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Gap structure of the nonsymmorphic superconductor LaNiGa2 probed by μSR
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We report muon-spin rotation (μSR) measurements of the temperature dependence of the absolute value of
the magnetic penetration depth and the magnetic field dependence of the vortex core size in the mixed state of
the nonsymmorphic superconductor LaNiGa2. The temperature dependence of the superfluid density is shown
to be well described by a two-band model with strong interband coupling. Consistent with a strong coupling of
the superconducting condensates in two different bands, we show that the field dependence of the vortex core
size resembles that of a single-band superconductor. Our results lend support to the proposal that LaNiGa2 is a
fully gapped, internally antisymmetric, nonunitary spin-triplet superconductor.
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I. INTRODUCTION

Superconductors exhibiting nontrivial topology have gar-
nered significant attention in the field of condensed-matter
physics. Of particular interest is the prediction that topological
superconductors can host Majorana zero modes, which may
be used as building blocks for a quantum computer robust
to environmental noise [1,2]. Recently, LaNiGa2 has been
identified as a potential topological superconductor via an
investigation of newly synthesized high-quality single crystals
[3]. The enhanced quality of the single crystals compared
to previously studied polycrystalline samples has revealed a
topological electronic band structure arising from nonsym-
morphic symmetries in the centrosymmetric space group of
LaNiGa2. In addition to the topological character, LaNiGa2 is
believed to have an unconventional superconducting order pa-
rameter that breaks time-reversal symmetry (TRS). Zero-field
(ZF) μSR measurements on polycrystalline LaNiGa2 have de-
tected the onset of weak spontaneous internal magnetic fields
at the superconducting transition temperature (Tc), which is a
signature of a TRS breaking superconductor [4]. Furthermore,
two nodeless superconducting gaps have been inferred from
measurements of the temperature dependences of the specific
heat, upper critical field, and magnetic penetration depth (by
a tunnel diode oscillator method) in polycrystalline LaNiGa2

[5]. The occurrence of a nodeless two-gap superconducting
state that breaks TRS has been explained by an internally
antisymmetric nonunitary triplet (INT) state in which there
is both spin-up (↑↑) and spin-down (↓↓) pairing between
electrons on two different atomic orbitals [5–7].

The INT state has also been invoked to account for
fully gapped TRS breaking in the compositionally related
noncentrosymmetric superconductor LaNiC2. Evidence for a
broken TRS superconducting state in LaNiC2 has been ob-
served by ZF-μSR measurements on a polycrystalline sample

[8], although a ZF-μSR study of single crystals observed
the occurrence of weak internal magnetic fields only below
T ∼2/3Tc [9]. Although different experiments have yielded
inconsistent conclusions on the nature of the superconduct-
ing gap structure of LaNiC2 [10–16], the existence of two
nodeless superconducting gaps was recently unambiguously
verified by transverse-field (TF) μSR measurements of the
low-field magnetic penetration depth and low-temperature
vortex core size in the mixed state of single crystals [9]. The
two nodeless gaps manifest as a simultaneous crossover in
the field dependences of an effective magnetic penetration
depth and the vortex core size due to delocalization of the
quasiparticle vortex core states associated with the smaller
gap.

In stark contrast to the high-quality single crystals of
LaNiGa2 in which topological superconductivity has recently
been recognized [3], the electronic specific heat of the poly-
crystalline LaNiGa2 sample investigated in Ref. [5] exhibits
a rather broad superconducting transition that is suggestive of
significant inhomogeneity. The shape of the broad transition
and its evolution with applied magnetic field is potentially
an indication of a double phase transition. This raises the
possibility of nearly degenerate unconventional pairing states
with critical temperatures that are split by nonmagnetic dis-
order. Since disorder can alter the temperature dependence
of the physical quantities previously measured in polycrys-
talline LaNiGa2, further evidence of there being two nodeless
superconducting gaps is needed. Although a single sharp su-
perconducting transition in the temperature dependence of
the specific heat was reported in single-crystalline samples
[3], no μSR studies have been done on LaNiGa2 single
crystals.

Here we report on a TF-μSR investigation of the super-
conducting energy-gap structure in LaNiGa2 single crystals.
From measurements that probe the magnetic field distribution
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in the vortex (mixed) state, we find that the temperature de-
pendence of the normalized superfluid density for a magnetic
field applied parallel to the b axis is consistent with two
nodeless superconducting energy gaps having magnitudes
close to the sizes of the two apparent gaps in LaNiC2. In
contrast to LaNiC2, however, the data for LaNiGa2 indi-
cates strong interband coupling. This is substantiated by the
magnetic field dependence of the vortex core size, which,
as expected for strong coupling between two different band
condensates, resembles that of a single isotropic gap super-
conductor in the clean limit.

II. EXPERIMENTAL DETAILS

Single crystals of LaNiGa2 were grown using a Ga-
deficient self-flux technique as described in Ref. [3]. Magnetic
susceptibility measurements presented in the Supplemental
Material [17] show that bulk superconductivity occurs at
Tc ∼2 K and all of the single crystals exhibit nearly full su-
perconducting shielding fraction. The TF-μSR experiments
were performed on the M15 surface muon beamline at TRI-
UMF, utilizing a top-loading dilution refrigerator. The sample
consisted of multiple b-axis aligned LaNiGa2 single crystals
arranged in a mosaic and mounted onto a pure Ag plate of di-
mensions 12.5 mm × 22 mm × 0.25 mm, as shown in the inset
of Fig. 1(b). The crystals covered ∼70% of the Ag plate. To
minimize the contribution to the TF-μSR signal from muons
stopping outside the sample, three thin wafers of intrinsic
GaAs were used to cover the exposed end of the Ag backing
plate. We note that GaAs does not produce any detectable
muon precession signal within the field range considered in
our study. The external magnetic field was applied parallel to
the b axis of the LaNiGa2 single crystals and perpendicular
to the initial muon-spin polarization P(t =0). The magnetic
field was applied above Tc and the sample subsequently cooled
to the desired temperature in the superconducting state. The
magnetic field distribution in the vortex state was probed for
each temperature and magnetic field by measuring the time
evolution of the muon-spin polarization via detection of the
decay positrons from an implanted ensemble of ∼15 million
positive muons. Further details on the TF-μSR method uti-
lized in this study may be found in Ref. [19].

III. DATA ANALYSIS AND RESULTS

Figure 1(a) displays representative TF-μSR asymmetry
spectra recorded in the normal and superconducting states of
LaNiGa2 for an applied magnetic field of H =408 Oe. The
weak damping of the TF-μSR asymmetry spectrum in the
normal state at T =2.5 K is due to the magnetic field distribu-
tion associated with nuclear dipole moments sensed by muons
that stopped in the sample and the exposed area of the Ag
backing plate. The larger depolarization rate of the TF-μSR
signal at 0.096 K is a result of muons randomly sampling
the spatial distribution of the magnetic field generated by the
vortex lattice below Tc. Figure 1(b) shows Gaussian-apodized
Fourier transforms of the TF-μSR signals. The Fourier trans-
forms are only an approximate visual representation of the
magnetic field distribution detected by the muons because of
the additional broadening by the apodization used to remove

FIG. 1. (a) TF-μSR asymmetry spectra measured above and be-
low Tc for a magnetic field of H =408 Oe. The oscillating curves
through the data points represent fits to Eqs. (1) and (2) for tem-
peratures above and below Tc, respectively. (b) Fourier transform of
the TF-μSR signal for T =0.096 K. The large peak at 5.53 MHz is a
result of muons stopping outside the sample. Left inset: Fourier trans-
form of the TF-μSR signal for T =2.5 K. Right inset: Photograph
showing the LaNiGa2 single crystals and GaAs wafers attached to
the Ag backing plate, which is anchored to the Ag sample holder of
the dilution refrigerator. The single crystals are mounted with their b
axis aligned in the direction of the applied magnetic field, which is
perpendicular to the plane of the Ag backing plate.

the ringing and noise associated with the finite time range and
reduced number of muon decay events at later times [19].
Below Tc, the Fourier transform displays a distinct peak at
the frequency corresponding to the applied field associated
with muons that missed the sample and stopped in the Ag
backing plate. This background peak is superimposed on an
asymmetric line shape that comes from muons that sensed the
spatial distribution of field of the vortex lattice and the nuclear
moments in the LaNiGa2 single crystals.

Above Tc, the TF-μSR asymmetry spectrum is well
described by the sum of two Gaussian-damped cosine
functions:

A(t ) = ase
−σ 2

s t2
cos(2πνst + φ) + abge−σ 2

bgt2
cos(2πνbgt + φ).

(1)

The first term describes the signal from muons that stop in
the LaNiGa2 single crystals, while the second term accounts
for the signal coming from muons stopping outside the sam-
ple. The precession frequencies νi (i = s, bg) are a measure
of the corresponding mean local field Bi =2πνi/γμ sensed
by the muons, where γμ/2π =13.5539 MHz/kG is the muon
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gyromagnetic ratio. The parameter φ is the initial phase of
the muon-spin polarization relative to the positron counters,
which depends on the degree of Larmor precession of the
muon spin in the applied field before reaching the sample.

The TF-μSR signals below Tc are well fit assuming the
following modified analytical Ginzburg-Landau (GL) model
[20] for the spatial variation of the internal magnetic field
generated by the vortex lattice with supercurrents flowing in
the i j (=ac) plane:

B(r) =
∑

G

B0(1 − b4)e−iG·r u K1(u)

λ2
i jG

2 + λ4
i j

(
nxxyy G4 + d G2

xG2
y

) . (2)

Here b=B/Bc2 is the reduced field (where Bc2 =�0/2πξ 2
i j is

the upper critical magnetic field for a field applied perpendic-
ular to the i j plane), B0 is the average internal magnetic field,
G are the reciprocal lattice vectors of the vortex lattice, u2 =
2ξ 2

acG2(1 + b4)[1 − 2b(1 − b)2], K1(u) is a modified Bessel
function, nxxyy and d are dimensionless parameters arising
from nonlocal corrections, and λi j and ξi j are the magnetic
penetration depth and GL coherence length. Equation (2) ac-
counts for potential changes in the vortex-lattice geometry,
ranging from hexagonal to square. The fits of the TF-μSR
asymmetry spectra below Tc were done by replacing the sam-
ple term in Eq. (1) with

As(t ) = ase
−(σ 2

n +σ 2
dis )t2

∑
r

cos[γμB(r)t + φ], (3)

where B(r) is given by Eq. (2). The depolarization rate σn is
the value of σs above Tc, which is due to the nuclear dipoles in
the sample and is independent of temperature. The sum is over
real-space positions in an ideal periodic vortex lattice, while
the depolarization rate σdis accounts for further broadening
of the internal magnetic field distribution by frozen disorder
in the vortex lattice. Based on previous μSR studies of type-
II superconductors [21], we assumed σdis is proportional to
1/λ2

ac.
Good fits to TF-μSR spectra recorded for an applied

field of H =150 Oe were achieved for all temperatures be-
low Tc assuming an hexagonal vortex lattice, with nxxyy =0
and d =0. The same is true for TF-μSR spectra recorded
for H �400 Oe and T =0.096 K. However, for H =800 Oe
and T =0.096 K, a good fit could not be achieved with the
assumption of an hexagonal vortex lattice. Instead, a good
quality fit was achieved by lifting this constraint, yielding n=
(4.5±8.7)×10−8, d = 0.29±0.18, and β =90±17◦, where β

is the acute angle of the rhombic unit cell of the vortex lattice.
Even without assuming the vortex-lattice structure, we could
not achieve a good fit of an additional TF-μSR asymmetry
spectrum recorded for H =600 Oe and T =0.096 K. This is
perhaps due to a superposition of distorted hexagonal and
square vortex lattices between the field-induced hexagonal-
to-square lattice transition. In all likelihood, the vortex-lattice
transition is driven by the anisotropy of the Fermi surface [22]
in the ac plane, which is close to having fourfold symmetry
[3].

As one of few techniques able to reliably probe the abso-
lute value of the magnetic penetration depth, μSR correctly
obtains the shape of the superfluid density ρs(T ). We can
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FIG. 2. Temperature dependence of the normalized superfluid
density, λ2

ac(0)/λ2
ac(T ). The circles denote the TF-μSR data points

for LaNiGa2 in an applied magnetic field H =150 Oe, and the error
bars give the standard error at each temperature. The dashed curve
is the normalized superfluid density from single-band BCS theory
[23], assuming the reduced value of Tc = 1.84 K for H =150 Oe de-
termined from bulk magnetic susceptibility measurements presented
in the Supplemental Material [17]. The upper solid curve is the total
normalized superfluid density in the two-band model for the density
of states parameter n1 = 0.2, with contributions from the individual
bands shown below it. Shaded areas denote the 1-σ uncertainty
regions associated with the model fit. The fit parameters are given
in the Appendix.

then infer information about the magnitude, anisotropy, and
temperature dependence of the energy gap, and the strength
and nature of the pairing interaction, by fitting generalized
Bardeen-Cooper-Schrieffer (BCS) models to the superfluid
density. For LaNiGa2, the normalized low-field superfluid
density, ρs(T )/ρs(0)=λ2

ac(0)/λ2
ac(T ), where λac(0)=1516±

4 Å, is shown in Fig. 2. We can immediately see from
Fig. 2 that the superfluid density in LaNiGa2 is distinctly
different from that of a single-band BCS superconductor, in
particular, having larger magnitude in the upper half of the
superconducting temperature range. We will later see that this
is the experimental signature of strong interband pairing in
the presence of a density of states imbalance between the
bands. The value of λac(0) is much smaller than the μSR-
determined value of the effective magnetic penetration depth
λ(0)=3500±100 Å in a polycrystalline LaNiGa2 sample [4].
For polycrystalline samples, the internal magnetic field distri-
bution measured by μSR in the vortex state is an average over
all orientations of the external magnetic field with respect to
the crystalline axes. Consequently, λ(0) is an average of the
a-axis, b-axis and c-axis magnetic penetration depths, which
have been estimated to be λa =1740 Å, λb =5090 Å and
λc =1890 Å from a combination of thermodynamic critical
field Hc(T ) and anisotropic upper critical field Hc2(T ) data
for LaNiGa2 single crystals [3]. We note that the value of
λac(0) determined here by fits of the TF-μSR asymmetry
spectra with Eq. (2) agrees with the value λac =1512±6 Å
calculated from the second moment 〈�B2〉 of the internal
magnetic field distribution probed by the muons, where 〈�B2〉

104517-3



SHYAM SUNDAR et al. PHYSICAL REVIEW B 109, 104517 (2024)

is determined from fits of the TF-μSR spectra below Tc to the
sum of four Gaussian-damped cosine functions (see Fig. S2
in the Supplemental Material [17]). This alternative analysis
method [24] has been employed extensively to determine the
absolute value of the magnetic penetration depth from μSR
data on type-II superconductors but does not yield information
on the vortex core size.

To capture the behavior of the superfluid density, we
turn to a two-band BCS model, which can be viewed as
the low-energy effective theory of a superconductor display-
ing significant anisotropy of pairing over the Fermi surface
but without nodal lines or point nodes in the energy gap.
The two-band model we use has been presented in detail in
Ref. [25] and has been successfully used to describe the su-
perconductivity in the noncentrosymmetric material LaNiC2

(Ref. [9])—although we note from the outset that the infer-
ences drawn about the pairing interactions in LaNiGa2 are
quite different from those in LaNiC2, likely reflecting the dif-
ferent symmetry-allowed superconducting order parameters
in the two materials.

In a nutshell, the two-band model partitions the Fermi
surface into two disparate pieces and allows for pairing in-
teractions within the bands (intraband pairing, characterized
by interaction parameters λ11 and λ22) and pairing interac-
tions between the bands (interband pairing, characterized by
interaction parameters λ12 =λ21). As shown in Refs. [25]
and [9], the usual situation is for the intraband pairing in
one of the bands to dominate and therefore for the inter-
band interaction λ12 (or λ21) to be significantly smaller than
the dominant intraband interaction. However, when we solve
the gap equation for this model and fit to the superfluid
density of LaNiGa2, as described in the Appendix, we find
that the interband interaction dominates in LaNiGa2 (λ12 �
λ11, λ22)—something that has in fact been proposed theoreti-
cally for the unusual type of superconductivity thought to exist
in LaNiGa2 [5,7].

As we can see in Fig. 2, the two-band model pro-
vides an excellent fit to the normalized superfluid density,
λ2

ac(0)/λ2
ac(T ), and is readily able to capture an unusual fea-

ture of the data: the significant enhancement of superfluid
density in the upper half of the temperature range compared
to the single-band BCS curve. We note, and it can be seen in
Ref. [25], that the usual situation in the two-band model is for
the total superfluid density to fall below the single-band BCS
limit. However, the enhancement of the superfluid density ob-
served in LaNiGa2 is a natural consequence of predominantly
interband pairing, combined with an imbalance in the density
of states of the two bands. Since the superfluid density in each
band is purely a function of �/T , it is possible for the total
superfluid density to exceed the BCS limit, as long as one of
the gaps is enhanced above the BCS value and the relative
superfluid weight (γ parameter in our model) is balanced
in favor of the band with the larger gap. The energy gaps
obtained from fitting the two-band model are plotted in the
Appendix (see Fig. 5) and indeed reveal such an enhancement
of the dominant gap.

BCS-type superconductivity is characterized by thermally
activated behavior in low-temperature properties such as the
superfluid density; accordingly, the leading low-temperature
behavior of the superfluid density (i.e., the temperature range

TABLE I. Best-fit parameters and their uncertainties, for n1 =
0.1 and n1 = 0.2.

Fit parameter n1 = 0.1 Uncertainty n1 = 0.2 Uncertainty

λ11 −0.15 ± 0.039 −0.14 ± 0.005
λ22 0.35 ± 0.003 0.27 ± 0.026
λ12 1.54 ± 0.26 1.63 ± 0.34
γopt 0.71 0.81

over which significant T dependence develops) is set by the
magnitude of the subdominant gap. This is particularly ap-
parent in the lower, band-2 curve in the decomposition of
the normalized superfluid density in Fig. 2. From this we
obtain a gap ratio of �2(0)/kBTc = 1.25 for the subdominant
band. In the two-band model, the magnitude of the dominant
gap is usually set by Tc, but here we find that the dominant
gap is larger, with �1(0)/kBTc = 2.7, much bigger than the
BCS gap ratio of 1.76. We note that the gap ratios we find
here are somewhat comparable to the values 1.29 and 2.04
deduced from superfluid density measurements of polycrys-
talline LaNiGa2 in Ref. [5]. Within the two-band model,
the enhancement above the usual BCS gap ratio is a direct
consequence of the strong interband interaction. Finally, the
fits reveal that the intraband pairing in band 1 is intrinsically
repulsive—i.e., it is only superconducting because of the in-
terband interaction. These results are summarized in Table I
in the Appendix.

Figure 3 shows the dependence of λac and ξac on the
applied magnetic field for T =0.096 K. Below H =400 Oe,
which corresponds to the reduced field b∼0.4, λac is inde-
pendent of the applied field. This is in stark contrast to the
rapid increase in λi j (i j =ab, bc, or ac) with increasing field
at low b determined by μSR in superconductors with gap
nodes [21,26] or strong gap anisotropy [27,28]. A strong H
dependence of λi j determined by μSR may also occur at low
b in weakly coupled two-band superconductors due to a faster
suppression of the contribution from the weaker small-gap
band to the superfluid density [29–31].

In general, an increase in the μSR-determined value of λi j

with increasing magnetic field does not necessarily imply a
field-induced change in the superfluid density but may instead
reflect a failure of the assumed model for B(r) to adequately
describe changes in the decay of magnetic field around the
vortices as the overlap between vortices increases [21]. We
also note that not all μSR studies assume a theoretical model
for B(r). A strong decrease in the square root of the second
moment of the local magnetic field distribution measured by
μSR in the vortex state of various superconductors has been
interpreted in terms of a field-induced reduction of the super-
fluid density or increase in the “true” magnetic penetration
depth [32–35]. Nevertheless, the H-independent behavior of
λac in Fig. 3(a) up to H =400 Oe indicates that the field
does not induce a change in the superfluid density below
b∼0.4.

The absence of any change in λac for LaNiGa2 below
b∼0.4 rules out the presence of gaps nodes and is in stark
contrast to the strong field dependence of λbc in the non-
centrosymmetric superconductor LaNiC2 [see Fig. 4(a)]. In
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FIG. 3. (a) Magnetic field dependence of λac in LaNiGa2 for
T =0.096 K from fits indicating hexagonal and square vortex lat-
tices for H �400 Oe and H =800 Oe, respectively. (b) Magnetic
field dependence of ξac in LaNiGa2. The solid curve through the
data points is a fit to ξac =a+b/

√
H , where a=374±19 Å and

b=2704±269 Å Oe1/2.

LaNiC2, λbc exhibits an H-linear dependence with a slope
change above b∼0.2, which is indicative of two supercon-
ducting gaps. By contrast, the field dependence of λac in
LaNiGa2 closely resembles the behavior of the effective mag-
netic penetration depth measured by μSR in V3Si, which
also exhibits an hexagonal-to-square vortex-lattice transition
accompanied by a change in the fitted value of λi j [20]. Recent
experiments suggest V3Si has two distinct nodeless supercon-
ducting gaps [36,37]. Consequently, the constant value of λac

below b∼0.4 for LaNiGa2 does not rule out the occurrence of
two gaps.

Less ambiguous is the meaning of the field dependence of
ξac shown in Fig. 3(b), which except at low H , more or less
tracks the dependence of the vortex core size on magnetic field
[21]. The vortex core size (r0) is accurately determined by cal-
culating the absolute value of the supercurrent density profile
| j(r)| from the experimental B(r) and defining r0 to be the dis-
tance from the core center along the nearest-neighbor vortex
direction to the peak in | j(r)| [38]. It has been shown that the
field dependence of r0 measured by μSR precisely accounts
for the field dependence of the electronic thermal conductiv-
ity measured in V3Si, 2H-NbSe2, and LuNi2B2C [21]. The

FIG. 4. Comparison of the magnetic field dependences of the
fitted values of (a) λac and (b) ξac in LaNiGa2 for T = 0.096 K and
H‖b with the values of λbc and ξbc in LaNiC2 for T = 0.05 K and
H‖a from Ref. [9]. The solid lines through the data point in (a) are
guides to the eye. The curves through the data points in (b) are fits to
ri j

0 =a+b/
√

H , where a=168(28) Å and b=5504(452) Å Oe1/2 for
the core size rac

0 in LaNiGa2. The fit to the field dependence of the
core size rbc

0 for LaNiC2 is to the data at H �400 Oe, where a=0 Å
and b=4986(228) Å Oe1/2. The hexagonal and square data symbols
for LaNiGa2 indicate the geometrical arrangement of the vortices.

physical picture is that the vortex core size shrinks with in-
creasing magnetic field as a result of an increased intervortex
transfer of quasiparticles at higher fields, where the distance
between vortices is smaller [39,40]. The increased delocaliza-
tion of the bound quasiparticle vortex core states is detected
in the electronic thermal conductivity measurements [41]. As
can be seen in Figs. 3(b) and 4(b), the field dependences of ξac

and the vortex core size rac
0 for LaNiGa2 are approximately

described by an expression of the form a+b/
√

H , which
is the predicted behavior of the vortex core size in clean
isotropic-gapped BCS superconductors [42]. This is distinct
from the two-band behavior of the vortex core size in LaNiC2

[see Fig. 4(b)] and that reported earlier for 2H-NbSe2 [29],
where the core size rapidly decreases with increasing field
and becomes independent of H at higher fields—although,
admittedly, there is insufficient data for LaNiGa2 at higher
fields (because of the field-induced vortex-lattice transition)
to completely rule out a crossover to H-independent behavior.
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The gap values determined from the analysis of the data in
Fig. 2 (�1 =0.43 meV and �2 =0.20 meV) are comparable
to the size of the two gaps in LaNiC2 (�1 =0.42 meV and
�1 =0.18 meV) determined in Ref. [9]. Hence, the different
field dependences of λi j and ri j

0 exhibited by LaNiGa2 and
LaNiC2 in Figs. 4(a) and 4(b) are not due to dissimilar sizes
of the two gaps. Interestingly, the low-temperature H →0
extrapolated value of λac for LaNiGa2 is close to the low-
temperature H →0 extrapolated value of λbc for LaNiC2, and
the low-temperature, low-field values of rac

0 for LaNiGa2 and
rbc

0 for LaNiC2 are also comparable. It is possible that with
increasing field a significant anisotropy develops for the ratios
λac/λbc and rac

0 /rbc
0 due to two-gap or anisotropic single-gap

superconductivity. However, the H-independent behavior ex-
hibited by λac in LaNiGa2 for H �400 Oe suggests that this is
unlikely to be the origin of the different field dependences of
λi j and ri j

0 for the two compounds displayed in Figs. 4(a) and
4(b).

Theoretically, it has been shown that in two-band s-
wave superconductors with a significant difference in the
magnitudes of the two gaps, the spatial variation of the
superconducting order parameter near the vortex core is
the same in both bands when there is strong interband
coupling [43–45]. Consequently, the magnetic field de-
pendence of the vortex core size in the different bands
is the same and resembles that of a single-band su-
perconductor. Thus, the single-gap-like field dependences
of λac and rac

0 for LaNiGa2 may be attributed to the
strong interband coupling deduced from the analysis of
the temperature dependence of the normalized superfluid
density.

To summarize, we have used μSR to investigate the tem-
perature dependence of the superfluid density and magnetic
field dependence of the vortex core size in LaNiGa2 single
crystals. Together they are explained by two-band nodeless
gap superconductivity with strong interband coupling. This
lends support to the applicability of the proposed INT pairing
state [5–7] to superconductivity in LaNiGa2, which attributes
the occurrence of the two gaps to the two spin-triplet states,
↑↑ and ↓↓, associated with Cooper pairing of electrons on
two different Ni orbitals. The strong interband pairing inferred
from our experimental results is notably inherent in the INT
state.
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APPENDIX: TWO-BAND SUPERCONDUCTIVITY

1. Two-band BCS theory

In the Matsubara formalism, the temperature-dependent
gap equation for a weak-coupling superconductor is

�k = 2πT N0

ω0∑
ωn>0

〈
Vk,k′

�k′√
�2

k′ + h̄2ω2
n

〉
FS

, (A1)

where ωn = 2πT (n + 1
2 ) are the fermionic Matsubara fre-

quencies, �k is the gap parameter at wave vector k, N0 is
the two-spin density of states, Vk,k′ is the pairing interaction,
〈...〉FS denotes an average over the Fermi surface, and ω0 is a
high-frequency cutoff.

The two-band superconductor describes situations in
which the gap variation over the Fermi surface is approx-
imately bimodal and can be approximated by two distinct
gap scales, �1 and �2, one for each band. As discussed in
Ref. [25], the Fermi surface average is replaced by a sum
over bands, and the pairing interaction is parameterized by a
2 × 2 symmetric matrix λμν , with the diagonal terms λ11 and
λ22 describing intraband pairing and the off-diagonal terms
λ12 = λ21 the interband interaction. The gap equation then
takes the simplified form

�ν =
∑

μ=1,2

nμλνμ2πT
ω0∑

ωn>0

�μ√
�2

μ + h̄2ω2
n

, (A2)

where the relative densities of states for each band,
nμ, obey n1 + n2 = 1. For a given choice of parameters
{n1, λ11, λ22, λ12}, Eq. (A2) is solved numerically, from which
we obtain the temperature dependence of the gap parameters
�1 and �2, as shown, for example, in Fig. 5.
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2. Superfluid density

Superfluid density is a thermal equilibrium property of the
superconductor and is readily obtained within the Matsubara
formalism once the energy gaps are known. For band ν the
normalized superfluid density is

ρν (T ) = λ2
ν (0)

λ2
ν (T )

=
∑
ωn>0

�2
ν(

�2
ν + h̄2ω2

n

)3/2 . (A3)

The total normalized superfluid density is a weighted sum of
the contributions from each band,

ρ(T ) = γ ρ1(T ) + (1 − γ )ρ2(t ), (A4)

where the weighting factor 0 < γ < 1 is determined by the
plasma frequency imbalance between the bands. Note that γ is
distinct from the density of states parameter n1, as it includes
Fermi velocity information,

γ = n1v
2
1

n1v
2
1 + n2v

2
2

, (A5)

where v1 and v2 are the rms Fermi velocities of the two bands.

3. Fitting procedure and results

A least-squares optimization is used to search for best-
fit parameters in the four-dimensional parameter space
{n1, λ11, λ22, λ12}. For each parameter choice, the band-
specific energy gaps and superfluid densities are determined at
each of the experimental temperatures via numerical solution
of Eqs. (A2) and (A3). As shown in Eq. (A4), the total super-
fluid density is a weighted combination of the band-specific
superfluid densities. While the weighting coefficient γ is for-
mally an additional fit parameter, a closed-form expression
exists for its optimal value so that it need not be included in
the minimization search. γopt is found by minimizing the χ2

merit function:

χ2 =
∣∣∣∣ ρexpt − ρmodel

σ
∣∣∣∣
2

=
∣∣∣∣ ρexpt − ρ2 − γ�ρ

σ
∣∣∣∣
2

= γ 2|�ρ|2 − 2γ�ρ · (ρexpt − ρ2) + |ρexpt − ρ2|2
|σ |2 ,

(A6)

where �ρ = ρ1 − ρ2. Here the vector quantities encode the
discrete temperature dependences of the various quantities,
including experimental and model superfluid densities, and
the measurement errors σ . Minimizing with respect to γ we
obtain

γopt = �ρ · (ρexpt − ρ2)

|�ρ|2 . (A7)

In practice, the optimization depends only weakly on the
choice of density of states parameter n1, which we set to fixed
values. We present results in Table I for n1 =0.1 and n1 =0.2,
noting that fits are noticeably worse for n1 <0.1 and n1 >0.2.
Figures 2 and 5 show the fits and gaps for n1 =0.2, which are
practically indistinguishable from the fits for n1 = 0.1. Note
that while the λ11 parameter appears to vary strongly between
the two cases, it is the combination n1λ11 that determines the
intraband pairing strength in the first band, and this combina-
tion remains approximately constant. From this we conclude
that while the intrinsic pairing strength in the dominant band is
actually repulsive in LaNiGa2, it is overwhelmed by the very
significant interband contribution to its pairing. We reiterate
that the experimental signature of this is the enhancement of
ρs(T ) in the upper half of the superconducting temperature
range, well in excess of the single-band BCS behavior. We
note that this is quite different from LaNiC2, which shows
no such enhancement and has far less significant interband
pairing.
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