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Amperean superconductivity is an exotic phenomenon stemming from attractive effective electron-electron
interactions (EEEIs) mediated by a transverse gauge field. Originally introduced in the context of quantum
spin liquids and high-Tc superconductors, Amperean superconductivity has been recently proposed to occur
at temperatures on the order of 1–20 K in two-dimensional, parabolic-band, electron gases embedded inside
deep subwavelength optical cavities. In this work, we first generalize the microscopic theory of cavity-induced
Amperean superconductivity to the case of graphene and then argue that this superconducting state cannot be
achieved in the deep subwavelength regime. In the latter regime, indeed, a cavity induces only EEEIs between
density fluctuations rather than the current-current interactions which are responsible for Amperean pairing.

DOI: 10.1103/PhysRevB.109.104513

I. INTRODUCTION

The simplest microscopic model of superconductivity [1],
namely, the Bardeen-Cooper-Schrieffer (BCS) theory [2], de-
scribes this phenomenon as arising from the condensation
of Cooper pairs with zero total momentum, resulting in a
spatially uniform order parameter. Superconductors with “pair
density wave” (PDW) order host, instead, a condensate where
Cooper pairs have a nonzero center-of-mass momentum Q
[3,4]. Such exotic states of matter were first predicted to occur
in metals in the presence of a sufficiently strong spin exchange
field [5,6], leading to spin polarization and an imbalance be-
tween the populations of up- and down-spin electrons.

Superconducting PDW order, however, can occur also in
the presence of time-reversal symmetry. For example, it has
been shown [7] that, in a gapless spin liquid state, a U
gauge field mediates an effective interaction between spinons
and that this is attractive when spinons have parallel mo-
menta. This is akin to the Amperean attraction that occurs
between two wires carrying parallel currents. The resulting
superconducting instability has therefore been dubbed “Am-
perean superconductivity” [7]. Amperean superconductors are
a special class of PDW superconductors, where the oscillatory
nature of the pairing gap induced by the finite center-of-
mass momentum Q occurs in the presence of time-reversal
symmetry. More recently, the theory of Amperean supercon-

*Antonella.DePasquale@iit.it

ductivity has been applied to the pseudogap phase of cuprate
high-temperature superconductors [8,9] and to the surface
states of three-dimensional (3D) topological insulators (TIs)
[10–12]. In the latter case, the interaction between fermions
and gapless bosons that is needed to realize an effective
fermion-gauge theory can be induced by depositing a ferro-
magnetic layer on the surface of a 3D TI. Finally, it has been
shown [13] that Andreev reflection between normal and super-
conducting regions in a three-terminal device is an extremely
sensitive tool to detect Amperean PDW order.

Given this context, one may be tempted to conclude that
Amperean superconductivity stems from effective electron-
electron interactions (EEEIs) mediated by exotic gapless
bosonic modes. In principle, however, ordinary transverse
photons can mediate Amperean superconductivity. Indeed,
current-current EEEIs mediated by the exchange of trans-
verse photons have long been known to be responsible for
exotic behavior, such as non-Fermi-liquid behavior of met-
als [14–18]. In free space, Amperean superconductivity and
non-Fermi-liquid behavior are essentially impossible to be
observed since the dimensionless coupling constant is on the
order of [19] vF/c � 1, where vF is the Fermi velocity and c is
the speed of light. To bypass this problem, Schlawin et al. [20]
suggested an ingenious path to create a high-temperature Am-
perean superconducting state by coupling a two-dimensional
(2D) parabolic-band electron gas [21], such as the one hosted
by a GaAs quantum well, to an optical cavity. This is only
one example of the many tantalizing phenomena that have
been predicted to occur when quantum materials and cavity
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photons are brought to the strong-coupling regime. A largely
incomplete list of other examples includes cavity-enhanced
transport of excitons [22], polaritonic-enhanced electron-
phonon coupling and superconductivity [23], cavity-enhanced
superconductivity in 2D superconducting films [24], cavity-
controlled local interactions in strongly correlated materials
[25,26], photon condensation and magnetostatic instabilities
[27–29], ferroelectricity [30], and topological bands [31–33].
For a broader view on the emergent research field dubbed
“cavity quantum electrodynamic control of matter,” we invite
the reader to consult recent review articles [34–39]. Exper-
imentally, interactions between light and extended electron
systems in the strong-coupling regime have been mainly stud-
ied in the quantum Hall regime, by using arrays of terahertz
(THz) split-ring resonators coupled to GaAs quantum wells
[40–47]. Recently, the authors of Ref. [48] have claimed that
the critical temperature associated to the metal-to-insulator
transition in 1T-TaS2 can be shifted by more than 70 K by
tuning the cavity resonant frequency. We finally stress that the
role of genuine quantum effects in cavity QED of extended
electron systems is subtle and a matter of debate (see, for
example, Ref. [49]).

Going back to cavity-induced superconductivity, Schlawin
et al. [20] predicted record-high values of the critical tempera-
ture Tc for Amperean pairing, which was estimated to be in the
range Tc ≈ 1–20 K for a parabolic-band 2D electron gas cou-
pled to a THz cavity. Such high temperatures ultimately stem
from a cavity compression (or “mode volume confinement”)
factor A on the order of 10−5, which will be defined below and
can be achieved, e.g., in nanoplasmonic THz cavities [42,44].

This paper is motivated by Ref. [20] and goes beyond it
in two main respects: (i) On the one hand, we generalize the
theory of Ref. [20] to the case of single-layer graphene, the
most studied atomically thin material [50–52]. The reason is
easy to understand. Graphene can be doped either electrically
(via a nearby metallic gate) or chemically (e.g., via polymer
electrolytes) to much larger values than GaAs and incredibly
high carrier concentrations up to 5.5 × 1014 cm−2 have been
recently achieved [53]. Given the tremendous interest [54–56]
in superconductivity in the 2D limit and the possibility to tune
(e.g., electrically) the critical temperature (e.g., via a gate),
we found it useful to generalize the theory of cavity-mediated
EEEIs to the case of graphene. (ii) On the other hand, by
working in the Coulomb gauge, we show that there is an
intrinsic incompatibility between Amperean superconductiv-
ity, which stems from interactions mediated by a transverse
gauge field Acav(r, t ), and the mode volume confinement of
nanoplasmonic cavities, which is basically associated to a
classical quasistatic electric field Ecav(r, t ) = −∇φcav(r, t ),
which is longitudinal.

Our paper is organized as follows. In Sec. II we present
our model Hamiltonian, describing electrons in single-layer
graphene, coupled to the quantized electromagnetic modes
of a planar optical cavity. In Sec. III we provide a micro-
scopic derivation of the EEEI mediated by cavity photons
[see Eq. (71)]. In Sec. IV we derive the linearized, Am-
perean gap equation (104) that needs to be solved while
hunting for an Amperean superconducting instability. Finally,
in Sec. V we provide numerical evidence that no Amperean
superconductivity occurs at measurable temperatures in a
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FIG. 1. A cartoon of the setup investigated in this paper. Side
view of a planar Fabry-Pérot cavity containing single-layer graphene
(dashed line) at its center (z = 0). The metallic mirrors at z = ±Lz/2
are colored in gray. The distance between the two mirrors is therefore
Lz. Only the odd cavity modes (labeled by nz = 1, 3, 5, . . .) couple
to the two-dimensional electron system.

highly doped graphene sheet embedded inside a planar Fabry-
Pérot cavity. More importantly, in the subsection in Sec. V we
present a Green’s function approach to EEEI that highlights
the profound difference between planar optical cavities and
subwavelength cavities. This theory allows us to demonstrate
that in the former physical setup, no “mode-volume confine-
ment” argument can be used for effectively boosting the value
of the electron-photon coupling and related critical tempera-
ture Tc. On the contrary, the same theory shows clearly that
subwavelength nanoplasmonic cavities dramatically alter the
simple Coulomb repulsion law, giving rise to density-density
(rather than current-current) EEEIs. Appendixes A and B con-
tain a number of useful technical additions.

II. MODEL HAMILTONIAN

We consider single-layer graphene (SLG) placed at the
center (z = 0) of a planar Fabry-Pérot electromagnetic cavity,
schematically depicted in Fig. 1. This is the exactly same cav-
ity geometry used in Ref. [20]. While the authors of Ref. [20]
have considered electrons roaming in a 2D square lattice, we
here consider a 2D honeycomb lattice.

The system is described by the following Hamiltonian:

Ĥ = Ĥe + Ĥph + Ĥpara, (1)

where Ĥe and Ĥph are the free electron and the cavity
Hamiltonian, respectively, and Ĥpara is the electron-photon in-
teraction term. In writing Eq. (1) we have neglected the direct
repulsive Coulomb electron-electron interaction. The reason
is twofold. On the one hand, this is a common starting point of
any elementary (i.e., BCS) theory of superconductivity [1,57].
On the other hand, it would be important to analyze the role
of the Coulomb repulsion if the critical temperature for the
photon-mediated Amperean superconducting state was large,
which, as we will see below is not the case.

In the next three sections we will discuss the three terms in
Eq. (1).

A. Free-electron Hamiltonian

We start by illustrating the free-electron Hamiltonian Ĥe,
which describes electrons moving in SLG. Despite this is
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TABLE I. Physical parameters explored in this paper. The effec-
tive Debye energy is defined by h̄ωD ≡ π h̄c/(Lz

√
εr ). The value of

εr has been fixed at εr = 4, which applies to the case of graphene
encapsulated in hexagonal boron nitride (hBN), for example. The
lower bound on Lz descends from the condition h̄ωD < 2µ (no in-
terband transitions). The upper bound on Lz, instead, stems from the
recognition of the fact that in the limit Lz → ∞ the problem at hand
reduces to that of electrons interacting with free-space electromag-
netic radiation. Such interaction is known to yield interesting physics
at experimentally unreachable ultralow temperatures [19]. Finally,
we focus on large values of the chemical potential μ since in this
regime superconductivity is expected to be reached at high critical
temperatures. Working under these conditions, we are able to estab-
lish an upper bound for the critical temperature for cavity-induced
Amperean superconductivity.

Cavity parameters

Mirror distance: Lz ≈ 0.4–2.0 µm
Debye energy: h̄ωD ≈ 0.3–1.5 eV
Graphene parameters:
Hopping parameter: t = 2.8 eV
Bandwidth: W = 6t
Chemical potential: μ ≈ 0.4–0.6t
Electron density: n ≈ 1–3 × 1014 cm−2

C-C distance: a = 0.142 nm

well-known textbook material [52], we have decided to report
in this section a brief account of the main results and defini-
tions in order for the paper to be self-contained.

Graphene’s honeycomb lattice consists of a triangular lat-
tice with a basis containing two atoms (A and B) per unit
cell. We introduce the two basis vectors, a1 = a(3,

√
3)/2

and a2 = a(3,−√
3)/2, where a is the carbon-carbon (C-C)

distance (see Table I). Each site of the sublattice A can be
expressed as Ri = i1a1 + i2a2, where i = 1, . . . , Ncell (Ncell

is the number of cells) identifies a pair of integers i1(i)
and i2(i). The three nearest-neighbor sites of each site of
the sublattice A are identified by R(i,�) = Ri + δ�, where
� = 1 . . . 3 and δ1 = a(1,

√
3)/2, δ2 = a(1,−√

3)/2, δ3 =
a(−1, 0) [see Fig. 2(a)]. In the real-space representation, the
nearest-neighbor tight-binding Hamiltonian describing free
electrons hopping on a honeycomb lattice reads as following
[50]:

Ĥe = −t
Ncell∑
i=1

∑
σ=↑,↓

3∑
�=1

(
ĉ†

Ri,σ,AĉR(i,�),σ,B + H.c.
)

− μN̂, (2)

where t is the hopping parameter, N̂ is the number operator,

N̂ =
Ncell∑
i=1

∑
σ=↑,↓

(
ĉ†

Ri,σ,Aĉ†
Ri,σ,A + ĉ†

R(i,�=3),σ,BĉR(i,�=3),σ,B

)
, (3)

and μ is the chemical potential. Here, the operator ĉ†
Ri,σ,A

(ĉRi,σ,A) creates (annihilates) an electron on the A sublattice, at
position Ri and with spin σ . The operator ĉ†

R(i,�),σ,B (ĉR(i,�),σ,B)
creates (annihilates) an electron on the B sublattice at position
R(i,�) = Ri + δ� and with spin σ =↑,↓ [see Fig. 2(a)].

A

B
δ1

δ2
δ3 Ri + δ3/2

Ri
Ĵ (i,1)

Âcav (Ri + δ3/2, z = 0)

(a () b)

uT,q

uL,q

ẑ

q

v

v

q3D

(c)

FIG. 2. Two-dimensional honeycomb crystal structure of
graphene, made out of two interpenetrating triangular sublattices,
comprising A-type (black) and B-type (gray) atoms, respectively.
(a) Shows the three nearest-neighbor vectors δ� introduced in the
main text. (b) Shows the vector potential Âcav(Ri + δ�/2, z = 0),

with � = 3, and the current Ĵ
(i,�)

, with � = 1. (c) Shows a vector v

orthogonal to the 3D vector q3D, v · q3D = 0, i.e., v is transverse
with respect to the 3D vector q3D. The projections of q3D and v on
the x̂-ŷ plane, i.e., q‖ and v‖, respectively, are no longer orthogonal,
i.e., v‖ is not transverse with respect to q‖. For this reason, a
3D transverse field, such as Âcav(r‖, z), has both transverse and
longitudinal components once it is projected onto a 2D plane and
hence couples to both longitudinal and transverse components of the
2D graphene current.

Equation (2) can be easily transformed into the diagonal,
band representation by going to momentum space (details are
given in Appendix A):

Ĥe =
∑
k∈BZ

∑
σ=↑,↓

∑
κ=±

ξk,κ d̂†
k,σ,κ

d̂k,σ,κ , (4)

where d̂†
k,σ,κ

(d̂k,σ,κ ) creates (annihilates) an electron with
wave vector k belonging to the first Brillouin zone (BZ),
band index κ = ±, and spin index σ =↑,↓. Furthermore,
ξk,κ = εk,κ − μ is the κth band energy, measured from the
chemical potential μ, where [50]

εk,κ = κt
√

g(k) (5)
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and

g(k) = 3 + 2 cos(
√

3kya) + 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
.

(6)

B. Cavity Hamiltonian

We now move on to discuss the cavity Hamiltonian Ĥph

and the fluctuating electromagnetic field. We describe the
latter field in the Coulomb gauge, where ∇ · Âcav(r‖, z) = 0
and ∇ is the 3D nabla operator. In this gauge, transverse
radiation fields are given by the vector potential alone, while
the instantaneous Coulomb potential contributes only to the
near fields [58]. In the Coulomb gauge, the quantized vector
potential fulfilling the cavity boundary conditions is given by

Âcav(r‖, z) =
∑

q‖,s,nz

A(2D)
q‖,nz

[
eq‖,s,nz (z)âq‖,s,nz e

iq‖·r‖

+ e∗
q‖,s,nz

(z)â†
q‖,s,nz

e−iq‖·r‖
]
. (7)

Here, âq‖,s,nz (â†
q‖,s,nz

) annihilates (creates) a photon with mo-
mentum h̄q‖, polarization s = 1, 2, and mode index nz. The
quantities eq‖,s,nz (z) with s = 1, 2 denote the two polarization
vectors [59]

eq‖,1,nz (z) = ẑ × q‖
q‖

sin

[
πnz

Lz

(
z + Lz

2

)]
, (8)

eq‖,2,nz (z) = q‖
q‖

sin

[
πnz

Lz

(
z + Lz

2

)]
πnz

Lz

√
q2

‖ + (πnz

Lz

)2
+ ẑ cos

[
πnz

Lz

(
z + Lz

2

)]
iq‖√

q2
‖ + (πnz

Lz

)2 , (9)

where Lz is the length of the cavity in the ẑ direction (i.e.,
the distance between the two mirrors) satisfying the quasi-
2D condition Lz � Lx, Ly, and Lx (Ly) represents the lateral
extension of the cavity in the x̂ (ŷ) direction. Note that the
3D Coulomb gauge condition ∇ · Âcav(r‖, z) = 0 can be ex-
pressed in terms of the polarization vectors as following:

[iq‖ + ẑ∂z] · eq‖,s,nz (z) = 0. (10)

In Eqs. (7)–(9), nz = 1, 2, 3 . . . is an integer, h̄q‖ =
(2π h̄nx/Lx, 2π h̄ny/Ly) is the photon momentum in the x̂-ŷ
plane, nx, ny being relative integers,

A(2D)
q‖,n

=
√

4π h̄c2

V ωq‖,nzεr
(11)

is the field amplitude, V = LzS is the cavity volume (S = LxLy

being the surface of the cavity in the x̂-ŷ plane), εr is the cavity
relative dielectric constant, and

h̄ωq‖,nz = h̄c√
εr

√
q2

‖ +
(

πnz

Lz

)2

(12)

is the cavity photon energy. We note that the lowest cavity
photon energy is

h̄ωD ≡ h̄ω0,1 = π h̄c

Lz
√

εr
, (13)

which, as we will see below, plays the same role of the Debye
phonon energy in the standard theory of phonon-mediated
superconductivity [1]. In other words, as we will show below,
cavity photons introduce an effective attractive interaction
between electrons lying near the Fermi surface, in an energy
shell on the order of h̄ωD. It is possible to associate a Debye
temperature TD = h̄ωD/kB to the Debye energy, where kB is
the Boltzmann constant. For a distance Lz between the two
mirrors of 0.6 µm, the Debye temperature is on the order of
TD ≈ 5.8 × 103 K.

As highlighted in Fig. 1, SLG is placed on the x̂-ŷ plane,
at z = 0. In this case, only the odd cavity modes, i.e., modes
with nz = 2mz + 1 (mz ∈ N), of both polarizations s = 1, 2
couple to the 2D electron system. The even cavity modes drop
out of the problem. Indeed, for nz = 2mz (with mz ∈ N) the
s = 1 polarization vector eq‖,1,nz (0) evaluated at z = 0 van-
ishes identically [see Eq. (8)]. The s = 2 polarization vector
eq‖,2,nz (0) evaluated at z = 0 is orthogonal to the x̂-ŷ plane and
does not couple to the electronic orbital motion [see Eq. (9)].
In terms of mz, the relevant polarization vectors evaluated at
z = 0 read as following:

eq‖,1,2mz+1(0) = uT,q‖ (−1)mz+1, (14)

eq‖,2,2mz+1(0) = uL,q‖
(−1)mz+1π (2mz + 1)√

(Lzq‖)2 + [π (2mz + 1)]2
, (15)

where uT,q‖ = ẑ × q‖/q‖ (uL,q‖ = q‖/q‖) is a unit vector
orthogonal (parallel) to the photon wave vector q‖; uT,q‖
(uL,q‖ = q‖/q‖) is therefore transverse (longitudinal) with
respect to q‖. We emphasize that, here, the notions of “trans-
verse” and “longitudinal” are defined with respect to the 2D
photon wave vector q‖ and not with respect to the 3D wave
vector q3D. As emphasized above, the vector field Âcav(r‖, z) is
a 3D transverse field due to the Coulomb condition in Eq. (10),
i.e., it is orthogonal to q3D. However, once it is projected
on the 2D x̂-ŷ plane where SLG is lying, it acquires both a
longitudinal and a transverse component with respect to q‖
[see Fig. 2(c)].

Finally, the cavity Hamiltonian reads as

Ĥph =
∑

q‖,s,nz

h̄ωq‖,nz â
†
q‖,s,nz

âq‖,s,nz . (16)

C. Electron-photon coupling

The orbital motion of electrons roaming in SLG is coupled
to the cavity modes by means of the Peierls substitution:

ĉ†
R(i,�),σ,BĉRi,σ,A → ĉ†

R(i,�),σ,BĉRi,σ,A

× exp

[
− ie

ch̄

∫ R(i,�)

Ri

Âcav(r‖, z = 0) · dr‖

]
, (17)

where −e is the elementary electron’s charge, Ri is the posi-
tion of a given site of the sublattice A in the cell labeled by the
index i, and R(i,�) = Ri + δ� is the position of a given site of
the sublattice B, which is linked by the nearest-neighbor vec-
tor δ� to the site Ri of the sublattice A. In passing, we note that,
in quantum mechanics, exponentiating operators is danger-
ous. For example, time ordering is needed in time-dependent
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perturbation theory [60]. In the case of Eq. (17), however, no
problems arise since [Âcav(r‖, z = 0), Âcav(r′

‖, z = 0)] = 0.
Assuming that the vector potential changes slowly with

respect to the atomic scales, the line integral in Eq. (17) can
be simplified as following:∫ R(i,�)

Ri

Âcav(r‖, z = 0) · dr‖

� Âcav(Ri + δ�/2, z = 0) · δ�. (18)

The vector potential is evaluated at the middle of a link con-
necting an A-type site at position Ri with a B-type site at
position Ri + δ� [see Fig. 2(b)].

The Peierls replacement in Eq. (18) couples the electronic
motion to the cavity modes at all orders in the elementary
electron charge e. If we expand the exponential phase factor
in Eq. (17) up to second order in the vector potential Âcav we
get

Ĥ = Ĥph + Ĥe + Ĥpara + Ĥdiam + · · · , (19)

where “the ellipsis” represents terms in the expansion of the
Peierls factor of order higher than quadratic in the elementary
charge e. We will show momentarily that these terms can be
safely neglected.

The linear (“paramagnetic” [21]) term Ĥpara reads as
following:

Ĥpara =
Ncell∑
i=1

3∑
�=1

e

c
Ĵ

(i,�) · Âcav(Ri + δ�/2, z = 0), (20)

where the paramagnetic current operator is given by

Ĵ
(i,�) =

∑
σ=↑,↓

it

h̄
δ�

[
ĉ†

Ri,σ,AĉR(i,�),σ,B − ĉ†
R(i,�),σ,BĉRi,σ,A

]
. (21)

For a given site Ri belonging to the A sublattice, there are three

current operators Ĵ
(i,�)

, flowing parallel to δ� and between the
site Ri and the site Ri + δ� belonging to the B sublattice [see
Fig. 2(b)].

It is extremely important to understand the scaling of the
light-matter interaction Hamiltonian Ĥpara in Eq. (20) with

respect to physical parameters. The paramagnetic current Ĵ
(i,�)

[see Eq. (21)] is on the order of ∼at/h̄ while the vector po-
tential Âcav(Ri + δ�/2, z = 0) [see Eq. (11)] can be estimated
as

A(2D)
q‖,n

∼ ε−1/2
r h̄c

1√
V

1√
h̄ωD

, (22)

where V = SLz is the cavity volume and the Debye energy
h̄ωD has been introduced in Eq. (13). Finally, in the param-
agnetic Hamiltonian, there is a factor (e/c) we have to take
care of. We therefore conclude that ĤÂ is controlled by the
following quantity:

g̃ ≡ ε−1/2
r

a√
V

1√
h̄ωD

te. (23)

We now assume that the 2D electron system area, which is
∝ Ncella2, coincides with the cavity surface S, i.e., we take
S ∼ Ncella2. Replacing this result into Eq. (23), we are led to

introduce the “reduced” coupling constant g defined in such a
way that g̃ = N−1/2

cell g. We get

g = ε−1/2
r

1√
Lz

1√
h̄ωD

te. (24)

Replacing the explicit expression of h̄ωD in Eq. (24), we
conclude that, for a Fabry-Pérot cavity, g reduces to

gFP ≡ te√
h̄c

ε−1/4
r = tε−1/4

r
√

αQED, (25)

where αQED = e2/(h̄c) ≈ 1/137 is the fine-structure constant.
The quantity gFP is the coupling constant of our theory. Notice
that gFP is independent of Lz because of the cancellation
that occurs between V ∝ Lz and h̄ωD ∝ 1/Lz. The fact that
the light-matter coupling is independent of Lz is typical of
Fabry-Pérot cavities and, more in general, of all cavities where
genuine transverse photons are confined.

The paramagnetic Hamiltonian Ĥpara in Eq. (20) can be
conveniently expressed in momentum space. As detailed in

Appendix A, the current Ĵ
(i,�)

can be expressed as

Ĵ
(i,�) = 1

Ncell

∑
q‖

eiq‖·Ri Ĵ�,q‖ , (26)

where the Fourier transform of the current Ĵ�,q‖ is given by

Ĵ�,q‖ ≡
∑

k,k′∈BZ

(ĵ �,k′,k + ĵ †
�,k,k′ )δk−k′,q‖ , (27)

with

ĵ �,k′,k ≡ it

h̄

∑
σ=↑,↓

δ�eik·δ�
ϕ∗

k

2

∑
κ,κ ′

κ ′d̂†
k′,σ,κ ′ d̂k,σ,κ . (28)

Here, ϕk = −∑3
�=1 eik·δ�/|∑3

�=1 eik·δ� |.
Similarly, the vector potential Âcav(Ri + δ�/2, z = 0) in

Eq. (7) can be rewritten in terms of its Fourier components
Âq‖,�:

Âcav(Ri + δ�/2, z = 0) =
∑

q‖

3∑
�=1

eiq‖·Ri Âq‖,�, (29)

with

Âq‖,� ≡
∑
s,nz

A(2D)
q‖,nz

ei
q‖·δ�

2
[
eq‖,s,nz (0)âq‖,s,nz

+ e∗
−q‖,s,nz

(0)â†
−q‖,s,nz

]
. (30)

Notice that there is a Fourier component of the vector potential
Âq‖,� for each � since the vector potential that couples with

the current Ĵ
(i,�)

is Âcav(Ri + δ�/2, z = 0), which, as stated
earlier, is evaluated at the middle of a link connecting an
atom A at position Ri with an atom B at position Ri + δ� [see
Fig. 2(b)].

Replacing Eqs. (26) and (29) in Eq. (20) we find

Ĥpara = e

c

1

Ncell

Ncell∑
i=1

∑
q‖,q′

‖

3∑
�=1

ei(q‖+q′
‖ )Ri

× Âq‖,� · Ĵ�,q′
‖ . (31)
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Performing the sum over the unit-cell index i we find

Ĥpara = e

c

3∑
�=1

∑
q‖,q′

‖

δq‖,−q′
‖+GÂq‖,� · Ĵ�,q′

‖ . (32)

Summing over q′
‖ by using the Kronecker delta and neglecting

umklapp processes [61] we finally find

Ĥpara = e

c

3∑
�=1

∑
q‖

Âq‖,� · Ĵ�,−q‖ . (33)

In order to get a clear physical interpretation, it is convenient
to further express Eq. (33) in terms of ĵ �,k,k′ and Âq‖,�. By
using Eqs. (28) and (30) we find

Ĥpara = e

c

3∑
�=1

∑
q‖

∑
s,nz

A(2D)
q‖,nz

ei
q‖·δ�

2
[
eq‖,s,nz (0)âq‖,s,nz

+ e∗
−q‖,s,nz

(0)â†
−q‖,s,nz

]
·
∑

k,k′∈BZ

(ĵ �,k′,k + ĵ †
�,k,k′ )δk−k′,−q‖ . (34)

We therefore see that this Hamiltonian describes processes
whereby an electron with momentum k scatters with the pho-
tonic field, either emitting a photon with momentum −q‖ or
absorbing a photon with momentum q‖, and ends up in a state
with momentum k + q‖.

The second-order “diamagnetic” Ĥdiam term is reported
in Appendix B. For the problem at hand, it is enough to
stop the expansion at first order in the electrical charge e,
retaining only the paramagnetic term. Indeed, as we pro-
ceed to show, the diamagnetic term is parametrically smaller
than the paramagnetic one. The energy scale of the bare
electronic Hamiltonian is the hopping parameter t , while,
as we have seen in Eq. (23), the energy scale of param-
agnetic term is gFP = tε−1/4

r
√

αQED. The strength of Ĥpara

compared to the band energy is therefore on the order of
gFP/t = ε

−1/4
r

√
αQED � 1. Suppose now that we expand the

Peierls factor to next order in perturbation theory. In this case,
we find a light-matter coupling at second order in the electrical
charge Ĥdiam. The order of magnitude of the diamagnetic
term, relative to the band energy, is g2

FP/t2 = ε
−1/2
r αQED. We

therefore conclude that Ĥdiam is smaller than Ĥpara by a factor
gFP/t ∝ ε

−1/4
r

√
αQED � 1.

In the Sec. III we will retain Ĥpara, neglect Ĥdiam (and
higher-order terms), and integrate out the photonic degrees
of freedom. In this manner we will obtain an EEEI whose
magnitude is given by the second-order perturbation theory
energy scale g2

FP/(h̄ωD). Such EEEI is therefore ∼αQED, i.e.,
it is on the same order of magnitude of the expectation
value ph〈0|Ĥdiam|0〉ph of the diamagnetic term Ĥdiam over the
bare vacuum field |0〉ph. However, this expectation value is
quadratic (and not quartic) in the electronic operators and
thus represents a renormalization of the electronic bands,
which is not the focus of this paper. Our interest here is indeed
“limited” to the possibility that EEEIs mediated by cavity
photons induce a superconducting instability at the Fermi sur-
face. Aside from the vacuum contribution ph〈0|Ĥdiam|0〉ph, the

diamagnetic term can give rise to an EEEI (once it is inte-
grated out), but this is suppressed by a factor αQED � 1 with
respect to the EEEI induced by the paramagnetic coupling
Ĥpara. On the basis of these arguments, we neglect from now
on Ĥdiam and all other higher-order terms deriving from the
expansion of the Peierls phase factor in powers of the elemen-
tary charge e.

Before concluding this section a comment is in order. It
is by now established (see, e.g,. Refs. [62,63] and references
therein) that discarding the diamagnetic term can be danger-
ous for some physical phenomena induced by light-matter
interactions in cavity QED. For example, if one considers only
the paramagnetic coupling Ĥpara (disregarding the fact that
retaining Ĥpara alone is a weak-coupling approximation), the
ground state is unstable [62,63] with respect to a superradiant
quantum phase transition (i.e., photon condensation) when
the light-matter coupling reaches a critical value gc. This
threshold is attained when the coupling is comparable with
the bare frequency of the system, a regime that is well beyond
the applicability of perturbation theory and inconsistent with
the aforementioned weak-coupling assumption. The inclu-
sion of the diamagnetic term restores the stability of the
ground state [27–29,62]. Here, we consider light-matter inter-
actions described by Ĥpara only in the weak-coupling gFP �
gc regime, where the diamagnetic can be safely discarded.

III. MICROSCOPIC DERIVATION OF THE
CAVITY-INDUCED EFFECTIVE CURRENT-CURRENT

INTERACTIONS

In this section we trace out the photonic degrees of freedom
in the total Hamiltonian Ĥ in Eq. (1), in order to obtain
an effective Hamiltonian for the electronic degrees of free-
dom only. This procedure naturally yields a photon-mediated
EEEI. We remind that the paramagnetic coupling ĤÂ, which
couples electrons to photons, scales as gFP = tε−1/4

r
√

αQED,
which is assumed to be small. In the rest of this section, we
perform a perturbative expansion in gFP.

We start by defining the eigenstates |ψn〉e of the bare elec-
tronic Hamiltonian Ĥe, i.e., Ĥe|ψn〉e = En|ψn〉e. The global
ground state |�〉 of the system defined by the full Hamiltonian
Ĥ in Eq. (1) satisfies the Schrödinger equation (Ĥ − E )|�〉 =
0.

In the absence of the paramagnetic term, i.e., for gFP = 0,
the ground state |�0〉 of the full Hamiltonian is the product
of the bare electronic ground state |ψ0〉e and the photonic
vacuum |0〉ph, i.e., |�0〉 = |ψ0〉e|0〉ph. For finite but small gFP,
the true ground state will have a large overlap with |�0〉.
Hence, for small gFP, it makes sense to perform a perturbative
expansion around the bare photonic vacuum. Following this
idea, we separate the total Hilbert space into two subspaces
[1], P and Q. States in P have no constraints on the elec-
tronic wave function but contain zero photons. Conversely,
Q is spanned by states having one or more photons. Let P̂
be the projection operator on the subspace P. This operator
leaves the electronic wave function unaffected and projects
the electromagnetic field onto its vacuum state |0〉ph,

P̂ = 1e|0〉ph ph〈0|, (35)
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where 1e =∑n |ψn〉e e〈ψn| is the identity acting on the
electronic degrees of freedom. Similarly, Q̂ = 1 − P̂ is the
projector operator on the subspace Q, characterized by
nonzero photons. The projectors have the following proper-
ties: P̂ + Q̂ = 1, P̂2 = P̂ , Q̂2 = Q̂, and P̂Q̂ = Q̂P̂ = 0.

Since P̂ + Q̂ = 1 we have

|�〉 = (P̂ + Q̂)|�〉 = P̂|�〉 + Q̂|�〉. (36)

Replacing this result into the left-hand side of the eigenvalue
problem Ĥ|�〉 = E |�〉 we find

ĤP̂|�〉 + ĤQ̂|�〉 = E |�〉. (37)

In order to find two coupled eigenvalue equations for P̂|�〉
and Q̂|�〉 we simply need to multiply Eq. (37) on the left,
one time for P̂ and one time for Q̂. We find

(P̂ĤP̂ + P̂ĤQ̂)|�〉 = EP̂|�〉 (38)

and

(Q̂ĤP̂ + Q̂ĤQ̂)|�〉 = EQ̂|�〉. (39)

We now use in Eq. (39) that Q̂ is idempotent, i.e., Q̂2 = Q̂:

(Q̂ĤP̂ + Q̂ĤQ̂2)|�〉 = Q̂ĤP̂|�〉 + Q̂ĤQ̂(Q̂|�〉)

= EQ̂|�〉. (40)

Solving the previous equation for Q̂|�〉 we find

Q̂|�〉 = (E − Q̂ĤQ̂)−1Q̂ĤP̂|�〉. (41)

We now rewrite Eq. (38) as following:

(P̂ĤP̂2 + P̂ĤQ̂2)|�〉 = EP̂|�〉
⇒ P̂ĤP̂ (P̂|�〉) + P̂ĤQ̂(Q̂|�〉) = EP̂|�〉, (42)

where we have again used P̂2 = P̂ and Q̂2 = Q̂. We now
replace Eq. (41) into (42) and find

P̂ĤP̂ (P̂|�〉) + P̂ĤQ̂(E − Q̂ĤQ̂)−1Q̂ĤP̂|�〉
= EP̂|�〉 (43)

or, equivalently,

P̂ĤP̂ (P̂|�〉) + P̂ĤQ̂(E − Q̂ĤQ̂)−1Q̂ĤP̂2|�〉
= EP̂|�〉

⇒ P̂ĤP̂ (P̂|�〉) + P̂ĤQ̂(E − Q̂ĤQ̂)−1Q̂ĤP̂ (P̂|�〉)

= EP̂|�〉. (44)

We have therefore demonstrated the following important
result:

[P̂ĤP̂ + P̂ĤQ̂(E − Q̂ĤQ̂)−1Q̂ĤP̂]P̂|�〉 = EP̂|�〉.
(45)

Equation (45) represents an effective Hamiltonian for P̂|�〉,
which acts on states of the subspace P with no photons.

We note that P̂ĤP̂ = Ĥe since the two photon-related
terms Ĥph and Ĥpara vanish, once projected onto the vacuum,
i.e., P̂ĤphP̂ = 0 and P̂ĤparaP̂ = 0. Also, P̂ĤQ̂ = P̂ĤparaQ̂
due to the fact that the paramagnetic term Ĥpara is the only
term in the total Hamiltonian Ĥ which changes the number

of photons from zero to one, connecting the two subspaces
P and Q. Equation (45) therefore naturally defines a retarded
(i.e., energy-dependent) self-energy operator �̂(E ),

�̂(E ) = P̂ĤparaQ̂(E − Q̂ĤQ̂)−1Q̂ĤparaP̂, (46)

and an effective Hamiltonian

Ĥeff (E ) = Ĥe + �̂(E ). (47)

Up to this point, Eqs. (46) and (47) are exact as we have made
no approximations. We now use the perturbative expansion in
gFP in order to eliminate the energy dependence of �̂(E ).

First, we split the subspace Q into two subspaces, Q1,
which contains states with one photon, and Q>, which is
spanned by states with more than one photon. We then in-
troduce the projector onto the subspace Q1 (Q>), which we
denote by the symbol Q̂1 (Q̂>). The explicit form of Q̂1 is

Q̂1 = 1e

∑
q‖,s,nz

|q‖, s, nz〉ph ph〈q‖, s, nz|, (48)

where |q‖, s, nz〉ph
= â†

q‖,s,nz
|0〉ph and Q̂> = Q̂ − Q̂1. Since

Ĥpara is linear in the photonic creation and annihilation op-
erators, it can create or destroy only one photon. Hence, Ĥpara

connects the space P with the space Q1, while Q> remains
decoupled, i.e., P̂ĤparaQ̂ = P̂ĤparaQ̂1. Using this result in
Eq. (46) we find

�̂(E ) = P̂ĤparaQ̂1(E − Q̂ĤQ̂)−1Q̂1ĤparaP̂ . (49)

We are now in the position to perform the perturbative expan-
sion.

Since Ĥpara is linear in gFP, the perturbative expansion
of the self-energy �̂(E ) in Eq. (46) starts at order g2

FP. In
this paper we are interested only in the contribution to �̂(E )
of O(g2

FP) and will therefore discard higher-order contribu-
tions. Hence, in the term (E − Q̂ĤQ̂)−1 we can discard the
paramagnetic term, which is linear in gFP, replacing the full
Hamiltonian Ĥ with the sum of Ĥe and Ĥph, i.e., Q̂ĤQ̂ →
Q̂(Ĥe + Ĥph)Q̂. The latter term does not change the number
of photons and it is therefore not able to connect Q1 and Q>,
i.e.,

Q̂1(Ĥe + Ĥph)Q̂
>

= Q̂>(Ĥe + Ĥph)Q̂1 = 0. (50)

For the sake of brevity, we introduce in what follows the
shorthand Ĥd = Ĥe + Ĥph.

We now expand the denominator (E − Q̂ĤdQ̂)−1 by using
the following identity:

1

E − Ô
= 1

E

[ ∞∑
n=1

( Ô
E

)n

+ 1

]
, (51)

where Ô is a generic operator. Using Eqs. (50) and (51) we
can express the energy denominator in Eq. (49) as following:

[E − (Q̂1 + Q̂>)Ĥd(Q̂1 + Q̂>)]−1

= 1

E

{ ∞∑
n=1

[(Q̂1ĤdQ̂1

E

)n

+
(Q̂>ĤdQ̂>

E

)n]
+ 1

}
.

(52)

104513-7



GIAN MARCELLO ANDOLINA et al. PHYSICAL REVIEW B 109, 104513 (2024)

Recalling that in Eq. (49) we need the quantity Q̂1(E −
Q̂ĤdQ̂)−1Q̂1 and using that Q̂1(Q̂>ĤQ̂>)nQ̂1 = 0, we get

Q̂1[E − (Q̂1 + Q̂>)Ĥd(Q̂1 + Q̂>)]−1Q̂1

= Q̂1

E

{ ∞∑
n=1

(Q̂1ĤdQ̂1

E

)n

+ 1

}
Q̂1

= Q̂1
1

E − Q̂1ĤdQ̂1
Q̂1. (53)

Replacing this result in Eq. (49) we find

�̂(E ) = P̂ĤparaQ̂1(E − Q̂1ĤdQ̂1)−1Q̂1ĤparaP̂ . (54)

The last step is to expand E in powers of gFP by assuming
that the energy is close to that of the noninteracting ground
state, i.e., E = E0 + δE , where δE ∼ gFP. Hence, in the term
(E − Q̂1ĤQ̂1)−1 we can approximate E with E0, obtaining a
nonretarded self-energy �̂(E ) � �̂(E0). After all these sim-
plifications, we obtain

(E0 − Q̂1ĤdQ̂1)−1 �
∑

n

∑
q‖,s,nz

|ψn〉e|q‖, s, nz〉ph

× 1(
E0 − En − h̄ωq‖,s,nz

)
× ph〈q‖, s, nz| e〈ψn|. (55)

We now define the EEEI Hamiltonian as the self-energy evalu-
ated at energy E0 and projected onto the bare photon vacuum,
i.e.,

ĤEEEI ≡ph 〈0|�̂(E0)|0〉ph. (56)

Explicitly, we have

ĤEEEI =
∑

n

∑
q‖,s,nz

ph〈0|Ĥpara|q‖, s, nz〉ph|ψn〉e

× 1(
E0 − En − h̄ωq‖,s,nz

)
× e〈ψn|ph〈q‖, s, nz|Ĥpara|0〉ph. (57)

This is a Hamiltonian acting only on the electronic sector.
We can further simplify Eq. (57) by performing the adi-

abatic approximation, i.e., by assuming that the following
inequality is satisfied: En − E0 � h̄ωq‖,s,nz . In our case this as-
sumption is safe since the energy difference between electrons
in the conduction band (which are responsible for super-
conductivity) is much smaller than the photon energy. By
using the adiabatic assumption and the completeness relation∑

n |ψn〉e e〈ψn| = 1e, we finally get

ĤEEEI � −
∑

q‖,s,nz

1

h̄ωq‖,s,nz

|ph〈0|Ĥpara|q‖, s, nz〉ph|2. (58)

Following this projection approach we have integrated out
the photonic degrees of freedom and found an EEEI. Notice
that |ph〈0|Ĥpara|q‖, s, nz〉ph|2 is still an operator acting on the
electronic degrees of freedom: |Ô|2 = Ô†Ô is the modulus of
the operator Ô. Equation (58) is the most important result of
this section.

We can write Eq. (58) more explicitly by employing the
expression for the paramagnetic term Ĥpara worked out in
Eq. (33). We find

ĤEEEI = −
(

e

c

)2 ∑
q‖,s,nz

1

h̄ωq‖,s,nz

×
∣∣∣∣∣∑

q′
‖,�

Ĵ�,−q′
‖ · ph〈0|Âq′

‖,�|q‖, s, nz〉ph

∣∣∣∣∣
2

. (59)

The matrix element ph〈0|Âq′
‖,�|q‖, s, nz〉ph can be calculated

from Eq. (30). By noticing that ph〈0|âq′
‖,s′,n′

z
|q‖, s, nz〉ph =

δq‖,q′
‖δs,s′δnz,n′

z
and ph〈0|â†

q′
‖,s′,n′

z
|q‖, s, nz〉ph = 0, we get

ph〈0|Âq′
‖,�|q‖, s, nz〉ph = δq′

‖,q‖A
(2D)
q‖,nz

ei
q‖·δ�

2 eq‖,s,nz (0). (60)

Using this result in Eq. (59) we find an effective long-range
interaction between currents,

ĤEEEI = −
(

e

c

)2 ∑
�,�′,q‖

Ĵ�,−q‖ · F�,�′,q‖ · Ĵ
†
�′,−q‖ , (61)

where

F�,�′,q‖ =
∑
s,nz

eq‖,s,nz (0)
e

iq‖·(δ�−δ
�′ )

2
(
A(2D)

q‖,nz

)2
h̄ωq‖,s,nz

e∗
q‖,s,nz

(0). (62)

This term contains only quantities associated with the vector
potential, specifically the photonic energy h̄ωq‖,s,nz , the pho-
tonic polarization eq‖,s,nz (0), the vector potential amplitude
A(2D)

q‖,nz
, and a phase factor exp[iq‖ · (δ� − δ�′ )/2], correspond-

ing to the position at which the field is evaluated [see
Fig. 2(b)].

By using the explicit expressions for the field amplitude
A(2D)

q‖,nz
and the photonic energy h̄ωq‖,s,nz reported in Eqs. (11)

and (12) we get

F�,�′,q‖ = 4Lz

πS
e

iq‖·(δ�−δ
�′ )

2

∑
s,nz

eq‖,s,nz (0)

× 1

(Lzq‖/π )2 + n2
z

e∗
q‖,s,nz

(0). (63)

We remind the reader that the sum over nz in Eq. (63) runs
only over the odd modes, i.e., nz = 2mz + 1 with mz ∈ N.

Using the explicit expressions for the polarization vectors
reported in Eqs. (14) and (15), we can decompose F�,�′,q‖ in
Eq. (63) into a transverse and a longitudinal contribution (with
respect to q‖):

F�,�′,q‖ = FT
�,�′,q‖

uT,q‖uT,q‖ + FL
�,�′,q‖

uL,q‖uL,q‖ , (64)

where

FT
�,�′,q‖

= 4Lz

πS
e

iq‖·(δ�−δ
�′ )

2

∞∑
mz=0

1

(Lzq‖/π )2 + (2mz + 1)2
(65)
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and

FL
�,�′,q‖

= 4Lz

πS
e

iq‖·(δ�−δ
�′ )

2

∞∑
mz=0

(2mz + 1)2

[(Lzq‖/π )2 + (2mz + 1)2]2
.

(66)

The two sums over the mode index mz can be performed
analytically. We find

ST(x) ≡
∞∑

mz=0

1

(2mz + 1)2 + x2
= π

4x
tanh

(πx

2

)
(67)

and

SL(x) ≡
∞∑

mz=0

(2mz + 1)2

[(2mz + 1)2 + x2]2

= π [sinh(πx) + πx]

8x[cosh(πx) + 1]
. (68)

Using these results we can rewrite Eqs. (65) and (66) as
following:

FT
�,�′,q‖

= 4Lz

πS
e

iq‖·(δ�−δ
�′ )

2 ST

(
Lzq‖
π

)
(69)

and

FL
�,�′,q‖

= 4Lz

πS
e

iq‖·(δ�−δ
�′ )

2 SL

(
Lzq‖
π

)
. (70)

Finally, the EEEI Hamiltonian ĤEEEI in Eq. (61) can be
rewritten as

ĤEEEI = −
(e

c

)2 ∑
α=T,L

∑
�,�′,q‖

Ĵ�,−q‖,αF
α
�,�′,q‖

Ĵ†
�′,−q‖,α

, (71)

where we introduced the transverse and longitudinal currents
(with respect to q‖) as

Ĵ�,q‖,T ≡ uT,q‖ · Ĵ�,q‖ , (72)

Ĵ�,q‖,L ≡ uL,q‖ · Ĵ�,q‖ . (73)

We now estimate the strength of the effective
current-current interaction ĤEEEI in Eq. (71). The product
Ĵ�,−q‖,α Ĵ†

�′,−q‖,α
is on the order of (ta/h̄)2. The quantity F�,�′,q‖

in Eq. (63) is on the order of Lz/S. Provided that 2D electron
system area and the surface S of the cavity in the x̂-ŷ plane
coincide, i.e., provided that S ∼ Ncella2, and recalling the
prefactor (e/c)2 in Eq. (71), we immediately see that ĤEEEI

scales like

ĤEEEI ∼ g2
FP

h̄ωD
= tαQED

tLz

π h̄c
. (74)

Notice that the relative dielectric constant εr drops out of the
problem. This stems from the fact that, in the adiabatic limit,
the photon-mediated EEEI corresponds to a magnetostatic
interaction between currents, which does not feel the influence
of a dielectric. We conclude that it is not possible to tune
current-current EEEI by altering the electrostatic environment
provided, e.g., by a substrate.

Since we are interested in the possibility that the EEEI in
Eq. (71) induces a superconducting instability, we can per-
form a further approximation onto ĤEEEI. Assuming to have
an electron-doped graphene sheet, we can limit our analysis
to the conduction band and set κ = κ ′ = +. Indeed, super-
conductivity emerges from attractive interactions between
electrons lying in a thin energy shell around the Fermi energy.
Also, we focus on a high doping regime where supercon-
ductivity is expected to be strongly favored and where cavity
photons cannot induce interband transitions. Mathematically,
the absence of interband transitions is ensured by the Pauli-
blocking inequality h̄ωD < 2µ, the effective Debye energy
h̄ωD representing half of the interested energy shell around
the chemical potential μ. In this intraband approximation we
can express the current-current interaction in terms of the
conduction-band fermionic operators d̂k,σ ≡ d̂k,σ,+ as

ĤEEEI = − g2
FP

h̄ωD

a2

S

∑
q‖

∑
α=T,L

Sα

(
Lzq‖
π

)∑
k,�,σ

[
δ�

a
· uα,q‖

(
ei(k+q‖/2)·δ�ϕ∗

k−e−i(k+q‖/2)·δ�ϕk+q‖

)
d̂†

k+q‖,σ
d̂k,σ

]

×
∑

k′,�′,σ ′

[
δ�′

a
· uα,q‖

(
e−i(k′−q‖/2)·δ�′ ϕk′−q‖−ei(k′−q‖/2)·δ�′ ϕ∗

k′
)
d̂†

k′−q‖,σ ′ d̂k′,σ ′

]
. (75)

In writing the previous equation we have used the explicit
expression of the current operator in terms of the fermionic
creation and annihilation operators [see Eqs. (27) and (28)].

We now perform a change of variables introducing the
three vectors Q, p, and p′ in such a way that k = Q + p′,
k′ = Q − p′, and q‖ = p − p′. This will enable us to express
the EEEI in terms of the center-of-mass momentum Q and the
relative momentum p′ of the two interacting electrons. This

choice of variables is motivated by our interest in establishing
whether or not it is possible to induce an Amperean supercon-
ducting instability in a 2D electron system (in our case SLG)
placed inside a cavity. As we will see below in Sec. IV, in an
Amperean superconductor Q is allowed to hold a finite value.
This is in stark contrast with an ordinary BCS superconductor
where the center-of-mass momentum Q of a Cooper pair is
QBCS = 0.
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Taking S = 3
√

3Ncella2/2 and performing the aforemen-
tioned change of variables, the EEEI becomes

ĤEEEI = 1

2Ncell

∑
p,p′,Q

Vp,p′,Q

∑
σ,σ ′=↑,↓

(d̂†
Q+p,σ d̂†

Q−p,σ ′

× d̂Q−p′,σ ′ d̂Q+p′,σ + d̂†
Q+p,σ d̂Q+p,σ δp′,−pδσ ′,σ ). (76)

Here, Vp,p′,Q is the electron-electron interaction potential
defined as Vp,p′,Q = [g2

FP/(h̄ωD)]Ṽp,p′,Q, where Ṽp,p′,Q is the
following dimensionless quantity:

Ṽp,p′,Q = − 4

3
√

3
(ηQ+(p+p′ )/2ϕ

∗
Q+p′ − η∗

Q+(p+p′ )/2ϕQ+p)

·
[ ∑

α=T,L

uα,p−p′Sα

(
Lz|p − p′|

π

)
uα,p−p′

]
· (η∗

Q−(p+p′ )/2ϕQ−p − ηQ−(p+p′ )/2ϕ
∗
Q−p′ ), (77)

where the vector ηk is

ηk ≡
3∑

�=1

δ�eik·δ� . (78)

We now discuss a few important properties of Ṽp,p′,Q:
(i) The Hermitian nature of ĤEEEI as defined in Eq. (56)

implies that Ṽp,p′,Q satisfies the following property: Ṽp,p′,Q =
Ṽ ∗

p′,p,Q.
(ii) We can see by direct inspection that Ṽp,p′,Q does not

depend on the cavity length Lz if one takes p = p′. This
happens because, in the function Sα (x), the length Lz always
appears in the product Lz(p − p′).

(iii) We note that the quantity g2
FP/(h̄ωD) ∝ Lz in the def-

inition of Vp,p′,Q diverges in free space, i.e., in the limit Lz →
∞. One may therefore be tempted to conclude (erroneously)
that the effective current-current interaction potential diverges
in free space. We now show that this not the case. In the limit
x → ∞, the functions Sα (x) for α = T and α = L behave as
following:

ST(x → ∞) = π

4x
, (79)

SL(x → ∞) = π

8x
. (80)

These results imply that Ṽp,p′,Q scales as 1/(Lz|p − p′|) in the
free-space Lz → ∞ limit. Hence, globally Vp,p′,Q tends to an
Lz-independent quantity for Lz → ∞.

(iv) Notice that in the same limit, the electromagnetic
functions Fα

�,�′,q‖
for α = T and α = L tend to the following

asymptotical results:

lim
Lz→∞

FT
�,�′,q‖

= π

q‖S
e

iq‖·(δ�−δ
�′ )

2 , (81)

lim
Lz→∞

FL
�,�′,q‖ = π

2q‖S
e

iq‖·(δ�−δ
�′ )

2 , (82)

which are the correct results in the absence of a cavity. Notice
that, in this limit, the quantities Fα

�,�′,q‖
do not depend on Lz,

as expected for the free-space case.
(v) Finally, we comment on the range of values of Lz we

have explored in the numerical calculations that are discussed
below in Sec. IV. A lower bound on the distance Lz between

the mirrors is provided by the fact that we have decided to
operate in the regime of Pauli blocking, i.e., in the regime of
chemical potentials μ obeying the inequality h̄ωD < 2µ. By
expressing the Debye energy scale h̄ωD in terms of Lz as in
Eq. (13) we get an expression for the lower bound Lmin

z on Lz:

Lmin
z ≡ π h̄c

2µ
√

εr
. (83)

Using εr = 4, which is appropriate to an hBN spacer sepa-
rating the two metallic mirrors (see Table I), we obtain

Lmin
z � 0.15

μ[eV]
µm = 150

μ[eV]
nm. (84)

For μ = 0.5t we get Lmin
z � 0.11 µm = 110 nm.

We now provide some illustration of the electron-electron
interaction potential Vp,p′,Q. In Figs. 3(a)–3(c), we plot the
dimensionless quantity Ṽp,p′,Q defined in Eq. (77) as a func-
tion of Q = (Qx, Qy) and for [20] p = p′ = 0. Note that the
resulting potential Ṽ0,0,Q is attractive and the minimum is
reached for Q = Q� � 2/3K, where K = 2π/(3a)(1, 1/

√
3)

is a high-symmetry point of the honeycomb-lattice BZ. How-
ever, at Q = Q� the density of states corresponding to the
symmetrized dispersion ε̄p,

ε̄p ≡ ξp+Q + ξ−p+Q

2
, (85)

vanishes for μ � 0.65t . As we will see below, ε̄p plays an im-
portant role in the theory of the Amperean superconductivity
that will be discussed in the next section. A better choice of Q
is Q � 0.9K for which Ṽ0,0,Q is attractive and there is a finite
density of states for high but experimentally accessible [53]
values of μ such as μ ≈ 0.5t . In what follows we will focus
on this choice for Q.

In Figs. 3(d)–3(f), we show that, for Q � 0.9K, the mini-
mum of Ṽp,p′,Q is reached for p = p′ = 0, justifying the choice
we made above. In Figs. 3(g)–3(i), we finally show that the po-
tential is peaked around p = p′ = 0. Results in Figs. 3(h) and
3(i) confirm that, in most of the BZ, the asymptotic scalings
of Sα (x) reported in Eqs. (79) and (80) well approximate the
full functions Sα (x) in Eqs. (67) and (68).

IV. AMPEREAN SUPERCONDUCTIVITY

The Hamiltonian (76) is an EEEI mediated cavity gauge
field, akin to the microscopic phonon-mediated EEEI Hamil-
tonian on which the BCS theory relies [1,2]. The main
difference between Eq. (76) and the conventional BCS Hamil-
tonian is that in the latter electrons on opposite sides of the
Fermi surface (i.e., electrons with k′ = −k and center-of-mass
momentum QBCS = 0) become partners in a Cooper pair.
On the contrary, the Hamiltonian (76) describes a pairing
mechanism whereby electrons traveling in the same direction
(Q �= 0) feel an attractive force. Since this is analogous to the
Amperean attraction between parallel current wires that ap-
pears in classical electromagnetism, such pairing mechanism
has also been dubbed Amperean [7].

Amperean superconductivity occurs when the Amperean
gap �

Q,p
σ,σ ′ , i.e., the expectation value of the operator
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FIG. 3. (a) Two-dimensional color map of the dimensionless EEEI potential Ṽp,p′,Q as a function of Q in the first BZ and for p = p′ = 0.
The black, blue, and red filled circles denote the �, M, and K points of the BZ, respectively. We recall that � = (0, 0), K = 2π/(3a)(1, 1/

√
3),

and M = 2π/(3a)(1, 0). The orange filled circle corresponds to the point 0.9K. In our numerical calculations of the Amperean superconducting
gap we have taken Q = 0.9K. (b), (c) Show Ṽ0,0,Q as a function of Q, which is varied along a high-symmetry path in the BZ. In (b) the potential
is evaluated along the path � − K while in (c) along the path � − M. It is clear from (b) that the minimum of the potential is reached for
Q ≈ (2/3)K. (d) Shows a color map of Ṽp,p′,Q as a function of p in the first BZ, for p = p′ and Q = 0.9K. (e), (f) Show Ṽp,p,0.9K evaluated
along the paths � − K and � − M, respectively. (a)–(f) Show quantities that are independent of the cavity length Lz. (g) Shows a color map of
|Ṽp,p′,Q| as a function of p in the first BZ, and evaluated for p′ = 0 and Q = 0.9K. Results in (g) have been obtained by setting Lz = 10 nm.
This value of Lz, which is below the lower bound Lmin

z , has been chosen only to show the potential structure, since for higher values of Lz the
potential is highly peaked around p = p′. The symbols in (h) and (i) show |Ṽp,0,0.9K | evaluated along the paths � − K and � − M, respectively.
Notice that the horizontal axis (p) is in logarithmic scale. The solid lines represent the asymptotic expansion of |Ṽp,0,0.9K |, which can be easily
obtained by using Eqs. (79) and (80). Black, red, and blue colors in (h) and (i) refer to three different values of Lz, i.e., Lz = 10 µm, Lz = 1 µm,
and Lz = 100 nm, respectively.

d̂−p′+Q,σ ′ d̂p′+Q,σ , is finite. More precisely, we have

�
Q,p
σ,σ ′ ≡ − 1

Ncell

∑
p′

Vp,p′,Q〈d̂−p′+Q,σ ′ d̂p′+Q,σ 〉T , (86)

where the average is performed on the thermal state at a finite
temperature T .

In order to develop a mean-field theory of Amperean su-
perconductivity, we follow the usual path [21] and apply a
Hartree-Fock (HF) decoupling onto the two-body interaction

term in (76), i.e., we approximate the right-hand side of
Eq. (76) as following (see, e.g., Chap. 2 in Ref. [21]):

d̂†
Q+p,σ d̂†

−p+Q,σ ′ d̂−p′+Q,σ ′ d̂Q+p′,σ

� 〈d̂†
Q+p,σ d̂†

−p+Q,σ ′ 〉T
d̂−p′+Q,σ ′ d̂Q+p′,σ

+ d̂†
Q+p,σ d̂†

−p+Q,σ ′ 〈d̂−p′+Q,σ ′ d̂Q+p′,σ 〉T

− 〈d̂†
Q+p,σ d̂†

−p+Q,σ ′ 〉T
〈d̂−p′+Q,σ ′ d̂Q+p′,σ 〉T , (87)
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which yields to the following mean-field HF Hamiltonian:

ĤHF
EEEI = 1

2

∑
p,Q

∑
σ,σ ′

[〈d̂†
p+Q,σ d̂†

−p+Q,σ ′ 〉T
�

Q,p
σ,σ ′

− d̂†
p+Q,σ d̂†

−p+Q,σ ′�
Q,p
σ,σ ′

− d̂−p+Q,σ ′ d̂p+Q,σ

(
�

Q,p
σ,σ ′
)∗]

. (88)

Following extensive earlier literature on PDW superconduct-
ing states [7,11,12,20], we assume that the momentum Q is
fixed (by the analysis carried out in the previous section, where
it was concluded that the best choice is Q � 0.9K) and drop
the sum over it.

If we add the free-electron Hamiltonian to Eq. (88), and
fix the spin degrees of freedom σ, σ ′ so as to focus only on
triplet or singlet superconductivity, the mean-field electronic
Hartree-Fock Hamiltonian reads as

ĤHF = 1

2

∑
p

(d̂†
p+Q,σ d̂−p+Q,σ ′ )

(
ξp+Q −�

Q,p
σ,σ ′

−�
Q,p
σ ′,σ −ξ−p+Q

)

×
(

d̂p+Q,σ

d̂†
−p+Q,σ ′

)
+ 1

2

∑
p

〈d̂†
p+Q,σ d̂†

−p+Q,σ ′ 〉T
�

Q,p
σ,σ ′ .

This Hamiltonian can be diagonalized by introducing the
following Bogoliubov transformation:

γ̂p+Q,σ = upd̂p+Q,σ + v∗
pd̂†

−p+Q,σ ′ , (89)

γ̂
†
−p+Q,σ ′ = vpd̂p+Q,σ − upd̂†

−p+Q,σ ′ , (90)

where up = cos(θp/2) and vp = sin(θp/2)eiφp , with

cos(θp) = ε̄p

εp
, (91)

sin(θp) =
√

h2
1(p) + h2

2(p)

εp
, (92)

eiφp = h1(p) + ih2(p)√
h2

1(p) + h2
2(p)

, (93)

and

εp =
√

h2
1(p) + h2

2(p) + ε̄2
p. (94)

Here, h1(p) ≡ −Re(�Q,p
σ,σ ′ ), h2(p) ≡ Im(�Q,p

σ,σ ′ ), and ε̄p has
been defined above in Eq. (85).

The above diagonalization procedure brings us to the fol-
lowing expression for the total Hamiltonian:

ĤHF =
∑

p

E+(p)γ̂ †
p+Q,σ γ̂p+Q,σ

−
∑

p

E−(p)γ̂ †
p+Q,σ ′ γ̂p+Q,σ ′ + C, (95)

where C ≡∑p 〈d̂†
p+Q,σ d̂†

−p+Q,σ ′ 〉�Q,p
σ,σ ′/2 and

E±(p) = δp ± εp

2
, (96)

the particle-hole asymmetry parameter δp being defined by

δp ≡ ξp+Q − ξ−p+Q

2
. (97)

Note that δ−p = −δp, which, in turn, leads to E−(p) =
−E+(−p).

The Bogoliubov quasiparticles follow the stan-
dard Fermi-Dirac distribution nF(x) = 1/(1 + ex ),
i.e., 〈γ̂p+Q,σ γ̂p+Q,σ 〉T = 〈γ̂p+Q,σ ′ γ̂p+Q,σ ′ 〉T = 0,
〈γ̂ †

p+Q,σ γ̂p+Q,σ 〉
T

= nF[βE+(p)], and 〈γ̂ †
p+Q,σ ′ γ̂p+Q,σ ′ 〉

T
=

nF[βE−(p)], where β = 1/(kBT ), kB being the Boltzmann
constant. These relations imply

〈d̂p+Q,σ ′ d̂p+Q,σ 〉T = − v∗
pup{1 − nF[βE+(p)]

− nF[βE+(−p)]}. (98)

Noticing that 1/2 − nF[x] = tanh(x/2)/2 we have

〈d̂p+Q,σ ′ d̂p+Q,σ 〉T = − v∗
pup

2
{tanh(βE+(p)/2)

+ tanh(βE+(−p)/2)}. (99)

Finally, recalling, on the one hand, the definition of the order
parameter in Eq. (86), and, on the other hand, the definitions
of up and vp, we get a self-consistency condition known as
gap equation:

�
Q,p
σ,σ ′ = − 1

Ncell

∑
p′

Vp,p′,Q
�

Q,p′
σ,σ ′

4εp′
{tanh[βE+(p′)/2]

+ tanh[βE+(−p′)/2]}. (100)

A. Linearization of the gap equation

Our aim is to determine the inverse critical temperature
βc at which the order parameter vanishes. To this end, we
linearize the gap equation (100) in the proximity of βc, by
replacing the quantities E+(±p) and εp in the right-hand side
of Eq. (100) with the corresponding expressions calculated
for �

Q,p
σ,σ ′ = 0. For �

Q,p
σ,σ ′ = 0, we have h1(p) = h2(p) = 0,

εp = ε̄p, and E+(p) = ξp+Q. Equation (100) then becomes

�
Q,p
σ,σ ′ = − 1

Ncell

∑
p′

Vp,p′,Q
�

Q,p′
σ,σ ′

4ε̄p′
{tanh[βc(ε̄p′ + δp′ )/2]

+ tanh[βc(ε̄p′ − δp′ )/2]}. (101)

We can rewrite the second line of the previous equation as
following:

tanh[βc(ε̄p′ + δp′ )/2] + tanh[βc(ε̄p′ − δp′ )/2]

2ε̄p′

= sinh (βcε̄p′ )

ε̄p′

1

cosh (βcε̄p′ ) + cosh (βcδp′ )
. (102)

We then take the continuum limit through the customary
replacement

1

Ncell

∑
p∈BZ

→ Sc

∫
BZ

d2 p
(2π )2

, (103)
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FIG. 4. (a) Shows the change of variables (p′
x, p′

y ) → (p′
⊥, p′

‖),
where p′

⊥ moves on a line with fixed energy ε̄p′ = constant, while p′
‖,

being parallel to ∇p′ ε̄p′ , moves in the direction of maximum variation
of ε̄p′ . (b) Shows the symmetrized dispersion ε̄p defined in Eq. (85)
(in units of the hopping energy t), the red line denotes the FS, ε̄p = 0,
with μ = 0.5t .

where Sc = 3
√

3a2/2 is the unit-cell area. Replacing
Eqs. (102) and (103) inside (101) we find

�
Q,p
σ,σ ′ = −Sc

2

∫
BZ

d2 p′

(2π )2
Vp,p′,Q�

Q,p′
σ,σ ′

×
{

sinh (βcε̄p′ )

ε̄p′

1

cosh (βcε̄p′ ) + cosh (βcδp′ )

}
.

(104)

Superconductivity is a Fermi surface (FS) effect. Below, we
will therefore need to restrict ourselves to a neighborhood
of the FS, which is defined by ε̄p′ = 0. We therefore con-
sider the isoenergy contour lines defined by the condition
ε̄p′ = const and perform a change of variables [see Fig. 4(a)]
(p′

x, p′
y) → (p′

‖, p′
⊥). Here, p′

‖ refers to the component of p′

which is parallel to ∇p′ ε̄p′ . On the other hand, p′
⊥ refers to the

component of p′ which is orthogonal to ∇p′ ε̄p′ . By definition,
we therefore have that ε̄p′ depends only on p′

‖, i.e., ε̄p′ = ε̄p′
‖ .

Performing this change of variables in Eq. (104) we find

�
Q,p⊥,p‖
σ,σ ′ = −Sc

2

∫
BZ

d p′
⊥d p′

‖
(2π )2

Vp⊥,p‖,p′
⊥,p′

‖,Q�
Q,p′

⊥,p′
‖

σ,σ ′

×
{

sinh (βcε̄p′
‖ )

ε̄p′
‖

1

cosh (βcε̄p′
‖ ) + cosh (βcδp′

⊥,p′
‖ )

}
.

(105)

Since the superconducting instability refers to a small en-
ergy region centered on the FS and the potential Vp⊥,p‖,p′

⊥,p′
‖,Q

is peaked at p‖ = p′
‖ and p⊥ = p′

⊥ over a length scale on the
order of 1/Lz, the integration over p′

‖ and p′
⊥ in Eq. (105) can

be approximated by choosing p‖ = pF
‖ lying on the FS [see

Fig. 4(a)] and p⊥ = p′
⊥. Hence, the integral over p′

‖, p′
⊥ can

be estimated as following:∫
d p′

‖d p′
⊥Vp⊥,pF

‖ ,p′
⊥,p′

‖,Q
� 1

L2
z

Vp⊥,pF
‖ ,p⊥,pF

‖ ,Q
. (106)

Moreover, since the EEEI potential is approximated as a delta
function, the last line of Eq. (105) can be evaluated on the
FS, where sinh (βcε̄p‖ )/ε̄p‖ � βc and cosh (βcε̄p‖ ) � 1. Within
these approximations, Eq. (105) reduces to

�
Q,p⊥,pF

‖
σ,σ ′ = − Sc

2L2
z (2π )2

Vp⊥,pF
‖ ,p⊥,pF

‖ ,Q
�

Q,p⊥,p‖
σ,σ ′

×
{

βc

1 + cosh (βcδp⊥,pF
‖
)

}
. (107)

Since this equation is diagonal in p⊥, an expression for the
critical temperature reads as

kBTc = maxp⊥νp⊥,pF
‖
, (108)

where

νp⊥,pF
‖

= − Sc

2L2
z (2π )2

Vp⊥,pF
‖ ,p⊥,pF

‖ ,Q

×
{

1

1 + cosh
(
ν−1

p⊥,pF
‖
δp⊥,pF

‖

)}. (109)

We can further express the gap equation in terms of the EEEI
Ṽp⊥,pF

‖ ,p⊥,pF
‖ ,Q

defined in Eq. (77):

νp⊥,pF
‖

= − 3
√

3

4(2π )2

(
a

Lz

)2 g2
FP

h̄ωD
Ṽp⊥,pF

‖ ,p⊥,pF
‖ ,Q

×
{

1

1 + cosh
(
ν−1

p⊥,pF
‖
δp⊥,pF

‖

)}. (110)

B. Results and estimation of the critical temperature

Equation (110) has been solved numerically and a sum-
mary of our main results is reported in Fig. 5. Obtained critical
temperatures are on the order of Tc ∼ 10−6 K for a distance
between the two mirrors of Lz = 1 µm.

The numerical solution of Eq. (110) shows that the maxi-
mal eigenvalue νp⊥,pF

‖
is reached for p̃⊥, p̃F

‖ such that δp̃⊥,p̃F
‖
=0.
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FIG. 5. Critical temperature Tc as a function of the distance Lz

between the cavity mirrors. Different sets of data refer to different
values of the chemical potential μ. Namely, red, black, and blue
colors refer to μ = 0.4t , μ = 0.45t , and μ = 0.5t , respectively.

It is therefore possible to estimate the critical temperature
by approximating the term cosh (ν−1

p̃⊥,p̃F
‖
δp̃⊥,p̃F

‖
) � 1. The equa-

tion for the critical temperature can be expressed as

kBTc = − 3
√

3

8(2π )2

(
a

Lz

)2 g2
FP

h̄ωD
Ṽp̃⊥,p̃F

‖ ,p̃⊥,p̃F
‖Q. (111)

The algebraic (rather than exponential) relation between
the critical temperature and the coupling constant gFP of
the theory is peculiar of light-mediated superconductivity
[23,64] or, more in general, of superconductivity mediated by
bosons carrying a small momentum, when forward scatter-
ing is dominant [65]. In conventional BCS superconductors,
electron-phonon interactions are essentially local, allowing
electrons to exchange arbitrary values h̄q of momentum.
This leads to the famous exponential BCS relationship for
the critical temperature. Conversely, in systems characterized
by nonlocal interactions that are peaked at q = 0, such as
those mediated by photons, the critical temperature shows
a distinctive power-law dependence. This behavior can also
be found in some high-temperature superconductors [66],
in stark contrast to conventional BCS-type phonon-mediated
superconductors.

We can estimate Ṽp̃⊥,p̃F
‖ ,p̃⊥,p̃F

‖Q � −10 (see Fig. 3).

The other factors are (a/Lz )2 � 2 × 10−8L−2
z [µm] and

g2
FP/(h̄ωD) � 3.2 × 10−2Lz [µm]t . Finally, we obtain

Tc = 3.4 × 10−6 K

Lz [µm]
, (112)

which, in terms of orders of magnitude, is in good agreement
with our numerical findings shown in Fig. 5. The analytical
estimate reported in Eq. (111) allows us to conclude that the
smallness of the critical temperature in our setup is mainly due
to the dimensionless parameter (a/Lz )2 � 1. We envision two
possible ways to greatly increase this parameter: (i) On the
one hand, one could increase the lattice spacing a by resort-
ing, e.g., to artificial graphene realized in semiconducting or
cold-atom platforms [67] or 2D moiré superlattices [68–72].
(ii) On the other hand, one could greatly decrease the field

extension, which in the Fabry-Pérot setup is on the order of
Lz, by means of nanoplasmonic cavities (see, however, the
following discussion).

V. DISCUSSION

Given the disappointing results reported in Fig. 5, it is in-
teresting to think about the possibility of boosting the critical
temperature Tc for light-induced Amperean superconductivity
to higher values. We stress that, so far, we have established
the absence of an Amperean superconducting instability in
graphene embedded in a Fabry-Pérot cavity. We remind the
reader that such cavities harbor transverse electromagnetic
modes.

For the case of a parabolic-band 2D electron gas roaming
in a GaAs quantum well, critical temperatures in the range
of 1–20 K have been obtained [20] by placing the system
into a nanoplasmonic cavity. It is well known [73,74] that
such cavities operate in the subwavelength regime, where the
plasmon-induced confinement length scale λp is much smaller
than the lengthscale λd imposed by the free-space diffraction
limit, i.e., λd ≡ λ0/2.

With the aim of deepening the comparison between our
disappointing results and the spectacular predictions for GaAs
quantum wells [20], we therefore follow the authors of
Ref. [20] and introduce the cavity compression factor as the
ratio between the plasmonic mode volume λ3

p and the free-
space mode volume λ3

d:

A ≡
(

λp

λd

)3

. (113)

The starting point of the theory developed by the authors
of Ref. [20] is the same as ours, i.e., it is a theory of Am-
perean superconductivity induced in a 2D electron system by
the vacuum of a Fabry-Pérot cavity. The authors, however,
go beyond by generalizing such theory to a nanoplasmonic
cavity. Heuristically, they argue that the light-matter coupling
defined in Eq. (23) scales like 1/

√
V , where V is the cavity

volume. Hence, a drastic reduction of the volume occupied by
light should result in a dramatic enhancement of the critical
temperature Tc. The key idea proposed by the authors of
Ref. [20] is therefore to (i) replace the cavity volume V = SLz

with the mode volume Vmode ≡ λ3
p = Aλ3

d; (ii) estimate the
volume imposed by the diffraction limit, i.e., λ3

d, with the
cavity volume V ; (iii) leave the Debye energy h̄ωD unaf-
fected by the rescaling V → Vmode. Following this logic, we
therefore see that the compression factor A linearly relates
the effective mode volume with the bare Fabry-Pérot cavity
volume, i.e., Vmode = AV . Replacing this result in Eq. (23) we
finally find the following light-matter coupling constant for a
nanoplasmonic cavity:

gnano = gFP√
A

. (114)

Since A � 1, we have that gnano � gFP: nanoplasmonic cav-
ities enable the reach of ultrastrong light-matter interactions
[73]. Employing values of A on the order of 10−5, the authors
of Ref. [20] find a critical temperature for Amperean super-
conductivity on the order of 1–20 K.
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In terms of the analysis performed in this paper, the pro-
posed replacement [20] gFP → gnano implies that the EEEI
potential Vp,p′,Q in Eq. (76) needs to be multiplied by 1/A.
Hence, we find a critical temperature Tc(A) at A �= 1 that reads
as following:

Tc(A) = Tc(A = 1)

A
, (115)

where Tc(A = 1) � 10−6 K is the critical temperature eval-
uated with the diffraction-limited light-matter coupling con-
stant gFP defined in Eq. (25). Recent experimental progress
[75–77] in the fabrication of nanoplasmonic cavities using
graphene plasmons combined with an engineered metal-
dielectric environment has enabled the reach of ultrastrong
compression factors, with record-high values [77] on the order
of A � 5 × 10−10. Using this value of A, one would get a
renormalized critical temperature for Amperean superconduc-
tivity Tc(A) � 2 × 103 K, which is clearly too optimistic.

The key point we wish to emphasize is that, unfortu-
nately, the formal replacement gFP → gnano is not justified
in the context of developing a theory of Amperean super-
conductivity. Indeed, the latter stems, microscopically, from
the coupling between the electronic current (21) and the
cavity vector potential (7), which is achieved by placing
the 2D electron system inside a planar Fabry-Pérot cavity.
As emphasized in this paper, such cavities host genuine 3D
transverse electromagnetic modes. Conversely, in a subwave-
length nanoplasmonic cavity satisfying the condition λp �
λd, the field is purely quasistatic [78], i.e., it is a field that
can be described by an electric scalar potential φcav(r, t ).
Such scalar potential couples to matter through the den-
sity (rather than the current) operator [21]. Tracing out the
nanoplasmonic-cavity degrees of freedom would therefore re-
sult in an effective density-density interaction, rather than an
Amperean current-current one, as we will show momentarily
in Sec. V. Employing “mode volume confinement” arguments
in the theory of Amperean superconductivity is therefore fun-
damentally inconsistent and one is forced to take A = 1 in
Eq. (114).

Dyadic Green’s function and EEEIs

In this section, we use a Green’s function approach to
demonstrate that, in subwavelength cavities, the EEEI [see
Eq. (56)] is dominated by a density-density contribution.

We begin by reminding the reader about Maxwell’s equa-
tions [58]:

∂αDα (r, ω) = 4πρext (r, ω), (116)

∂αBα (r, ω) = 0, (117)

εαβγ ∂βEγ (r, ω) = iω

c
Bα (r, ω), (118)

εαβγ ∂βHγ (r, ω) = 4π

c
Jext
α (r, ω) − iω

c
Dα (r, ω). (119)

Here, ρext (r, ω) and Jext
α (r, ω) are the external charge and

current densities, evaluated at position r and frequency ω and
α = 1, 2, 3 is a Cartesian index that specifies the component
of vectorial quantities. Throughout this section, we adopt the

Einstein summation convention. Specifically, for two vectors
vα and wα , repeated indices imply summation, i.e., vαwα ≡∑

α vαwα .
We now assume that the electric displacement Dα (r, ω)

and magnetic induction Bα (r, ω) are related to the electric and
magnetic fields Eα (r, ω), Hα (r, ω) by the following linear and
local relationships:

Dα (r, ω) = εαβ (r, ω)Eβ (r, ω), (120)

Bα (r, ω) = μαβ (r, ω)Hβ (r, ω), (121)

εαβ (r, ω) and μαβ (r, ω) being position- and frequency-
dependent dielectric and permeability tensors.

Taking the divergence of Eq. (119) and using Eq. (116)
yields the continuity equation

∂αJext
α (r, ω) − iωρext (r, ω) = 0. (122)

Inverting Eq. (118) to get Hβ (r, ω) and substituting the result
into Eq. (118) yields the inhomogeneous Helmoltz equa-
tion for the electric field

εαβγ ∂β

[
μ−1

γ δ (r, ω)εδζη∂ζ Eη(r, ω)
]− ω2

c2
εαβ (r, ω)Eβ (r, ω)

= 4π iω

c2
Jext
α (r, ω). (123)

Multiplying Eq. (119) by the inverse of the dielectric permit-
tivity matrix, taking the curl, and making use of Eq. (118) we
find the corresponding equation for the magnetic field:

εαβγ ∂β

[
ε−1
γ β (r, ω)εδζη∂ζ Hη(r, ω)

]− ω2

c2
μαβ (r, ω)Hβ (r, ω)

= 4π

c
εαβγ ∂βε−1

γ δ (r, ω)Jext
δ (r, ω). (124)

Note that taking the divergence of Eq. (123) and using the
continuity equation (122) yields (116), while taking the diver-
gence of Eq. (124) gives (117).

We introduce the following compact notation for a differ-
ential operator Dαβ (T ) depending on a tensor T (r, ω):

Dαβ (T ) ≡ εαγ δεζηβ∂γ [Tδζ (r, ω)∂η . . . ]. (125)

In the simple case Tαβ (r, ω) = δαβ this reduces to

Dαβ (1) = ∂α∂β − δαβ∂γ ∂γ . (126)

With this notation, the Helmholtz equations can be written as

Dαβ (μ−1)Eβ (r, ω) − ω2

c2
εαβ (r, ω)Eβ (r, ω)

= 4π iω

c2
Jext
α (r, ω), (127)

Dαβ (ε−1)Hβ (r, ω) − ω2

c2
μαβ (r, ω)Hβ (r, ω)

= 4π

c
εαβγ ∂βε−1

γ ,δ (r, ω)Jext
δ (r, ω). (128)

The Green’s function Gαβ (r, r′, ω) associated with the
Helmholtz equation for the electric field, Eq. (127), is
known as “dyadic Green’s function” and obeys the following
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equation:

D′
βγ (T μ−1)Gαγ (r, r′, ω) − ω2

c2
T εβγ (r′, ω)Gαγ (r, r′, ω)

= 4πδαβδ(r − r′). (129)

The dyadic Green’s function directly connects the total elec-
tric field Eα (r, ω) at point r in space with the external source
Jext
β (r′, ω) evaluated at point r′,

Eα (r, ω) = E (0)
α (r, ω) + iω

c2

∫
dr′Gαβ (r, r′, ω)Jext

β (r′, ω),

(130)

E (0)
α (r, ω) being a solution of the homogeneous equation as-

sociated to Eq. (127).
As usual, we now introduce scalar and vector potentials

φ(r, ω), Aα (r, ω):

Bα (r, ω) = εαβγ ∂βAγ (r, ω), (131)

Eα (r, ω) = −∂αφ(r, ω) + iω

c
Aα (r, ω). (132)

These expressions ensure that Eα (r, ω) and Bα (r, ω) sat-
isfy automatically the two homogeneous equations (117) and
(118).

Using these definitions into Eqs. (116) and (119) yields

∂α

(
εαβ (r, ω)

[
−∂βφ(r, ω) + iω

c
Aβ (r, ω)

])
= 4πρext (r, ω), (133)

Dαβ (μ−1)Aβ (r, ω) − ω2

c2
εαβ (r, ω)Aβ (r, ω)

= 4π

c
Jext
α (r, ω) + iω

c
εαβ (r, ω)∂βφ(r, ω). (134)

We use the gauge freedom to separate out the equation for
the scalar potential. We work under the following gauge
condition:

∂α[εαβ (r, ω)Aβ (r, ω)] = 0. (135)

This reduces to the standard Coulomb gauge in the limit of a
scalar and spatially uniform dielectric permittivity.

With this gauge-fixing condition, Eq. (133) becomes the
familiar frequency-dependent Poisson equation

−∂α[εαβ (r, ω)∂βφ(r, ω)] = 4πρext (r, ω). (136)

We now introduce the following “scalar-vector” [(s)-(v)]
decomposition:

Jext
α (r, ω) = J (v)

α (r, ω) + J (s)
α (r, ω), (137)

where

J (v)
α (r, ω) ≡ Jext

α (r, ω) + iω

4π
εαβ (r, ω)∂βφ(r, ω) (138)

and

J (s)
α (r, ω) ≡ − iω

4π
εαβ (r, ω)∂βφ(r, ω). (139)

We stress that, while the vector part J (v)(r, ω) of the current is
clearly solenoidal, i.e., its divergence is zero (a consequence

of the continuity equation)

∂αJ (v)
α (r, ω) = 0, (140)

the scalar counterpart J (s)(r, ω) is not irrotational:

εαβγ ∂βJ (s)
γ (r, ω) �= 0. (141)

Physically this means that J (v)(r, ω) is indeed a transverse
vector but it does not identify all the transverse current
JT(r, ω).

Clearly, when the material reduces to the vacuum, i.e.,
μαβ (r, ω) = εαβ (r, ω) = δαβ , the scalar-vector decomposi-
tion proposed above reduces to the standard longitudinal and
transverse decomposition enabled by the Coulomb gauge,
i.e., the scalar current reduces to the longitudinal current,
J (s)(r, ω) → JL(r, ω) such that εαβγ ∂ jJL

γ (r, ω) = 0, while the
vector current reduces to the longitudinal one J (v)(r, ω) →
JT(r, ω) such that εαβγ ∂βJT

γ (r, ω) = 0. In other words, we
obtain the standard longitudinal-transverse decoupling of the
Maxwell equations.

We now return to the general case of a linear and local ma-
terial. The equation for the vector potential reads as following:

Dαβ (μ−1)Aβ (r, ω) − ω2

c2
εαβ (r, ω)Aβ (r, ω) = 4π

c
J (v)
α (r, ω),

(142)

where on the right-hand side we have introduced the vector
part of the current.

From the equations for the scalar and vector potentials, it
is possible to show that the corresponding scalar g(s)(r, r′, ω)
and vector g(v)

αβ (r, r′, ω) Green’s functions obey the following
equations:

−∂ ′
β[Tεβα (r′, ω)∂ ′

αg(s)(r, r′, ω)] = 4πδ(r − r′), (143)

εβδζ εηλγ ∂ ′
δ

[
Tμ−1

ζη (r′, ω)∂ ′
λg(v)

αγ (r, r′, ω)
]

− ω2

c2
Tεβγ (r′, ω)g(v)

αγ (r, r′, ω)

= 4π

[
δαβδ(r − r′) − 1

4π
εγβ (r′, ω)∂ ′

γ ∂αg(s)(r, r′, ω)

]
,

(144)

together with the gauge-fixing condition (135) on the vector
Green’s function:

∂ ′
β[Tεβγ (r′, ω)g(v)

αγ (r, r′, ω)] = 0. (145)

Here, TOβγ (r′, ω) denotes the transpose of the tensor
O(r′, ω). Once these equations are solved for g(s)(r, r′, ω)
and g(v)

αβ (r, r′, ω), the potentials are found by carrying out the
following convolutions with the sources:

φ(r, ω) = φ0(r, ω) +
∫

dr′g(s)(r, r′, ω)ρext (r′, ω) (146)

and

Aα (r, ω) = A0,α (r, ω) + 1

c

∫
dr′g(v)

αβ (r, r′, ω)J (v)
β (r′, ω),

(147)

where, as usual, φ0(r, ω) and A0,α (r, ω) are solutions of
the homogeneous equations associated to Eqs. (136) and
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(134), respectively. Equation (146) is obtained by multiplying
Eq. (143) [Eq. (144)] by φ(r′, ω) [Aα (r′, ω)] and integrating
over r′.

We now express the source terms for the scalar and vector
potentials only in terms of the external current Jext (r, ω). In
Eq. (146) we use the continuity equation, finding

φ(r, ω) = φ0(r, ω) − 1

iω

∫
dr′∂ ′

αg(s)(r, r′, ω)Jext
α (r′, ω).

(148)

The vector potential expressed in terms of the source and
the vector Green’s function can be further manipulated by
introducing the total current Jext

α (r, ω). We rewrite the first
term on the right-hand side of Eq. (147) as

1

c

∫
dr′g(v)

αβ (r, r′, ω)J (v)
β (r′, ω)

= 1

c

∫
dr′g(v)

αβ (r, r′, ω)Jext
β (r′, ω)

− iω

4πc

∫
dr′∂ ′

γ εβγ (r′, ω)g(v)
αβ (r, r′, ω)φ(r′, ω). (149)

The third line of the previous equation vanishes due to the
gauge-fixing condition (145), yielding

1

c

∫
dr′g(v)

αβ (r, r′, ω)J (v)
β (r′, ω)

= 1

c

∫
dr′g(v)

αβ (r, r′, ω)Jext
β (r′, ω). (150)

Equation (147) can be finally rewritten by means of the previ-
ous equation as

Aα (r, ω) = A0,α (r, ω) + 1

c

∫
dr′g(v)

αβ (r, r′, ω)Jext
β (r′, ω).

(151)

The vectorial Green’s function links Aα (r, ω) with the external
source Jext

β (r′, ω). By comparing Eq. (132) with (146) and
(151) we conclude that the total dyadic Green’s function can
be decomposed into scalar and vectorial contributions

Gαβ (r, r′, ω) = − c2

ω2
∂α∂ ′

βg(s)(r, r′, ω) + g(v)
αβ (r, r′, ω).

(152)

This is the most important technical result of this section.
The decomposition (152) allows us to prove the most im-

portant result of this section from the physics point of view:
the Green’s function of a subwavelength nanoplasmonic cav-
ity is dominated by the scalar component g(s)(r, r′, ω), which
solves the frequency-dependent Poisson equation (136). As
previously discussed, indeed, a subwavelength nanoplasmonic
cavity confines the field in a mode volume Vmode = λ3

p, signif-
icantly smaller than the volume constrained by the free-space
diffraction limit λ3

d. This corresponds to the nonretarded limit
λd � λp. The free-space diffraction limit length can be re-
lated to the frequency ω as λd = π (c/ω). To estimate the
spatial variation of the field in a subwavelength nanoplas-
monic cavity, we can set ∂α, ∂ ′

β ≈ λ−1
p in Eq. (152). As a

result, in subwavelength nanoplasmonic cavity the first term
on the right-hand side of Eq. (152) is amplified by a fac-
tor of (λd/λp)2 � 1 with respect to the second term. Thus,

these cavities can be essentially characterized by the scalar
Green’s function g(s)(r, r′, ω) alone, which yields the cavity’s
quasistatic electric field:

Gnano
αβ (r, r′, ω) ≈ −

( c

ω

)2
∂α∂ ′

βg(s)(r, r′, ω), (153)

where the nonretarded scalar Green’s function g(s)(r, r′, ω)
satisfies the Poisson-type equation (143).

We now show that the results reported in Sec. III, particu-
larly Eqs. (61) and (62), are rather dominated by the vectorial
contribution g(v)

αβ (r, r′, ω). We start by calculating the vectorial

Green’s function g(v,FB)
α,β (r′, r, ω) for a Fabry-Pérot cavity. This

is conveniently accomplished by using the correlator [21]

g(v,FB)
α,β (r, r′, τ )

= i

h̄
�(τ )ph〈0|[Âcav,α (r‖, z), ÂI

cav,β (r′
‖, z′,−τ )

]|0〉ph,

(154)

where �(τ ) is the usual Heaviside function and [X̂ , Ŷ ] de-
notes the commutator between the operators X̂ and Ŷ . The
quantity Âcav,α (r‖, z) denotes the quantized vector poten-
tial in a Fabry-Pérot cavity and has been given above in
Eq. (7). The quantity ÂI

cav,β (r‖, z, t ) refers to the same quantity
but in the interaction picture. Specifically, ÂI

cav,β (r‖, z, t ) ≡
U †

0 (t )Âcav,β (r‖, z)U0(t ) where U0(t ) ≡ exp(−iĤpht ).
The Fourier transform with respect to time of

g(v,FB)
α,β (r, r′, τ ) is taken with the addition of the usual small

η = 0+ factor [21]:

g(v,FB)
α,β (r, r′, ω) = lim

η→0

∫ ∞

−∞
dτ g(v,FB)

α,β (r, r′, τ )ei(ω+iη)τ .

(155)

Expanding the vector potential using the normal modes de-
scribed in Eq. (7), we arrive at the following result [79]:

g(v,FB)
α,β (r, r′, ω)

=
∑

q‖,s,nz

[
A(2D)

q‖,nz

]2
eiq‖·(r‖−r′

‖ )

×
⎡⎣e(β )

−q‖,s,nz
(z′) e(α)∗

−q‖,s,nz
(z)

h̄(ω + iη + ω−q‖,nz )
−

e(α)
q‖,s,nz

(z) e(β )∗
q‖,s,nz (z

′)

h̄(ω + iη − ωq‖,nz )

⎤⎦,

(156)

where e(α)
q‖,s,nz

(z) denotes αth component of the polarization
vector eq‖,s,nz (z).

In order to link this vectorial Green’s function with the re-
sults discussed in Sec. III we need to take the aforementioned
ω → 0 adiabatic limit and the limit η → 0. Additionally, we
are specifically interested in fields evaluated at the graphene
plane and we therefore need to set z = z′ = 0 in Eq. (156). By
noticing that e(β )

−q‖,s,nz
(0) e(α)∗

−q‖,s,nz
(0) = e(β )

q‖,s,nz (0) e(α)∗
q‖,s,nz

(0) and
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ω−q‖,nz = ωq‖,nz , we can simplify Eq. (156) as follows:

g(v,FB)
α,β (r‖, z = 0, r′

‖, z′ = 0, ω = 0)

= 2
∑

q‖,s,nz

⎧⎨⎩eiq‖·(r‖−r′
‖ )
[
A(2D)

q‖,nz

]2
e(α)

q‖,s,nz
(0) e(β )∗

q‖,s,nz (0)

h̄ωq‖,nz

⎫⎬⎭.

(157)

By comparing the α, β component of the tensor F�,�′,q‖ in-
troduced in Eq. (62) with the previous expression for the
adiabatic vectorial Green’s function g(v,FB)

α,β (r‖, 0, r′
‖, 0, 0) we

recognize that they are the same object, modulo a spatial
Fourier transform:

F (α,β )
�,�′,q‖

= 1

2N2
cell

∑
q′

‖

∑
i,i′

e−i(q‖·Ri+q′
‖·Ri′ )

× g(v,FB)
α,β (Ri + δ�/2, 0, Ri′ + δ�′/2, 0, 0). (158)

We conclude that the tensor F�,�′,q‖ in Eq. (62) shares the same

“vectorial nature” of the vectorial Green’s function g(v,FB)
α,β . We

now observe that, in the adiabatic limit, ω → 0, the second
term in Eq. (134), which is proportional to ω2/c2, can be
neglected, and one finds Ampere’s law of magnetostatics:

Dαβ (μ−1)Aβ (r, 0) = 4π

c
J (v)
α (r, 0). (159)

The adiabatic vectorial Green’s function g(v)
αβ (r, r′, ω = 0)

therefore shares the same physics, i.e., that of classi-
cal magnetostatics. In the same spirit, the current-current
EEEI in Eq. (61) are equivalent to magnetostatic Amperean
interactions.

Before concluding, we proceed to illustrate that deep sub-
wavelength nanoplasmonic cavities are primarily governed
by the scalar Green’s function g(s)(r, r′, ω). In essence, this
quantity describes how instantaneous Coulomb interactions in
vacuum are modified by the presence of the cavity. Hence,
it is not possible to extrapolate the formula for the criti-
cal temperature Tc given in Eq. (112), which was calculated
on the sole basis of g(v,FB)

α,β (r, r′, ω = 0), to a subwavelength
nanoplasmonic cavity. Once again, no “mode volume con-
finement” argument can be used for magnetostatic Amperean
interactions.

In a deep subwavelength nanoplasmonic cavity, the elec-
tronic system predominantly interacts with the cavity’s
electrical potential φ̂cav(r). This interaction is of the usual
electrostatic type [21], i.e.,

Ĥint = −e
∫

dr n̂(r)φ̂cav(r), (160)

where n̂(r) is the density operator of the electronic system.
By carrying out calculations analogous to those detailed in
Sec. III, we can trace out the cavity field to obtain the dom-
inant EEEI in a subwavelength nanoplasmonic cavity. The
result is

ĤEEEI = e2

2

∫
dr dr′n̂(r)g(s)(r, r′, 0)n̂(r′). (161)

This formula shows that the main effect of a subwavelength
nanoplasmonic cavity is to strongly alter the usual Coulomb

interaction in vacuum. Indeed, in free space, εαβ (r, ω) = δαβ

and thus the scalar Green’s function reduces to the well-
known Coulomb interaction, i.e., g(s)(r, r′, ω) → 1/|r − r′|.
On the other hand, the current-current EEEIs (which are
responsible for Amperean superconductivity) discussed in
Sec. III are controlled by Ampere’s law and unaltered by such
cavities. In summary, we conclude that Amperean supercon-
ductivity, which is the main focus of this paper, cannot be
induced in subwavelength cavities.

Before concluding, however, we would like to comment on
the possibility of achieving superconductivity in the ordinary
density-density channel (rather than Amperean superconduc-
tivity in the current-current channel). To this end, one needs
to transcend the adiabatic ω = 0 approximation and keep
track of the frequency dependence of g(s), which physically
describes retardation. Due to the latter, an attractive EEEI
can emerge at certain frequencies, possibly leading to su-
perconductivity in the density channel. The density-density
interaction in Eq. (161), which is evaluated at ω = 0, encodes
only the physics of static screening [21] due to polarization
charges in the metallodielectric environment surrounding the
electron system in graphene. As such, g(s)(r, r′, 0) is always
repulsive. Going beyond the ω = 0 adiabatic approximation
in deriving EEEIs is well beyond the scope of this paper.

VI. SUMMARY AND CONCLUSIONS

In summary, we have derived effective electron-electron
interactions for the case of graphene placed inside a pla-
nar Fabry-Pérot cavity. Integrating out the cavity degrees
of freedom, we have obtained an effective current-current
interaction, which is reported in Eq. (71). Using this interac-
tion inside the linearized gap equation (107) for Amperean
superconductivity results in a critical temperature which is
∼10−6 K. According to our calculations, cavity-induced Am-
perean superconductivity occurs at such low temperatures
that it is impossible to be measured. Finally, we have argued
that any attempt to boost these ultralow critical temperatures
to measurable values via “mode volume confinement” argu-
ments is unjustified.

Concluding with a note of positivity, we hasten to empha-
size that our conclusions have no implications at all on the
exciting possibility of stabilizing exotic states of matter (other
than Amperean superconductors) via engineered nanoplas-
monic cavities. A Green’s function approach to effective
electron-electron interactions in these subwavelength cavities
is reported in Sec. V and will be the subject of forthcoming
studies.

ACKNOWLEDGMENTS

This work was supported by (i) the European Union’s
Horizon 2020 research and innovation programme un-
der Grant Agreement No. 881603-GrapheneCore3; (ii) the
University of Pisa under the “PRA-Progetti di Ricerca
di Ateneo” (Institutional Research Grants) Project No.
PRA_2020-2021_92 “Quantum Computing, Technologies
and Applications”; (iii) the Italian Minister of University
and Research (MUR) under the “Research projects of rele-
vant national interest–PRIN 2020”–Project No. 2020JLZ52N,
“Light-matter interactions and the collective behavior of

104513-18



AMPEREAN SUPERCONDUCTIVITY CANNOT BE INDUCED … PHYSICAL REVIEW B 109, 104513 (2024)

quantum 2D materials (q-LIMA)”; (iv) Grant No. CEX2019-
000910-S [MCIN/AEI/10.13039/501100011033]; (v) Fun-
dació Cellex; (vi) Fundació Mir-Puig; and (vii) Generalitat de
Catalunya through CERCA. F.M.D.P. was supported by the
“Piano di Incentivi per la Ricerca di Ateneo 2020/2022” of
the University of Catania, through the projects “QUAPHENE”
and “Q-ICT.” It is a great pleasure to thank A. H. MacDon-
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APPENDIX A: DETAILS ON THE TIGHT-BINDING
HAMILTONIAN AND THE CURRENT OPERATOR

In this Appendix we give further details on the diagonal-
ization of the free-electron Hamiltonian reported in Eq. (2).
The relation between the field operators ĉk,σ,α , which destroy
an electron with a given momentum k, spin σ , and sublattice
index α = A, B, and the equivalent operators in the real-space
representation is

ĉR j ,σ,A = 1√
Ncell

∑
k∈BZ

ĉk,σ,Aeik·Ri ,

ĉR(i,�),σ,B = 1√
Ncell

∑
k∈BZ

ĉk,σ,Beik·(Ri+δ� ). (A1)

The following identity holds true:

1

Ncell

Ncell∑
i=1

ei(k−k′ )·Ri = δk,k′+G, (A2)

where G = n1b1 + n2b2 is an arbitrary vector of the reciprocal
space. Here, n1, n2 are integers and b1 = 2π/(3a)(1,

√
3),

b2 = 2π/(3a)(1,−√
3) are primitive reciprocal lattice

vectors.
Inserting Eq. (A1) inside (2) and using the identity (A2),

we rewrite Ĥe as following:

Ĥe =
∑
k∈BZ

∑
σ=↑,↓

[ f (k) ĉ†
k,σ,Aĉk,σ,B + H.c.]

−μ
∑
k∈BZ

∑
σ=↑,↓

∑
α=A,B

ĉ†
k,σ,α

ĉk,σ,α, (A3)

where f (k) = −t
∑3

�=1 eik·δ� .
Finally, we introduce the operators d̂k,σ,ν , d̂†

k,σ,ν
with ν =

±, which allow us to write the free-electron Hamiltonian Ĥe

in the previous equation in the diagonal form (4) reported in
the main text:

ĉk,σ,A = 1√
2

(d̂k,σ,+ + d̂k,σ,−),

(A4)

ĉk,σ,B = 1√
2
ϕ∗

k (d̂k,σ,+ − d̂k,σ,−),

where ϕk = f (k)/| f (k)|.
We now proceed to give details on how the current is

calculated. The paramagnetic current Ĵ
( j,�)

in Eq. (21) can
be expressed in terms of the momentum-space creation and
annihilation operators by employing Eq. (A1):

Ĵ
( j,�) =

(
it

h̄

)
1

Ncell

∑
k,k′∈BZ

∑
σ=↑,↓

δ�[e−i(k−k′ )·R j eik′·δ� ĉ†
k,σ,Aĉk′,σ,B − H.c.]. (A5)

We then express the current in terms of the operators d̂k,σ,ν defined in Eq. (A4):

Ĵ
(i,�) =

(
it

h̄

)
1

Ncell

∑
k,k′∈BZ

∑
σ=↑,↓

δ�

⎡⎣e−i(k−k′ )·Ri eik′ ·δ�
ϕ∗

k

2

∑
ν,ν ′

ν ′d̂†
k,σ,ν

d̂k′,σ,ν ′ − H.c.

⎤⎦. (A6)

The previous equation can be written as

Ĵ
(i,�) = 1

Ncell

∑
k,k′∈BZ

[e−i(k−k′ )·Ri ĵ �,k,k′ + ei(k−k′ )·Ri ĵ †
�,k,k′ ], (A7)

where

ĵ �,k,k′ ≡
(

it

h̄

) ∑
σ=↑,↓

δ�eik′·δ�
ϕ∗

k

2

∑
ν,ν ′

ν ′d̂†
k,σ,ν

d̂k′,σ,ν ′ . (A8)

By swapping k and k′ in the first term of Eq. (A11) we finally get

Ĵ
(i,�) = 1

Ncell

∑
k,k′∈BZ

e−i(k′−k)·Ri (ĵ �,k′,k + ĵ †
�,k,k′ ). (A9)

By defining

Ĵ�,q‖ ≡
∑

k,k′∈BZ

(ĵ �,k′,k + ĵ †
�,k,k′ )δk−k′,q‖ , (A10)
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we can rewrite Eq. (A9) in terms of this new quantity as

Ĵ
(i,�) = 1

Ncell

∑
q‖

eiq‖·Ri Ĵ�,q‖ , (A11)

which corresponds to Eq. (26) of the main text.

APPENDIX B: DIAMAGNETIC TERM

The diamagnetic term Ĥdiam reads as following:

Ĥdiam = 1

2

(e

c

)2
Ncell∑
j=1

3∑
�=1

Âcav

(
R j + δ�

2
, z = 0

)
· T ( j,�) · Âcav

(
R j + δ�

2
, z = 0

)
, (B1)

where T ( j,�) is the diamagnetic operator:

T ( j,�) ≡
(c

e

)2 ∂2Ĥ
∂Âcav

(
R j + δ�

2 , z = 0
)
∂Âcav

(
R j + δ�

2 , z = 0
) ∣∣∣∣∣

Âcav=0

=
∑

σ=↑,↓

t

h̄2 δ�δ�

[
ĉ†

R j ,σ,AĉR( j,�),σ,B + ĉ†
R( j,�),σ,BĉR j ,σ,A

]
. (B2)

We can therefore estimate the magnitude of the diamagnetic contribution as following:

Ĥdiam ∼
(e

c

)2
×
(

ε−1/4
r h̄c

1√
V

1√
h̄ωD

)2

︸ ︷︷ ︸
from the vector potential

t
(a

h̄

)2

︸ ︷︷ ︸
from the diamagnetic operator

= 1

t

(
ε−1/4

r
a√
V

1√
h̄ωD

te

)2

= g2

t
, (B3)

where the light-matter coupling constant g has been introduced in Eq. (23).
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