm ∼ Ie to the exchange strength in this
limit.

2. Internal energy and specific heat for SSM

In the paramagnetic phase, the internal energy of the SSM
is simply U (T ) = −�

2 tanh( �
2T ) leading to a Schottky specific

heat [second line in Eq. (18)]. In the ordered phase, we have
to include the direct contribution of the order parameter. Then

115110-5



PETER THALMEIER AND ALIREZA AKBARI PHYSICAL REVIEW B 109, 115110 (2024)

the temperature dependent internal energy (per site) in MF
approximation is given by

U (T ) =
∑

σ

pσ εσ (T ) + 1

2
Ie〈Jx〉2

T , (16)

where the first part contains the MF energy levels of Eq. (8)
and their thermal occupations. This may be evaluated by using
the expressions derived before as

U (T ) =
{−�

4

(
ξs f 2

s (T ) + 1
ξs

)
T � Tm

−�
2 f 0

s (T ) T > Tm
. (17)

Then U (0) = −�
4 (ξs + 1

ξs
) at zero temperature. For ξs → 1+,

this approaches the paramagnetic ground state energy ε0 =
−�

2 . The specific heat CV (T ) = (∂U (T )/∂T )V may now be
calculated using Eq. (12) leading to

CV (T ) =
(

�T

2T

)2(
cosh2 �T

2T
− �0

2T

)−1

T � Tm

C0
V (T ) =

(
�

2T

)2

cosh−2 �

2T
T > Tm (18)

for magnetic and paramagnetic phases, respectively. where
C0

V (T ) is the background of the Schottky anomaly for a two-
level system (N = 1 in Appendix B). Since the specific heat
for T � Tm contains the effects of the order parameter slope
∂�̂(T )/∂T which is discontinuous at Tm (zero above and
finite below), there is a jump δCV = C−

V − C+
V in the specific

heat starting from the paramagnetic value C+
V = C0

V (T +
m ) just

above Tm to the value C−
V = CV (T −

m ) just below. From the
above equations, we get

C+
V = 1

ξ 2
s

(
ξ 2

s − 1
)(

tanh−1 1

ξs

)2

,

C−
V =

1
ξ 2

s

(
ξ 2

s − 1
)(

tanh−1 1
ξs

)2

1 − 1
ξs

(
ξ 2

s − 1
)

tanh−1 1
ξs

= C+
V

1 − λsC
+
V

,

λs = ξs

tanh−1 1
ξs

,

δCV = C+
V

λsC
+
V

1 − λsC
+
V

�
⎧⎨
⎩

1
2δ2

∣∣ ln δ
2

∣∣3
ξs = 1 + δ (δ � 1)

3
2 ; ξs 	 1

, (19)

where we used cosh2( �
2Tm

) = ξ 2
s /(ξ 2

s − 1) and ( �
2Tm

) =
tanh−1 1

ξs
from Eq. (13). The relative jump size compared to

the paramagnetic value is then

δCV

C+
V

= λsC
+
V

1 − λsC
+
V

�
{
δ
∣∣ ln δ

2

∣∣ ξs = 1 + δ (δ � 1)
3
2ξ 2

s ξs 	 1
. (20)

On approaching the QCP from above (ξs → 1+) both param-
agnetic (Schottky) value C+

V and jump value δCV vanish and
their ratio also vanishes δCV /C+

V → 0. For large ξs, approach-
ing conventional magnetism, the ratio increases ∼ 3

2ξ 2
s because

FIG. 3. Specific heat in units of kB/site. Note in this figure, T is
normalized to the CEF splitting �. (a) Temperature dependencies of
internal energy U and specific heat CV for the SSM. On approaching
the QCP for ξ → 1+ the jump δCV due to induced order shifts
downwards with Tm and becomes progressively smaller. It is super-
posed on the background Schottky peak due to the CEF splitting.
(b) Complementary specific heat for the three models with same
control parameter ξ = 1.5 in each case. While the jump increases
the transition temperature decreases with Tm = 0.62, 0.51, 0.47
consecutively. The ξ dependence of the jump δCV is shown in Fig. 4.

the Schottky value C+
V � 1/ξ 2

s vanishes due to �/Tm → 0.
This means the absolute jump value approaches δCV → 3

2 in
this limit which agrees with the value known from conven-
tional magnets with twofold degenerate ground state [2]. The
ξ dependence of the specific heat and its jump for the three
models is illustrated in Figs. 3 and 4 and discussed in Sec. V.

3. Static homogeneous SSM susceptibility

It is particularly instructive to consider the temperature
dependence of the susceptibility, i.e., the response function
of magnetic moments m = gJμBJ across the induced order
phase transition both in the paramagnetic and induced order
(FM or AFM) phases with field applied parallel to the mo-
ment direction 〈Jz〉. The general expression for the normalized
single-ion susceptibility χ̂0

αα = χ0
αα/(gJμB)2 (α = x, y, z) for
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FIG. 4. Dependence of absolute specific heat jump δCV = C−
V −

C+
V at Tm on the control parameter of the three models evolving in

accordance with the size of the normalized induced saturation order
parameter 〈Sα〉0. Here α = x for SSM and SDM and α = z for STM
are identical. Close to the QCP with ξ = 1 + δ (δ � 1) the moment
vanishes ∼(δ/2)

1
2 with singular slope while the specific heat jump

vanishes more gradually according to δCV ∼ 1
2 δ2| ln δ

2 |3.

split singlets only is given by [10]

χ̂0
αα =

∑
n �=m

|〈m|Jα|n〉|2 pn − pm

εm − εn

+ 1

T
[
∑

n

|〈n|Jα|n〉|2 pn − 〈Jα〉2]

= χ̂0VV
αα + χ̂0C

αα , (21)

where the first part is the van Vleck term (VV) and the second
a pseudo-Curie (C) term active at temperatures comparable
to the CEF splitting due to diagonal matrix elements. These
may already be present in the paramagnetic state as in STM
or they may be induced in the ordered phase by the rotation
to new eigenvectors as in SSM and SDM. In any case, the
second contribution vanishes, however, exponentially for low
temperatures. The collective (RPA) susceptibilities are then
obtained via

χ̂αα (T ) = χ̂0
αα (T )

1 ∓ Ieχ̂0
αα (T )

(22)

with Ie = z
3 |I0|(2 + κ ). Here the upper (lower) sign corre-

spond to FM (I0 > 0) or AFM (I0 < 0) cases, respectively.
For the evaluation of susceptibilities in the ordered phase,
we need the forms of Jz in Eq. (1) in the eigenvector basis
according to Eqs. (10) and (11). Then, using the Eqs. (21) and
(22), we obtain in the paramagnetic state:

T > Tm :

χ̂VV 0
zz (T ) = 1

Ie
ξs f 0

s (T );

χ̂C0
zz (T ) = 0;

χ̂zz(T ) = 1

Ie

ξs f 0
s (T )

1 ∓ Ie f 0
s (T )

;

χ̂zz(T +
m ) =

{→ ∞ (−) : FM
1

2Ie
(+) : AFM ;

χ̂zz(T 	 Tm) ≈ m2
s

4

1

T
. (23)

In the induced moment phase, we obtain for the zz component,
using the abbreviation fs = fs(T ) and recalling that �0 = ξs�

and (�0/2Tm) = ξs tanh−1 1
ξs

:

T � Tm :

χ̂VV 0
zz (T ) = 1

Ie

1

ξ 2
s f 2

s

;

χ̂C0
zz (T ) = 1

Ie

(
�0

2T

)(
ξ 2

s f 2
s − 1

)(
1 − f 2

s

)
ξ 2

s f 2
s

;

χ̂zz(T ) = 1

Ie

1 + (
�0
2T

)(
ξ 2

s f 2
s − 1

)(
1 − f 2

s

)
ξ 2

s f 2
s ∓ [

1 + (
�0
2T

)(
ξ 2

s f 2
s − 1

)(
1 − f 2

s

)] ;

χ̂zz(T −
m ) =

{→ ∞ (−) : FM
1

2Ie
(+) : AFM ;

χ̂zz(0) =
{

1
Ie

1
ξ 2

s −1 (−) : FM
1
Ie

1
ξ 2

s +1 (+) : AFM
. (24)

The complicated algebraic structure in this case is mostly
due to the second pseudo-Curie term. As fs(0) = 1 and
fs(Tm) = 1/ξs, we notice that it vanishes both for T = 0 and
T = Tm but is nonzero in between. The total susceptibility
χ̂zz(0) is also nonvanishing for T = 0 because the induced
saturation moment 〈Jz〉0 [Eq. (14)] is not fully polarized for
moderate ξs. This is a most characteristic difference to con-
ventional magnets with degenerate ground state where the
fully developed saturation moment 〈Jz〉0 = msS (S = 1

2 ) can
no longer be polarized and therefore χ̂zz(0) = 0. The induced
moment case approaches that conventional limit for ξs 	 1.
These results are presented in Fig. 5 and discussed further in
Sec. V.

B. xy-type singlet-doublet model

The SDM model consisting of a singlet ground state |0〉
with ε0 = 0 and a doublet |1±〉 at ε1± = � is defined by the
Hamiltonian of Eq. (4). When convenient we also use shifted
values ε� − �

2 (without introducing new symbols). The MF
treatment according to Eq. (7) leads to the split three-singlet
eigenvalues given by

ε1,3 = �

2

[
1 ∓ [1 + 2

(
2γ 〈Jx〉

�

)2] 1
2

; ε2 = �, (25)

now with γ = md√
2
Ie. Although the singlet ground state mixes

with both of the excited states only the |ε1,3〉 show repulsion
whereas the energy of |ε2〉 remains unaffected because the
corresponding eigenstate is the antisymmetric combination

1√
2
(|1+〉 − |1−〉) as shown below. Altogether the orthonor-

mal eigenstates in row order of increasing energies ε1,2,3 are
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FIG. 5. (a) Temperature dependence of static homogeneous sus-
ceptibilities (unit 1/Ie) for different models and control parameters
for the AF case with 〈Jx〉 (SDM) or 〈Jz〉 (SSM, STM) moment
directions. In the xy-type SDM, the transverse (yy) susceptibility
is constant below Tm as in conventional degenerate ground state
magnets. In contrast the longitudinal susceptibilities at T = 0 are
generally finite, evolving from the same as transverse value at the
QCP to progressively lower values with increasing ξ . (b) Control-
parameter dependence of T = 0 longitudinal susceptibility as a
function of ξ , identical for the three models. It vanishes asymptot-
ically when approaching the quasidegenerate case.

given by the columns of the unitary (U †U = 1) matrix

U =

⎛
⎜⎝

sin θ1 0 sin θ3

− 1√
2

cos θ1
1√
2

− 1√
2

cos θ3

− 1√
2

cos θ1 − 1√
2

− 1√
2

cos θ3

⎞
⎟⎠, (26)

where the matrix elements expressed by the mixing angles θi

are given by (i = 1 and 3)

cos θi =
[

1 + 1

2

(
2γ 〈Sx〉

εi

)2]− 1
2

,

sin θi = 1√
2

(
2γ 〈Sx〉

εi

)[
1 + 1

2

(
2γ 〈Sx〉

εi

)2]− 1
2

. (27)

From the structure of U, we can see that |ε2〉 is just the
antisymmetric combination of the original degenerate excited

doublet components with unchanged ε2 = � whereas |ε1,3〉
have components of all states mixed together and their ener-
gies ε1,3 repel symmetrically leading to three singlets in the
ordered state [Fig. 1(b)].

1. Order parameter and transition temperature for SDM

For deriving the self-consistency equation for induced mo-
ment 〈Jx〉 and later the susceptibilities χ̂αα , we need again the
Jα matrices in the eigenvector basis given by U , i.e., we have
to transform Jα → U †JαU . After some algebra this results in

SDM:

Jx = md√
2

⎛
⎝m0 0 m1

0 0 0
m1 0 −m0

⎞
⎠;

Jy = md√
2

⎛
⎝ 0 im2 0

−im2 0 −im′
2

0 im′
2 0

⎞
⎠, (28)

where the transformed matrix elements are combinations of
the sines and cosines of mixing angles θ1,3 in U. They may be
transformed to the simple expressions

Jx : m0 =
√

2

�̂T

(
1 − �̂2

T

) 1
2 ; m1 = −

√
2

�̂T
,

Jy : m2 =
(

1 + 1

�̂T

)
; m′

2 =
(

1 − 1

�̂T

)
, (29)

where �̂T = ξd fd (T ) is defined below. They fulfill the sum
rules 1

2 (m2
0 + m2

1 ) = 1
2 (m2

2 + m′2
2 ) = 1. Note that Jx matrix el-

ements are nonzero where those of Jy vanish and vice versa.
Using Eq. (28) leads to an order parameter given by

〈Jx〉T = md√
2

1

ξd

[
ξ 2

s f 2
d (T ) − 1

] 1
2 = md√

2

1

ξd

[
�̂2

T − 1
] 1

2 . (30)

Similar to Eq. (12) here �0 = ξd� is the renormalized zero
temperature splitting and �̂T = ξd fd (T ). The self-consistent
equation for the temperature dependence of the occupation
difference p1 − p3 = fd (T ) for T � Tm is now more compli-
cated due to the thermal population of the |ε2〉 state at the
unrenormalized energy � resulting from the lower state of the
excited doublet split by 〈Jx〉 [Fig. 1(b)]. We obtain

fd (T ) = tanh
[(

�0
2T

)
fd (T )

]
1 + f̃d (T )

= sinh
[(

�0
2T

)
fd (T )

]
1
2 exp

( − �
2T

) + cosh
[(

�0
2T

)
fd (T )

] (31)

with f̃d (T ) = 1
2 exp(− �

2T )/ cosh[( �0
2T ) fd (T )]. If we would

(wrongly) ignore the lower doublet state (setting f̃d = 0) the
expression would become formally identical to that of the
SSM case in Eq. (12). Thus f̃d describes the correction due
to the doublet nature of the excited CEF level. In the para-
magnetic regime, we simply have to replace �0 fd → � and
get f 0

d (T ) = 2 tanh( �
2T )/[3 − tanh( �

2T )]. As for the SSM, the
critical temperature for the induced moment 〈Jx〉 to appear is
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given by fd (Tm) = 1
ξd

with the solution

Tm = �

2 tanh−1
(

3
1+2ξd

) (32)

that depends in a different manner on the control parame-
ter ξd as compared to the singlet model [Eq. (13)]. This is
again caused by the finite thermal population of the lower
doublet level at Tm. Nevertheless the QCP where Tm vanishes,
is identical to the SSM, given by ξ c

d = 1 [determined by the
request that 3/(1 + 2ξd ) < 1]. Furthermore the normalized T -
dependent and saturation moments for the SDM are similarly
given by

〈Ĵx〉T = 〈Jx〉T

〈Jx〉0
=

[
ξ 2

d f 2
d (T ) − 1

] 1
2[

ξ 2
d − 1

] 1
2

,

〈Jx〉0 = md〈Sx〉0 = md√
2

1

ξd

[
ξ 2

d − 1
] 1

2

=
{

md√
2

√
δ
2 ξd = 1 + δ (δ � 1)

md√
2

ξs 	 1
. (33)

2. Internal energy and specific heat for SDM

The internal energy of the paramagnetic SDM model
is U (T ) = −�

2 (3 tanh( �
2T ) − 1)/(3 − tanh( �

2T ), which results
in a correspondingly modified SDM Schottky-type specific
heat (see N = 2 case in Appendix B)

CV (T ) = 2
4
(

�
2T

)2

[
3 cosh

(
�
2T

) − sinh
(

�
2T

)]2 . (34)

For the magnetically ordered case, it is determined by an
expression corresponding to Eq. (16) for the SSM, now sum-
ming over three MF levels and occupations. Using the shifted
eigenvalues ε� − �

2 , this leads again to

U (T ) = −�

4

[(
ξd f 2

d (T ) + 1

ξd

)
− 2 f̃d (T )(1 + f̃d (T ))−1

]
.

(35)

The first part is like SSM case and the second one corrects
for the additional doublet level. For zero temperature we
again have U (0) = −�

4 (ξd + 1
ξd

). Due to the population effect
of the additional level analytical derivation and discussion
of CV (T ) = (∂U (T )/∂T )V is no longer reasonably feasible,
considering the complicated MF equation Eq. (31) for fd (T ).
Therefore, in the ordered phase, once this function has been
determined the specific heat is obtained by numerical differ-
entiation of U (T ).

3. Static homogeneous SDM susceptibility

The basic expressions for single-ion and collective suscep-
tibilities in Eqs. (21) and (22), now with level energies and
matrix elements corresponding to the SDM [Eqs. (25) and
(2)] are used to calculate these quantities. For the paramag-
netic state, the expressions for the susceptibility components
are completely equivalent to Eq. (23) with the replacement
(ms, ξs, f 0

s ) → (md , ξd , f 0
d ). For the magnetic phase, we ob-

tain different expressions

(xx) : T � Tm :

χ̂VV 0
xx (T ) = 1

Ie

1

ξ 2
d f 2

d

;

χ̂C0
xx (T ) = 1

Ie

(
�0

2T

)(
ξ 2

d f 2
d − 1

)(
(1 + f̃d )−1 − f 2

d

)
ξ 2

d f 2
d

;

χ̂xx(T ) = 1

Ie

1 + (
�0
2T

)(
ξ 2

d f 2
d − 1

)((
1 + f̃d

)−1 − f 2
d

)
ξ 2

d f 2
d ∓ [

1 + (
�0
2T

)(
ξ 2

d f 2
d − 1

)((
1 + f̃d

)−1 − f 2
d

)] ;

χ̂xx(T −
m ) =

{→ ∞ (−) : FM
1

2Ie
(+) : AFM

;

χ̂xx(0) =
{

1
Ie

1
ξ 2

d −1
(−) : FM

1
Ie

1
ξ 2

d +1
(+) : AFM

. (36)

Obviously the values for T = 0, Tm are equivalent to the SSM
case but the T dependence in between is modified by the
presence of the (1 + f̃d )−1 terms due to the lower doublet
state.

For the transverse (yy) component, the Curie terms are
absent since Jy is unchanged in the eigenvector basis and
therefore has no diagonal matrix elements. And then we get

the simple result

χ̂yy(T ) =
{→ ∞ (−) : FM

1
2Ie

(+) : AFM . (37)

In the FM case, the (yy) component diverges for all T < Tm

because there is no in-plane exchange anisotropy and the
ordered moment direction can be rotated from x to any other
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direction by arbitrary small field. This is connected with the
existence of a Goldstone mode for the whole ordered region
(Sec. IV A). In the AFM phase, the two sublattice moments tilt
in addition to their rotation (⊥ to the field) leading to the finite
susceptibility which is constant throughout the ordered phase
as in conventional magnets. The transverse (yy) susceptibility
is then simply a constant χ̂yy = 1/2Ie for the AF case. The
comparison of susceptibilities for all models is presented in
Fig. 5 for various positions of the control parameters with
respect to the QCP. For a further discussion see Sec. V.

C. Cubic singlet-triplet model

In the STM model, the three cubic axes are equivalent
and for convenience we choose 〈Jz〉 direction for the induced
magnetic moment. The corresponding molecular field Hamil-
tonian with symmetric shifted CEF �1, �4 levels at (−�

2 , �
2 )

may be written as

Hλ
MF =

∑
i

[
�

2
(P4(i) − P1(i)) − hλ

e Jz(i)

]
. (38)

Here P1,4 are projectors to �1 singlet and �4 triplet subspaces
spanned by |ψ0〉 and |ψ1,2,3〉 states, respectively and hλ

e =
Ie〈Jz〉 is the molecular field. Using Eq. (3), the eigenvalues and
vectors of HMF may be obtained easily because only |ψ0,2〉 are
mixed by a nondiagonal matrix element [Eq. (3)]. We obtain
the four level scheme totally split by the molecular field:

ε± = ±�

2
(1 + γ 2〈Jz〉2)

1
2 ; ε1,3 = 1

2
(� ∓ δT ), (39)

where γ = mt Ie/� = 2
mt

ξt . The symmetric normalized split-
tings of �1 − �4 |ψ0,2〉 and �4 |ψ1,3〉 states and their temper-
ature dependence are then given by �̂T = (1 + γ 2〈Jz〉2)

1
2 and

δ̂T = δT /� = Ie〈Jz〉/�, respectively [Fig. 1(c)]. Since only
the |ψ0,2〉 mix we have again

|ε+〉 = cos θλ|ψ2〉 − sin θλ|ψ0〉,
|ε−〉 = sin θλ|ψ2〉 + cos θλ|ψ0〉, (40)

with tan 2θλ = γ 〈Jz〉λ. The wave functions of split ε1,3 triplet
levels are unchanged. In the ordered phase the moment oper-
ator is then given by

Jz = 1

2

⎛
⎜⎜⎝

−mt sin 2θ 0 mt cos 2θ 0
0 1 0 0

mt cos 2θ 0 mt sin 2θ 0
0 0 0 −1

⎞
⎟⎟⎠. (41)

The order parameter is determined by the thermal trace of the
diagonal elements and all states will contribute to 〈Jz〉, but
only the elements ∼ sin θ are induced by the order itself-,
whereas the constant diagonal elements are regular but ther-
mally activated contributions.

1. Order parameter and transition temperature for STM

Using the diagonal elements of Jz for the eigenstates and
the split level energies the MF equation for the order parame-
ter 〈Jz〉 is given by

〈Jz〉 = ξt

�̂T
〈Jz〉Pa(T ) + Pb(T ) (42)

with the contributions resulting from the induced moment
(a) and splitting of the excited triplet (b), respectively. Here
Pa, Pb the differences of the thermal level populations pi(T ) =
Z−1 exp(−εi/T ) (i = ±, 1, 3) with the partition function
given by

Z = 2

[
cosh

( ε

2T

)
+ exp

(
− �

2T

)
cosh

(
δs

2T

)]

→ Z0 = 2

(
2 cosh

�

2T
− sinh

�

2T

)
. (43)

Then we obtain, with the expressions to the right of the arrows
corresponding to the paramagnetic state (δ̂T = 0,�T = �):

Pa(T ) = p− − p+ = tanh �T
2T

1 + g(T )
→ tanh �

2T

2 − tanh �
2T

,

Pb(T ) = p1 − p3 = g(T ) tanh δT
2T

1 + g(T )
→ 0,

g(T ) = exp

(
− �

2T

)
cosh δT

2T

cosh �T
2T

→ 1 − tanh

(
�

2T

)
. (44)

The latter encodes the influence of occupation and splitting of
the two ε1,3 triplet levels that have no matrix elements with the
singlet ground state but contribute to the moment formation
for finite temperature below Tm.

For the numerical determination of the induced moment,
we write, similar as for SSM and SDM �̂T = ξt ft (T ). From
Eq. (42), we obtain the MF equation for ft (T ) as

ft (T ) = tanh
[(

�0
2T

)
ft (T )

]
1 + f̃t (T )

;

f̃t (T ) = g(T )

[
1 − 2ξt

m2
t

1

δ̂T
tanh

(
�

2T
δ̂T

)]
(45)

with δ̂T = (1/mt )(�̂2
T − 1)

1
2 . The solution for ft (T ) leads to

�̂T and likewise to the induced moment 〈Jz〉 = mt
2

1
ξt

(�̂2
T −

1)
1
2 with saturation value 〈Jz〉0 = mt

2
1
ξt

(ξ 2
t − 1)

1
2 . The latter is

similar to SSM and SDM because at T = 0, the �4 contribu-
tion in the STM vanishes.

Letting 〈Jz〉 → 0 in Eq. (42) (note that then also Pb → 0),
we arrive at an implicit equation for the transition temperature
of induced order given by the solution of

Tm = �

2 tanh−1(xm)
; xm = 2 − ( Ie

�

)
tanh−1(xm)

1 + ξt − ( Ie
�

)
tanh−1(xm)

. (46)

If we neglect the contribution of the thermally excited ε1,3 lev-
els justified for Ie

�
= γ

mt
= 2ξt

m2
t

= 0.075ξt � 1 then we arrive
at the simple expression

T 0
m = �

2 tanh−1 2
1+ξt

, (47)

which is formally similar to Eqs. (13) and (32) of the SSM
and SDM cases and again ξt > ξ c

t = 1 for T 0
m > 0. We will

show later that this zeroth order approximation of transition
temperature is identical to the temperature where the soft lon-
gitudinal (polarization parallel to 〈Jz〉) exciton mode appears,
However, the true transition temperature obtained from the
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Eq. (46) is larger than T 0
m due to the thermally excited Curie

contributions from |ψ1,3〉 triplet states which stabilize the mo-
ment 〈Jz〉 beyond T 0

m . This means that at the true Tm > T 0
m

the complete softening of the exciton mode will not occur
but rather it will be arrested at a finite frequency (Sec. IV C).
This fact for the STM was known for some time [6,12,36] but
has not been considered in detail so far. We first calculate the
approximate shift defined by Tm = T 0

m + δTm. Using the first
iteration step of Eq. (46) and expanding in the small parameter
(Ie/�) = 2ξt/m2

t as given above we obtain

δTm = 1

m2
t

2ξt

3 + ξt
T 0

m . (48)

This is the upward shift of the transition temperature due to the
effect of diagonal matrix elements in Eq. (41). Their relative
size is 1

2 : mt
2 = 1

mt
which controls the size of the correction

δTm. It is a very good approximation to the numerically deter-
mined exact shift obtained from Eq. (46) shown in Fig. 2(a).

2. Internal energy and specific heat for STM

The internal energy of the STM in the paramagnetic phase
is U (T ) = −�

2 /(2 tanh �
2T − 1)/(2 − tanh �

2T ) leading to a
paramagnetic specific heat (corresponding to N = 3 in Ap-
pendix B):

CV (T ) = 3
(

�
2T

)2

[
2 cosh

(
�
2T

) − sinh
(

�
2T

)]2 . (49)

In the ordered phase, the internal energy can be calculated as
previously using a similar expression as Eq. (16) summing
over all four states of the STM and adding the MF constant
term we obtain

U (T ) = − �

2(1 + g)

{
�̂T tanh

[(
�

2T

)
�̂T

]

+ g(T )

[
δ̂T tanh

[(
�

2T

)
δ̂T

]
− 1

]}

+ �

4

1

ξt

(
�̂2

T − 1
)
. (50)

For zero temperature, this leads to the ground state energy in
the universal form U (0) = −�

4 (ξt + 1
ξt

) and the specific heat
CV (T ) has to be obtained from U (T ) by numerical differenti-
ation as in the SDM case.

3. Static homogeneous longitudinal STM susceptibility

The static susceptibility may be calculated as before from
Eq. (21). For the induced moment phase (T < Tm), we obtain
(m′

t = 1):

χ̂0
zz(T ) = [1 + g(T )]−1

{
1

Ie

(
ξt

�̂3
T

)
tanh

(
�

2T
�̂T

)

+ 1

T

[(
m′

t

2

)2

g(T ) +
(

mt

2

)2(
�̂2

T − 1
)

×
(

1

�̂2
T

− 1 + g(T )

ξ 2
t

)]}
. (51)

Note that at zero temperature with �̂0 = ξt and g(0) = 0 only
the first van Vleck term survives whereas the Curie contribu-
tions from thermally excited split triplet states vanishes. In the
paramagnetic regime (T > Tm) with �̂T = 1, this reduces to
the explicit expression

χ̂0
zz(T ) =

(
ξt

Ie

)
tanh

(
�
2T

)
2 − tanh

(
�
2T

) + 1

T

(
m′

t

2

)2[1 − tanh
(

�
2T

)
2 − tanh

(
�
2T

)]
.

(52)

Finally the homogeneous longitudinal MF-RPA susceptibil-
ity is again obtained from χ̂zz(T ) = χ̂0

zz(T )/(1 ∓ Ieχ̂
0
zz(T ))

with upper and lower signs corresponding to FM or AF
exchange, respectively. In the T = 0 limit, this recovers
χ̂zz(0) = (1/Ie)(ξ 2

t ∓ 1)−1 which is identical to the longitudi-
nal susceptibility in both SSM and STM because in this limit
there is no contribution from depopulated excited states. In the
large ξt (quasidegenerate) case that approaches the conven-
tional magnet, the longitudinal susceptibility vanishes because
the saturation moment approaches the maximum value and no
further polarization by external field is possible (Fig. 5), see
also Sec. V.

IV. MAGNETIC EXCITON DISPERSIONS AND SOFT
MODE BEHAVIOUR

In the two-level SSM, SDM, and STM the dynamics is
described by collective modes termed “magnetic excitons.”
They correspond to propagating CEF excitations which de-
velop a dispersion due to effective intersite exchange. Their
dispersion is strongly temperature dependent controlled by
the thermal population difference of singlet ground state and
excited multiplet. Within RPA approach they may exhibit, as a
precursor phenomenon, a complete softening at the magnetic
ordering wave vector when Tm is approached from above.
Such magnetic exciton softening to varying degree has been
found in quite a number of singlet ground state CEF systems,
in particular Pr compounds [6,37]. It is frequently incomplete
because the static susceptibility contributions from higher ly-
ing CEF states lead to a magnetic transition already before
the softening of the lowest mode is achieved. Furthermore,
dynamical effects beyond the RPA complicate this simple
picture [10]. The magnetic exciton formation has mostly been
studied in the paramagnetic phase. Here we give a complete
theory for the three models also in the induced moment
regime. We focus on a representation that highlights the role
of the control parameters that measure the distance from the
QCP and emphasize the connection to thermodynamic prop-
erties.

Before, however, we give a simple intuitive picture (re-
stricting to SSM) of these paramagnetic exciton modes to
distinguish them from the quasiclassical long wave length
magnons which correspond to precession of ordered moments
around the moment direction. In the present case, we rather
have to start from a local singlet-singlet excitation |0〉i →
|1〉i in the paramagnetic phase. Then the exchange coupling
terms Ji jJz(i)Jz( j) between sites Ri and R j allow a process
where a de-excitation |1〉i → |0〉i at site Ri is followed by
another excitation |0〉 j → |1〉 j at the neighboring site. Thus
the singlet-singlet excitation has propagated by one lattice
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site due to the intersite exchange. Considering this process
in translational invariant way leads directly to the dispersive
CEF modes whose energy is centerd around the local singlet-
singlet excitation energy �.

The magnetic exciton modes may be calculated by the RPA
dynamic response function technique [10,17,38] or with the
bosonic Bogoliubov transformation approach [12,24,39–41].
Here we prefer the former because it gives a more reliable
description of dispersions in the whole temperature range. The
starting point is the dynamical single-ion susceptibility tensor
(α, β = x, y) defined by

χ̂0αβ (iωn) =
∑
n �=m

〈m|Jα|n〉〈n|Jβ |m〉
εm − εn − iωn

(pn − pm), (53)

and the RPA cartesian susceptibility tensor is then obtained as

χ̂
↔

(q, iωn) = [1 − I (q)
↔
χ̂0(iωn)]−1 ↔

χ̂0(iωn), (54)

In practice we will need only the diagonal components for
SSM and SDM as the nondiagonal ones vanish. For the STM
models, there are nondiagonal transverse xy components in
the ordered phase with induced moment 〈Jz〉. However, we
will consider only the longitudinal modes in this case which
are obtained from the diagonal response function χ̂zz only. The
poles of these response functions determine the temperature-
dependent magnetic exciton modes. This formulation is valid
both in the paramagnetic and magnetic regimes provided the
proper split level energies and matrix elements for the three
models are used. In the magnetic phase, we will restrict to
FM case (Ie > 0) because for two-sublattice AFM order the
dimension of the susceptibility matrix is doubled to four,
making it more involved for analytical treatment. The AFM
case has been considered before for the Ising-type SSM [17].

The only method capable of investigating magnetic exci-
ton dispersions experimentally is inelastic neutron scattering
(INS) where the scattering cross section is proportional to the
imaginary part of the above response functions and exhibits
peaks at its poles that depend on momentum transfer which al-
low determination of the mode dispersion. Since the energies
involved may be quite low in the few meV range (in particular
for the most interesting incipient soft modes) the more recent
resonant x-ray scattering techniques used for investigation of
high energy magnons have not yet been applied in the present
context.

A. Magnetic excitons in the Ising- type SSM

Firstly we consider the SSM case, the calculation of the zz
component of the single ion dynamical susceptibility accord-
ing to Eq. (53) leads to

χ̂0
zz(iωn) =

(
ms

2

)2

cos2 2θ tanh

(
�T

2T

)
2�T

�2
T − iω2

n

, (55)

where �T = �ξs fs(T ) = ��̂T is the renormalized CEF
splitting and cos 2θ = 1/[ξs fs(T )]. As described in Sec. II, for
simplicity, we use the intersite exchange Î (q) for the simple
tetragonal lattice with lattice constants a, c set to unity and
the corresponding real-space exchange anisotropy defined by
κ [Eq. (5)]. However, the theory may be applied to any other
uniaxial Bravais lattice by using the corresponding exchange

FIG. 6. (a) Magnetic exciton modes for FM case along simple
tetragonal BZ path R(001), A(111), �(000), M(110) for SSM at three
different temperatures. A softening at the FM � point occurs at Tm

with a subsequent rehardening below Tm. The normalized intensity
R̂(q) is represented by the dash-dotted lines, showing the diverging
intensity (in units (�/Ie)) of the soft mode. Here and in the following
dispersion plots ω(q) is given in units of � and we use κ = 1.

function Î (q). With the above expression for χ̂0
zz(iωn) the

poles of the collective susceptibility χ̂zz(iωn), i.e., the mag-
netic exciton dispersion in the induced moment phase may be
found as

ω(q, T ) = �T

[
1 − 1

ξ 2
s fs(T )2

Î (q)

] 1
2

. (56)

For T > Tm, the singlet mixing angle θ vanishes and we obtain
the well known SSM paramagnetic exciton dispersion

ω(q, T ) = �[1 − ξs f 0
s (T )Î (q)]

1
2 , (57)

where Î (q) = I (q)/I (0) or Î (q) = I (q)/I (qm) is the exchange
Fourier transform normalized to the maximum value for FM
(qm = 0) or AFM [qm = (111)] wave vectors, respectively.
We note that the SSM exciton mode at the FM or AFM
wave vector for I0 > 0 or I0 < 0 decreases continuously on
approaching Tm as a precursor of the ordering and becomes
soft at the transition (Fig. 6) according to ω(q, Tm) = �[1 −
Î (q)]

1
2 . On the other hand, at zero temperature, the mode

dispersion in Eq. (56) reduces to the simple form (�0 = ξs�)

ω(q, 0) = �0

[
1 − 1

ξ 2
s

Î (q)

] 1
2

. (58)

Therefore, at the ordering wave vector with Î (qm) = 1, the
paramagnetic exciton mode becomes soft at Tm and rehardens
below it since ξs > 1. The INS intensity R(q, T ) of a disper-
sive exciton mode is not constant but varies with momentum
and temperature (without the Bose prefactor) according to

R(q, , ω, T ) = 1

π
Imχ̂zz(q, iωn) = R̂(q, T )δ(ω − ωq), (59)
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with the weight function given in the ordered phase by ( fs =
fs(T )):

R̂(q, T < Tm) = �2

2Ieω(q, T )
= 1

2

(
�

Ie

)
[ξs fs − Î (q)]−

1
2 .

(60)

and in the paramagnetic phase, we obtain

R̂(q, T > Tm) = 1

2

(
�

Ie

)(
ξs f 0

s

)[
1 − (

ξs f 0
s

)
Î (q)

]− 1
2 . (61)

At the transition temperature with ξs fs = ξs f 0
s = 1 then

R̂(q, Tm) = 1
2 ( �

Ie
)[1 − Î (q)]−

1
2 which diverges at the soft

mode wave vector (� point). The behavior of R̂(q, T ) in the
magnetic phase showing the singularity is plotted in Fig. 6
with a broken line.

B. Magnetic excitons in the xy-type SDM

The calculation of exciton dispersion in the induced mo-
ment state of this extended model is more involved. Firstly
there is also a CEF excitation from the thermally populated ε2

level that has to be taken into account in principle, although
it becomes insignificant at low temperatures. Furthermore,
for T < Tm, two excitation branches from the singlet ground
state with different energies occur. On the other hand, Jx,
Jy operators in the eigenvector basis of the induced moment
phase [Eq. (2)] have matrix elements for mutually exclusive
transitions so that again no mixed nondiagonal dynamic sus-
ceptibilities occur. The diagonal elements χ̂0

αα are given by

χ̂0
xx(iωn) = m2

d m2
1�T fd (T )

�2
T − (iωn)2

,

χ̂0
yy(iωn) = m2

d m2
2�T f 12

d (T )(
�21

T

)2 − (iωn)2
+ m2

d m′2
2 �32

T f 23
d (T )(

�32
T

)2 − (iωn)2
, (62)

where �T = ε3 − ε1 = (ξd�) fd and the matrix elements
m1, m2, m′

2 are given in Eq. (29). The additional transi-
tion energies and their associated occupation differences for
the yy case are defined by �21

T = ε2 − ε1 = 1
2 (�T + �),

�32
T = ε3 − ε2 = 1

2 (�T − �) and similar f 12
d (T ) = p1 − p2,

f 23
d (T ) = p2 − p3. They fulfill the constraints �21

T + �32
T =

�T and f 12
d + f 23

d = p1 − p3 = fd (T ). The diagonal RPA
susceptibility matrix elements are then simply given by
(α = x, y)

χ̂αα (q, iωn) = χ̂0
αα (q, iωn)

1 − I (q)χ̂0
αα (q, iωn)

. (63)

Their poles lead to three magnetic exciton branches, one for
xx and two for yy polarization. We obtain

xx : ωx(q, T ) =
{

�T [1 − 1
(ξd fd )2 Î (q)]

1
2 ; T < Tm

�[1 − ξd fd Î (q)]
1
2 ; T > Tm

.

(64)

This result corresponds formally to the Ising-type SSM
[Eqs. (56) and (57)] because the Jx dipolar operator in Eq. (2)
connects only to the ε3 level (which furthermore has no matrix
element for Jy so that no mixed response function appears).
Therefore it is formally equivalent to an Ising type singlet

singlet model (for Jx), the only instance where the doublet
nature of the excited state enters is through the population
difference factor fd (T ), but not in the dynamics.

On the other hand for the yy response function, two more
modes appear originating from ground state to ε2 excited level
and from this to the upper level ε3. The latter is a thermally
activated mode which looses its intensity for low temperature.
We obtain

yy : ω
y2
± (q, T ) = 1

2
B(q, T ) ±

[
1

4
B(q, T )2 − C(q, T )

] 1
2

;

C(q, T ) =
(

�

2

)4(
�̂2

T − 1
)2

[1 − Î (q)];

B(q, T ) =
(

�

2

)2{
2
(
1 + �̂2

T

) −
(

ξd

�̂T

)

× [
(�̂T + 1)2 f 12

d + (�̂T − 1)2 f 23
d

]
Î (q)

}
,

(65)

where ± correspond to the high energy mode and thermally
excited low energy mode with maximum or vanishing inten-
sity at zero temperature, respectively. The auxiliary quantities
B,C are the coefficients for the linear and constant term in the
quadratic equation for the exciton frequency.

We now discuss a few important special cases. At T = Tm

with �̂ = 1, this reduces to C(q, T ) = 0 and f 23
d = 0, f 12

d =
fD = 1/ξd . Then we simply get

ω
y
±(q, T = Tm) =

{
�[1 − Î (q)]

1
2 ≡ ωx(q, Tm)

0
. (66)

Therefore in the paramagnetic case the x and y+ modes are
degenerate and become soft at Tm [Fig. 8(b)]. The y mode
corresponding to the transitions between degenerate doublet
states is a thermally activated zero energy mode for all q
(quasielastic mode in reality). At zero temperature for satu-
rated order (�̂T = ξd , fd = f 12

d = 1, f 23
d = 0) the doublet is

split and both y modes have nonzero energy given by

ω
y
±(q, T = 0) =

{
�
2 (ξd − 1)
�
2 (ξd + 1)[1 − Î (q)]

1
2

. (67)

This holds for |q| < |qcr |, for larger |q| the ± mode labels
are interchanged. Here |qcr | = √

3 cos−1(4ξd/(ξd + 1)2) is
the wave vector where the two modes are crossing for T = 0
along (111) or �A direction and hybridizing for finite tem-
perature [see Fig. 7(a)]. At the ordering wave vector qm = 0
Eq. (67) reduces to ω

y
−(0, T = 0) = 0 and ω

y
+(0, T = 0) =

�
2 (ξd − 1). The above equations demonstrate that ω

y
−(q =

0, T ) vanishes at both T = 0, Tm, in fact it is a Goldstone
soft mode within the whole ordered regime T � Tm since
Î (qm) = 1 in Eq. (65). This is due to the fact that (Jx, Jy )
moments have continuous rotation symmetry in the SDM,
whereas in the Ising-type SSM without such continuous sym-
metry, the soft mode rehardens immediately below Tm. The
second transverse mode, however shows stiffening for T < Tm
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FIG. 7. SDM spectral density [Eq. (C1)] of magnetic exciton
branches in the induced moment phase with ξd = 2.5 for differ-
ent temperatures T < Tm = 0.91. To enhance visibility ln R(q, ω)
is plotted and a broadening of η = 0.005 is used. Three modes
appear due to the excited doublet state. The high-energy ones are
due to singlet-doublet excitations while the lower one corresponds
to thermally excited transitions between the doublet components. It
exhibits hybridization and anticrossing with one of the high-energy
modes and its intensity is appreciable only in that region [see also
Fig. 8(a)]. The soft mode actually originates from the anticrossing
high energy part. For T → T −

m the hybridization gap is closed and
ω−

y (q) vanishes for all wave vectors due to the degeneracy of the
excited doublet components [see also Fig. 8(b)]. For T > Tm (not
shown), only one fully gapped (degenerate ωx, ωy) branch remains.

described by

ω+(q = 0, T ) = �

2

{
2
(
1 + �̂2

T

) − ξd

�̂T

× [
4�̂T f 12

d (T ) + (�̂T − 1)2 fd (T )
]} 1

2

.

(68)

This frequency starts at zero for Tm and below increases to
the maximum value �

2 (ξd − 1) at T = 0 [Eq. (67)]. The dis-
persion and temperature behavior of the exciton modes in the

FIG. 8. (a) Hybridization behavior between transverse ω±
y (q)

modes as a function of temperature in the induced moment phase.
Here qcr = |qcr | (in units of π, (a, c = 1)) is the wave vector of mode
crossing along (111) with respect to � point and �h the hybridization
gap that opens at the crossing point, see also Fig. 7. The hybridization
gap is nonmonotonic and achieves its maximum for an intermediate
temperature. It vanishes for low T due to thermal depopulation of
doublets and for Tm where the modes themselves become soft and
their gap also has to close. Dashed lines are guides to the eye. (b) Soft
mode (q = 0) evolution with temperature from paramagnetic to or-
dered state (ξd = 1.5). Two of the modes reharden below Tm = 0.51
and the remaining one stays at zero energy.

SDM model are presented in Fig. 7 as spectral plots and will
be further discussed in the following section.

C. Magnetic excitons in the cubic STM

The dynamical longitudinal single ion susceptibility
χ0

zz(q, iωn) has only contributions from the transition between
ε± states but no others, even in the magnetic phase as can be
seen from the Jz matrix in Eq. (41). Therefore it is similar in
structure to the SSM case with

χ0
zz(q, iωn) = ξt

Ie

1

�̂T

�2(
�2

T − iω2
n

)Pa(T ). (69)

Using this expression and inserting into Eq. (54), the resulting
pole give the longitudinal exciton mode dispersions (�̂T =
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ξt ft (T )):

ω(q, T ) =
⎧⎨
⎩�T

[
1 − ξt

�̂3
T

Pa(T )Î (q)
] 1

2 ; T < Tm

�
[
1 − ξt P0

a (T )Î (q)
] 1

2 ; T > Tm

. (70)

Here again Î (q) = I (q)/Ie is the exchange normalized to that
at the ordering vector qm for FM (qm = 0) or AFM (qm =
(π, π, π ) for which then Î (qm) = 1. Using the lower para-
magnetic expression and P0

a (T ) from Eq. (44), we see that
at the ordering vector the mode energy becomes soft with
ω(qm, T 0

m ) = 0 at the approximate transition temperature T 0
m

of Eq. (47) which is lower than the real Tm obtained from
Eqs. (46). In reverse this means that the mode energy will
be arrested at a finite value at Tm > T 0

m and the softening
is incomplete. Using the first iterative approximation for Tm

from Eq. (46), this finite value is given by approximately by

ω2(qm, Tm) =
(

�2

2m2
t

)(
ξ 2

t − 1
)

tanh−1

(
2

1 + ξt

)

→ ω(qm, Tm) �
(

�

mt

)
δ

1
2

∣∣∣∣ ln
δ

2

∣∣∣∣
1
2

(71)

where the second expression is the asymptotic form close to
the QCP (ξt = 1 + δ; δ � 1). Therefore ω(qm, Tm) is directly
proportional to the ratio m′

t : mt = 1/mt of diagonal (respon-
sible for the shift of Tm) and nondiagonal (responsible for
induced order) matrix elements in the Jz matrix of Eq. (3).
In the J = 4 STM used here, it is 1/mt = 0.145 � 1 and
therefore ω(q, Tm) � � for a reasonably sized ξt . However,
for a general �1 − �4 reduced level scheme, m′

t/mt depends
on the CEF potential parameters and may vary. Below Tm

the mode energy increases sharply again due to the effect
of the molecular field. The dependence of the arrested soft
mode frequency on this ratio of diagonal to nondiagonal ma-
trix elements and on the control parameter ξt is shown in
the two panels of Fig. 10, respectively. We note that in the
ordered phase the components Jx, Jy transverse to the chosen
moment direction 〈Jz〉 have transitions between the excited
triplet states. Therefore, as in the SDM case the transverse
exciton modes for the STM would consist of several branches
hybridizing with each other, similar as in Fig. 7.

V. DISCUSSION OF NUMERICAL RESULTS

In the following discussion, we will focus on the most
typical results for the three models that show the characteristic
distinction of induced moment magnetism as compared to
common quasiclassical magnetic order. Therefore we will not
present and discuss figures for all physical quantities for all
three models that can be obtained from the previous analysis.

As a prerequisite we depict the CEF level splittings in
Fig. 1 for the three singlet ground state models caused by
the appearance of the T -dependent induced order parameter
〈Jx〉T or 〈Jz〉T below Tm. For SSM, a symmetric repulsion of
the two singlets due to their mixing is observed such that the
splitting increases to �0 = ξs� at T = 0. For the SDM, only
the symmetric combination of the excited doublet states mix
with the ground state singlet and show the similar repulsion
to an increased T = 0 splitting of �0 = ξd�. The second
antisymmetric doublet combination remains isolated at the

FIG. 9. (a) STM exciton dispersion of longitudinal mode. At
the � point, first a softening (black arrow) is observed but is ar-
rested at Tm at finite energy; followed by a rehardening below Tm

(red arrow). (b) Arrested soft mode (q = 0) temperature evolu-
tion. The extrapolated paramagnetic mode touches zero at T 0

m /Tm =
0.975 (Tm = 0.467) where T 0

m is the approximate ordering tempera-
ture in [Eq. (47)] by neglecting the excited triplet Curie terms.

FIG. 10. Arrested soft mode frequency as a function of ratio
of diagonal �4 (m′

t = 1) to nondiagonal �1 − �4 (mt ) matrix ele-
ments (a) for ξt = 1.5 and as a function of control parameter (b) for
J = 4 ratio m′

t/mt = 0.19. Diamonds: exact numerical results from
Eq. (70). Dashed lines: approximate result from Eq. (71).
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paramagnetic �, nevertheless it influences the thermodynamic
properties by its thermal population. In the STM, the repelling
singlet and triplet component behave similar as in STM again
with a �0 = ξt�. The other two states do not mix with the
ground state singlet but split due to their diagonal matrix
element (m′

t/2) with a splitting energy directly proportional
to the order parameter 〈Jz〉, therefore it starts with an infinite
slope at Tm while that of the singlet ground state and upper
triplet component begin with a finite slope.

A central characteristic of induced moment magnetism is
the fact that to achieve a finite transition temperature the
control parameter must exceed the critical value ξc = 1. This
defines the QCP separating paramagnetism (ξ < ξc) from in-
duced quantum magnetism (ξ > ξc). The dependence of Tm

on the control parameter is shown in Fig. 2(a) for the three
models as obtained from Eqs. (13), (32), and (46). For STM,
we show the exact numerical solution of Tm from solving
Eq. (46) (full line) as well as the zeroth order approxima-
tion T 0

m (broken line) given by Eq. (47). Their difference is
quite small because the ratio of elastic (triplet) to inelastic
(singlet-triplet) matrix elements is m′

t/mt = 0.19 � 1 and the
difference is well described by the first iterative improvement
in Eq. (46) leading to Eq. (48). Despite its smallness it plays
an essential role in the arrested soft-mode behavior of the
STM exciton modes as discussed below. For ξ → 1+, there
is a logarithmic singularity of the slope of Tm(ξ ) and for
large ξ, the dependence on ξ becomes linear [see Eq. (13)].
The logarithmic singularity has a practical consequence for
identifying induced moment magnetism. It shows that for
achieving Tm < 0.2� one must fine tune ξ very close to the
QCP. Therefore, if this inequality is observed it is a priori
unlikely that the mechanism of induced order can be invoked
for a given compound. Such interpretation holds also for non-
magnetic (multipolar) induced order. In this case, one should
consider other mechanisms, e.g., based on hybridization and
itineracy of f electrons for the observed order.

For the same control parameter ξ, the Tm of the three
models are quantitatively different. However, if we scale
temperature with each individual Tm it turns out that the tem-
perature dependence of their order parameters is quite similar
as shown in Fig. 2(b). The panel (b) depicts the corresponding
functions fs,d,t (T ) which are the difference of thermal popu-
lations between the states connected by the nondiagonal ms,d,t

matrix elements. These functions depend on ξs,d,t and are
central for the calculation of most physical quantities. They
are obtained from solving numerically their self-consistency
equations. Below Tm they may also be interpreted as the
T -dependent normalized energy splitting �̂T for the ms,d,t -
connected levels below Tm.

A most characteristic feature of induced moment mag-
netism is the behavior of the specific heat CV (T ) and in
particular its jump at Tm. It is presented in Fig. 3(a) for
SSM for three different control parameters together with the
internal energy U (T ) and in complementary Fig. 3(b) for the
three models with the same ξ . The contribution from the order
parameter T derivative that leads to the jump [Eq. (19)] is seen
to be superimposed on the Schottky type background specific
heat C0

V [Eqs. (18), (34), and (49)]. This means on lowering
temperature the entropy is released by the induced moment
transition as well as the single ion depopulation effect of the

excited CEF level. The jumps increase with the degeneracy of
the excited CEF level while the corresponding Tm decreases
[Fig. 3(b)].

On approaching the QCP from above while Tm shifts to
lower value the specific heat jump moves with it and becomes
progressively smaller. This dependence is also seen directly
in Fig. 4 as continuous drop in δCV close to the QCP with
ξ = 1 + δ (δ � 1). While the moment behaves like 〈Sα〉 ∼
(δ/2)

1
2 [Eq. (14)] with a singular slope at the QCP the specific

heat jump δCV ∼ (δ2/2)| ln(δ/2)|3 [Eq. (19)] approaches zero
more gradually. The similar though quantitatively different
behavior for SDM and STM from numerical calculations is
also shown. The ξ -dependent reduction of δCV (Tm) in accor-
dance with the normalized ordered saturation moment 〈Sα〉0

is distinct from quasiclassical magnets where the saturation
moment and specific heat jump are just constants independent
of interaction parameters. On the other hand, for large ξ , one
moves to this quasiclassical regime with constant δCV = 3

2
(for effective S = 1

2 for SSM). Finally we note that not only
the individual jump δCV (Tm) and C+

V (Tm) approach zero for
ξ → 1+ their ratio also tends to zero according to δCV /C+

V ∼
δ| ln δ

2 |.
A similar important feature of distinction to quasiclassical

AF magnets is seen in Fig. 5. In the SDM below Tm, the
transverse (with respect to moment direction) susceptibility
stays constant while the longitudinal one falls to zero at low
temperature where the saturated maximum moment can no
longer be polarized. For the singlet ground state quantum
magnet, the transverse behavior is the same while the longi-
tudinal one behaves fundamentally different. When we start
with ξ close above the QCP ξc = 1 the latter is only slightly
less than the transverse one because the induced saturation
moment 〈Sx〉0 [Fig. 3(b)] is very small and therefore may be
easily polarized by the probe field leading to a similar large
longitudinal susceptibility. However, as seen in Fig. 3(b) when
the control parameter ξ is increased the saturation moment
increases rapidly and hence the low temperature susceptibil-
ity drops to lower values as demonstrated in Fig. 5(a). This
behavior is summarized in Fig. 5(b) which shows the AF,
paramagnetic and FM T = 0 longitudinal susceptibilities as a
function of ξ . Asymptotically, for very large ξ they approach
zero as in the semiclassical magnets. We note that in the latter
an intermediate value for the T = 0 susceptibility may occur
for polycrystalline case where an averaging over longitudinal
and transverse susceptibility occurs.

We now turn to the dynamical properties of the three mod-
els as evidenced by the magnetic exciton dispersions, their
relation to the induced moments and their critical behavior. As
mentioned before we treat only the FM case in order to avoid
the complications with the unit cell doubling in AF case. The
SSM case is presented in Fig. 6. It shows the single exciton
branch for a ξs = 1.5 above the QCP for various temperatures.
As the latter approaches the Tm for induced FM moment
formation a complete softening ω(qm, T ) → 0 at the incipient
ordering vector qm = 0 (� -point) is observed (red curve).
Below Tm the soft mode at � shows rapid rehardening since
there is no continuous rotation symmetry that protects it as in
the SDM case. We also include the intensity R̂(q) (dash-dotted
lines) which show a pronounced peak at the soft mode position

115110-16



INDUCED QUANTUM MAGNETISM IN CRYSTALLINE … PHYSICAL REVIEW B 109, 115110 (2024)

and singular behavior at Tm but modest variation elsewhere in
the BZ.

The SDM model displays a more intricate behavior of
excitation spectrum presented in Fig. 7 as spectral intensity
plot for three different temperatures in the induced moment
phase. There are now three possible modes appearing. Two
of them correspond to dispersive excitations from the singlet
ground state to the split doublet states which are different
for polarization parallel and perpendicular to the induced mo-
ment (ωx, ω

+
y ). The remaining transverse low energy mode ω−

y
originates from the thermally activated excitation between the
split doublet components. As one can see close to the � point
it hybridizes with the dispersive high energy transverse ω+

y
mode and outside the hybridization region is almost disper-
sionless and rapidly looses intensity. Therefore the soft mode
at � corresponds to a hybridized singlet-doublet and thermally
activated doublet-doublet mode. It is the Goldstone mode of
the ordered phase since it is zero at the FM ordering vector
(� point) for all temperatures. On approaching Tm from below
the ω−

y mode is pushed to zero energy due to the vanishing
�4 splitting and essentially becomes a quasielastic excitation
around the � point, For T > Tm (not shown), only the fully
gapped two high energy ωx, ωy branches remain which are
then degenerate throughout the BZ.

The hybridization of excitations from the ground state
with thermally excited transitions is a fundamental feature
of the dynamics of singlet induced moment systems. The
evidence for the importance of the latter may also be seen in
the nonmonotonic temperature dependence of the hybridiza-
tion gap �h(T ) = ω+

y (qr ) − ω−
y (qr ) between the two modes

with qr (T ) denoting the crossing wave vector as plotted in
Fig. 8(a). At low temperatures, �h(T ) vanishes because of
doublet depopulation, then achieves a maximum for an inter-
mediate T/Tm � 0.8 and drops steeply to zero when the soft
mode at Tm is approached and the doublet splitting tends to
zero. The corresponding position |qr (T )| of the hybridization
gap first remains flat at the low-T value given below Eq. (67)
and then also drops to zero, i.e., approaches the � point. Fur-
thermore the behavior of the three q = 0 modes as a function
of temperature is shown in (b). Above Tm the two modes of x,y
polarization are degenerate and they become soft modes at Tm.
While ω−

y (0) remains soft for all T < Tm the other transverse
and longitudinal modes show a rehardening below Tm.

Finally, in the STM case, we encounter another interesting
and important feature of the dynamics in singlet ground state
magnetism. In this model, we discuss only the longitudinal
modes (in the cubic case the moment may be oriented along
any axis chosen as z here). Its temperature dependent dis-
persion is presented in Fig. 9(a). First, it shows the usual
softening at the ordering vector (� point) designated by the
blue arrow. However, unlike in the previous case it does not
come down to zero energy but is arrested at a finite energy at
the transition temperature. Below Tm it immediately rehardens
(red arrow). The reason becomes clear when we consider
Fig. 9(b) where the �-longitudinal mode is plotted in the
paramagnetic and induced moment regime. If we extrapolate
the paramagnetic mode energy beyond Tm it would indeed be-
come soft at the approximate transition temperature T 0

m < Tm

that does not contain the effect of the Curie type contributions
from the excited triplet with matrix element m′

t = 1. Because

of their presence the actual transition occurs at a higher tem-
perature Tm where the mode has not yet become soft. And
below Tm it rehardens immediately due to the effect of the
molecular field on the singlet-triplet splitting. This behavior
is presented in more detail in Fig. 10. The left panel (a) shows
that the arrested ω(0, Tm) increases rapidly linearly with the
ratio of elastic (intrinsic �4) to inelastic (�1 − �4) matrix ele-
ments whereas in (b) the square-root increase close to the QCP
from numerical evaluation and the approximate expression in
Eq. (71) is observed.

This arrested softening effect is not constrained to only
the Curie-type contributions in the STM. If, for any of the
singlet ground state models discussed here the influence of
even higher CEF multiplets are considered there will always
be such terms which increase the transition temperature to
a value Tm before the softening of the mode connected with
the nondiagonal induced order from the inelastic transition is
achieved. Therefore Figs. 9 and 10 illustrate in the simplest
possible model what will happen quite generally to the tem-
perature dependence of magnetic excitons. There will be some
softening observed but it is hardly ever complete, even on the
RPA level due to the influence of thermally excited Curie type
contributions from higher level that increase the transition
temperature. To achieve a maximum softening effect at Tm

one should have (i) a control parameter ξ close to the QCP
such that at Tm � � all thermally excited Curie contributions
enhancing Tm are exponentially suppressed and (ii) the diag-
onal matrix elements of the first excited multiplet should be
small. Furthermore beyond RPA one has to consider scattering
effects of magnetic excitons which in principle will lead to a
broadening of the approximate soft mode into a quasielastic
peak before the transition occurs [10].

The aspect of the influence of hyperfine coupling on in-
duced order has not been included in our discussion. As
mentioned in the Introduction where we have cited related
references to it this becomes particularly important close to
the quantum critical point (below as well as above ξc = 1). In
this restricted region, it may indeed be highly interesting how
the thermodynamic properties are modified, e.g., the nuclear
contributions to the specific heat jump close to critical con-
dition and also how the combined nuclear moments and 4 f
excitation spectrum evolves, in particular for the SDM model
with its peculiar hybridized soft mode structure.

VI. SUMMARY AND CONCLUSION

We have undertaken a comparative investigation of quan-
tum critical and thermodynamic properties as well as mag-
netic excitations in the most typical singlet ground state
quantum magnets. These models are realized approximately
in various non-Kramers f -electron compounds containing fre-
quently Pr or U whose f shells have total angular momentum
J = 4 or other integer values split into CEF multiplets with
a nonmagnetic singlet ground state. In this case, the conven-
tional quasi classical magnetic order of Kramers degenerate
ground state compounds is not possible. The order can only
appear via spontaneous superposition with excited CEF states
belonging to singlet, doublet, or triplet caused by intersite
exchange and facilitated by a nondiagonal matrix element
of angular momentum operators between ground and excited
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states. In this mechanism, the moment and its ordering appear
simultaneously.

This type of quantum magnetism is governed by a con-
trol parameter characterizing the relative strength of intersite
exchange to CEF splitting. Below a critical value for this
parameter the ground state is paramagnetic and a spontaneous
induced moment appears when the control parameter crosses
the quantum critical point. The behavior of the induced mo-
ment and the transition temperature near the QCP show a
logarithmic singularity meaning a rather sudden appearance
of the moment and a finite ordering temperature.

There are several distinctions in the thermodynamic prop-
erties of singlet ground state magnets as compared to the
quasiclassical ones with degenerate ground state. Firstly, in
the latter the specific heat discontinuity at the ordering tem-
perature is an interaction independent constant while in the
former it strongly depends on the control parameter character-
izing the interaction strength to splitting ratio. Therefore the
size of the specific heat jump tends to zero when approach-
ing the QCP from above, concomitant with the vanishing
size of the ordered induced saturation moment. Secondly,
for control parameter moderately above the critical one, the
induced moment will still be much less than the paramagnetic
high temperature effective moment. Furthermore the satura-
tion moment and transition temperature in the vicinity of the
QCP vary steeply with the control parameter which may be
identified by application of pressure that modifies the distance
to the QCP. Thirdly, in the ordered state of quasiclassical
magnets, the longitudinal susceptibility tends to zero at low
temperatures while in the singlet ground state quantum mag-
nets it has generally a nonzero value that depends on the
control parameter and reaches zero only for very large values
corresponding to a quasidegenerate CEF level system. These
major differences should be helpful criteria in distinguishing
singlet ground state quantum magnetism from quasiclassical
magnetism.

The thermodynamic properties are qualitatively similar,
though quantitatively different, for the three singlet ground
state models investigated, In particular this applies to the size
of specific heat jumps relative to the underlying Schottky-
type anomaly in the three models because of the considerable
difference in entropy release for the various excited multiplet
degeneracies. The distinction is even more pronounced for
the dynamical properties as evidenced by the dispersion of
magnetic exciton modes and its dependence on temperature
and control parameter. As opposed to magnons in the quasi-
classical case the magnetic excitons of singlet ground state
magnets appear already in the paramagnetic phase as disper-
sive collective CEF excitations but change their quantitative
appearance below the ordering temperature.

The main mode characteristics and their distinction for
the three models may be summarized in the following way.
Firstly, in the SSM, with only one branch there is a soft mode
at the incipient ordering vector at the transition temperature
which then rehardens again due to the Ising-character of the
model. Secondly, for the SDM, several modes appear which
become nondegenerate below the ordering temperature, one
of the transverse modes turns into a Goldstone mode for
all temperatures below Tm while the other two (longitudinal
and transverse) modes show again a typical rehardening from

the soft mode below the transition. Finally, in the STM, an
important effect of the quasi-Curie type contributions to the
static susceptibility originating from the triplet states can be
identified. Their influence on the ordering temperature leads
to an arrested, only partial exciton mode softening at the
true transition temperature with a further rehardening of the
mode energy below it. Such partial softening is commonly
observed in real singlet ground state compounds because of
the influence of higher lying multiplets not contained in the
two-multiplet simplified models analysed here.
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APPENDIX A: CEF SINGLET GROUND STATE MODELS

Here we give possible realizations (among many others) of
the three singlet ground state models investigated. We focus
on J = 4 representations relevant for Pr and U compounds.
The first two models are for uniaxial symmetry the last one
for cubic symmetry. The notations for CEF states on the left
are used in the main text while those to the right are in free
ion |J, M〉 = |M〉 notation with the point group representation
indicated. Within these state spaces the magnetic dipolar op-
erators have the form given in Sec. II.

SSM:

|0〉 = cos θ |0〉 + sin θ
1√
2

(| + 4〉 + | − 4〉)
(
�

(1)
1

)
,

|1〉 = 1√
2

(| + 4〉 − | − 4〉) (�2). (A1)

This Ising-type singlet-singlet model is relevant for Pr com-
pounds with uniaxial symmetry (e.g., D4h) and has in
particular been confirmed for for URu2Si2 [18,19] from spec-
troscopic results. In this case, the CEF mixing angle θ is close
to π/2. The Ising moment operator is Jz = msSx in pseudospin
presentation within this subspace [Eq. (1)] with ms = 8 sin θ .
We finally remark that a singlet-singlet level scheme in a
uniaxial symmetry cannot support an xy-type SSM and an
inspection of the point group multiplication tables leads to the
conclusion that this is forbidden for any symmetry.

SDM:

|0〉 = |0〉 (�1),

|1+〉 = | + 1〉 (�+
6 ),

|1−〉 = | − 1〉 (�−
6 ). (A2)

This xy-type singlet-doublet model was proposed for hexago-
nal (D6h) UGa2 from spectroscopic results [14]. The moment
operators Jα = md Sα [Eq. (2)] (α = x, y) are then defined
with the matrix element md = √

10.
STM:

|ψ0〉 =
√

21

6
|0〉 +

√
30

12
(| + 4〉 + | − 4〉) (�1),

|ψ1〉 = −(c| − 3〉 + d| + 1〉) (�+
4 ),
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|ψ2〉 = 1√
2

(| + 4〉 − | − 4〉)
(
�0

4

)
,

|ψ3〉 = c| + 3〉 + d| − 1〉 (�−
4 ), (A3)

where c = √
1
8 and d = √

7
8 . This J = 4 singlet-triplet model

is appropriate for cubic (Oh) Pr and U compounds [35,42]. It
leads to the Jz moment operator defined in Eq. (3) with mt =
4
3

√
15 and m′

t = 1 fixed by symmetry for J = 4. For larger
integer J , the �1,4 occur multiple times and then mt , m′

t depend
on CEF potential parameters.

APPENDIX B: GENERALIZED SCHOTTKY ANOMALY

In this Appendix, we give the specific heat for a singlet
ground state—N-fold degenerate excited state multiplet two
level system in the paramagnetic state. In reality, a maximum
of N = 3 is possible for CEF states in cubic point group
symmetry, except when further accidental degeneracy occurs.
For the general case, we obtain

CV (T ) = 4N
(

�
2T

)2

[
(N + 1) cosh

(
�
2T

) − (N − 1) sinh
(

�
2T

)]2 . (B1)

For the SSM case (N = 1), one obtains the common Schottky
anomaly given in the second line of Eq. (18) and for the
SDM (N = 2) and STM (N = 3) cases the explicit expres-
sions are given in Eqs. (34) and (49), respectively. The low-
and high-temperature limits of the above general expression
are obtained as

CV (T ) �
{

N
(

�
T

)2
e− �

T ; (T � �)(
N

N+1

)2(�
T

)2
; (T 	 �)

. (B2)

APPENDIX C: SPECTRAL FUNCTION FOR THE SDM

Here we give the magnetic exciton intensities that define
the spectrum of the dynamical magnetic susceptibility of the

SDM. Because of the appearance of three exciton branches
it is more involved than for the single branch in the SSM
case [Eqs. (60) and (61)]. For the trace over cartesian com-
ponents R(q, ω, T ) = (1/π )

∑
α Imχαα (q, ω), we obtain the

three mode contributions

R(q, ω, T ) = R̂xx(q, T )δ(ω − ωx ) + R̂+
yy(q, T )δ(ω − ω+

y )

+ R̂−
yy(q, T )δ(ω − ω−

y ) (C1)

with the mode dispersions ωx(q, T ) and ω±
y (q, T ) given in

Eqs. (64) and (65). The intensities of each branch are obtained
as

R̂xx(q, T ) =
(

�

Ie

)(
�

2ωxq

)
,

R̂+
yy(q, T ) =

(
�

Ie

)[
W +

21

ω+2
yq − (

�32
T

)2

ω+2
yq − (ω−

yq)2
+W +

32

ω+2
yq − (

�21
T

)2

ω+2
yq − (ω−

yq)2

]
,

R̂−
yy(q, T ) =

(
�

Ie

)[
W −

21

(
�32

T

)2 − (ω−
yq)2

ω+2
yq − (ω−

yq)2)2
(C2)

+ W −
32

(
�21

T

)2 − ω−2
q

ω+2
yq − (ω−

yq)2

]
,

where �21 = 1
2 (�T + �), �32 = 1

2 (�T − �) are excitation
energies between the molecular field states and f 12

d = p1 −
p2, f 23

d = p2 − p3 the corresponding occupation differences.
Furthermore we introduced weight coefficients defined by

W ±
21 = 1

4

(
1 + 1

�̂T

)
(�̂T + 1)

�0 f 12
d

2ω±
yq

,

W ±
32 = 1

4

(
1 − 1

�̂T

)
(�̂T − 1)

�0 f 23
d

2ω±
yq

. (C3)

An example of the spectral function R(q, ω, T ) for SDM is
given in Fig. 7 (using a finite broadening) and discussed in
Sec. V.
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