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Finite-size effects in the two-dimensional BCS-BEC crossover
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We study the finite-size effects on the BCS-BEC crossover in two dimensions, occurring in confined fermionic
superfluids. We analyze several thermodynamic properties, such as the chemical potential, the energy gap, and
the superfluid density, taking into account unavoidable quantum fluctuations, and, by means of the renormaliza-
tion group procedure, we detect the putative Berezinskii-Kosterlitz-Thouless phase transition at finite size.
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I. INTRODUCTION

Bose and Fermi superfluids in a lower spatial dimension
constitute an extremely active research topic, both theoreti-
cally and experimentally. Contrary to the three-dimensional
case, mean-field approaches are unreliable in two- and one-
dimensional systems and the inclusion of quantum fluctua-
tions is crucial to compare correctly the theoretical predictions
with the experimental data and Monte Carlo simulations [1,2].

In two-dimensional (2D) systems the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition marks the
morphing from a superfluid phase characterized by
quasicondensation to a normal phase, in which vortex
proliferation destroys progressively the superfluidity [3].
The BKT phase transition has been recently observed
experimentally [4–8] in Fermi gases made of alkali-metal
atoms, and widely investigated theoretically by several groups
[9–14]. However, an accurate study which goes beyond the
mean-field level for finite-size systems is still lacking. The
study of the role of the confinement for Fermi gases is an
experimentally relevant but theoretically challenging problem
which requires a significant theoretical effort in order to
include finite-size effects and the quantum fluctuations.

In this paper, inspired by the recent experimental achieve-
ments of box potentials [15,16], we investigate this puzzling
problem studying a 2D Fermi gas in the crossover from the
Bardeen-Cooper-Schrieffer (BCS) phase [17] to the Bose-
Einstein condensation (BEC) phase [18,19]. First, we will see
how, at zero temperature, the energy � of the Cooper pairs and
the chemical potential μ of the fermionic system change along
the BCS-BEC crossover due to the presence of a confining box
potential. We also determine the BKT critical temperature by
calculating the superfluid fraction and, then, implementing the
renormalization group Kosterlitz-Thouless equations [14], we
will take into account the finite size of the system [20–22].

II. THEORETICAL FRAMEWORK

We will use the binding energy εB of Cooper pairs as a
tunable interaction parameter along the BCS-BEC crossover.

Remarkably, εB depends on the ratio μ/� by the following
simple mean-field formula [23],

εB

εF
= 2

√
1 + (

μ

�

)2 − μ

�√
1 + (

μ

�

)2 + μ

�

, (1)

where εF = π h̄2n/m is the 2D Fermi energy of noninteracting
two-spin-component fermions with number density n and in-
dividual mass m. This expression is a mean-field result which
nevertheless works also beyond the mean-field level, includ-
ing Gaussian fluctuations [13,14]. As shown in Fig. 1, the ratio
μ/� ranges from −∞, when εB → +∞ (BEC regime), to
+∞, when εB → 0 (BCS regime). Thus, contrary to the 3D
case, in the 2D problem the Cooper pairs always form a bound
state. In Fig. 1 we show how the binding energy depends on
μ/�. The crossover regime (green region) is approximately
chosen for μ/� in the range (−1, 1) since at μ = 0 the Fermi
surface is lost.

Finite-size effects are included through an infrared cutoff
kmin in the wave number k of the quantum particle of mass m,
which corresponds to a wavelength L = 2π/kmin. We are con-
sidering the box confinement such that εmin = h̄2kmin/(2m)
is the lowest single-particle energy of the noninteract-
ing Schrödinger problem. We will analyze the BCS-BEC
crossover in two dimensions going beyond the mean-field
analysis (both mean-field calculations and details of the
beyond-mean-field approach are reported in Appendixes A
and B, respectively). The putative Berezinskii-Kosterlitz-
Thouless phase transition for finite systems will be obtained
by means of the renormalization group (RG) procedure.

III. BEYOND MEAN-FIELD ANALYSIS

The role of fluctuations is crucial in low dimensions. We
aim at investigating how some quantities, such as the chem-
ical potential and the energy gap, change in the presence of
Gaussian fluctuations. From the gap equation, in the presence
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FIG. 1. Binding energy εB/εF vs parameter x0 = μ/�. We show
the regions of BCS (x0 −→ ∞) and BEC (x0 −→ −∞). The green
region points to the relevant values for the BCS-BEC crossover.

of a cutoff, we get (see Appendix B)

� =
√

ε2
B + 2(εmin + μ)εB, (2)

where εmin = h̄2k2
min/(2m), and μ is obtained by solving the

number equation at the mean-field level supplemented by the
Gaussian contribution, − d�GF (μ)

dμ
. �GF is the beyond-mean-

field grand potential which takes the form

�GF = 1

2β

∑
q,m

ln [detM(q, i�m)], (3)

where the matrix M(q, i�m) is the inverse pair fluctuation
propagator, reported in Appendix B. Following the approach
in Ref. [24], we then calculate μ by looking at the maxi-
mum of the energy density E (μ) = �(μ) + μn, at a given
density n, where �(μ) = �MF + �GF, namely it is composed
by the mean-field term and the contribution coming from
the Gaussian fluctuations. This procedure for determining
the chemical potential beyond the mean-field approach at
finite size is computationally demanding and requires a big
computational effort [25] and a polynomial fit to smooth the
slightly noisy data for the determination of the Berezinskii-
Kosterlitz-Thouless critical temperature (see next section).
The evaluation of the grand potential in Eq. (3) requires
four different integrations: Two of them appear explicitly in
Eq. (3), i.e., the momentum integration and the Matsubara
frequency sum which can be converted to an integration in
the zero-temperature limit, while two are contained in the
M matrix elements, i.e., the radial and angular part of the
momentum k in Eqs. (B2) and (B3). The two innermost
integrations are evaluated using an adaptive algorithm [26],
recursively dividing the grid until a certain relative error is
required, so in this case we set the maximum relative error
to 10−5. The two outermost integrations are performed on a
200 × 200 grid, using the Gauss-Kronrod quadrature formula.
We verify the convergence using a much finer grid for selected
data points. In Fig. 2 we plot the energy gap � (upper panel)

FIG. 2. In the upper panel we show �/εF vs εB/εF , while in
the lower panel we show μ/εF vs εB/εF for different values of the
cutoff, respectively, L

√
n = 5 (blue square points), 10 (red triangle

points), 100 (green circular points), and ∞ (black plus points). Here,
L = 2π/kmin with kmin the infrared cutoff while

√
n = 1/d , with d

interparticle distance. In this way, L
√

n is an adimensional quantity.
In the lower panel we have also included the mean-field chemical
potential μ which, contrary to the energy gap �, is size independent
(see Appendix A).

and the chemical potential μ (lower panel) as a function of
binding energy.

Finally, let us consider the superfluid density. In order to
go beyond the mean-field analysis we have to consider also
the collective excitations, so that the superfluid density reads

ns = n − nsp − ncol, (4)

where n is the total density, nsp is the mean-field fermionic
single-particle contribution to the normal density while ncol is
the beyond-mean-field contribution coming from the bosonic
collective modes

ncol = β

2

∫ ∞

km

d2k
(2π )2

h̄2k2m
exp[βEcol(k)]

{exp[βEcol(k)] − 1}2 . (5)

If we make the following ansatz,

Ecol(k) � h̄csk, (6)
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where cs is the sound velocity, which in its turn, depends on
εB, we can calculate Eq. (5) and, defining xmin = β h̄cskmin, we
get

ncol = m

4π h̄2c4
s

1

β3

[
6 Li3(exmin ) − 6xmin Li2(exmin )

− x2
min

(
x exmin

1 − exmin
+ 3 ln[1 − exmin ]

)]
. (7)

In the limit xmin → 0, namely for kmin → 0, for an infinite
system, only the first term survives and we get

ncol = 3m

2π h̄2c4
s

ζ (3)

β3
, (8)

which is the maximum value for ncol. We see therefore that the
collective excitations further contribute to suppressing the su-
perfluid density. However, such a suppression is less effective
for finite-size systems and therefore the superfluid density is
expected to be enhanced by finite-size effects.

IV. BEREZINSKII-KOSTERLITZ-THOULESS
PHASE TRANSITION

From the Mermin-Wagner-Hohenberg theorem [27,28] we
know that in two dimensions the critical temperature at
which we have the superconductive phase transition is Tc = 0
[29]. However, it is possible to recognize a quasiconden-
sate phase and the temperature under which we can see this
type of behavior is called the Berezinskii-Kosterlitz-Thouless
temperature (TBKT).

Another important feature characterizing this phase transi-
tion is the universal jump of the superfluid density,

ns(T
−

BKT) �= ns(T
+

BKT) = 0, (9)

that is due to the abrupt unbinding of two vortices that typ-
ically describes this transition. Kosterlitz derived a set of
renormalized group (RG) equations able to describe the flow
of vortices in the two-dimensional Berezinskii-Kosterlitz-
Thouless phase transition [30]. The RG equations are the
following,

d

dl
K−1

l (T ) = 4π3y2
l (T ),

d

dl
yl (T ) = [2 − πKl (T )]yl (T ), (10)

where l = ln (r/d ), r is the size of the superfluid system, char-
acterized by the presence of vortices, and d can be identified
with the interparticle distance.

An important quantity describing the system is the phase
stiffness. A fermionic superfluid can be described by the ef-
fective Hamiltonian of the two-dimensional XY model, which
reads

H = J

2

∫
d2r[∇θ (r)]2, (11)

where the phase stiffness J is a function of the fermion-
fermion attractive strength and of the temperature [14]. This
quantity is related to the superfluid density via [31]

J = h̄2

4m
ns, (12)

and the superfluid density ns found through the beyond-mean-
field analysis must be computed with the gap energies � in
the presence of the cutoff. From the phase stiffness, we define
then the following quantity,

K = J

kBT
. (13)

The quantity y, instead, is related to the core vortex energy μc

such that

y = exp

[
− μc

kBT

]
. (14)

Higher-order terms [32] slightly modify Eq. (10), and
therefore can be neglected. In the framework of the two-
dimensional XY model the vortex core energy is commonly
expressed as μc = π2

4 J , within the Ginzburg-Landau theory
of superconducting films [33]. The starting point for the RG
flow is determined by the bare superfluid density, calculated
at a fixed temperature T , which defines the initial superfluid
stiffness J0(T ). The initial conditions for the RG equations are
therefore

K0(T ) = J0(T )

kBT
,

y0(T ) = exp

[
−π2

4

J0(T )

kBT

]
. (15)

V. SUPERFLUID DENSITY
AND CRITICAL TEMPERATURE

We must notice that also the adimensional scaling parame-
ter l of the RG equations will be influenced by the cutoff [20].
The interparticle distance d is taken as the square root of the
total density of particles n, i.e., d = 1/

√
n, while L is the size

of our system imposed by a confining potential. Therefore, the
maximum value of l is

lmax = ln (L/d ) = ln (L
√

n). (16)

In Fig. 3 we show how the inclusion of the cutoff modifies
the behavior of ns/n as a function of T/TF . The main fea-
ture is the disappearance of the universal jump at the critical
temperature, replaced by a curve that becomes smoother and
smoother upon decreasing the size of the system.

Our aim is now to obtain the critical temperature TBKT/TF

as a function of the normalized binding energy εB/εF . In the
limit of infinite size, the slope of the tangent of the superfluid
density right at the critical temperature goes to infinity. For
finite-size systems, instead, the superfluid density is a smooth
function. The criterion for identifying the critical tempera-
ture, however, can be still based of the maximum value of
the slope of the tangent of the superfluid density. The crite-
rion has a certain degree of arbitrariness, therefore we can
decide to follow two different procedures. In the first one,
we focus on the intersection between the tangent of ns/n at
the inflection point, where the absolute value of the slope
is maximum, and the temperature axis, identifying this in-
tersection as the critical temperature for a specific value of
εB/εF . As shown in Fig. 3, the critical temperatures obtained
by this procedure are represented by the triangular points.
The slopes are the straight lines and we call these critical
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FIG. 3. Main plot: The superfluid density ns/n vs T/TF at a fixed
value of ln (εB/εF ) = 0.92, for L

√
n = 5 (blue dashed line), 10 (red

solid line), 100 (green dashed-dotted line), and ∞ (black dotted line).
Inset: Zoom of the main plot. The inflection points of the superfluid
density are depicted by circular points while the triangular points are
placed at the intersections of the slope at the inflection points with
the T axis.

temperatures (TBKT/TF )c1 . In this way we obtained TBKT/TF

as a function of εB/εF for different values of L
√

n, shown in
Fig. 4. In the second procedure, also adopted in Ref. [21],
we identify the critical temperatures as the x coordinates of
the inflection points, where ns/n has the maximum absolute
value of the slope. In Fig. 3 these points are the circular
marked ones. The plots of the critical temperature obtained
by this latter procedure, called (TBKT/TF )c2 , as a function of
the binding energy, for different values of L

√
n, are showed in

Appendix C.

FIG. 4. The critical temperature obtained through the intersec-
tion between the tangent to the superfluid density at the inflection
point and the horizontal line ns/n = 0 (the triangular points in
Fig. 3), i.e., (TBKT/TF )c1 against ln (εB/εF ) (see the main text).

VI. CONCLUSIONS

The main objective of this paper has been to understand
how the size of the system, finite in feasible experiments,
affects the BCS-BEC crossover in two dimensions. The finite
size has been introduced through an infrared cutoff in mo-
mentum space. Setting a minimum value to the wave vector
corresponds, indeed, to setting a maximum value to the wave-
length, which is the size of the system. We have analyzed the
effects of the finite size in several thermodynamic properties,
such as the chemical potential, the energy gap, and the super-
fluid density, going beyond the mean-field level by including
Gaussian quantum fluctuations. Finally, by means of a renor-
malization group analysis and defining a couple of criteria
useful to identify an effective critical temperature tailored for
finite sizes, we have characterized the Berezinskii-Kosterlitz-
Thouless phase transition in such systems. We believe that in
the near future our theoretical predictions could be compared
with the available experimental setups of strongly confined
gases of fermionic atoms in quasi-two-dimensional geometry.
In particular, the behavior of the measured superfluid density
and critical temperature will highlight the reliability and ac-
curacy of the beyond-mean-field theoretical method we have
proposed.
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APPENDIX A: MEAN-FIELD APPROACH

We will consider in what follows the mean-field analysis.
We can start with the bound-state equation of the two-body
problem, that, in two dimensions, takes the form

−1

g
= 1

�

∑
k|k|�kmin

1
h̄2k2

m + εB

, (A1)

where m is the mass of a fermionic particle and � is the
two-dimensional finite-size volume. The coupling constant g
is instead the strength of the attractive potential. At the same
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time the gap equation reads

−1

g
= 1

�

∑
k|k|�kmin

1

2
√(

h̄2k2

2m − μ
)2 + �2

. (A2)

Both Eqs. (A1) and (A2) have ultraviolet divergencies which
can be regularized by subtracting one from the other,

0 =
∑

k|k|�kmin

⎛
⎜⎝ 1

h̄2k2

m + εB

− 1

2
√(

h̄2k2

2m − μ
)2 + �2

⎞
⎟⎠. (A3)

Working with the two-dimensional continuum limit,
∑

k −→
�

(2π )2

∫
d2k = �

2π

∫
dk k after some manipulations, we obtain

the regularized gap equation in the presence of an infrared
cutoff,

εB =
√

(εmin − μ)2 + �2 − (εmin + μ), (A4)

where the minimum energy is

εmin = h̄2k2
min

2m
. (A5)

We notice that if we impose εmin = 0 we recover the gap equa-
tion for an infinite system. The continuum limit (semiclassical
approximation) with a cutoff kmin washes out the geometry of
the confining box, which is encoded in the discrete energy
levels of the single-particle problem. However, the aim of
our paper is to show finite-size effects in a quite general
framework. We can now express, in the BCS limit, the number
of fermionic particles as

n = N

�
= 2

�

∑
k|k|�kmin

1

2

⎡
⎢⎣1 −

(
h̄2k2

2m − μ
)

√(
h̄2k2

2m − μ
)2 + �2

⎤
⎥⎦

= m

2π h̄2 [
√

(εmin − μ)2 + �2 − εmin + μ]. (A6)

If we consider a 2D finite-size system of N fermionic particles
of mass m inside a 2D volume � and we assume two possible
spin states, we have

N = 2
∑

k|k|�kmin

	

(
ε̃F − h̄2k2

2m

)
, (A7)

where 	 is the Heaviside function and ε̃F is the Fermi energy
of noninteracting fermions. The Fermi wave number is related

to the Fermi energy by the law kF =
√

2mε̃F

h̄2 . From Eq. (A7)
we get

ε̃F = π
h̄2

m
n + εmin. (A8)

As expected, for εmin −→ 0 we get the familiar 2D Fermi en-
ergy ε̃F = π h̄2n/m of noninteracting fermions, which is valid
in the thermodynamic limit. We rewrite then Eq. (A8) as

n = m

h̄2π
(ε̃F − εmin). (A9)

If we insert the last expression into the left-hand side of (A6)
and, after some manipulations, we obtain the following form

for the number equation of a 2D gas,

2 ε̃F =
√

(εmin − μ)2 + �2 + εmin + μ. (A10)

We try to find now an expression for μ and � in terms of the
binding energy εB. From Eqs. (A4) and (A10) we get

μ = ε̃F − εmin − εB

2
. (A11)

From Eq. (A10), and using Eq. (A11) we get

� =
√

(2εB + 4εmin)(ε̃F − εmin). (A12)

In both cases, by imposing εmin = 0 we recover the infinite-
size results.

In order to have a consistent analysis for different values
of εmin we must look for quantities that are normalized with
respect to something that does not depend on εmin itself. For
this reason, we define

εF ≡ ε̃F − εmin. (A13)

We can then rewrite (A11) and (A12) as
μ

εF
= 1 − εB

2εF
, (A14)

�

εF
=

√
2
εB

εF
+ 4

εmin

εF
. (A15)

We investigate the behavior of μ/εF and �/εF at different
values of εB/εF (see Fig. 5).

As we can see, � is influenced by the value of the cutoff.
As the cutoff increases, and so the system size decreases, the
trend of the function �/εF remains the same, but it moves
towards the negative x axis. However, since negative values
of the binding energy are not physical, we picture only the
first quarter of the Cartesian plane. The chemical potential μ,
instead, is not affected by changing the system’s size.

Let us now consider the superfluid density. At the mean-
field level it takes the following form,

ns = n − nsp, (A16)

where n is the total density and nsp is the single-particle contri-
bution to the normal density. Following the Landau approach
[34], nsp can be written as

nsp = β

∫ ∞

kmin

d2k
(2π )2

h̄2k2

m

×
exp

[
β

√(
h̄2k2

2m − μ
)2 + �2

]
{

exp
[
β

√(
h̄2k2

2m − μ
)2 + �2

] + 1
}2

, (A17)

which, after introducing ε = h̄2k2/(2m), becomes

nsp = m

h̄2π
β

∫ ∞

εmin

dε ε
exp[β

√
(ε − μ)2 + �2]

{exp[β
√

(ε − μ)2 + �2] + 1}2
.

(A18)

In the BCS limit, for μ > εmin and β � 1, the depen-
dence on the cutoff εmin is very weak and we can get the
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FIG. 5. On the left panel we have μ/εF vs εB/εF for different
values of εmin/εF , while on the right panel we picture �/εF vs εB/εF

for different values of εmin/εF . In particular, εmin/εF = 0 (black solid
line), 0.1 (green dotted line), 1 (blue dashed line), and 2 (red dashed-
dotted line).

following approximation,

nsp ≈ n
μ

εF

√
2πβ� exp(−β�). (A19)

The finite-size dependence, in this limit, is therefore mainly
due to �, which, in the mean-field level, is given by Eq. (A15).
Increasing εmin, the gap � is enhanced, while nsp is sup-
pressed. As a result, for finite-size systems we expect that the
superfluid density is promoted.

APPENDIX B: NUMBER EQUATION
WITH INFRARED CUTOFF

The form for the grand potential in the presence of Gaus-
sian fluctuation is � = �MF + �GF. The first term is the
mean-field contribution while the last is due to Gaussian quan-
tum fluctuations which reads

�GF = 1

2β

∑
q,m

ln [det M(q, i�m)]. (B1)

FIG. 6. Critical temperature obtained projecting the inflection
points of the superfluid density to the temperature axis (see Fig. 3
of the main text), for L

√
n = 5 (blue dashed line), 10 (red solid line),

100 (green dashed-dotted line), and ∞ (black dotted line).

The matrix M(q, i�m) is the inverse pair fluctuation propa-
gator. It takes the form of a 2 × 2 matrix, whose elements
are

M11(q, i�m) = − 1

g
+

∑
k|k|�kmin

tanh (βEk/2)

2Ek

×
[

(i�m − Ek + ξk+q)(Ek + ξk )

(i�m − Ek + Ek+q)(i�m − Ek − Ek+q)

− (i�m + Ek + ξk+q)(Ek − ξk )

(i�m + Ek − Ek+q)(i�m + Ek + Ek+q)

]
,

(B2)

M12(q, i�m) = − �2
∑

k|k|�kmin

tanh (βEk/2)

2Ek

×
[

1

(i�m − Ek + Ek+q)(i�m − Ek − Ek+q)

+ 1

(i�m + Ek − Ek+q)(i�m + Ek + Ek+q)

]
,

(B3)

where ξk = h̄2k2/(2m) − μ and Ek =
√

ξ 2
k + �2. Moreover,

the following relations are valid:

M11(q,−i�m) = M22(q, i�m), (B4)

M12(q,−i�m) = M21(q, i�m). (B5)

The number equation can then be written as

N = d�

dμ
= ∂�MF

∂μ
− ∂�GF

∂μ
− ∂�GF

∂�

∂�

∂μ
. (B6)

From (B6) we can get the chemical potential when we are
in the presence of the Gaussian fluctuations. We calculate,
following Ref. [24], the energy density E (μ) and we look for
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its maximum value that gives the solution of μ for the given
density n.

It is important to notice that the momentum inte-
grals we compute in order to get E (μ) must be done
also in the presence of the infrared cutoff in the lower
bound. Moreover, in Ref. [24] a dimensionless parame-
ter ν was introduced, which was put in the relation μ

and εB. The presence of the infrared cutoff implies a new
definition of ν,

ν = μ + εB/2 + εmin

εF
. (B7)

This expression allows us indeed to obtain consistent results
with the infinite-size case, both for the number and the gap
equations.

APPENDIX C: BKT CRITICAL TEMPERATURE

As explained in the main text, we want to compute the crit-
ical temperature of the Berezinskii-Kosterlitz-Thouless phase
transition. Since in a finite-size system we do not have a
universal jump of the superfluid density ns we decided to
propose two different procedures to compute TBKT, based on
the inflection points. In the first procedure we identify TBKT

as the intersection of the tangent of ns, as a function of T , at
the inflection point with the T axis, for different values of the
binding energy εB (the triangular points in Fig. 3 of the main
text). The results obtained by this procedure, (TBKT/TF )c1 , are
reported in Fig. 4 of the main text. The second criterion is
identifying the critical temperatures just as the projections of
the inflection points to the T axis. By this second procedure
we obtain the results for TBKT/TF as functions of the binding
energy, (TBKT/TF )c2 reported here in Fig. 6.
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