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Retaining Landau quasiparticles in the presence of realistic charge fluctuations in cuprates

Hiroyuki Yamase ,1 Matías Bejas ,2 and Andrés Greco 2

1Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
2Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física Rosario (UNR-CONICET),

Avenida Pellegrini 250, 2000 Rosario, Argentina

(Received 26 October 2023; revised 15 February 2024; accepted 7 March 2024; published 20 March 2024)

Charge excitation spectra are getting clear in cuprate superconductors in momentum-energy space especially
around a small momentum region, where plasmon excitations become dominant. Here, we study whether Landau
quasiparticles survive in the presence of charge fluctuations observed in experiments. We employ the layered t-J
model with the long-range Coulomb interaction, which can reproduce the realistic charge fluctuations. We find
that Landau quasiparticles are retained in a realistic temperature and doping region, although the quasiparticle
spectral weight is strongly reduced to 0.08–0.24. Counterintuitively, the presence of this small quasiparticle
weight does not work favorably to generate a pseudogap.
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I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES)
is a powerful tool to reveal the one-particle excitation
spectrum [1]. In cuprate high-temperature superconductors,
it shows a gaplike feature—the spectral weight at Fermi
momenta is suppressed at zero energy already well above the
superconducting transition temperature Tc, leading to a peak at
a finite energy. This phenomenon is known as the pseudogap
[2,3]. It develops already around the optimally doped region
and is pronounced in the underdoped region. Since the high
temperature superconductivity is realized inside the pseudo-
gap phase, the understanding of the pseudogap is one of the
most important issues in the cuprate phenomenology and has
been studied intensively. Despite many studies, however, the
pseudogap is still a controversial issue and remains elusive.

Recently, resonant inelastic x-ray scattering (RIXS) re-
vealed charge excitation spectra in momentum-energy space
especially around the zone center in both electron-doped
[4–6] and hole-doped [6–8] cuprates. They were identified
as plasmon excitations specific to layered metallic systems—
not only the usual optical plasmon but also acousticlike
plasmon modes are present [9]. Given that the plasmon
energies are low [6–8], it is important to examine the
role of realistic three-dimensional charge fluctuations in the
low-energy quasiparticle properties, including the pseudogap
phenomenology.

Nonetheless, many theoretical studies were performed
not only in two-dimensional models but also for a short-
range interaction—hence, there are no plasmons. Reference
[10] concluded that charge fluctuations do not lead to
a pseudogap in the dynamical cluster approximation to
the two-dimensional Hubbard model. This conclusion is
shared with Refs. [11,12], where the pseudogap is asso-
ciated with antiferromagnetic fluctuations. However, charge
fluctuations considered in Ref. [10] are qualitatively dif-
ferent from the actual experimental data. Moreover, a
recent work in the dynamical cluster approximation indicates

that antiferromagnetic fluctuations alone cannot capture the
pseudogap [13].

The situation is also similar in research of a strange metal
physics, which currently attracts much interest especially in
the context of Planckian dissipation in metals [14–16]. Recent
experiments [17–19] discussed that charge fluctuations can
be responsible for the strange metallic properties in cuprates.
Theoretical studies in Refs. [20,21] are in line with this
scenario. However, they missed realistic three-dimensional
charge excitations including plasmons.

Realistic charge excitation spectra were reproduced in a
large-N theory of the t-J model with the long-range Coulomb
interaction [6,7,22,23]—we may refer to it as the t-J-V
model [9]. Two theoretical studies were performed about
the electron self-energy in the t-J-V model. First, plasmon
excitations were found to generate a fermionic incoherent
band—plasmaron dispersion—near the energy of the optical
plasmon energy [24]. Second, quantum charge fluctuations,
namely fluctuations at zero temperature, lead to a side band
with an energy scale higher than the plasmarons, but on the
opposite energy side across the Fermi energy [25]. Consid-
ering that their energy scale is high, these features may not
depend on temperature, which validates calculations at zero
temperature in Refs. [24,25]. However, both pseudogap and
Planckian dissipation are related to not only finite temperature
but also a low-energy property of electrons close to the Fermi
surface. These phenomena are associated with the charge de-
gree of freedom of electrons, suggesting a possibly pivotal
role of charge fluctuations.

In this paper, we achieve accurate numerics even in a
low-energy region at finite temperatures in the large-N the-
ory of the t-J-V model. This technical success allows us to
study closely the electron self-energy by taking the realis-
tic three-dimensional charge fluctuations into account. While
the system loses approximately 75–90% of the quasiparticle
weight on the entire Fermi surface, we find Landau quasi-
particles in a realistic temperature and doping region. This
implies that the charge fluctuations are not responsible for
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the pseudogap and a strange metal physics. We also find that
the small quasiparticle weight is not effective to generate a
pseudogap even if additional self-energy corrections are con-
sidered, implying an intriguing role of charge fluctuations in
the pseudogap state.

II. FORMALISM

The t-J model is a microscopic model of cuprate supercon-
ductors [26–28]. To capture the plasmon physics in cuprates
and achieve realistic calculations, we employ the following
layered t-J-V model:

H = −
∑
i, j,σ

ti j c̃
†
iσ c̃ jσ +

∑
〈i, j〉

Ji j

(
�Si · �S j − 1

4
nin j

)

+ 1

2

∑
i �= j

Vi jnin j . (1)

Here c̃†
iσ (c̃iσ ) are the creation (annihilation) operators of

electrons with spin σ (=↑,↓) in the Fock space without dou-
ble occupancy at any site—strong correlation effects, ni =∑

σ c̃†
iσ c̃iσ is the electron density operator, and �Si is the spin

operator. The sites i and j run over a layered square lattice.
The hopping ti j takes the value t (t ′) between the first (second)
nearest-neighbor sites on the square lattice and is scaled by
tz between the layers. The exchange interaction Ji j = J is
considered only for the nearest-neighbor sites in the layer
as denoted by 〈i, j〉—the exchange term between the layers
is much smaller than J (Ref. [29]). Vi j is the long-range
Coulomb interaction and describes plasmon excitations. The
layered structure is a requisite to describe not only the usual
optical plasmon but also acousticlike plasmons [30–32].

In momentum space Vi j is written as [33]

V (q) = Vc

α(2 − cos qx − cos qy) + 1 − cos qz
, (2)

where Vc = e2d (2ε⊥a2)−1 and α = ε‖/ε⊥
(a/d )2 ; e is the electric

charge of electrons, a the unit length of the square lattice,
d the distance between the layers, and ε‖ and ε⊥ are the
dielectric constants parallel and perpendicular to the planes,
respectively. In Eq. (2), α describes the anisotropy between
the in-plane and out-of-plane interaction.

We analyze the model (1) by using a large-N technique
in a path integral representation in terms of the Hubbard
operators [34]. In this scheme, charge fluctuations associ-
ated with the usual charge-density-wave and plasmons are
described by a 2 × 2 matrix Dab(q, iνn) with a, b = 1, 2; q
is the momentum of the charge fluctuations and νn a bosonic
Matsubara frequency. While D11 corresponds to the usual
density-density correlation function, D22 is a special feature of
strong correlation effects—it describes fluctuations associated
with the local constraint. Naturally, the off-diagonal compo-
nent D12(= D21) is also present. Strictly speaking, there are
also bond-charge fluctuations, which can be incorporated by
enlarging Dab to a 6 × 6 matrix. The bond-charge fluctuations
are, however, less effective on the electron self-energy than
the usual charge fluctuations [25] and are thus neglected for
simplicity. After the analytical continuation iνn → ν + i�ch,
where �ch(> 0) is infinitesimally small, we obtain the full

charge excitation spectrum described by ImDab(q, ν), which
contains both plasmon excitations as well as gapless particle-
hole excitations—see Ref. [35] for a comprehensive analysis
of ImDab(q, ν).

The charge fluctuations can renormalize the one-particle
property of electrons, which can be analyzed by computing
the electron self-energy. This requires involved calculations
in the large-N theory because one needs to go beyond leading
order theory. At order of 1/N , the imaginary part of the self-
energy is calculated as [25]

Im�ch(k, ω) = −1

NsNz

∑
a,b

∑
q

ImDab(q, ν)ha(k, q, ν)

× hb(k, q, ν)[nF (−εk−q) + nB(ν)]. (3)

Here ν = ω − εk−q, εk is the electron dispersion obtained at
leading order, ha(k, q, ν) a vertex describing the coupling
between electrons and charge excitations, nF and nB the Fermi
and Bose distribution functions, respectively, Ns the total num-
ber of lattice sites in each layer, and Nz the number of layers;
see Ref. [25] for the explicit forms of Dab(q, ν), εk, and
ha(k, q, ν). The above self-energy has the same structure as a
self-energy obtained from the Fock diagram in a perturbation
theory. However, in the large-N scheme, we have both Hartree
and Fock diagrams in a nontrivial way at order of 1/N . More-
over, it includes charge fluctuations associated with the local
constraint described by ImD12 and ImD22.

The real part of �ch(k, ω) is calculated by the
Kramers-Kronig relations. Since the electron Green’s func-
tion G(k, ω) is written as G−1(k, ω) = ω + i�sf − εk −
�ch(k, ω), we obtain the one-particle spectral function
A(k, ω) = − 1

π
ImG(k, ω):

A(k, ω)

= − 1

π

Im�ch(k, ω) − �sf

[ω − εk − Re�ch(k, ω)]2 + [Im�ch(k, ω)−�sf ]2
,

(4)

where �sf (> 0) originates from the analytical continuation in
the electron Green’s function.

III. RESULTS

A. Role of realistic charge fluctuations

We choose parameters t ′/t = −0.20, J/t = 0.3, tz/t =
0.01, Vc/t = 31, α = 3.5, �ch = �sf = 0.03t , and Nz = 10,
and put t = 1 as the energy unit. These parameters were
obtained to describe the plasmon dispersion observed in
La2−xSrxCuO4 (LSCO) [6]. In LSCO, the plasmon energy
with a finite qz becomes less than 55 meV at the in-plane
zone center [6]. This low-energy plasmon seems to offer a
favorable situation where plasmon excitations could affect
effectively the electron property around the Fermi surface.
We thus focus on a small energy window around ω = 0 in
this paper. Because of the layered model, the Fermi surface
depends on kz. Our conclusions, however, do not depend on kz

and we have presented results for kz = 0.
Figure 1(a) shows that Im�ch(kF , ω)—the imaginary

part of the electron self-energy from charge fluctuations at
the Fermi momentum kF —vanishes at energy ω = 0 and
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FIG. 1. Electron property for different temperatures T at the
doping rate δ = 0.145. (a) Imaginary part of the electron self-energy
at the nodal point kN

F and the antinodal point kAN
F on the Fermi

surface for T = 0.03 and 0.05; results at T = 0 are shown only for
kN

F here. The Fermi momenta are defined in panel (b). The inset is
the corresponding real part of the self-energy at T = 0 and 0.05.
(b) Corresponding spectral function for the temperatures in panel
(a). The inset describes the quasiparticle weight Z as a function of
temperature at several choices of Fermi momenta.

temperature T = 0 and is characterized by ∼ω2 dependence
including the case at finite temperatures; see Appendix A
for a further analysis. In addition, we can check that its
temperature dependence at zero energy is characterized by
Im�ch(kF , 0) ∼ T 2. In the inset in Fig. 1(a), we plot the
corresponding real part Re�ch(kF , ω). It shows a linear de-
pendence with a negative slope at ω = 0, a typical feature of
a Fermi liquid. As expected, the spectral function A(kF , ω)
exhibits a single peak at ω = 0 as shown in Fig. 1(b). All
these results demonstrate that despite the presence of acous-
ticlike plasmon excitations as well as gapless particle-hole
excitations, charge fluctuations do not yield a non-Fermi
liquid feature, but the system retains the Fermi-liquid
property.

However, the quasiparticle weight is reduced substantially.
To see this, we compute the quasiparticle weight Z = (1 −
∂Re�ch (kF ,ω)

∂ω
|ω=0)−1 as a function of temperature in the inset

of Fig. 1(b). The value of Z depends weakly on temperature
and is around 0.17, meaning that charge fluctuations leave
tiny quasiparticle weight around the Fermi energy at all tem-
peratures. It is interesting to note in Fig. 1(b) that the value
of Z becomes smaller at lower temperature, but the spectral
function becomes sharper at lower temperatures.
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FIG. 2. Electron property for different doping rates at T = 0.05.
(a) Imaginary part of the self-energy at kN

F and kAN
F for δ =

0.05, 0.10, 0.15, 0.20, 0.25. The inset shows the corresponding real
part of the self-energy at δ = 0.05 and 0.25. (b) Spectral function for
the doping rates in panel (a). The inset is the doping dependence of
Z at kN

F and kAN
F .

In all panels in Fig. 1 [except for Im�ch(kF , ω) at T =
0], we plot results for two characteristic momenta, kN

F and
kAN

F , each of which corresponds to the nodal and antinodal
direction [see the inset in Fig. 1(b)]. Although a difference of
Im�ch(kF , ω) between kN

F and kAN
F is visible in Fig. 1(a), this

is a small effect in the sense that Re�ch(kF , ω) is not affected
practically as seen in the inset in Fig. 1(a). In fact, the results in
Fig. 1(b) show a weak kF dependence. That is, the effect of the
charge fluctuations is essentially isotropic, namely s wavelike
along the Fermi surface.

Figure 2 highlights results of the self-energy for different
doping rates at T = 0.05. In Fig. 2(a), Im�ch(kF , ω) is char-
acterized by ∼ω2 dependence around ω = 0 for all doping
rates and the value of Im�ch(kF , 0) decreases with increas-
ing doping. The corresponding results of Re�ch(kF , ω) are
shown in the inset of Fig. 2(a). The slope of Re�ch(kF , ω)
at ω = 0 becomes larger with decreasing doping, leading to
smaller quasiparticle weight for lower doping—the value of
Z varies from 0.08 to 0.24 in 0.05 � δ � 0.25 as shown in
the inset of Fig. 2(b). Consequently, the spectral function ex-
hibits a single peak around ω = 0 and the peak area becomes
smaller with decreasing doping [Fig. 2(b)]. Interestingly, the
peak has a smaller half width at half maximum in spite of
a larger value of Im�ch(kF , ω) with decreasing doping. This
counterintuitive behavior is due to a larger negative slope
of Re�ch(kF , ω) around ω = 0. It is also intriguing that the
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self-energy effect from charge fluctuations is pronounced for
lower doping in Fig. 2, although the charge degree of freedom
tends to be quenched at half-filling. In all panels in Fig. 2, re-
sults do not depend practically on a choice of Fermi momenta.

B. Interplay with the pseudogap

We have shown that the realistic charge fluctuations in
cuprates do not destroy quasiparticles and leave the quasipar-
ticle weight Z = 0.08–0.24 in 0.05 � δ � 0.25—Z increases
with doping. This feature does not depend on temperature
nor a choice of Fermi momenta. Given that the present the-
ory captures charge excitation spectra including plasmons
[6,7,22,23], we expect that the electron self-energy that we
have obtained is rather reliable. However, the pseudogap is
observed especially in the underdoped region in hole-doped
cuprates and the quasiparticle picture is destroyed. What is
then a role of charge fluctuations in the presence of the
pseudogap?

We may formally write the self-energy observed in experi-
ments (�ex) as

�ex = �ch + �pg + �others, (5)

where �ch is a contribution from the charge fluctuations com-
puted above and �pg is a component that yields the pseudogap
in the spectral function. �others is the other contributions
to the electron self-energy, which may be responsible for
strange metallic behavior [17,18,20,21], a marginal Fermi
liquid [36], and other anomalous behavior except for the pseu-
dogap. �others also contains usual Fermi-liquid corrections
from bosonic fluctuations observed in cuprates [37]. We shall
neglect the last term �others to perform a transparent analysis.

By employing a realistic �ex from experimental data, we
may estimate �pg by modeling it as

�pg(k, ω) = c2
k

ω + i�k
. (6)

This form is a simplified version capturing consistently var-
ious models to describe the pseudogap [38] when focusing
on a momentum close to the Fermi surface (see Appendix B
for more details); �k describes a broadening and ck has the
physical meaning of a kind of gap. Note that as we shall
discuss later (see Fig. 4), the interplay of ck and �k is crucial
to produce a pseudogap, which has not been recognized much.
Since we shall make an analysis by focusing on the antinodal
Fermi momentum, we may write ckAN

F
= c and �kAN

F
= � for

simplicity below.
Figure 3(a) is a recent experimental data of the electron

spectral function for LSCO [39] with δ = 0.145 at T = 45 K.
We choose the same δ and T (= 0.0055t ) by assuming t/2 =
0.35 eV [6,40]. We then tune the parameters c and � as well
as a broadening of the spectral function �sf [see Eq. (4)] to
reproduce experimental data [Fig. 3(a)]. Our obtained �pg and
�ch are shown in Fig. 3(b). Im�pg has a sharp peak at ω = 0,
which generates the pseudogap in Fig. 3(a). The correspond-
ing Re�pg exhibits a steep slope with a positive sign at ω = 0
to overturn the negative slope of Re�ch. While we have used
�sf = 0.03 in Figs. 1 and 2, we obtain �sf = 0.536 to get a
better fit especially to the tails away from the Fermi energy in
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FIG. 3. Self-energy consistent with experimental data extracted
from Ref. [39]. (a) Typical spectral function observed in underdoped
cuprates at the antinodal region on the Fermi surface, showing the
pseudogap, namely the suppression of the spectral weight at ω =
0. The solid black curve is a fitting in terms of Eqs. (5) and (6);
we use t/2 = 0.35 eV [6,40]. The spectral function in two different
conditions, with only �ch and with only �pg, is also plotted. (b) �ch

and �pg used in the fitting to the experimental data in (a).
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used in Fig. 3.
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Fig. 3(a). This large �sf may also reflect broadening due to the
other contributions �others.

In Fig. 3(a) we also plot the spectral function in two dif-
ferent conditions, with only �pg and with only �ch. While the
latter case exhibits a broad, but coherent peak at ω = 0—a
typical Fermi-liquid feature, the former case indicates that an
intrinsic pseudogap has sizable weight away from ω = 0 and
forms a very broad structure with a gap nearly double the
pseudogap observed in experiments.

A major surprise in Fig. 3 is that in spite of rather small
quasiparticle weight from �ch (Z ≈ 0.17 at δ = 0.145), we
need a very pronounced peak of Im�pg at ω = 0 to reproduce
the pseudogap observed experimentally. To explore this out-
come more, we study a condition of c and � to reproduce a
pseudogap in the presence of �ch. We make a map of ωpg—a
half distance of double peaks of A(k, ω)—in the plane of c
and � in Fig. 4; ωpg = 0 means a single peak at ω = 0. The
pseudogap is realized below the white curve—this condition
is given approximately by (see Appendix C for an analytical
understanding)

�2 < 2ZFLc2. (7)

Here ZFL is the Fermi-liquid quasiparticle weight in the ab-
sence of �pg and is given by 0.17 in the present case. The
same calculations are also performed for different doping and
we superimpose in Fig. 4 the obtained boundary, below which
a pseudogap is realized. It shows that we need a severer con-
dition of the choice of c and � to reproduce the pseudogap for
a lower doping rate, where the quasiparticle weight becomes
smaller [see Fig. 2(b)]—the contribution �others in Eq. (5) that
we have neglected would reduce further the value of ZFL,
yielding a further severer condition of c and � to produce
a pseudogap. From the opposite viewpoint, Fig. 4 indicates
that �pg tends to create a single peak when the quasiparticle
weight becomes smaller in the absence of �pg. Whether this
can be related with the strange metal state in cuprates [3] is an
interesting open issue. See Appendix D for a further analysis.

IV. CONCLUSION AND DISCUSSIONS

Recently, charge fluctuations were proposed to be re-
sponsible for a strange metal and the marginal Fermi-liquid
phenomenology [17,18,20,21]. However, we have found that
the self-energy from the realistic charge fluctuations is essen-
tially isotropic and yields a Fermi-liquid contribution (Figs. 1
and 2). We have also found the small quasiparticle weight Z ,
which varies from 0.08 to 0.24 with increasing doping from
0.05 to 0.25 (Fig. 2). One might expect that a small Z at low
doping would work favorably to form a pseudogap because
the quasiparticles could be easily destroyed. However, the
obtained theoretical insight is the opposite—the smaller the
quasiparticle weight is, the more intense additional contribu-
tions leading to the pseudogap should be [Eq. (7) and Figs. 3
and 4]. Furthermore, to be consistent with experiments, c and
� should exhibit a special doping and temperature dependence
as sketched with arrows in Fig. 4: the gap tends to be closed
with decreasing c and to be filled with increasing �—the
former feature like a gap closing may be caused mainly by
increasing doping [1] and the latter one like a gap filling
by increasing temperature [1,41,42] (see Appendix E). The

microscopic origin of c and � is a challenge for understanding
the pseudogap in cuprates.

In Ref. [10], a pseudogap very similar to the experimental
data was obtained in the dynamical cluster approximation
with eight sites to the two-dimensional Hubbard model. How-
ever, charge fluctuations in Ref. [10] are very different from
those reported in RIXS [4–8] and also very weak. It is inter-
esting to check whether the reported pseudogap in Ref. [10]
practically remains even when the realistic charge fluctuations
are taken into account.

In the overdoped region, we expect �pg → 0, but charge
fluctuations survive. The fact that �ch is essentially isotropic
on the Fermi surface (Fig. 1) and Im�ch ∼ T 2 may indicate
that �ch is promising to describe the transport properties
in overdoped cuprates where the scattering rate is isotropic
[43–45] and shows a dominant T 2 dependence [43–48]. In
addition, Im�ch decreases with increasing doping [Fig. 2(a)],
which is also in line with the behavior of the resistivity [2,49].

Our value of Z is around 0.25 in the overdoped region
[see the inset of Fig. 2(b)], implying the mass enhance-
ment is around four. Quantum oscillation measurements of
Tl2Ba2CuO6+δ found a value of 3.1–5.1 [50], which is con-
sistent with the present work. On the other hand, ARPES
measurements for overdoped Bi2Sr2CaCu2O8+δ reported a
value around 1.5 [51]. This difference might be related to the
difference of the energy scale between quantum oscillation
and ARPES.

The pseudogap in cuprates, namely �ex, has been fre-
quently studied by focusing on �pg in Eq. (5) alone. However,
we have demonstrated that the other contributions �ch and
�others can be crucially important as shown in Fig. 3 and
Eq. (7). Hence, it is important to disentangle the source of the
pseudogap from �ex. A valuable insight may be obtained as
follows. We first approximate �pg = 0 around the nodal Fermi
momentum, leading to the components of �ch + �others. Then
assuming those components are isotropic, we may obtain �pg

by subtracting the component �ch + �others from �ex at Fermi
momenta away from the nodal point. This procedure may also
be performed in numerical calculations as those in Refs. [11]
and [12].
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APPENDIX A: ω DEPENDENCE OF Im�

Here we provide an in-depth analysis of the results in
Fig. 1(a) at T = 0.

In Fig. 5(a), our numerical results Im�ch(kF , ω) at T =
0 for kF = kN

F are fitted by using two different functional
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FIG. 5. ω dependence of Im�(kF , ω) at T = 0. (a) Fitting of
Im�(kF , ω) for kF = kN

F by using two different functional forms,
ω2 and ω2 log |ω|. (b) Fitting of Im�(kF , ω) for kF = kAN

F in the
positive and negative energy regions separately.

forms, ω2 and ω2 log |ω|—the former is expected for the
three-dimensional (3D) Fermi liquids and the latter for two-
dimensional (2D) Fermi liquids [52]. We see both nicely fit
to the numerical results in the vicinity of ω = 0. Since our
system is a layered model, we would expect a crossover from
the 2D to the 3D character with decreasing ω toward zero.
Numerically, however, we cannot clearly distinguish them in
the vicinity of ω = 0. Rather, we could firmly say that the 2D
character is more pronounced in a higher ω region.

One would expect that Im�ch(kF , ω) should have a sym-
metry with respect to ω = 0. However, a close inspection in
Fig. 5(a) reveals that this is not exactly the case in the present
model. We checked numerically that contributions from the
saddle-point regions in εk−q in Eq. (3) are larger in the positive
ω side than in the negative ω side, which we interpret as one
of the main sources to yield an asymmetry of Im�ch(kF , ω)
with respect to ω = 0 in the low-energy region.

This effect becomes more pronounced when we choose
kF = kAN

F , much closer to the saddle points for a small q, as
shown in Fig. 5(b). This was the reason why we refrained from
presenting Im�ch(kAN

F , ω) in Fig. 1(a)—special care may be
necessary for kF = kAN

F at T = 0. We thus consider the pos-
itive and negative energy regions separately and perform the
fitting in each region. We find that the numerical results are
well fitted to both ω2 and ω2 log |ω| in the vicinity of ω = 0
and the higher energy region is fitted better to the latter. These
technical subtleties, however, are special at T = 0 especially

for kF = kAN
F and fade away at finite temperatures as seen in

Figs. 1(a) and 2(a).

APPENDIX B: MODELING OF THE PSEUDOGAP

The origin of the pseudogap is still controversial and it is
beyond the scope of the present work to pursue it. Instead,
from a practical point of view, we consider a self-energy that
can reproduce the pseudogap observed by ARPES.

Our modeling in terms of Eq. (6) is based on Ref. [38]
and can be regarded as a simplified version to cover different
scenarios to capture the pseudogap phenomenology. The self-
energy we consider is given by

�pg(k, ω) = c2
k

ω + ε̃k + i�
. (B1)

In the case of a commensurate density wave with momentum
Q = (π, π ), such as the usual charge and spin density wave,
ck corresponds to its gap and

ε̃k = −εk+Q. (B2)

In the so-called Yang-Rice-Zhang (YRZ) model [53], ck
controls the magnitude of a pseudogap and ε̃k is the nearest-
neighbor term of the tight-binding dispersion

ε̃k = −2t (cos kx + cos ky). (B3)

If the d-wave pairing fluctuations are responsible for the pseu-
dogap formation, ck is the usual d-wave pairing gap and we
have

ε̃k = εk. (B4)

We consider a momentum fulfilling ε̃k = 0. This condition
determines the Luttinger surface, where the self-energy di-
verges at ω = 0 and � = +0. Therefore, the spectral function
is expected to be strongly suppressed at zero energy when the
Fermi surface crosses the Luttinger surface. In order to capture
a pseudogap feature, therefore, we consider a situation where
ε̃kF ≈ 0. This is typically realized close to a momentum of
the antinodal region in hole-doped cuprates, where a holelike
Fermi surface crosses the Brillouin zone boundary. This con-
sideration leads to Eq. (6) in the main text after allowing a
momentum dependence of �.

While we have successfully fitted experimental data with
Eq. (6) (see Fig. 3), this may not necessarily indicate that
the pseudogap should be explained in either of the above
three scenarios. This is because the functional form of our
simplified self-energy Eq. (6) might also be obtained in
other scenarios [11,12], and in this sense can be general
phenomenologically.

APPENDIX C: ANALYTICAL UNDERSTANDING OF EQ. (7)

The condition to produce a pseudogap is given approx-
imately by Eq. (7). Here we provide analytical grounds
behind it.

Since �ch exhibits a Fermi-liquid feature in Figs. 1 and 2,
we may approximate it as

�ch ≈ −aω − i
aπ

2ω0
ω2, (C1)
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where a is positive and we have assumed that Im�ch = 0 in
|ω| > ω0. This approximation is expected to be good as long
as we consider a low-energy property. We then obtain

Z−1
FL = 1 − ∂Re�ch

∂ω
= 1 + a. (C2)

Together with �pg in Eq. (6), we may write the total self-
energy as

�ex ≈ �ch + �pg (C3)

≈ −
(

a − c2

ω2 + �2

)
ω − i

�c2

ω2 + �2
. (C4)

Here we have focused on a low-energy region so that Im�ch

is negligible compared with the contribution from Im�pg. We
then replace �ch in Eq. (4) with the above �ex and put �sf =
+0. At the Fermi momentum kF , we find that the spectral
function A(kF , ω) has a double peak around ω = 0 in the
condition of

�2 < 2ZFLc2. (C5)

By comparing with numerical results, we checked that this
formula is very precise for �sf = 0.001 eV and starts to have
visible errors when a larger �sf is invoked—yet it works as a
reliable guide to estimate the boundary of the pseudogap.

APPENDIX D: COHERENT AND INCOHERENT
SINGLE PEAKS

As shown in Fig. 4, a pseudogap is formed in �2 � 2ZFLc2

[Eq. (7)]. If this condition is not fulfilled, a single peak is
realized. As indicated in Fig. 6(a), there are two kinds of
single peaks. One is a coherent peak (CP) typical of the Fermi
liquid as we already discussed in Figs. 1 and 2. The other is
an incoherent peak (IP) shown in Fig. 6(b), for which Im�

exhibits a peak at ω = 0, but Re� retains a negative slope
there, as shown in the inset.

There can be a different IP in that Im� exhibits a peak at
ω = 0 and Re� has a positive slope there, as actually obtained
in a theoretical study of electronic nematic fluctuations [54].
However, we do not find this kind of IP in Fig. 6(a).

Figure 6(a) indicates that the IP state intervenes between
the PG and CP states. Recalling the strange metal state also
intervenes between the PG and Fermi-liquid states in cuprates
[3], it is interesting to explore further a possible connection
between the IP state and the strange metal state.

APPENDIX E: EVOLUTION OF THE SPECTRAL
FUNCTION WITH c AND �

We have focused on the spectral function fitted to the
experimental data [39] in the main text. Here from a general
point of view, we present how the spectral function evolves by
changing c and � in Fig. 4 at δ = 0.145. Figure 7(a) shows the
spectral function as a function of ω at the antinodal Fermi mo-
mentum. With increasing �, the spectral weight around ω = 0
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FIG. 6. Coherent and incoherent single peaks. (a) Reproduction
of Fig. 4, but focusing on the results for δ = 0.145. The nonpseu-
dogap region above the white curve is divided into two regions,
where a coherent or an incoherent single peak is realized. (b) Spectral
function at the antinodal Fermi momentum in the IP region marked
by the cross in (a). The inset shows that the real part of the self-energy
has a negative slope but the imaginary part has a peak at ω = 0.

increases while seemingly keeping the gap magnitude. This
gap-filling behavior is typically observed in experiments by
increasing temperature [1,41,42]. On the other hand, the gap
itself is suppressed with decreasing c as shown in Fig. 7(b)—
gap-closing behavior. A similar feature is observed typically
when increasing the doping in experiments [1]. These are
underlying considerations to sketch the arrows in Fig. 4.
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