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Magnetism and superconductivity in mixed-dimensional periodic Anderson model for UTe2
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UTe2 is a strong candidate for a topological spin-triplet superconductor, and it is considered that the interplay
of magnetic fluctuation and superconductivity is essential for the origin of the superconductivity. Despite various
experiments suggesting ferromagnetic criticality, neutron scattering measurements observed only antiferromag-
netic fluctuation and called for theories of spin-triplet superconductivity near the antiferromagnetic quantum
critical point. We construct a periodic Anderson model with one-dimensional conduction electrons and two-
or three-dimensional f electrons, reminiscent of the band structure of UTe2, and show that ferromagnetic and
antiferromagnetic fluctuations are reproduced depending on the Fermi surface of f electrons. These magnetic
fluctuations cooperatively stabilize spin-triplet p-wave superconductivity. We also study hybridization depen-
dence as a possible origin of the pressure-induced superconducting phase transition and find that moderately
large hybridization changes the antiferromagnetic wave vector and stabilizes d-wave superconductivity.
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I. INTRODUCTION

Spin-triplet superconductivity is an exotic quantum con-
densed state of matter. Interest in spin-triplet superconductors
is growing as they are platforms of multicomponent super-
conductivity, bulk topological superconductivity [1–4], and
superconducting spintronics [5]. Since the discovery of super-
conductivity [6], UTe2 has been considered to be a spin-triplet
superconductor candidate, and intensive studies have been
devoted to clarifying the superconducting states in UTe2 [7].
One of the authors previously predicted the topological su-
perconductivity in UTe2 [8]. However, the topological indices
and the presence/absence of Majorana fermions depend on
the symmetry of the superconducting gap function and the
topology of Fermi surfaces. Therefore, a thorough study of the
electronic structure, pairing mechanism, and superconducting
states is desirable.

In early studies, the ferromagnetic quantum critical fluc-
tuation has been indicated [6,9,10] and considered to be
a glue of spin-triplet Cooper pairs. However, the neutron
scattering experiments detected an antiferromagnetic fluc-
tuation [11–14] with the wave vector around q � (0, π, 0)
and called for a search for spin-triplet superconductivity
arising from the antiferromagnetic fluctuation. Although the
spin-triplet pairing interaction can be mediated by antiferro-
magnetic fluctuations [15,16], spin-singlet superconductivity
was shown to be more stable in most cases [15,17,18].
Magnetic anisotropy and its coupling to electrons have
been assumed phenomenologically to show stable spin-triplet
superconductivity [19–22]. However, an analysis of the mul-
tiorbital Hubbard model with spin-orbit coupling has not
supported the assumption [23]. Although charge fluctuation
has also been investigated for possible spin-triplet supercon-
ductivity in organic systems [15,18,24,25], its applicability to
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heavy-fermion superconductors remains to be verified. There-
fore, the construction of a microscopic model for spin-triplet
superconductivity and antiferromagnetic fluctuation is essen-
tial for the research of UTe2.

To study the relationship between magnetic fluctuations
and superconductivity, information on the electron band struc-
ture is indispensable [16]. An angle-resolved photoemission
spectroscopy (ARPES) experiment [26] observed quasi-
two-dimensional Fermi surfaces consistent with the density
functional theory plus U (DFT+U ) [8] and DFT plus dynam-
ical mean-field theory (DFT+DMFT) calculations [26,27] for
a large Coulomb interaction. Indication of a three-dimensional
Fermi surface was also reported [26], but it is under de-
bate [28]. Recent developments in crystal growth [29] enabled
quantum oscillation measurements [30–33], which precisely
detected quasi-two-dimensional Fermi surfaces in the high
magnetic field region. However, rather three-dimensional bulk
properties such as superconducting coherence length [34]
and electrical conductivity [35] have been observed, and the
presence or absence of a three-dimensional Fermi surface is
still controversial and requires further study at zero or low
magnetic fields.

Inspired by the experimental studies of magnetic fluctu-
ations and band structure in UTe2, we study a microscopic
model with the Fermi surfaces consistent with the band-
structure calculations [8,26,27,36] and show spin-triplet
superconductivity near the antiferromagnetic quantum criti-
cal point. Although several theoretical models were proposed
for UTe2 [16,36–42], a microscopic model reproducing an-
tiferromagnetic fluctuation, Fermi surfaces, and spin-triplet
superconductivity was not reported. In this paper, we propose
a mixed-dimensional periodic Anderson model (PAM) and
reveal antiferromagnetic fluctuation and spin-triplet supercon-
ductivity coherently.

Typical uranium-based heavy-fermion superconductors,
such as UCoGe and URhGe, exhibit changes in the nature of
superconductivity when subjected to pressure and magnetic
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fields [43]. More interestingly, the application of pressure or
magnetic fields to UTe2 revealed multiple superconducting
phases [44–55], suggesting that the external fields change the
electronic state and superconductivity. Thus, we also inves-
tigate the variation of superconducting states associated with
the change of the Fermi surfaces in our PAM.

II. MODEL AND METHOD

With a tight-binding model for f , d , and p electrons as a
noninteracting part H0, the mixed-dimensional PAM is given
by H = H0 + HI, where

H0 = Hf + Hd + Hp + Hf d + Hf p + Hd p, (1)

Hm =
∑

kσ

[εm(k) − μ]a†
mkσ

amkσ (m = f , d, p), (2)

Hml =
∑

kσ

Vmla
†
mkσ

alkσ + H.c. (ml = f d, f p, d p), (3)

and HI = U
∑

j n f j↑n f j↓ is the on-site Coulomb interaction
of f electrons. The mixed-dimensional property of the model
is represented in the kinetic energies,

ε f (k) = −2t f x cos kx − 2t f y cos ky + 2t f z(cos kz + 1) + � f ,

(4)

εd (k) = −2tdx cos kx − 2tdy cos ky + �d , (5)

εp(k) = 2tpx cos kx + 2tpy cos ky + �p. (6)

Here, we assume quasi-one-dimensional conduction electrons
in accordance with the band structure of UTe2 [8,26,27,37]. In
UTe2, the d and p electrons mainly conduct along the a and
b axis, respectively, corresponding to tdx � tdy and tpx � tpy.
We also assume three-dimensional f electrons with compa-
rable hopping integrals t f x, t f y, and t f z. Thus, conduction
electrons and f electrons have nonequivalent dimensionality,
and we call the Hamiltonian the (1 + 3)-dimensional PAM.
The (1 + 2)-dimensional PAM can also be constructed by
simply setting t f z = 0. The results of the (1 + 2)-dimensional
model are shown in the Supplemental Material for
comparison [56].

The crystal fields are denoted by �p,d, f , and we adopt
momentum-independent hybridization terms for simplicity.
Later, we show that the f -electron level � f and the
hybridization with p electrons Vf p are the control param-
eters of the model. We set Vf p = 0.05 unless mentioned
otherwise. In the following discussions, we fix the other pa-
rameters (t f x, t f y, t f z, tdx, tdy,�d , tpx, tpy,�p,Vf d ,Vd p, μ) =
(0.08, 0.035, 0.1, 0.5, 0, 0, 0, 1, 0, 0.05, 0.05,−0.1) and the
temperature T = 0.01.

The noninteracting Green’s function is defined as Ĝ(k) =
(iωnÎ − Ĥ0)−1, where k = (k, iωn), ωn = (2n + 1)πT are
fermionic Matsubara frequencies, and Î is the identity matrix.
The spin and charge susceptibilities are evaluated by the ran-
dom phase approximation (RPA) as

χs(q) = χ0(q)

1 − Uχ0(q)
, χc(q) = χ0(q)

1 + Uχ0(q)
, (7)

FIG. 1. Fermi surfaces of the mixed-dimensional PAM. The f -
electron level � f is varied from 0.038 to 0.13. The weight of f
electrons is illustrated in red, while the conduction electrons are in
blue.

with the bare susceptibility

χ0(q) = −T

N

∑

k

G f (k + q)G f (k). (8)

Here, G f (k) is the f -electron’s Green’s function, q =
(q, i�m), and �m = 2mπT are bosonic Matsubara frequen-
cies. We investigate superconductivity in this model by
solving the Eliashberg equation [17] with the effective inter-
actions given by the RPA,

V s(k − k′) = U + 3
2U 2χs(k − k′) − 1

2U 2χc(k − k′), (9)

V t (k − k′) = − 1
2U 2χs(k − k′) − 1

2U 2χc(k − k′), (10)

where the subscript s and t represent the spin-singlet and spin-
triplet Cooper pairing channels, respectively. The instability
of superconductivity is examined by the linearized Eliashberg
equation

λ�(k) = −T

N

∑

k′
V (k − k′)|G f (k′)|2�(k′). (11)

The superconducting transition temperature is determined by
the condition λ = 1. In the following, we discuss supercon-
ducting states by calculating the eigenvalue λ. The larger
λ indicates a higher transition temperature. The numerical
calculations are carried out for the N = 64 × 64 × 64 lattice
and the Matsubara frequency cutoff Nf = 1024.

III. FERMI SURFACE

First, we show the Fermi surfaces of the model. Later
we see that magnetic fluctuations drastically change depend-
ing on the shape of the Fermi surfaces, which is mainly
determined by � f and Vf p. As shown in Fig. 1, when we
decrease the f -electron level � f , the Lifshitz transitions suc-
cessively occur. When we set � f = 0.13, two-dimensional
rectangular-shaped Fermi surfaces appear as a consequence
of the hybridization of one-dimensional p- and d-electron
bands. A considerable weight of f electrons also exists on the
two-dimensional Fermi surfaces owing to the c- f hybridiza-
tion. A small three-dimensional Fermi surface is present
when we decrease the f -electron level as � f = 0.08. By
further decreasing � f , the three-dimensional Fermi surface
is expanded and connected with the two-dimensional Fermi
surfaces (see Fig. 1 for � f = 0.038). A similar change in
Fermi surfaces was reported in the band-structure calculations
for UTe2. The DFT+U and DFT+DMFT calculations for a
large Coulomb interaction concluded two-dimensional Fermi
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(a) (b)

FIG. 2. Fermi surfaces on the kz = π plane for � f = 0.05.
(a) Vf p = 0.05 and (b) Vf p = 0.26. The weight of f electrons is
shown by color as in Fig. 1, and nesting vectors are illustrated by
arrows.

surfaces similar to our model for � f = 0.13 [8,26,27],
while the DFT+U calculation for an intermediate Coulomb
interaction obtained mixed-dimensional Fermi surfaces as
reproduced in our model for � f = 0.038 [8]. Thus, the pa-
rameter � f in our model may correspond to the interaction
parameter of UTe2.

In heavy-fermion systems, quantum phase transitions are
often tunable by applied pressure, which has been interpreted
as an increase in hybridization between f electrons and con-
duction electrons. The following results in our model are also
sensitive to the hybridization parameter Vf p, which affects the
shape of the three-dimensional Fermi surface rather than its
size. We show the Fermi surfaces for various Vf p in Fig. 2.
Interestingly, the nesting property changes with Vf p, as illus-
trated in the figure. Since the nesting vector is essential for
the peak position of the magnetic fluctuations and resulting
superconducting property, the magnetic fluctuations and the
superconducting state change as varying the hybridization
parameter Vf p which will be discussed as an effect of applied
pressure. However, we have confirmed that magnetic fluctua-
tions are not sensitive to another hybridization parameter Vf d

and then fixed Vf d for the following discussion.

IV. SPIN SUSCEPTIBILITY

Second, we discuss magnetic fluctuations. Our mixed-
dimensional PAM shows ferromagnetic fluctuation, antiferro-
magnetic fluctuation, and their coexistence depending on the
parameters discussed above. Antiferromagnetic fluctuation is
dominant for the f -electron level � f ranging from 0.038 to
0.054, while ferromagnetic fluctuation is dominant for � f

from 0.055 to 0.13. To focus on the parameter dependence,
we set the Coulomb interaction so that the Stoner factor is
max Uχ0(q) = 0.98. Magnetic susceptibility on the qz = 0
plane is shown in Fig. 3.

FIG. 3. Static spin susceptibility χs(q) ≡ χs(q, i�m = 0) on the
qz = 0 plane for various f -electron levels � f .

FIG. 4. Spin susceptibility integrated along the qz direction, de-
fined by χ 2D

z (qx, qy ) ≡ ∫
χs(q)dqz.

In the result for � f = 0.05, we see an antiferromagnetic
fluctuation with the wave vector around q = (0, π, 0), consis-
tent with the neutron scattering experiments [11,12]. Thus, the
antiferromagnetic fluctuation in UTe2 can be explained by the
nesting vector of Fermi surfaces with substantial f electrons,
as shown in Fig. 2(a). On the other hand, when we slightly
increase the f -electron level as � f = 0.055, a ferromagnetic
fluctuation with the wave vector q = 0 becomes dominant and
coexists with the antiferromagnetic fluctuation. Ferromag-
netic fluctuation naturally arises from the three-dimensional
property of f electrons. Thus, (anti)ferromagnetic fluctua-
tions are sensitive to the parameters, and they can coexist.
This finding may be consistent with the fact that a ferromag-
netic correlation has been suggested in UTe2 [6,7,9,10,57]
and coexisting ferro- and antiferromagnetic fluctuations were
reported [27,58].

In our model, the magnetic susceptibility always shows
a maximum on the qz = 0 plane. To get information on
magnetic fluctuations away from qz = 0, Fig. 4 shows the
integration of spin susceptibility for qz. Even for � f = 0.05
resulting in a dominant antiferromagnetic fluctuation, the
magnetic fluctuation has substantial weight around (qx, qy) =
(0, 0), indicating a two-dimensional ferromagnetic correla-
tion. Because a two-dimensional fluctuation generally favors
superconductivity [17], the ferromagnetic correlation is ex-
pected to be important for superconductivity.

As shown above, the mixed-dimensional PAM reproduces
both ferromagnetic and antiferromagnetic fluctuations that
have been considered to exist in UTe2. The three-dimensional
f electrons are crucially important for the magnetic fluc-
tuations [56]. Furthermore, the model is consistent with
a previous study of the 24-band PAM [37], in which
an antiferromagnetic fluctuation with the wave vector q �
(π, 0, 0) develops by increasing c- f hybridization. Figure 5
shows the spin susceptibility in the mixed-dimensional PAM
for strong hybridization. We see that the wave vector of

FIG. 5. Spin susceptibility on the qz = 0 plane for various hy-
bridization parameters Vf p. We fix the f -electron level � f = 0.05.
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TABLE I. Irreducible representations and basis functions of the
D2h point group.

IR (D2h) Ag B1g B2g B3g Au B1u B2u B3u

Basis function 1 kxky kxkz kykz kxkykz kz ky kx

antiferromagnetic fluctuation gradually changes from q �
(0, π, 0) to q � (π, 0, 0). This is because strong hybridization
changes the Fermi surfaces and results in better nesting along
the x direction as shown in Fig. 2(b).

V. SUPERCONDUCTIVITY

Next, we study superconductivity mediated by magnetic
fluctuations. In particular, we focus on the relation between
the wave vector of magnetic fluctuations and the symmetry of
superconductivity.

For this purpose, we solve the linearized Eliashberg equa-
tion for all the irreducible representations of the D2h point
group. Note that the model in this study does not include a
spin-orbit coupling. Therefore, we classify the gap function
�(k) by the representation without a spin degree of free-
dom. Table I shows the list of irreducible representations and
basis functions. In this classification, the B1u, B2u, and B3u

representations correspond to the p-wave superconductivity
while the Au representation corresponds to the f -wave super-
conductivity. The other representations indicate spin-singlet
superconductivity with either s-wave or d-wave symmetry.

First, we show Fig. 6 for the � f dependence of eigenvalues
of the Eliashberg equation. We see that the spin-triplet p-wave
superconductivity of B1u and B3u representations is stable
over a wide range of parameters. In particular, the p-wave
superconductivity is stable even around � f = 0.05 where an-
tiferromagnetic fluctuation is dominant. This is because the
ferromagnetic fluctuation and antiferromagnetic fluctuation
cooperatively stabilize the p-wave superconductivity. Indeed,
the p-wave superconductivity is most stable when the two

FIG. 6. Eigenvalues of the Eliashberg equation as functions
of the f -electron level � f . The maximum values for each ir-
reducible representation are shown. Spin-triplet superconductivity
and spin-singlet superconductivity are plotted by stars and circles,
respectively.

FIG. 7. Gap functions of B1u and B3u representations on the
Fermi surfaces. The color represents the real part of the gap
functions.

fluctuations coexist, as the eigenvalue λ shows the maximum
around � f = 0.055.

The antiferromagnetic fluctuation can favor spin-triplet su-
perconductivity when the gap function has the same sign
between the Fermi momentum connected by the nesting vec-
tor [15–17]. This condition is indeed satisfied for the B1u and
B3u representations. Figure 7 shows the gap functions on the
Fermi surfaces for � f = 0.05, where the static gap function
is defined as

�(k, 0) ≡ �(k, iπT ) + �(k,−iπT )

2
. (12)

The antiferromagnetic fluctuation with q = (0, π, 0) acts as
an attractive force for the B1u and B3u representations because
the gap functions on the Fermi surface do not change the
sign for magnetic scattering. However, it gives a repulsive
interaction for the B2u representation, and thus the B2u state is
suppressed. For � f > 0.08, all the p-wave superconducting
states are nearly degenerate, because the antiferromagnetic
fluctuation is negligible and the ferromagnetic fluctuation
equally favors all the p-wave superconducting states. In the
following, we fix the crystal field parameter � f = 0.05,
where the ferromagnetic and antiferromagnetic fluctuations
coexist and the B1u and B3u states are stable and nearly
degenerate.

Next, we show the hybridization Vf p dependence of super-
conductivity. In Fig. 8, we see that stable superconducting
states are the spin-triplet B1u and B3u states for small Vf p,
while the spin-singlet B1g and B2g states are stable for large
Vf p. This can be regarded as a parity transition of supercon-
ductivity, where the symmetry of superconductivity changes

FIG. 8. The hybridization dependence of superconductivity, in-
dicated by the eigenvalues λ of the Eliashberg equation. We set
� f = 0.05.
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from odd parity to even parity by increasing the magni-
tude of hybridization. Accompanied by the development of
antiferromagnetic fluctuations with a q ‖ x̂ component, the
spin-singlet superconductivity is favored. Similar results have
been obtained in the 24-band PAM [37] and the model of
two-dimensional Fermi surfaces [16], where spin-singlet su-
perconductivity is stable due to the magnetic fluctuations with
a large q ‖ x̂ component. Phenomenological models assum-
ing magnetic wave vectors were also studied in Ref. [16]
and comparable spin-triplet superconductivity is obtained in
some cases. The hybridization dependence obtained above is
qualitatively consistent with the 24-band PAM [37], where
the extended s-wave state is stable instead of the d-wave one.
Since the hybridization is expected to be enhanced by pressure
in heavy-fermion systems, the parity transition may corre-
spond to the multiple superconducting phases of UTe2 [7,44].
However, the pressure and magnetic fields also change the
electronic state through the f -electron level � f , the Coulomb
interaction U , and others. Therefore, further study based
on first-principles calculations combined with experiments is
desirable.

The difference between the superconducting states in re-
gions of small and large Vf p, which is caused by changes
in the momentum dependence of magnetic fluctuations, can
be interpreted based on the real-space picture. Antiferro-
magnetic fluctuations with q ‖ ŷ are compatible with the
ferromagnetic correlation along the one-dimensional U lad-
ders aligned with the a axis, as suggested by the neutron
scattering experiment [12], while those with q ‖ x̂ indicate an
antiferromagnetic correlation in the ladder. The former can
stabilize spin-triplet superconductivity while the latter sta-
bilizes spin-singlet superconductivity. Therefore, our results
imply that the (anti)ferromagnetic correlation in the U ladder
is essential for superconductivity in UTe2.

VI. SUMMARY AND DISCUSSION

In this paper, we have proposed the (1 + 3)-dimensional
PAM as a minimal model for Fermi surfaces, magnetic fluctu-
ations, and superconductivity in UTe2. The model reproduces
the antiferromagnetic and ferromagnetic fluctuations which
have been indicated by experiments. The spin-triplet super-
conductivity is cooperatively stabilized by these magnetic
fluctuations. We emphasize that the spin-triplet p-wave super-
conductivity is stable against spin-singlet superconductivity
near the antiferromagnetic quantum critical point in contrast

to many other microscopic models. This is a characteristic
property of the (1 + 3)-dimensional model, as we find that
spin-triplet superconductivity and antiferromagnetic fluctua-
tion are exclusive in the (1 + 2)-dimensional PAM [56].

We can extend the mixed-dimensional PAM to include
spin-orbit coupling, magnetic fields, and multiple orbitals and
sublattices. Thus, we expect that the model will be the basis
of further theoretical studies for UTe2. While our calculation
indicates the kx and kz orbital components of order parameters,
the spin-triplet superconducting states are degenerate because
of the spin component. Spin-orbit coupling and magnetic
fields break the spin SU(2) symmetry and play essential roles
in determining the spin component. Thus, calculations con-
taining these effects are desirable in the future to identify the
multiple superconducting phases under pressures [7,44–51]
and/or magnetic fields [7,52–55,59]. Recently, development
in the high-purity crystal growth [29] makes a second era in
experiments of UTe2. For instance, the quantum oscillation
was detected [30–33], and the thermal conductivity [34] and
NMR Knight shift [60] show behaviors consistent with the
order parameter d = kxx̂ + kyŷ + kzẑ, similar to the B phase
of 3He [61]. The order parameter contains the kx and kz

orbital components consistent with our results and realizes
strong (weak) topological superconductivity in the presence
(absence) of a three-dimensional Fermi surface [8,62]. Since
other pairing states have also been suggested experimen-
tally [63,64], further studies are needed to elucidate the
symmetry of superconductivity in UTe2.

Note added. Recently, we became aware of a work in
which the magnetic wave vector of the antiferromagnetic
phase at high pressure has been reported experimentally [65].
The result is (qx, qy) = (0.07, 0.33) × 2π , which is qualita-
tively consistent with our prediction in that qx increases and
qy decreases under pressure, but the change is rather small.
The impact of this magnetic fluctuation on superconductivity
should be studied in a separate work.
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