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Effective models for dense vortex lattices in the Kitaev honeycomb model
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We introduce low-energy effective models for dense configurations of vortices in the Kitaev honeycomb
model. Specifically, we consider configurations of vortices in which vortex-free plaquettes form triangular
lattices against a vortex-full background. Depending on the vortex density, these “dual” configurations belong
to either one of two families classified by translation and inversion symmetry. As a function of a time-reversal
symmetry breaking term, one family exhibits gapped phases with even Chern numbers separated by extended
gapless phases, while the other exhibits gapped phases with even or odd Chern numbers, separated by critical
points. We construct an effective model for each family, determine the parameters of these models by fitting the
integrated density of states, and reproduce energy spectra and Chern numbers of the Kitaev honeycomb model.
We also derive phase diagrams and determine these models’ validity.
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I. INTRODUCTION

The characterization of free fermion phases via topological
invariants represents a major achievement in the understand-
ing of quantum matter [1–4]. Given the spatial dimension,
these invariants may be determined through an analysis of
global symmetries such as time-reversal (TRS), particle-hole,
and chiral symmetries, in a classification scheme known as the
tenfold way. In 2006, Kitaev introduced an exactly solvable
spin-1/2 model on a honeycomb lattice that can be mapped
to a free Majorana-fermion problem in a static Z2 gauge
field [5]. The gauge field results in the possibility of static
π fluxes, called vortices, in each plaquette and the problem
separates into independent vortex sectors. In the isotropic
limit and in the vortex-free sector where the ground state lies
(see below for details), the spectrum is gapless, but acquires
a gap and a nonzero Chern number ν when TRS is broken
[5]. To break TRS while preserving the integrability of the
model, Kitaev introduced a three-spin term that results in a
next-nearest-neighbor hopping of the Majorana fermions. The
corresponding model, closely related to Haldane’s model [6],
has ν = ±1 and has been the subject of many studies (see,
e.g., Refs. [7–20]).

From the tenfold way, this model is a class-D topological
superconductor in two dimensions, exhibiting an integer-
valued Chern number ν ∈ Z when the energy spectrum is
gapped. Notably, Kitaev found that the bulk excitations of
the model behave either as Abelian (even ν) or non-Abelian
(odd ν) anyons, whose properties depend solely on ν mod 16
[5,21]. These sixteen topological phases are suggested to oc-
cur in the fractional quantum Hall effect at filling factors
with even denominator (such as the famous 5/2) [22], and re-
cently proposed honeycomb materials such as α-Li2IrO3 and
α-RuCl3 have been suggested to exhibit Kitaev-like quantum
spin liquid phases [23].

In the Kitaev model, the Chern number ν corresponds
to the number of chiral Majorana edge modes propagating
along the boundaries of the system and is associated with

quantized thermal transport [5]. A simple argument due to
Volovik shows that if ν is odd, an isolated vortex traps an
unpaired Majorana zero mode (MZM) [24]. In contrast, if ν

is even, it traps a complex fermionic mode at finite energy,
similar to the lowest Caroli-de Gennes-Matricon state in a
ν = 0 superconductor [25]. This finite-energy mode can also
be described as a pair of coupled MZMs.

Previous studies have analyzed the topological phases aris-
ing from triangular vortex configurations introduced on the
honeycomb lattice [12,13,16,17]. These configurations are la-
beled by a vortex density ρ = 1/n with n being an integer.
Because of geometrical constraints, not every integer n is
accessible in a triangular lattice. For instance, ρ = 1/3 is
allowed [see Fig. 1(a)], but ρ = 1/5 cannot be realized [8,17].
In the dilute limit, i.e., when n � 1, the spectra of these
triangular vortex configurations only exhibit gapped phases
with even Chern numbers, separated by gapless critical points
as the three-spin coupling is varied. These numerical results
are explained by an effective model that describes the hop-
ping of Majorana fermions on a triangular lattice, whose sites
correspond to the locations of the isolated vortices [12,13].
Indeed, in the vortex-free sector, the Chern number of the
Kitaev honeycomb model is ν = ±1, which implies that an
isolated vortex traps an unpaired MZM [5]. In the follow-
ing, we will refer to these triangular vortex configurations as
“direct.”

The “duals” to these triangular vortex configurations
correspond to dense vortex configurations, with density
ρ = (n − 1)/n, where the plaquettes that do not contain
vortices form a triangular pattern against a background
of plaquettes that all contain vortices. These dense vortex
configurations have recently been studied numerically in
Refs. [16,17], and can be divided into two families according
to their behavior with respect to translation and inversion
symmetry. We shall refer to these two families as “dual even”
(if n is even such as ρ = 3/4, 11/12, 15/16, . . . ) and “dual
odd” (if n is odd such as ρ = 2/3, 8/9, 11/12, . . . ) in the
following [see Figs. 1(b) and 1(c)] [8,17]. The dual even
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FIG. 1. Examples of vortex arrangements with triangular symmetry: (a) direct, (b) dual even, and (c) dual odd. The vortex density is
ρ = 1/n for the direct configuration and ρ = (n − 1)/n for the dual configurations. Grey hexagons indicate plaquettes that host vortices
(wp = −1), while white hexagons indicate their absence (wp = +1). Vectors (A1, A2) define the geometric unit cell (GUC), whereas (a1, a2)
define the Hamiltonian unit cell (HUC) compatible with the periodicity of the ujk’s.

family exhibits gapped phases with even Chern numbers,
separated by extended gapless phases (spin metals with a
Majorana-Fermi surface [26,27]), whereas the dual odd family
has gapped phases with even or odd Chern numbers, separated
by gapless points. These dual configurations are not describ-
able by the effective model introduced in Refs. [12,13].

In this paper, we construct two different effective models
describing the dual even and dual odd families. These models
describe the hopping of pairs of coupled Majorana fermions
on a triangular lattice, where the lattice sites correspond to
the absences of vortices within a vortex sea. These effective
models allow us to understand the variety of Chern numbers
and the nature of gapless phases observed. The paper is or-
ganized as follows: in Sec. II we briefly introduce the Kitaev
honeycomb model in the Majorana fermion language and dis-
cuss the behaviors of the vortex-free and vortex-full sectors.
In Sec. III, we identify three distinct symmetry families for
direct and dual vortex configurations based on translation and
inversion symmetries. In Sec. IV, we show that when the
low-energy bands of the Kitaev honeycomb model are well-
separated from the high-energy bands, they may be accurately
described by an effective tight-binding model for all three of
these families. We first review the construction of the low-
energy model discussed in Refs. [12,13] for the direct case,
and then introduce new effective models for the dual even and
dual odd cases. To demonstrate the accuracy of these models,
we directly compare their integrated density of states (IDOS)
with that of the original Kitaev honeycomb model. Finally, in
Sec. V, we discuss our results, conclude and give perspectives.
Appendices provide details on specific points such as the va-
lidity of the effective models (Appendix A) and some possible
dispersion relations of vortex bands (Appendix B).

II. KITAEV HONEYCOMB MODEL

We begin by recalling some essential facts about Ki-
taev’s honeycomb model. The original spin-1/2 model can
be reformulated in terms of an effective quadratic fermionic

Hamiltonian given by [5]

H = i

4

∑
j,k

A jkc jck . (1)

Here ci are Majorana operators defined on the vertices of the
honeycomb lattice such that c†

i = ci and {ci, c j} = 2δi j . The
summation runs over all sites of the lattice, and A is a real
skew-symmetric matrix obeying the following rules:

Ajk =

⎧⎪⎨
⎪⎩

2Ju jk, if j, k are nearest neighbors
2κujlulk, if (k, l, j) is oriented clockwise
0, otherwise

. (2)

Here the u jk parameters are Z2 gauge variables defined such
that u jk = −uk j = ±1 for each link of the lattice. We assume
here that the coupling J is the same in all three direc-
tions, corresponding to the isotropic limit of the original spin
model. This Hamiltonian describes noninteracting Majorana
fermions coupled to a static Z2 gauge field. The term J de-
scribes the nearest-neighbor hopping, whereas κ denotes the
strength of the three-spin term that breaks TRS, corresponding
to next-nearest-neighbor hopping (see Fig. 2). In the follow-
ing, without loss of generality, we will assume that J and κ

are nonnegative.
For each plaquette p of the honeycomb lattice, we define

the Z2 variable wp = ∏
( j,k)∈p u jk = eiφp , where φp is the flux

threading the plaquette. Here, for each plaquette, the pair of
sites ( j, k) is taken such that k always belongs to one sublattice
of the honeycomb lattice, and j belongs to the other. A value
of wp = −1 (+1) indicates a flux φp = π (0) in the plaquette
p, meaning the presence (absence) of a vortex. Two sets of Z2

link variables u jk defined on the lattice are said to be equiva-
lent if they correspond to the same configuration of plaquette
variables, or “vortex configuration.” In analyzing Eq. (1), one
can then restrict to a particular vortex sector labeled by the
pattern of wp’s. In Fig. 1, we show several examples of vor-
tex configurations, where the wp = −1 plaquettes are shaded
grey.
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FIG. 2. Standard gauge for the Hamiltonian defined in Eq. (1).
Here a black arrow (J hopping) pointing from site k to site l indi-
cates that ulk = +1, and consequently ukl = −1. The two triangular
sublattices of the honeycomb lattice are denoted by black and white
colored sites. The dashed pink arrows (κ hopping) represent the
sign of the product ujl ulk whenever the triplet (k, l, j) is oriented
clockwise: Whenever (k, l, j) is a clockwise triplet of sites, and
ujl ulk = −1, then the dashed pink arrow points from site j to site
k.

Direct vortex configurations [see Fig. 1(a)] are defined
by two vectors A1 and A2 that indicate the presence of
a vortex at location r = m A1 + n A2 for (m, n) ∈ Z2. For
dual configurations [see Figs. 1(b) and 1(c)], we define the
vectors A1 and A2 to indicate the absence of a vortex at
position r. In the following we shall refer to the parallelogram
built from the vectors A1 and A2 as the geometric unit cell
(GUC). It is not necessarily the same as the Hamiltonian
unit cell (HUC), spanned by the Bravais lattice vectors a1

and a2, and which depends on the gauge choice for the u jk

variables.
We now discuss the physics of the vortex-free sector, for

which wp = +1 for all plaquettes (ρ = 0) [5], and of its dual,
the vortex-full sector, where wp = −1 for all plaquettes of
the honeycomb lattice (ρ = 1) [9,17]. They will constitute
the backgrounds to our effective models. Their properties are
summarized in Table I.

Vortex-free sector. The standard gauge that realizes this
configuration is represented in Fig. 2. The unit cell is made of
one hexagonal plaquette (with zero flux) so that there are two
bands. When κ = 0, the two bands touch at two Dirac points
within the first Brillouin zone (same spectrum as graphene).
Introducing a TRS-breaking term such that κ � J opens a
gap 	 = 6

√
3κ [5,6]. The resulting Chern number is ν = 1.

As κ increases, the system remains gapped, and in the κ � J
limit, 	 = 2J . As can be seen in Fig. 2, when J = 0 and
κ > 0, the two triangular sublattices of the honeycomb are
decoupled and each exhibit an alternating pattern of ±π/2

flux per triangle. The resulting band structure is gapless along
nodal lines.

Vortex-full sector. The simplest gauge choice that achieves
this configuration has a unit cell made of two hexagonal
plaquettes (with π flux each), which results in four bands.
When κ = 0, the energy spectrum has four gapless Dirac
cones [9]. Turning on a small κ creates a gap 	 � 2

√
3κ and

ν = 2. At κ = J/2, the gap closes. Continuing to increase κ

re-opens a gap and ν = −2. In the κ � J limit, the system
remains gapped with 	 � 2

√
3κ . For J = 0 and κ > 0, the

two triangular sublattices are disconnected. Each sublattice
is similar to a Claro-Wannier model with uniform π/2 flux
per triangle [28]. This model has two bands of width

√
3κ

separated by a gap 	 = 2
√

3κ and a Chern number ν = −1.
Throughout the rest of this paper, unless otherwise stated,

we shall define our energy units such that J = 1, with the
assumption that J is nonzero and positive.

III. TRANSLATION AND INVERSION SYMMETRIES

As shown in Ref. [17], direct and dual vortex configura-
tions can be separated into three families based on translation
and inversion symmetries. We review here these three families
and their properties, which will motivate the introduction of
the effective models.

Whether or not the gauge choice for the u jk variables
is invariant under translations of A1 and A2 is found to
depend on the parity of the vortex number Pw inside the
GUC [16,17]. When Pw = +1, there is an even number
of vortices in the GUC. In this case, there exists a gauge
choice invariant under translations of A1 and A2 and the
HUC is the same as the GUC [8,17]. By contrast, when
Pw = −1, there is an odd number of vortices in the GUC,
and the HUC must be double that of the GUC. Impor-
tantly, it has been shown that when Pw = −1, the system can
only exhibit even-valued Chern numbers, while if Pw = +1
both even and odd Chern numbers are possible. The di-
rect vortex configurations always exhibit Pw = −1, while the
dual configurations can either exhibit Pw = +1 or Pw = −1
[17]. A vortex configuration with Pw = +1 is shown in
Fig. 1(b), while vortex configurations with Pw = −1 can be
seen in Figs. 1(a) and 1(c).

We can also analyze how the ujk gauge variables are af-
fected under application of the inversion symmetry operator
P = GI, which is the product of a pure spatial inversion I and
of a Z2 gauge transformation G. As discussed in Refs. [16,17],
the square of this operator behaves as P2 = ±1. Extended
gapless phases do not exist for vortex configurations with
P2 = −1. Of the vortex configurations discussed so far, only
the dual even exhibit P2 = +1. The direct and the dual odd
configurations, however, both exhibit P2 = −1.

TABLE I. Band gap 	 and Chern number ν (when 	 > 0) of the vortex-free and vortex-full sectors (backgrounds) of Eq. (1) in the κ � J
and κ � J limits.

κ = 0 κ � J κ � J J = 0

Vortex-free (ρ = 0) Two bands 	 = 0 	 = 6
√

3κ ν = +1 	 = 2J ν = +1 	 = 0
Vortex-full (ρ = 1) Four bands 	 = 0 	 � 2

√
3κ ν = +2 	 � 2

√
3κ ν = −2 	 = 2

√
3κ ν = −2
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TABLE II. Four families built from translation (Pw = ±1) and inversion (P2 = ±1) symmetries. The geometric (GUC) and Hamiltonian
(HUC) unit cells are indicated. The direct and dual configurations considered in this paper occupy three families.

Translation sym. Pw = −1 Pw = −1 Pw = +1 Pw = +1

Unit cells HUC = 2 GUC HUC = 2 GUC HUC = GUC HUC = GUC

Gapped phases with
Chern number ν

Even ν Even ν Even or odd ν Even or odd ν

Inversion symmetry P2 = −1 P2 = +1 P2 = −1 P2 = +1

Gapless phases Point-like Extended Point-like Extended
Vortex configurations
and density

Direct
ρ = 1/n

(Vortex-full n → 1)

Dual even
ρ = (n − 1)/n, n even

Dual odd
ρ = (n − 1)/n, n odd
(Vortex-free n → 1)

?

In Table II, we classify different families based on the
signs of Pw = ±1 and P2 = ±1. There are neither direct
nor dual configurations for which Pw = +1 and P2 = +1. It
was implicit in the analysis of Ref. [17] that for the vortex
configurations studied there, the gauge transformation can be
chosen to have the periodicity of the Hamiltonian (i.e., that the
operator P commutes with the translation operators defining
the HUC). However, this might not be true for other vortex
configurations on the honeycomb lattice or for the Kitaev
model on other lattices, such as the square-octagon [26] or
the triangle-dodecagon [27,29–31].

IV. EFFECTIVE LOW-ENERGY MODELS

Previous works have shown that sufficiently sparse direct
vortex configurations can be described by an effective Ma-
jorana tight-binding model that accurately reproduces their
spectra and Chern numbers [12,13]. The intuition behind
this model follows from analyzing the behavior of isolated
vortices: given a vortex-free background, exchanging u jk →
−u jk for a single link variable introduces two adjacent vor-
tices into the system. When these vortices are sufficiently
separated from each other, these wp = −1 plaquettes each
host a single unpaired MZM [5]. The spectrum of a dilute
direct vortex lattice against a vortex-free background can then
be understood as arising from a set of high-energy bands
coming from the background (“background bands”) and a
set of low-energy bands coming from the tunneling of Ma-
jorana fermions between these zero modes (“vortex bands”).
This can be seen, for example, in Fig. 3(a) where we plot
the IDOS of the Hamiltonian in Eq. (1) exhibiting a direct
vortex configuration with density ρ = 1/21. The IDOS N (E )
is defined as the number of states below a given energy E .
Here, for practical use, we rather plot E (N ). The total Chern
number of the system in this case can then be decomposed
as ν = νb + νv, where νb = 1 and νv are the Chern numbers
for the vortex-free background bands and the vortex bands,
respectively.

In this section, we expand upon the above analysis and
derive low-energy effective models for the two families of
dual vortex configurations. These cases are distinct from the
direct configurations as an isolated wp = +1 plaquette within
a vortex-full background does not host an unpaired MZM.
Instead, in the dual case, the even Chern number of the

vortex-full background implies that an isolated “dual vortex”
(i.e., a vortex-free plaquette surrounded by vortex-full plaque-
ttes) will host a pair of coupled Majorana fermions equivalent
to a single complex fermion mode with finite energy. The
tunneling between these isolated finite-energy modes in the
dilute limit then gives rise to a set of low-energy bands sep-
arated from the vortex-full background (we will still refer to
these bands as “vortex bands”). This can be seen in Figs. 3(b)
and 3(c), where we plot the IDOS for ρ = 15/16 (dual even)
and ρ = 20/21 (dual odd). The number of low-energy bands
(either two or four) depends on the symmetry family, as dis-
cussed below.

These effective models are valid as long as the total band-
width δv of the vortex bands is much smaller than the energy
gap of the background bands 	b, as shown in Fig. 3. For
justification and additional details, see Appendix A.

A. Warm-up: Direct case

We begin with a review of the construction of the low-
energy model introduced by Lahtinen et al. for the direct
vortex configurations [12,13]. Defining the HUC vectors as
a1 = 2A1 and a2 = A2, we are then interested in providing
an effective model describing Majorana fermions tunneling
between vortices. The simplest corresponding Hamiltonian is
given by

H1 = it1
∑
〈 jk〉

s jkγ jγk + it2
∑
〈〈 jk〉〉

s jkγ jγk, (3)

where γi are Majorana operators defined on the wp = −1
plaquettes of the honeycomb lattice and (t1, t2) ∈ R2 represent
the hopping amplitudes between nearest and next-nearest-
neighbor vortices, respectively. As explained in Ref. [12],
one needs these two terms to reproduce the Chern numbers
observed. The Z2 gauge variables s jk = ±1 are chosen such
that the total flux accumulated by a Majorana fermion hopping
counter-clockwise on a closed triangular circuit of t1 links is
φ1 = π/2, the flux enclosed in a closed circuit of t2 links is
φ2 = −π/2, and the flux enclosed in a closed circuit formed
by both t1 and t2 links is φ1,2 = π/2 (see Fig. 4). In contrast
with Ref. [12], we choose a periodic pattern of s jk variables
that both satisfies these requirements and gives rise to only
two sites per unit cell. Utilizing the gauge choice defined in
Fig. 4, we Fourier transform the Hamiltonian in Eq. (3) to
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FIG. 3. Energy vs IDOS of H plotted in blue for (a) direct (ρ = 1/21), (b) dual even (ρ = 15/16), and (c) dual odd (ρ = 20/21), all
with κ = 1 (energy units are such that J = 1). In (a), the thick red line gives the IDOS of the vortex-free background, while for (b) and (c) it
gives that of the vortex-full background. The dotted grey lines indicate the total bandwidth δv of the vortex bands, while the dashed grey lines
indicate the energy gap 	b of the background bands. The second row shows a zoom on the vortex bands (there are two for the direct and dual
odd configurations, and four for the dual even configurations).

obtain

H1 =
∑

k

�
†
kH1(k)�k. (4)

Here �k = (γk, γ k)T, such that γi and γ i represent the Ma-
jorana operators for the solid and striped vortices shown in

FIG. 4. Direct. Unit cell of the effective model defined in Eq. (3).
Grey and hatched hexagons indicate the two inequivalent sites in the
unit cell of the effective model. The directions of the blue dashed
and red dotted arrows represent the sign of the gauge variables
for the nearest (t1) and next-nearest (t2) neighbor hopping terms,
respectively: if an arrow points from vortex site k to vortex site j,
then s jk = −sk j = +1.

Fig. 4, respectively, and

H1(k) =
(

f (k) g(k)
g(k)∗ − f (k)

)
,

f (k) = −2t1 sin(k · a2) + 2t2 sin(k · b1),

g(k) = 2t1[sin(k · a1/2) − i cos(k · a3)]

− 2t2[sin(k · b2) + i cos(k · b3)] (5)

Here we have defined the nearest-neighbor directions as
a1/2, a2, and a3 = a2 − a1/2, as well as the next-nearest-
neighbor directions as b1 = a1 − a2, b2 = a2 + a3, and
b3 = a2 + a1/2. The above Majorana Hamiltonian in Eq. (5)
can be transformed into a Bogoliubov-de Gennes Hamiltonian
by a k-independent unitary transformation, revealing that the
system is equivalent to an anisotropic px + ipy topological
superconductor (see, e.g., Sec. 16.3 in Ref. [32]).

In Fig. 5(a), we reproduce the phase diagram of this model
from Ref. [12], which features the possible vortex Chern
numbers νv = ±1,±3. We call Emin(t1, t2) and Emax(t1, t2)
the minimum and maximum positive energy eigenvalues of
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FIG. 5. Direct. (a) Phase diagram and Chern numbers νv of the
effective model given in Eq. (3), adapted from Ref. [12]. The phase
boundaries are t2 = t1, −t1, and −t1/2. (b) Comparison of the IDOS
of the effective model and that of the vortex bands of H (both IDOS
are normalized between 0 to 1). Here we have δv/	b � 0.009. The
parameters are t1 = −0.0028 and t2 = −0.0002. These parameter
values are indicated by the red dot in the phase diagram of (a),
implying that νv = +1, in agreement with the microscopic model.

Eq. (5), which are equal to

Emin(t1, t2) = min
k

√
f (k)2 + |g(k)|2,

Emax(t1, t2) = max
k

√
f (k)2 + |g(k)|2. (6)

Here, we used these extrema to optimize the fitting parameters
t1 and t2 by imposing the proper bound of the IDOS (they will
also be used in the following section). To give an example of
the accuracy of this model, in Fig. 5(b), we plot the IDOS
of the low-energy bands of the Kitaev honeycomb model in
Eq. (1) along with that of the effective model given in Eq. (4).
Here, we fit the parameters t1 and t2 by matching the IDOS
(and Chern number) corresponding to Eq. (4) with that of
Eq. (1). It is possible that multiple choices of t1 and t2 may re-
sult in the same IDOS as that of Eq. (1). In this case, as argued
in Ref. [12], the relative magnitudes of these parameters may

FIG. 6. Dual even. Unit cell of the effective model introduced in
Eq. (8). Each “dual vortex” hosts two Majorana modes, which we
interpret as two “layers” that we color white and light blue. Here, ε

represents the on-site coupling of two modes on the same site, and
the blue dashed and red dotted arrows represent the sign of the gauge
variables for the nearest and next-nearest-neighbor hopping terms,
respectively. The pattern of these gauge variables for both layers is
the same as that given in Fig. 4.

be predicted by extracting t1 and t2 from the energy splitting of
MZMs obtained by a numerical calculation with two spatially
separated vortices in a vortex-free background [12]. While
this method is less precise than exactly matching the IDOS, it
has the advantage that it provides a unique solution. Therefore
both approaches should be combined.

B. Dual even case

In this section, we introduce a low-energy model for dual
even vortex configurations. The size of the HUC is double that
of the GUC, and we set a1 = 2A1, a2 = A2, where the vectors
A1 and A2 now generate the dual vortex lattice. Each of these
isolated wp = +1 plaquettes (i.e., a “dual vortex”) hosts two
Majorana modes at finite energy ±ε. The splitting 2ε has
been calculated numerically and plotted in Fig. 6 of Ref. [17].
It vanishes in the J = 0 limit in which the two triangular
sublattices of the honeycomb lattice are decoupled (see the
discussion on the vortex-full sector in Sec. II). This means
that the two Majorana modes in the same “dual vortex” are
uncoupled and therefore at zero energy. Inspired by this J = 0
limit and by the effective model in the direct case [see Eq. (3)],
we construct a tight-binding model that features two “layers”
(or flavors) of Majorana modes. They tunnel between the dual
vortices according to the following effective Hamiltonian:

H2 = it1
∑
〈 jk〉

[
s(α)

jk α jαk + s(β )
jk β jβk

]

+ it2
∑
〈〈 jk〉〉

[
s(α)

jk α jαk + s(β )
jk β jβk

] + iε
∑

j

α jβ j . (7)

Here, αi and βi are Majorana operators defined on what we
refer to as the “upper” and “lower” layers, respectively. This
is schematically shown in Fig. 6, where the upper layer is
colored white and the lower layer is colored light blue.

In this construction, each isolated “dual vortex” in Fig. 1(b)
hosts two Majorana modes: one belonging to α j , and one
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belonging to β j . The on-site coupling between them is given
by ε, and at the current level we do not allow any interlayer
tunneling between neighboring dual-vortex sites; nearest and
next-nearest-neighbor tunneling occurs only between sites
of the same layer. Including such terms would violate the
P2 = +1 symmetry of the microscopic model. As before,
s(α)

jk = ±1 and s(β )
jk = ±1 are Z2 gauge variables that de-

termine the total enclosed flux of triangular circuits of
dual vortices. From the Pw = −1 symmetry [which can be
seen in Fig. 1(b)], the total flux enclosed when hopping
counter-clockwise on a nearest-neighbor circuit of t1 links is
φ1 = −π/2, the flux enclosed in a next-nearest-neighbor cir-
cuit of t2 links is φ2 = π/2, and the flux enclosed in a circuit
composed of both t1 and t2 links is φ1,2 = −π/2. We may
observe that this is simply the opposite of the flux pattern
of the previous section. Noting that exchanging κ → −κ re-
verses the flux, we may adopt the same pattern of s jk variables
defined in Fig. 4(b) for both layers of Eq. (7). That is, we
set s(α)

jk = s(β )
jk . Doing so allows us to Fourier transform the

Hamiltonian of Eq. (7) to find

H2 =
∑

k

�
†
k

(
H1(k) iετ0

−iετ0 H1(k)

)
�k. (8)

Here, �k = (αk, αk, βk, βk)T, such that αk and αk refer to the
solid and striped white dual vortices, respectively (where solid
and striped indicate the two inequivalent sites within the unit
cell), βk and βk refer to the solid and striped light blue dual
vortices, respectively, τ0 is the identity matrix in the space
of solid and striped dual vortices, and H1(k) is defined in
Eq. (5). As can clearly be seen, when ε = 0 the four energy
bands of Eq. (8) consist of two copies of the bands of the
previous model. Due to the lack of level repulsion resulting
from the P2 = +1 symmetry, these two pairs of bands begin
to shift in opposite directions as |ε| is increased from zero.
Whenever Emin(t1, t2) < |ε| < Emax(t1, t2), two of these bands
will overlap with each other at zero energy, leading to the
appearance of a Majorana-Fermi surface in the Brillouin zone
[26,27]. When |ε| < Emin(t1, t2), two copies of the valence
band of Eq. (5) will have negative energy, and the vortex
Chern number of Eq. (8) will simply be twice that of Eq. (5).
When |ε| > Emax(t1, t2), one valence band and one conduction
band of the model in Eq. (5) will be at negative energy. These
bands each have opposite Chern numbers, and thus the total
vortex Chern number of the system is zero. If we define ν (1)

as the vortex Chern number of the model defined in Eq. (5),
the Chern number of the present model is thus given by

νv =
⎧⎨
⎩

2ν (1), as |ε| < Emin(t1, t2)
gapless, as |ε| ∈ [Emin(t1, t2), Emax(t1, t2)]
0, as |ε| > Emax(t1, t2)

. (9)

In Fig. 7(a), we plot the phase diagram of Eq. (8) for t1 < 0
(t1 > 0 simply changes the sign of the Chern numbers and
mirrors the plot). For all values of t1 and t2 we find that we
always have Emin(t1, t2) < Emax(t1, t2) [see Eq. (6)], i.e., there
is always a Majorana-Fermi surface for certain values of ε.
Because the vortex-full background has the possible Chern
numbers νb = ±2, the above model thus predicts that the total
Chern number can take the values ν = 0,±2,±4, and ±8.

FIG. 7. Dual even. (a) Phase diagram and Chern numbers νv of
the effective model given in Eq. (8), where t1 < 0. Emin(t1, t2) and
Emax(t1, t2) are defined in Eq. (6). (b) Comparison of the IDOS of
the effective model and that of the vortex bands of H (both IDOS are
normalized between 0 to 1). Here, δv/	b � 0.122 and the parameters
are ε = 0.370, t1 = −0.052, and t2 = 0.004. These parameter values
are indicated by the red dot in the phase diagram of (a), implying that
νv = 0, in agreement with the microscopic model.

The values ν = 0,±2, and ±4 have indeed been observed,
but not ±8 [17].

In Fig. 7(b), we plot the IDOS of the low-energy bands of
H along with that of the effective Hamiltonian H2. As before,
we fit the parameters ε, t1, and t2 by matching the IDOS and
Chern number with Eq. (1).

C. Dual odd case

Next we introduce a low-energy model for the dual
odd configurations. According to Table II, in this case the
Pw = +1 symmetry implies that there is an even number of
vortices within each GUC, as can be seen in the example
shown in Fig. 1(c) for ρ = 2/3. Unlike the previous two fami-
lies, for these configurations the HUC and GUC are equivalent
to one another, and we therefore set a1 = A1 and a2 = A2.
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We wish to construct a tight-binding model that features
two layers of Majorana modes that tunnel between dual
vortices located. However, in anticipation of the P2 = −1
symmetry constraint, this time we shall allow interlayer
tunneling between neighboring dual-vortex sites. The Hamil-
tonian is then

H3 = it1
∑
〈 jk〉

[
s(α)

jk α jαk + s(β )
jk β jβk

]

+ it2
∑
〈〈 jk〉〉

[
s(α)

jk α jαk + s(β )
jk β jβk

]

+ it⊥1

∑
〈 jk〉

[
s(⊥)

jk α jβk + s̃(⊥)
jk β jαk

]

+ it⊥2

∑
〈〈 jk〉〉

[
s(⊥)

jk α jβk + s̃(⊥)
jk β jαk

]

+ iε
∑

j

α jβ j . (10)

Here, (t1, t2) ∈ R2 represent the hopping amplitudes of modes
between nearest and next-nearest-neighbor sites in the same
layer, respectively. In contrast, the new terms (t⊥1, t⊥2) ∈ R2

represent the interlayer hopping amplitudes between nearest
and next-nearest neighbors, respectively. This Hamiltonian
then has the four sets of gauge variables: s(α)

jk , s(β )
jk , s(⊥)

jk ,

and s̃(⊥)
jk . To obey the P2 = −1 symmetry we must set

s(β )
jk = −s(α)

jk , which leaves us with three available sets of
gauge variables to choose in order to analyze the model, along
with the signs of the hopping parameters and ε.

The original honeycomb model in Eq. (1) shows that for
this family the accumulated flux in a triangular circuit of
nearest-neighbor dual vortices is found to be always either
φ = 0 or φ = π . Unlike in the previous two sections, the
gauge variables of Eq. (10) cannot be chosen in such a way
that recreates this pattern. Indeed, for Majorana fermions,
triangular circuits always carry a flux of ±π/2. However, as
schematically shown in Fig. 8, the size of the HUC implies
that all gauge choices of the s(α)

jk , s(⊥)
jk , and s̃(⊥)

jk variables
result in patterns of alternating ±π/2 flux within the nearest-
neighbor triangular circuits, which is the closest a model of
Majorana fermions can be to obtaining a flux of 0 or π . As
such, we are therefore unrestricted in our choice of gauge
variables. Taking the gauge choices for s(α)

jk , s(⊥)
jk , and s̃(⊥)

jk
defined in Fig. 8, we may Fourier transform the Hamiltonian
to find

H3 =
∑

k

�
†
kH3(k)�k, (11)

where here, �k = (αk, βk)T, and

H3(k) =
(

f̃ (k) g̃(k)
g̃(k)∗ − f̃ (k)

)
,

f̃ (k) = 2t1

3∑
j=1

sin(k · a j ) + 2t2

3∑
j=1

sin(k · b j ),

g̃(k) = iε + i2t⊥1[cos(k · a1) − cos(k · a2) + cos(k · a3)]

− 2t⊥2[sin(k · b1) − sin(k · b2) + sin(k · b3)]. (12)

FIG. 8. Dual odd. Unit cell of the effective model defined in
Eq. (11). (a) The blue dashed and red dotted arrows represent the sign
of the gauge variables for the nearest (t1) and next-nearest-neighbor
(t2) intralayer hopping terms, respectively. The upper layer corre-
sponds to the gauge variables s(α)

jk , while the lower layer corresponds

to the gauge variables s(β )
jk = −s(α)

jk . (b) Schematic of the interlayer
hopping amplitudes in Eq. (11) (top view). The terms t⊥1 and t⊥2 are
colored blue and red, respectively. Solid arrows refer to the choice of
signs for the s̃(⊥)

jk gauge variables, while dashed arrows refer to s(⊥)
jk .

The nearest-neighbor directions are defined as a1, a2, and
a3 = a2 − a1, while the next-nearest-neighbor directions are
defined as b1 = a1 + a2, b2 = a2 + a3, and b3 = a3 − a1. The
above Majorana Hamiltonian in Eq. (12) can be transformed
into a Bogoliubov-de Gennes Hamiltonian by a k-independent
unitary transformation, showing that the model is close to a
px + ipy superconductor on a triangular lattice. This could
have been anticipated given that a “dual vortex” hosts a sin-
gle complex fermionic mode, that the energy spectrum must
have particle-hole symmetry, and that the gapped bands carry
nonzero Chern numbers.

In Figs. 9(a) and 9(b), we plot the phase diagrams
of this model as t1 = 0, t2 = t⊥2 and t2 = 0, t1 = t⊥2, re-
spectively, which collectively exhibit the Chern numbers
νv = 0,±1,±2, and ±3. Thus, knowing that the vortex-full
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FIG. 9. Dual odd. Phase diagram and Chern numbers νv of the
model given in Eq. (11). (a) t1 = 0 and t2 = t⊥2. The phase bound-
aries are t⊥1 = ε/6, ε,−ε/2, and −ε/3. (b) t2 = 0 and t1 = t⊥2. The
phase boundaries are t⊥1 = ε/6 and ±ε/2.

background exhibits νb = ±2, the total Chern numbers arising
from the above effective model are ν = 0,±1,±2,±3,±4
and ±5. This is in agreement with what is observed in
Ref. [17], which, for this family, showcases all of these Chern
numbers except ν = ±4. We also note that the above model
is just one of several possible choices for the gauge vari-
ables s(α)

jk , s(⊥)
jk , and s̃(⊥)

jk , and other choices may give rise to
additional Chern numbers. In total, the model in Eq. (12) is
determined by the five parameters ε, t1, t2, t⊥1, and t⊥2, along
with the choice of four signs. These are the signs in front of
cos(k · a2), cos(k · a3), sin(k · b2) and sin(k · b3) in Eq. (12).
All other signs can be absorbed into the five parameters.

In Fig. 10, we plot the IDOS of the low-energy bands of
the Kitaev honeycomb model in Eq. (1) along with that of the
effective model in Eq. (11). The five parameters ε, t1, t2, t⊥1,
and t⊥2 are found by assuming a relevant gauge and matching
the IDOS and Chern number with Eq. (1). If the Chern number
of the model is not known beforehand, then multiple sets of

FIG. 10. Dual odd. Comparison of the IDOS of the effective
model given in Eq. (11) and that of the vortex bands of H (both
IDOS are normalized between 0 to 1). Here, δv/	b � 0.038 and
the parameters are ε = 0.395, t1 = 0.095, t⊥1 = −0.043, and all the
other terms zero (note that these values do not correspond to one of
the phase diagrams given in Fig. 9). For an effective model given by
these parameters we calculate the vortex Chern number to be νv = 0,
in agreement with the microscopic model.

these parameters may give rise to the same IDOS. In this case,
unlike the previous two symmetry families, there is no clear
way to predict the relative magnitudes of these five parameters
by studying a two “dual vortex” problem numerically.

In Appendix B, we show that not only the IDOS but also
the dispersion relation is well-reproduced by this effective
model. As particularly challenging cases, we consider gapless
critical points separating gapped phases with different Chern
numbers.

V. DISCUSSION AND PERSPECTIVES

In this paper, we extended the results of previous works by
introducing low-energy models that can describe both sparse
triangular (direct) and dual vortex configurations in Kitaev’s
honeycomb model. In the direct case, featuring a triangular
pattern of vortices against a vortex-free background, the be-
havior of the Kitaev honeycomb model may be interpreted as
arising from a combination of the background and of the tun-
neling of single MZMs between vortex sites. In the dual case,
a triangular pattern of vortex-absences is instead superim-
posed on top of a vortex-full background. These isolated “dual
vortices” each contain a pair of coupled Majorana modes, and
we have shown that the properties of the Kitaev honeycomb
model may be interpreted as arising from a combination of the
vortex-full background and of two “layers” of finite-energy
Majorana modes that tunnel to other dual-vortex sites in either
an intralayer or interlayer fashion.

In both the direct and dual cases, the phase diagram of the
Kitaev honeycomb model is controlled by the TRS breaking
term κ that we allow to be arbitrarily strong compared to
the nearest-neighbor interaction J . For certain values of κ/J ,
the low-lying energy bands of the microscopic model are
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well-separated from the high-energy bands, and in these cases
we have demonstrated that the low-energy bands may be ac-
curately modeled with our effective descriptions. In addition,
the high-energy bands in the microscopic model resemble the
spectra of the vortex-free or vortex-full backgrounds. Further-
more, for both the direct and dual configurations, we have
found that the total Chern number of the microscopic model ν

is equal to the sum of the background bands’ Chern number νb

and the low-energy bands’ Chern number νv, i.e., ν = νb + νv.
The Chern numbers predicted by our effective models are
in very good agreement with what has been observed in
Ref. [17].

We note that while the parameters of our effective models
are found by directly fitting the IDOS against that of the
Kitaev honeycomb model, it would be worthwhile to develop
a deeper connection between the parameters of each model.
The dual odd family, for instance, has a large number of de-
grees of freedom with five parameters and four signs of gauge
variables to choose from. Knowing how these parameters
depend on the TRS breaking term κ , for instance, may help
us in better understanding the symmetries and topological
properties of the Kitaev honeycomb model.

Among perspectives, one could think of using the above
effective models to study, in detail, the anyonic excitations
predicted by the sixteenfold way [5]. Preliminary steps in this
direction have been taken in Ref. [16]. One could test the
fusion and braiding properties of these excitations similarly
to what has been done in the vortex-free sector in Ref. [10].

In addition, there are several open questions raised by
this work that should be addressed. For example, is it pos-
sible to find a phase with Chern number ν = ±7 mod 16
by considering nontriangular vortex configurations [17]? Are
there models that realize the fourth family (see Table II)
of inversion-symmetric and periodic lattices that is expected
to feature extended gapless phases and even or odd Chern
numbers, or is there a general argument showing that this is
impossible? What happens in cases where inversion symmetry
does not commute with the translation operators defining the
HUC? More generally, can we use other crystalline symme-
tries than inversion to classify all type of behavior (parity
of Chern number, nature of gapless phases) in the Kitaev
model in different vortex sectors and on different lattices (the
honeycomb but also the square-octagon [26] or the triangle-
dodecagon [27,29–31] or the pentaheptite lattice [18], for
example)?
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APPENDIX A: VALIDITY OF THE EFFECTIVE MODELS

In this Appendix, we discuss the validity of our effective
models. For a given vortex configuration, either direct or dual,

we may define δv as the total bandwidth of the low-energy
vortex bands: two bands for direct or dual odd, four bands for
dual even. We may then define 	b as the energy gap of the
next-highest bands. These parameters are defined explicitly in
Fig. 3, where the magnitudes of δv and 	b are indicated by the
dotted and dashed lines, respectively.

At small κ , the energy splitting of two isolated MZMs
separated by a distance d is qualitatively given by
t (d, κ ) � 	be−d/ξ cos(kFd + γ ), where d = |A1| = |A2| is
the vortex separation, ξ is the superconducting coherence
length (ξ ∼ Wb/	b with Wb the total bandwidth of the back-
ground), kF is the distance from the center of the Brillouin
zone to the Dirac points and γ is a phase shift [12,33]. These
Friedel-like oscillations are a hallmark of the two-vortex
solution of isolated MZMs, and naturally appear in other
systems exhibiting Ising anyons, such as the Moore-Read
quantum Hall state, px + ipy superconductors, and topolog-
ical nanowires. The oscillations are related to the change
in fermionic parity and to the fact that MZMs behave as
Ising anyons σ that have the possibility to fuse either in the
vacuum 1 or in a fermion ψ according to the well-known
fusion rule σ × σ = 1 + ψ (see Fig. 1 in Ref. [12]). We
may estimate the total vortex bandwidth δv for the direct vor-
tex configurations by δv ∼ |t (d, κ )| ∼ 	be−d/ξ . Dilute vortex
configurations have MZMs well-separated from one another,
i.e., d � ξ . This implies that δv � 	b, which we take as a
necessary condition for the validity of the effective model for
the direct configurations.

For the dual vortex configurations, the low-energy vortex
bandwidth δv may be estimated as the energy level splitting
2ε of the two Majorana modes bound to an isolated white
plaquette in a vortex-full sea. Figure 6 of Ref. [17] shows
2ε to always be less than the vortex-full background’s energy
gap 	b, except near κ = 0 and 1/2, where 2ε and 	b van-
ish. Thus the δv � 	b condition is essentially equivalent to
guaranteeing that κ = 0 and κ = 1/2. Dual vortex configura-
tions that are “dilute” actually mean that the vortex density
ρ = (n − 1)/n → 1.

In Fig. 11, we plot the ratio δv/	b for the direct ρ = 1/21
and dual odd ρ = 20/21 vortex configurations as a function
of κ . We offer these two cases as representative examples,
as other choices of direct and dual configuration densities
exhibit the same qualitative features. As a visual guide, we
draw a dotted line at δv/	b = 1/2 to indicate the regions
where δv/	b � 1. For the direct configuration in Fig. 11(a),
we see that the ratio δv/	b is equal to 1/2 for the two
critical values κc1 and κc2 , represented by the red circle and
triangle, respectively. In Table I, we see that the energy gap
of the vortex-free (ρ = 0) background (roughly equal to 	b)
vanishes as κ = 0 and is of order 1 as κ → ∞. Thus the
low-energy vortex bands are only well-separated from the
background as κc1 < κ < κc2 . For less dense triangular vortex
configurations in the ρ → 0 limit, we find that this region of
validity increases, such that κc1 → 0 and κc2 → ∞.

For the dual configuration in Fig. 11(b), δv/	b equals
1/2 for the three critical values κci such that i = 1, 2, 3.
These values are represented by the red circle, triangle, and
diamond, respectively. From Sec. II, we know that the energy
spectrum of the vortex-full background (ρ = 1) is gapless as
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FIG. 11. Ratio of the low-energy bandwidth δv and the en-
ergy gap 	b as a function of κ for a direct (ρ = 1/21) and dual
(ρ = 20/21) vortex configuration, where δv and 	b are defined
in Fig. 3. Low-energy tight-binding models are valid only when
δv/	b � 1 as described in the text. We arbitrarily draw the dotted
line at δv/	b = 1/2 to visually indicate the general regions where
these tight-binding models are most applicable (i.e., hatched regions
indicate where they are not applicable).

κ = 0 and κ = 1/2. This establishes two regions of validity
for any low-energy effective theory that we wish to build: a
small region of low κ values such that κc1 < κ < κc2 , and a
bigger region of large κ values such that κ > κc3 . For denser
dual configurations in the ρ → 1 limit, we find that these two
regions of validity increase, such that κc1 → 0, κc2 → 1/2−,
and κc3 → 1/2+.

APPENDIX B: DISPERSION RELATIONS
OF VORTEX BANDS

In this Appendix, we analyze three particular cases of
quantum phase transitions occurring in the dual odd family
of vortex configurations. These transitions are identified by
the number of contact points present within the first Brillouin
zone, exhibiting one, two, or six such points. The aim is
here to show that the effective model captures not only the

FIG. 12. (a) Dispersion of the low-lying vortex bands of the
Kitaev honeycomb model for the ρ = 12/13 dual odd vortex
configuration as κc = 0.219461. At this point, the vortex Chern
number changes from νv = −1 to νv = 0. (b) Dispersion of the
effective model of Eq. (B1). The parameter values are given by
ε = 0.124, t1 = 0.0186, t2 = 0, t⊥2 = −0.0124, and t⊥1 = ε/6. The
Brillouin zone for both plots is given by k = k1a∗

1 + k2a∗
2, where

(a∗
1, a∗

2 ) are the reciprocal lattice vectors of (a1, a2) respectively, and
|k1,2| � 1/2.

integrated density of states but really the k-resolved dispersion
relation (at least qualitatively).

1. One contact point

This type of transition occurs when the vortex Chern num-
ber changes from νv = −1 to νv = 0 for the dual odd vortex
configurations of density ρ = (n − 1)/n such that n is not a
multiple of three. That is, for densities such as ρ = 12/13,
18/19, 24/25, etc. These transitions generally occur when
κc ∼ 0.1–0.2. Before the transition (κ < κc), the system fea-
tures two gapped Dirac points of opposite chirality and is
a Chern insulator with νv = −1. As κ increases, the Dirac
points move and at a critical κc they meet at a time-reversal in-
variant momentum (TRIM) where they annihilate and the gap
closes. Exactly at the transition, there is a single contact point
that does not carry a topological charge. After this merging
transition, the gap reopens and the system becomes a trivial
insulator with νv = 0. This merging transition is similar to the
one occurring in the Kitaev honeycomb model when evolving
from the isotropic point Jx = Jy = Jz to a very anisotropic case
[5], or also in uniaxially strained graphene [34].

The Hamiltonian has the same form as that given in
Eq. (12), except that the function g̃(k) is modified. Focusing
on the ρ = 12/13 vortex density as a example, the “one con-
tact point” Hamiltonian may be expressed as

g̃1(k) = −i2t⊥1[cos(k · a1) + cos(k · a2) + cos(k · a3)]

− 2t⊥2[sin(k · b1) + sin(k · b2) + sin(k · b3)]

+ iε. (B1)

We note that this Hamiltonian results from a different gauge
choice for the s(α)

jk , s(⊥)
jk , and s̃(⊥)

jk variables than what is shown
in Fig. 8. In Fig. 12, we plot the dispersion of both this
effective model and the low-lying vortex bands of the Ki-
taev honeycomb model of the νv = −1 → 0 transition in the
ρ = 12/13 dual odd vortex configuration as κc = 0.219461
[17]. The proper parameter values for the effective model are
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given in the caption. The critical point of the effective model
appears when t⊥1 = ε/6. As t⊥1 < ε/6 the Chern number of
the effective model is νv = −1, and when t⊥1 > ε/6 the Chern
number is νv = 0. The sign of t⊥2 controls the sign of νv, and
the choice of signs of the cosine terms of g̃1(k) controls the
position of the contact point within the Brillouin zone. If we
were to instead analyze a different vortex density exhibiting a
one contact point transition, one may have to alter the signs
of the cosine terms in order to properly match the location of
the contact point within the Brillouin zone (this is true for the
two and six contact points models as well). Note that because
the value of δv/	b � 0.38 is relatively high (i.e., the vortex
bands are not so well separated from the background bands),
the bandwidth of the effective model overestimates that of the
low-lying vortex bands of the Kitaev honeycomb model.

2. Two contact points

This type of transition results in a change of Chern number
from νv = −2 to νv = 0, and occurs when κc ∼ 0.1–0.2 for
the dual odd vortex configurations which have a multiple of
three in the denominator of their vortex density. That is, for
ρ = 8/9, 20/21, 26/27, and etc. Before the transition, there
are four gapped Dirac cones (two of positive and two of
negative chirality) and the system is a Chern insulator with
νv = −2. At the transition, Dirac points of opposite chirality
meet pairwise, merge, and the gap closes. Exactly at the tran-
sition, there are two contact points that are not protected by a
topological charge and which do not occur at a TRIM. This is
possible since this transition may be described as two merging
transitions occurring simultaneously. After the transition, a
merging gap opens and the system becomes a trivial insulator
with νv = 0.

The Hamiltonian is similar to that of Eq. (12) except for
a modified g̃(k) term. Focusing on the ρ = 20/21 case as an
example, the “two contact points” Hamiltonian is given by

g̃2(k) = i2t⊥1[cos(k · a1) + cos(k · a2) − cos(k · a3)]

− 2t⊥2[sin(k · b1) − sin(k · b2) + sin(k · b3)].

+ iε. (B2)

In Fig. 13, we plot the dispersion of both this effective
model and the low-lying vortex bands of the Kitaev honey-
comb model of the νv = −2 → 0 transition in the ρ = 20/21
dual odd vortex configuration, as κc = 0.106486. The proper
parameter values for the effective model are given in the
caption. The critical points of the effective model appear
when t⊥1 = −ε/3. As t⊥1 > −ε/3 the Chern number of the
effective model is νv = 0, and when t⊥1 < −ε/3 the Chern
number is νv = −2. The sign of t2 controls the sign of νv. Note
that δv/	b � 0.62, and hence the bandwidth of the effective
model is slightly larger than that of the low-lying vortex bands
of the Kitaev honeycomb model.

We note that in this system, the energy spectrum is gapped
and topologically nontrivial only if the sign of one of the sine
terms in g̃2(k) is dissimilar to the sign of the other two. If

FIG. 13. (a) Dispersion of the low-lying vortex bands of the
Kitaev honeycomb model for the ρ = 20/21 dual odd vortex con-
figuration as κc = 0.106486. At this point, the vortex Chern number
changes from νv = −2 to νv = 0. (b) Dispersion of the effective
model of Eq. (B2). The parameter values are given by ε = 0.1,
t1 = 0, t2 = t⊥2 = 0.0009, and t⊥1 = −ε/3. The Brillouin zone for
both plots is given by k = k1a∗

1 + k2a∗
2 with |k1,2| � 1/2.

every sine term were positive, for example, then the 2 × 2 ma-
trix Hamiltonian may be expressed as the linear combination
of only two Pauli matrices and would either be gapless before
the transition (i.e., a topological semimetal with gapless Dirac
points) or gapped after the transition with a trivial Chern
number of νv = 0, due to a merging transition.

3. Six contact points

This last type of transition results in a change of Chern
number from νv = −3 to νv = 3, and only occurs for the
ρ = 6/7 dual odd vortex configuration as κc � 1.8. In contrast
to the two previous scenarios, it is not a merging transition of
Dirac points, but six Dirac points that each have a simultane-
ous change in sign of their mass (or gap). The Hamiltonian is
similar in form to the previous two except for the g̃(k) term:

g̃6(k) = i2t⊥1[cos(k · a1) − cos(k · a2) + cos(k · a3)]

− 2t⊥2[sin(k · b1) + sin(k · b2) + sin(k · b3)]

+ iε. (B3)

FIG. 14. (a) Dispersion of the low-lying vortex bands of the
Kitaev honeycomb model for the ρ = 6/7 dual odd vortex configura-
tion as κc = 1.80057. At this point, the vortex Chern number changes
from νv = −3 to νv = 3. (b) Dispersion of the effective model
of Eq. (B3). The parameter values are given by ε = t⊥1 = 0.22,
t1 = 0.11, and t⊥2 = t2 = 0. The Brillouin zone for both plots is
given by k = k1a∗

1 + k2a∗
2 with |k1,2| � 1/2.
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In Fig. 14, we plot the dispersion of both this effective
model and the low-lying vortex bands of the Kitaev
honeycomb model of the νv = −3 → 3 transition in the
ρ = 6/7 dual odd vortex configuration, as κc = 1.80057.
The proper parameter values for the effective model are
given in the caption. The critical points of the effective
model appear when t⊥2 = 0. As t⊥2 > 0 the Chern number
of the effective model is νv = −3, and when t⊥2 < 0

the Chern number is νv = 3. The ratio δv/	b � 0.38
indicates that the bandwidth of the effective model is
slightly larger than that of the low-lying vortex bands of the
Kitaev honeycomb model. Note that because t1 = t2 = 0,
we do not have the same issue of the sine’s signs as
discussed in the two contact points section, and the 2×2
matrix Hamiltonian is still composed of three different Pauli
matrices.
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