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Emergence of a diverse array of phases in an exactly solvable model
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Numerical solvers for strongly correlated electronic systems poses a significant challenge in condensed matter
theory. In recent years, extensive exploration of strongly correlated effects has been carried out based on exactly
solvable Hatsugai-Kohmoto-like models. In this work, we investigate a simple two-site cluster extension of
the Hatsugai-Kohmoto model. The model exhibits a rich variety of phases, including the charge-4e phase,
charge-2e phase, metallic phase, pseudogap phase, and Luttinger liquid phase. These findings contribute to the
understanding of strongly correlated physics and superconducting physics.
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I. INTRODUCTION

Correlated electronic systems exhibit numerous intriguing
phenomena, such as metal-insulator transition [1,2], strange
metal behavior [3-6], and high-temperature superconductiv-
ity [7-9]. These effects are believed to be captured by the
Hubbard model and its extensions [10-15], yet they cannot
be described by the traditional Ginzburg-Landau framework
and remain challenging to solve. Despite the development
of numerous numerical methods over years, however, our
understanding of the seemingly simple two-dimensional (2D)
Hubbard model is still lacking. Determinantal quantum Monte
Carlo simulations [16—-18] can efficiently provide numerically
accurate results in the half-filled case, but it faces challenges
in scenarios away from half-filling due to the sign prob-
lem. Density matrix renormalization group methods [19-21]
perform well in one-dimensional and quasi-one-dimensional
systems but struggle in two-dimensional situations due to area
laws for the entanglement entropy [22]. Dynamical mean-field
theory [23-25] is exact in infinite dimensions but faces dif-
ficulties capturing nonlocal correlations in low-dimensional
cases. In short, the development of numerical methods for
strongly correlated electronic systems is urgently needed and
presents a challenging task.

Therefore, seeking insights into strongly correlated physics
from exactly solvable models might be a wise and fruitful
avenue. For instance, a simple and exactly solvable model
proposed by Hatsugai and Kohmoto [26] in 1992 proves illus-
trative. The Hamiltonian simply takes the form H = Dk Hy,
where Hy = ", _ | (6 — i)Aqk + Uhy ity g and R g is the
number operator with z spin @ and quasimomentum k. This
model is easy to solve, yet it does capture some crucial physics
of the Hubbard model: when U < 0, the ground state exhibits
electronic pairing, relating to the superconductivity; and when
U exceeds half of the bandwidth an insulating phase emerges
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at half-filling, relating to the Mott insulator. In recent years,
the Hatsugai-Kohmoto (HK) model has garnered significant
attention and has been subject to further extensions [27—48].

In this work, we introduce a two-site cluster extension
of the HK model. The Hamiltonian retains the simple form
A= > Hy, while Hy, becomes slightly more intricate. In the
HK model, Hy—o corresponds to the Hubbard model on one
site, whereas in our model, it corresponds to the extended
Hubbard model (¢-U-V model) on two sites. We observe
that the ground state of this model exhibits a rich variety
of phases, including the charge-4e phase, charge-2e phase,
metallic phase, pseudogap phase, and Luttinger liquid phase.
These findings contribute to advancing our understanding of
strongly correlated physics and superconducting physics.

This paper is organized as follows. In Sec. II, we present
the exact solution of the two-site #-U-V model, constructing
an exactly solvable model, and briefly showcased possible
ground state phases. Next in Sec. III, we provide the quantum
phase diagram at quarter-filling and analyze these phases.
Finally in Sec. IV, we make a summary and outlook.

II. TWO-SITE CLUSTER EXTENSION

From the work of Hatsugai and Kohmoto, it is straight-
forward to draw a conclusion: if the Hamiltonian takes the
form H =Y, Hy, where Hy can be exactly solved, then H
is also exactly solvable. Note that Hj’s are mutually com-
muting with each other. Let Hy |or) = M|k ), and one obtains
H|WV) = E|W¥), where

W) = @kler), and E =)y e))
k

With this property, the ground state and thermodynamics of
the system governed by the Hamiltonian A can be easily
obtained.

In the HK model, Hx—( simply corresponds to the Hubbard
model on one site. To enrich its physics, we introduce some
complexity to Hy—now Hy— corresponds to the 7-U-V model

©2024 American Physical Society
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TABLE 1. Eigenvalues and eigenstates of the two-site Hamiltonian.

Occupancy Eigenvalue Eigenstate
N=0 Eyo=0 1€2)
Evo= —t — 3%+ i — eTO|sz> & ol
N=1 Eix=1t—p—3k+hr <182), cl,,l )
N=2 Ey gz = —4h — 21 \/Lg(é;,oci = Ch a0,
& el 19), ”w I,,IQ)
Eyns=—4ho+ 40, — 21 5@} 08] 2 + €8] IR
Epo— = —4hg+ 20y — 2/ + 22 — (cos 02} 4¢] o —sin6E] M)IQ)
Eroy = —4ho+20n + 217 + 22 — (sin0¢] o¢] o + cos 0] &) )IR)
N=3 Eyo=1—=3 0+ —3u 5;n610@¢n|9> CTocTné¢n|Q)
Eyqz=—t=3k+hi —3u & Oé;ﬂcw|sz> &l o8] 0] 4 19)
N=4 Eyo=—4u to Trwo w'Q)

on two sites instead. In the text below, we will first demon-
strate the fundamental physics of the two-site model.

A. Two-site -U-V model

The Hamiltonian of the two-site t-U-V model reads
HO = —t Z(EZ,AEa,B + E;,Bea,A) - /:L Z ﬁa,t
o o,

+UZnTtnlt+VZnOlAnol’B )

(XO!

Here ¢, , is the annihilation operator for the electron with z
spin « on site ¢ (A or B). t > 0 is the hopping strength, U is
the on-site interaction strength, V' is the intersite interaction
strength, and /i is the chemical potential.

By introducing the transformations

1 1
Cod = —= éa +éa , Cap = —= éa - 60[ y 3
A \/5( 0 ) CaB «/E( 0 ) (3)

we can rewrite the two-site Hamiltonian in the momentum
representation:

Hy= —1 Z (A0 — e,z ) — (1 + 4Xo) 0o

+ hoPg + ha - )
Here w =g +U/2 —4Xy is a shifted chemical potential
and will be used in text below. The coupling strengths Ag
and A, are determined by the relationships U/2 = Ao + Ar
and V/2 = A9 — A;. The two operators pgy and p, are defined

as:
A A N A N
D & gy Pr= Y ClginCag (5)

a,q=0,7 a,q=0,7

The two-site Hamiltonian Eq. (4) can be easily solved;
its 16 eigenstates together with the 10 eigenvalues are pre-
sented in Table I, in which 0 € [—m /4, 7 /4] is determined
by tan 26 = A, /t. It is easy to observe that the ground-state
energy can only be one of the five possibilities: Eg o, Ej o,

E>o.—, E3 , or Eqp. Let E; be the minimum eigenvalue with
specific occupation number i, for i = 0, 1, 2, 3, 4. Then

Ey=0, (6a)
Ey = —1 =3+ Ax — 1, (6b)
Ey = —4ro + 207 — 2 2 +22 =2, (6¢)
Es = —1 — 3ho + A — 311, (6d)
E4 = —4M (66)

The occupation number N of the ground state can be deter-
mined by minimizing Ey. The variation of N in the A¢-u plane
is sketched in Fig. 1. The colored regions stand for different
N’s, gray for N = 0, blue for N = 1, green for N = 2, orange
for N = 3, and brown for N = 4. The solid lines are boundary
of two different regions, and their equations are Ey min =
En' min With N and N’ the occupation numbers. The specific

chemical potential

coupling strength A,

FIG. 1. The occupation number for the two-site Hamiltonian in
the Xo-u plane.
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equations are u =0, w = =%pu;, = =Fuy, and pu = Fpus,
with the expressions

m1 = —Ao+ Az —2,/12 + 22 +1, (7a)
o = —2ho 4+ Ay — (/12 + A2, (7b)

w3 = —3ho + Ar — 1. (7¢)

The dashed lines indicate where three different regions
intersect, and their equations are Ag = A} and Ao = A3, where

A= (e — 124+ 22), (8a)
A= /t2+ A2 —1. (8b)

Note that A7 < 0 < A} if both ¢ and A, are nonzero.

Under different parameter conditions, the possible values
of the occupation number vary. When A¢ < A}, the possible
values are 0 and 4, implying the formation of a bound state
with four electrons, referred to as a quartet. When A} < A9 <
A3, the possible values are 0, 2, and 4, indicating the pairing of
two electrons. When Ay > A3 the minimum increment is one,
signifying the absence of bound state. In these three scenarios,
we refer to the minimum unit of the two-site cluster as quartet,
pair, and electron, respectively.

B. Lattice model and its ground states

Now, let us consider such a somewhat impractical system,
which is composed of independent k blocks, each of which is
a two-site cluster with different parameters (¢, Ao, A, ). Here,
we regard k as the momentum in the half of the first Brillouin
zone and assume that ¢ depends on k and lies in the range
[0, W], while Ay and A, are constants. The Hamiltonian of the
whole system then takes the form H = Y, Hy with

Hy = —te(Apk — Apmik + Ay — Ay i)
— (i + 420 Po.k + 2oPg k. + dx P i ©)
Here the operators pg x and p, x are given by

A AT A AT A
Pok= ) ChgrkCrathk T Cp g 4 Clato
q=0,7

(10a)

Ok = ol p At A
Pk = Z Cr ginikCratk € 4 n jCpg—k-  (10b)
q=0,7

The Hamiltonian Hy, can be regarded as replacements to Hy as
follows: ¢4 4 is replaced by &4 g4x, ¢y 4 is replaced by ¢ 4.,
and 7 is replaced by #. Results about A, can be directly carried
over to Hy, as long as ¢ is replaced by . Below, we will
consider Ey defined by Eq. (6), u; defined by Eq. (7), and
A} and A} defined by Eq. (8), all as functions of ¢.

As mentioned above, the lattice model is exactly solvable.
Here, we focus on its ground state. When |W) [see Eq. (1)] is
the ground state of H, every |¢) should be the ground state
of ﬁk .

It would be convenient to introduce the effective disper-
sion & ; (i=1,2,3,4) as follows. When X¢ < A](#%), the
minimum unit in the k block is the quartet, and we define
&= —p for i =1,2,3,4, which stands for the energy per
electron in the quartet. When A, lies in the range between

(a) (b)

coupling strength A,

20 -15 -10 -05 00 05 10 15 20 -0.025 0.125
coupling strength 2,

FIG. 2. Quantum phase diagram at quarter filling in
one-dimensional case, (a) for Ao/W €(-2.0,2.0) and
A /W € (=2.0,2.0); (b) for Ao/W € (—0.025,0.125) and
Az /W € (=0.5,0).

Al(t) and A3 (%), the minimum unit in the k block is the
pair, and we define & | = &> = po(&) —pnand &3 = &4 =
—ua(ty) — u, which, respectively, represent the energy per
electron in the first pair and the second pair. When Ay >
A} (t), the minimum unit in the k block is the electron, and we
define & ; = Ex; — Ey;—1. By this definition, the occupation
number in the k block can be easily determined; it equals to
the maximum i that satisfies & ; < 0.

The surface defined by the set of k points that satisfy
&.; = 0 is important for the physical properties, and we refer
to it as the zero-energy surface. In the absence of interactions,
the zero-energy surface is identical to the well-known Fermi
surface. Based on the minimum units at the zero-energy sur-
face, we can categorize the ground state into five phases: (i)
When the zero-energy surface is absent, the system is in a
Luttinger liquid phase (as explained below). (ii) When only
electrons exist on the zero-energy surface, the system is in a
metallic phase. (iii) When only pairs exist on the zero-energy
surface, the system is in a charge-2e phase. (iv) When only
quartets exist on the zero-energy surface, the system is in a
charge-4e phase. (v) In a special case, when both electrons
and pairs coexist on the zero-energy surface, we refer to the
system as being in a pseudogap phase (see Ref. [30]).

III. PROPERTIES OF GROUND-STATE PHASES

We present the quantum phase diagram at quarter-filling
in one-dimensional case in Fig. 2. Here, the brown regime de-
notes the charge-4e phase (CH-4¢), the orange regime denotes
the charge-2e phase (CH-2e), the purple regime denotes the
metallic phase (M), the purple regime denotes the pseudogap
phase (PG), and the blue regime denotes the quarter-filled Lut-
tinger liquid phase (L,/4). For uncertain fillings, we present
the phases that may occur under different parameter condi-
tions in Table II, where L/, represents for the half-filled
Luttinger liquid phase.

The charge-4e phase occurs at . = 0 in the case Ay <
A7(0). When A < A(W), the minimum units in all k£ blocks
are quartets. At u = 0, the energy of each quartet is zero,
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TABLE II. Possible phases at different parameters.

Parameter Minimum Units Possible Phases
Ao < AT(W) quartet CH-4e
AT(W) < A9 < AT(0) quartet, pair CH-4e, CH-2¢
AT(0) < Ap < A5(W) pair CH-2e, L),
AMW) < Ao < 2500) pair, electron CH-2e, M, PG, L,
Ao = A5(0) electron M, L4, Lip

meaning their presence or absence does not affect the total en-
ergy of the whole system. The ground state can be expressed
as

W) = Gk + v &5 k€] ), 01, (D
k
for arbitrary uy, vy satisfying |uk|2 + |vk|2 =1.
When A7 (W) < Ao < A](0), the minimum units in k blocks
are quartets (for # < t*) and pairs (for # > t*), where t* is
determined by Ag = A](#*). The ground state is then given by

V) = l_[ (e + Uké;,ké;,n-k—kéi,—kéi,n—kﬂqD)’ (12)

B <t*

where
|0) = [ 41 (13)
te>t*
with
3}1— — cos Qkéi,kéi,—k — sin Gké';’ﬁkél,,_k. (14)

Here 6y € [—m /4, m /4] is determined by tan 20; = A /t.

The charge-4e phase may be relevant to the concept of
recently popularized charge-4e superconductors [49-59]. Ex-
perimental evidence has indicated the existence of charge-4e
and even 6e superconductivity [58], although these experi-
mental findings may also be explained by other mechanisms.
Theoretical studies often employ a Hamiltonian with charge
U (1) symmetry breaking [53] to investigate the properties of
the charge-4e superconductors. In contrast, our starting point
is a Hamiltonian preserving the charge U (1) symmetry, which
may lend additional significance to this research.

The charge-2e phase, in which only pairs exist on the zero-
energy surface, occurs only when A7(0) < A9 < A3(0). The
typical state is given by

w) =[] 419, (15)

k=t

where p2(#2,0) = p and 1, o # 0. Here k blocks with 7 > 1
are doubly occupied, and k blocks with # < #, o are empty.

Despite the presence of pairs in the charge-2e phase, it
should not be considered a true superconducting state due
to lacking of phase coherence. To exhibit superconductivity,
additional terms may be necessary, as seen in the HK-BCS
model [35,36] and the Richardson-Gaudin models [60].

The metallic phase, in which only electrons exist on the
zero-energy surface, occurs only when A¢ > A5(W). As for
the pseudogap phase, in which electrons and pairs coexist on
the zero-energy surface, it occurs only when A5(W) < Ap <

A5(0). The single-particle spectrum is gapless on the surface
where electrons are present, while it exhibits a gap on the
surface where pairing occurs. In other words, only a partial,
not complete, gap is opened.

When X > max{1}(0),2,/W?2 + A2 — |r,| — W} and at
quarter-filling, all k blocks are singly occupied. The zero-
energy surface is absent, hence the low-energy excitations of
electrons, pairs, or quartets do not exist. However, this state is
not an insulating state because of the presence of low-energy
particle-hole excitations. In a k block with # ~ 0, the state
@th) (or @j_km)) can jump to & 1) (or @j,n_km))
with little energy, which corresponds to the particle-hole exci-
tations. Therefore, we consider this state to be in the Luttinger
liquid phase.

When Ao > A7(0) and at half-filling, all k blocks are dou-
bly occupied. The state is expressed as:

W) = Hﬁ;m). (16)
k

Although the zero-energy surface is absent, the system ex-
hibits low-energy excitations of other types. In a single k
block, there are six states with an occupancy of two (see
Table I), comprising three singlets and one triplet. Their eigen-
values are

Ero- = —4h0 + 2hr — 2J2 412 = 21,
Eyo4 = —4ho + 20q + 2\/@ —ou,

E2,7‘r.s = _4)\.0 + 4)\.7-[ — 2,[1,,
Espy= —4ho — 24 (17)

For nonzero #, E o — is always the smallest, and the second
smallest is Ep » s if A; < 0, or E5 ;.  if A; > 0. Namely, in a
k block with # ~ 0, the ground state c?,: |€2) can jump to the
first excited state with little energy, which is the triplet state
(corresponding to E; ) or the singlet state (corresponding
to E; »s). Therefore, we also consider this state to be in the
Luttinger liquid phase. In the Appendix, we will introduce
various possible ground states and explore the possible phase
evolutions with varying charge fillings under different param-
eter conditions.

IV. SUMMARY AND OUTLOOK

To sum up, we investigated the two-site cluster extension
of the HK model. We found that the ground state exhibits a
diverse array of phases, including the charge-4e phase, the
charge-2e phase, the half-filled and quarter-filled Luttinger
liquid phase, the metallic phase, and the pseudogap phase.
These discoveries involve charge-4e superconductivity and
Luttinger liquid behavior, advancing our understanding of
strongly correlated physics.

Drawing from previous research relevant to the HK model,
we can summarize its fundamental spirit—constructing ex-
actly solvable lattice models by utilizing simple k blocks.
Further considerations can be made for simple interactions
between these blocks, such as density-density interaction [61],
spin-spin interaction [62], rendering them equivalent to some
simpler models. Alternatively, one can consider coupling
with order parameters [28,36], making them equivalent to
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FIG. 3. Occupation numbers in k blocks in various types of
ground states.

Ginzburg-Landau models. Likewise, our work represents a
significant extension of the HK model, expanding the k block
from one site to two sites. Following this approach, it can
be further expanded to clusters with four sites, six sites, and
possibly more, bringing about richer physics.

APPENDIX A: VARIOUS TYPES OF GROUND STATES

Based on the occupation numbers within k blocks, the
ground states of the lattice model can be categorized into 21
types. We use the colored bars to illustrate these types, as
shown in Fig. 3. The center of the bar represents the k = 0
block, while the two ends correspond to the blocks with k at
the boundary of the half of the first Brillouin zone. We also use
a series of numbers to indicate the type of state; its meaning is
self-evident and will be further elaborated in the description
below. Owing to the particle-hole symmetry, we only need
to consider states with fillings not larger than a half, which
amounts to 11 types. For convenience, we use k to replace k
below, and stipulate the norm of & such that |k| < |k’| implies
ty > ty.

(i) Type 0. The vacuum state |€2) signifies that all k& blocks
are empty and is labeled as type 0, and it is in a trivial
insulating phase.

(ii) Type 1. The state of type 1 signifies that all k£ blocks are
singly occupied and it is in a Luttinger liquid phase. A typical
state of this type is given by

& o), (AD)

k

noting that arbitrary ET, « S can be replaced by 61’_k’s.
(iii) Type 10. A typical state of type 10 can be described as

I1 &l 1),

|kl <ki0

(A2)

In this state, the blocks with |k| < kj o are singly occupied,
and the blocks with |k| > k; ¢ are empty. This state is in the
metallic phase.

(iv) Type 12. A typical state of type 12 can be described as

]—[ &l ]_[ Q).

|kl<ki 2 [k|=k1 2

(A3)

In this state, the blocks with |k| < k;, are singly occupied,
and other blocks are doubly occupied. This state is in the
metallic phase.

(v) Type 120. A typical state of type 120 can be described

as
[Te TI

[kl <ki 2 ki 2< |kl <k20

al1). (Ad)

In this state, the blocks with |k| < kj  are singly occupied, the
blocks with k; » < |k| < kp,0 are doubly occupied, and other
blocks are empty. This state is in the pseudogap phase, for the
coexistence of electrons (at |k| = k; ») and pairs (at |k| = kz0)
at zero energy.

(vi) Type 2. The state of type 2 signifies that all k blocks
are doubly occupied, described as

[ [dl1. (AS5)
k
This state is commonly in the Luttinger liquid phase.
(vii) Type 20. The state of type 20 is described as
[] 4. (A6)

[k|<ka,0

In this state, the blocks with |k| < k; o are doubly occupied,
and other blocks are empty. This state is commonly in the
charge-2e phase.

(viii) Type 21. A typical state of type 21 is described as

IT 4 T1 &

|kl <k, [k|Zk2,1

(A7)

In this state, the blocks with |k| < ky,; are doubly occupied,
and other blocks are singly occupied. This state is in the
metallic phase.
(ix) Type 210. A typical state of type 210 is described as
[T I

[k|<kz,1 ko1 <|k|<ki o

cﬁle). (A8)

In this state, the blocks with |k| < k| are doubly occupied,
the blocks with ky; < |k| < kj o are singly occupied, and
other blocks are singly occupied. This state is in the metallic
phase.

(x) Type 212. A typical state of type 212 is described as

T4 JI &l de.

[kl<ka1  kaa<lkl<ki2 |k|=k12

(A9)

In this state, the blocks with |k| < k; | or |k| > k; , are doubly
occupied, and the blocks with ky; < |k| < k;, are singly
occupied. This state is in the metallic phase.

(xi) Type 2120. A typical state of type 2120 is described as

[Tda IT & I1

[k|<ka.1 ko1 <Ik|<ki 2 ki 2<[k|<k20

di|). (A10)
In this state, the blocks with |k| < ka1 or k;» < |k| <O are
doubly occupied, the blocks with k;; < |k| < k; 2 are singly
occupied, and other blocks are empty. This state is in the pseu-
dogap phase, for the coexistence of electrons (at |k| = k»,; and
|k| = k1 2) and pairs (at |k| = ko) at zero energy.

Summary

Let us summarize the 11 types of ground states presented
above. Among them, except for the vacuum (0), two are in the
Luttinger liquid phase (1, 2), one is in the charge-2e phase
(20), two are in the pseudogap phase (120, 120), and the
remaining five are in the metallic phase (10, 12, 21, 210, 212).

In addition to the 11 types, there are two other possible
types of ground states. In the scenario where & = 0 and Ay <
A7(0), the minimal units in some or all k£ blocks are quartets.
The energies of these quartets are all zero, so their presence or
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(@)

dispersion

chemical potential

0 2
charge filling

—1/2
momentum

/2

FIG. 4. Case (ii): Phase transition at a typical set of parameters,
Ao/W = —0.15 and X, /W = 0.75, on 1D lattice with 1024 sites.
t, = W cos k is assumed. In (a), the solid lines represent for & ; (blue,
not shown), &, (green), & 3 (orange, not shown), and &; 4 (brown).
The dashed lines represent for ps(#) (blue), wa(#) (green), and 0
(brown). (b) shows the variation of charge density with chemical
potential. (c) shows the change in the occupation numbers of k£ blocks
with respect to the chemical potential.

absence does not affect the ground-state energy. We call this
state as being in the charge-4e phase.

APPENDIX B: EVOLUTIONS OF PHASES

In this part, we will demonstrate several types of transitions
of ground states with varying w’s at given parameters Ao, A,
and W. Here, we specify some important critical values. For
Ao, the values of A7(W), A7(0), A3(W), and A3(0) mark the
boundaries between different distributions of minimal units
in k blocks. For |A,|, the comparison with 3W /4 determines
whether (@ (#;)’s minimum value is ©1(0) or w;(W), and the
comparison with V/3W determines whether W1(t)’s maxi-
mum value is @ (| |/\/§) or i (W).

(i) When Ay < A7(W). In this scenario, the minimal units
in all k blocks are quartets. The effective dispersion relation
becomes & ; = —u for all k and i. When p < 0, all k blocks
are empty, whereas when p > 0, all k blocks are fully occu-
pied. When . = 0, the system will be in a charge-4e phase.

(i) When A{(W) < A9 < AJ(0). Let g = A (#, ). In this
scenario, the minimal units in blocks with |k| < k. are pairs,
and those in blocks with |k| > k. are quartets. Figure 4

(@)

dispersion

—1/2
(b)
5|
=
2
o
& CH-2e
[
9
=
(]
<
c 7 | ..
0 1 —m/2 /2
charge filling momentum

FIG. 5. Case (iii): Ao/W = 0.15, A, /W = 0.75.

displays the effective dispersion [Fig. 4(a), setting ;« = 0], the
variation of charge density with chemical potential [Fig. 4(b)],
and the change in the occupation numbers of k blocks with
respect to the chemical potential [Fig. 4(c)], for a typical set
of parameters on 1D lattice with 1024 sites. As the charge
density varies from 0-2, the ground state undergoes a transi-
tion from the vacuum state (0) to the charge-2e phase (20), to
the charge-4e phase at i = 0, to the charge-2e phase (24), and
finally to the fully occupied state (4).

(iii) When A7(0) < A9 < A5(W). In this scenario, the min-
imal units in all k£ blocks are pairs. The effective dispersion is
simply &1 = &2 = po(te) — pand &3 = §ra = —pa(te) —
. Figure 5 displays the effective dispersion [Fig. 5(a)], the
variation of charge density [Fig. 5(b)], and the change in the
occupation numbers of k blocks [Fig. 5(c)]. As the charge den-
sity varies from 0-1, the ground state undergoes a transition
from the vacuum state (0), to the charge-2e phase (20), and to
the half-filled Luttinger liquid phase (2).

(iv) When A5 (W) < Ao < |Ax|/+/3 and || < ~/3W. Let
Ao = Aj(%,) and we can find #, > [A; |/\/§. In this scenario,
the minimal units in blocks with |k| < k. are electrons, and
those in blocks with |k| < k. are pairs. Note that u(¢) is
monotonically decreasing in the interval [f,, W], and that
wi(ty,) = pa(ty, ). Figure 6 displays the effective dispersion
[Fig. 6(a)], the variation of charge density [Fig. 6(b)], and the
change in the occupation numbers of k blocks [Fig. 6(c)]. As
the charge density varies from 0-1, the ground state undergoes
a transition from the vacuum state (0), to the metallic phase
(10, 210), to the charge-2e phase (20), and to the half-filled
Luttinger liquid phase (2).
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FIG. 6. Case (iv): o/W = 0.4, A, /W = 0.75.

(v) When Lﬁ' <o < (V3 = DAyl and [A;| < v/3W. Let

Ao = A5(#.) and we can find #, < [Ar] /\/5. In this sce-
nario, the minimal units in blocks with |k| < k. are electrons,
and those in blocks with |k| < k. are pairs. Note that p(f)
is monotonically decreasing in the interval [[A;| /\/5, W]
and increasing in the interval [t ,|Az|/ \/5]. Note that
wi(lrzl/ V3) < 12(0). Figure 7 displays the effective disper-
sion [Fig. 7(a)], the variation of charge density [Fig. 7(b)], and
the change in the occupation numbers of k blocks [Fig. 7(c)].
If wi(W) < pi(t,), as the charge density varies from 0-1,
the ground state undergoes a transition from the vacuum state
(0), to the metallic phase (10, 210), to the pseudogap phase
(2120), to the charge-2e phase (20), and to the half-filled
Luttinger liquid phase (2). If w;(W) > u(#,), the ground
state undergoes a transition from the vacuum state (0) to the
metallic phase (10), to the pseudogap phase (120, 2120), to
the charge-2e phase (20), and to the half-filled Luttinger liquid
phase (2).

(vi) When (/3 — D|Az| < Ao < |Ag| and |Ay| < 3W/4.
Let Lo = A5 (#.). In this scenario, the minimal units in blocks
with |k| < k. are electrons, and those in blocks with |k| <
k. are pairs. Note that p;(¢) is monotonically decreasing
in the interval [|A;] /«/g, W] and increasing in the inter-
val [tr,. | Az |/+/3]. Note that 111 (W) < 12(0) < 1 (|1A=1/+/3),
and w1 (W) < p1(0) < pi(#, ). Figure 8 displays the effec-
tive dispersion [Fig. 8(a)], the variation of charge density
[Fig. 8(b)], and the change in the occupation numbers of k
blocks [Fig. 8(c)]. As the charge density varies from 0-1, the
ground state undergoes a transition from the vacuum state (0)
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FIG. 9. Case (vii): Ag/W = 0.55, 1, /W = 0.5.

to the metallic phase (10, 210), to the pseudogap phase (2120),
to the metallic phase (212), and to the half-filled Luttinger
liquid phase (2).

(vii) When |Ag| <to < /W24+22 —W/2 and [A,] <
3W/4. In this scenario, the minimal units in all k£ blocks are
electrons, and thus &1 = us(fx) — p and &2 = wi(f) — u.
Note that (W) < u3(0) < ©1(0). Figure 9 displays the ef-
fective dispersion [Fig. 9(a)], the variation of charge density
[Fig. 9(b)], and the change in the occupation numbers of k
blocks [Fig. 9(c)]. As the charge density varies from 0-1, the
ground state undergoes a transition from the vacuum state (0)
to the metallic phase (10, 210, 21, 212), and to the half-filled
Luttinger liquid phase (2).

(viii) When Ag > /W2 + 22 —W/2 and |A;| < 3W/4.In
this scenario, the minimal units in all k£ blocks are elec-
trons, and thus & ; = u3(t) — p and & » = wi(f%) — n. Note
that ©3(0) < w1 (W) < u1(0). Figure 10 displays the effec-
tive dispersion [Fig. 10(a)], the variation of charge density
[Fig. 10(b)], and the change in the occupation numbers of k
blocks [Fig. 10(c)]. As the charge density varies from 0-1, the
ground state undergoes a transition from the vacuum state (0)
to the metallic phase (10), to the quarter-filled Luttinger liquid
phase (1), to the metallic phase (21, 212), and to the half-filled
Luttinger liquid phase (2).

(ix) When (v/3 — DAz | < 2o < 2/W2 22 — W — |ig]
and 3W/4 < |A;| < V3W. Let Ao = A5 (tx, ). In this scenario,
the minimal units in blocks with |k| < k. are electrons,
and those in blocks with |k| <k, are pairs. Note that
nwi(W) < ua2(0) < ul(lkﬂl/ﬁ). Figure 11 displays the ef-
fective dispersion [Fig. 11(a)], the variation of charge density
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FIG. 12. Case (x): Ao/W = 0.915, A, /W = 1.0.

[Fig. 11(b)], and the change in the occupation numbers of k
blocks [Fig. 11(c)]. If w1(W) > 1 (#,), as the charge density
varies from 0-1, the ground state undergoes a transition from
the vacuum state (0) to the metallic phase (10), to the pseudo-
gap phase (120, 2120), to the metallic phase (212), and to the
half-filled Luttinger liquid phase (2). If u1(W) < p1(#,), as
the charge density varies from 0-1, the ground state undergoes
a transition from the vacuum state (0), to the metallic phase
(10, 210), to the pseudogap phase (2120), to the metallic phase
(212), and to the half-filled Luttinger liquid phase (2).

(x) When 2/W2+4+2Z—W —|rs| <Ao< |Ay| and
3W/4 < |Az| < V/3W. Let &g = A3 (kc). In this scenario, the
minimal units in blocks with |k| < k. are electrons, and those
in blocks with |k| > k. are pairs. Note that u,(0) < u;(W).
Figure 12 displays the effective dispersion [Fig. 12(a)], the
variation of charge density [Fig. 12(b)], and the change in
the occupation numbers of k blocks [Fig. 12(c)]. As the
charge density varies from 0-1, the ground state undergoes
a transition from the vacuum state (0) to the metallic phase
(10), to the pseudogap phase (120), to the metallic phase (12,
212) and to the half-filled Luttinger liquid phase (2).

(xi) When Xy > |A| and 3W/4 < |A;]| < V/3W. In this
scenario, the minimal units in all k& blocks are electrons,
and thus & ; = u3(tx) — n and &> = wi(f%) — p. Note that
11(0) < w3(0). Figure 13 displays the effective dispersion
[Fig. 13(a)], the variation of charge density [Fig. 13(b)], and
the change in the occupation numbers of k blocks [Fig. 13(c)].
As the charge density varies from 0-1, the ground state un-
dergoes a transition from the vacuum state (0) to the metallic
phase (10), to the quarter-filled Luttinger liquid phase (1), to
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FIG. 15. Case (xiii): Ag/W = 1.75, A, /W = 2.0.

the metallic phase (12, 212), and to the half-filled Luttinger
liquid phase (2).

(xii)) When A5(W) < Ao <2/W?2+ A2 —W — |A,| and
[Az] > /3W. Let Ay = A5 (t,). In this scenario, the minimal
units in blocks with |k| < k. are electrons and those in blocks
with |k| > k. are pairs. Note that (W) < u,(0). Figure 14
displays the effective dispersion [Fig. 14(a)], the variation of
charge density [Fig. 14(b)], and the change in the occupation
numbers of k blocks [Fig. 14(c)]. As the charge density varies
from 0-1, the ground state undergoes a transition from the
vacuum state (0) to the metallic phase (10), to the pseudogap
phase (120), to the charge-2e phase (20), and to the half-filled
Luttinger liquid phase (2).

(xiii) When 2/W?2+22 =W — |A;] < Ao < |Az| and
[Az] > /3W. Let Ay = A3 (t.). In this scenario, the minimal
units in blocks with |k| < k. are electrons and those in blocks
with |k| > k. are pairs. Note that (W) > u»(0). Figure 15
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FIG. 16. Case xiv: Ag/W = 3.0, ,,/W = 2.0.

displays the effective dispersion [Fig. 15(a)], the variation of
charge density [Fig. 15(b)], and the change in the occupation
numbers of k blocks [Fig. 15(c)]. As the charge density varies
from 0-1, the ground state undergoes a transition from the
vacuum state (0) to the metallic phase (10), to the pseudogap
phase (120), to the metallic phase (12), and to the half-filled
Luttinger liquid phase (2).

(xiv) When Ay > |A;| and |A;]| > V3W. In this scenario,
the minimal units in all k¥ blocks are electrons. Figure 16
displays the effective dispersion [Fig. 16(a)], the variation of
charge density [Fig. 16(b)], and the change in the occupation
numbers of k blocks [Fig. 16(c)]. As the charge density varies
from 0-1, the ground state undergoes a transition from the
vacuum state (0) to the metallic phase (10), to the quarter-
filled Luttinger liquid phase (1), to the metallic phase (12),
and to the half-filled Luttinger liquid phase (2).

Summary

The text above displays transitions of the ground state with
charge filling under 14 different parameter conditions.
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