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Rotation of gap nodes in the topological superconductor Cux(PbSe)5(Bi2Se3)6
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Among the family of odd-parity topological superconductors derived from Bi2Se3, Cux (PbSe)5(Bi2Se3)6

(CPSBS) has been elucidated to have gap nodes. Although the nodal gap structure has been established by
specific-heat and thermal-conductivity measurements, there has been no direct observation of the superconduct-
ing gap of CPSBS using scanning tunneling spectroscopy (STS). Here we report the first STS experiments on
CPSBS down to 0.35 K, which found that the vortices generated by out-of-plane magnetic fields have an elliptical
shape, reflecting the anisotropic gap structure. The orientation of the gap minima is found to be aligned with the
bulk direction when the surface lattice image shows twofold symmetry, but, surprisingly, it is rotated by 30◦

when twofold symmetry is absent. In addition, the superconducting gap spectra in zero magnetic field suggest
that the gap nodes are most likely lifted. We argue that only an emergent symmetry at the surface, allowing for
a linear superposition of gap functions with different symmetries in the bulk, can lead to the rotation of the gap
nodes. The absence of inversion symmetry at the surface additionally lifts the nodes. This result establishes the
subtle but crucial role of crystalline symmetry in topological superconductivity.

DOI: 10.1103/PhysRevB.109.104507

I. INTRODUCTION

Topological superconductivity is a current hot topic in
condensed matter physics due to its close relevance to Ma-
jorana fermions [1]. However, not many materials have been
conclusively identified as topological superconductors. The
family of bulk superconductors derived from Bi2Se3 presents
a rare case, in which odd-parity topological superconductivity
has been well established [1,2]. In this class of materials,
despite the threefold rotational symmetry of the lattice, bulk
superconducting (SC) properties consistently show peculiar
twofold symmetry [3–9] that points to the realization of an
odd-parity gap function with Eu symmetry. Although this gap
function is unconventional and strongly anisotropic, the su-
perconductivity is nonetheless protected from disorder due to
the generalized Anderson’s theorem, thanks to the additional
orbital degrees of freedom and layered structure [10–12].

Interestingly, the Eu-symmetric gap function under D3d

symmetry, conventionally called �4 [13,14], is generally a
linear superposition of two basis functions, conventionally
called �4x and �4y, which have nodes along a mirror plane
of the crystal lattice or normal to it, respectively. The co-
efficients of the superposition form the nematic director n
[14]. In the presence of a principal rotation axis with three-
fold symmetry, there are three degenerate superpositions of
these basis functions, corresponding to three distinct nematic
directors. The selection of one of these superpositions en-
dows a nematic character to the SC state. Note that only the
mirror-symmetry-protected nodes are expected to be robust
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under the D3d symmetry, while others can be lifted by pertur-
bations such as a warping term in the normal state electronic
structure [14]. Elucidating the factors that dictate the nematic
axis is important not only for understanding the topological
superconductivity in the Bi2Se3-based compounds but also for
finding ways to manipulate the SC gap [15].

Experimentally, the orientation of the gap minima differs
among experiments even for the same compound [2]. For
example, in CuxBi2Se3, the direction of the gap minima has
been reported to be 90◦ rotated between bulk [4] and sur-
face [16] measurements. In this regard, there is a complexity
arising from the threefold rotational symmetry of the Bi2Se3

lattice, which allows for three equivalent rotational domains
[2,4]; when contributions from two or more domains are su-
perposed, the apparent symmetry may look like, e.g., �4x even
when the true symmetry is �4y [4,17].

Fortunately, this complexity is absent in the superconduc-
tor Cux(PbSe)5(Bi2Se3)6 (hereafter called CPSBS) [9,11,18].
which has a monoclinic crystal structure and a topologically
nontrivial twofold symmetric gap function [1,13,19]. Specif-
ically, Andersen et al. [9] showed that the gap function in
CPSBS has nodes located on the unique crystallographic
mirror plane, giving rise to nodal superconductivity in the
bulk, which was evinced by specific-heat [9] and thermal-
conductivity [11] measurements in the mK regime. In this
paper, we use scanning tunneling microscopy (STM) and
spectroscopy (STS) to directly access the SC gap on the
surface of CPSBS. On a relatively clean surface, we found
that vortices generated under out-of-plane magnetic fields are
elongated in a twofold-symmetric manner, and the elonga-
tion occurs in the direction perpendicular to the bulk gap
nodes. This is contrary to the naive expectation that the co-
herence length should be longer along the direction of the gap
nodes [16], but it is actually consistent with recent theoretical
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FIG. 1. Elongated vortices in CPSBS. [(a),(b)] Normalized zero-bias conductance (ZBC) maps taken on sample S-I in the out-of-plane
magnetic field of 0.15 and 0.2 T. Stabilization parameters are U = 5 mV, I = 200 pA and Umod = 100 μVp. [(c),(d)] Similar maps for sample
S-II in 0.2 T and 0.4 T. Stabilization parameters are U = 1 mV, I = 50 pA, and Umod = 100 μVp. Gaussian smoothing was applied to all maps
to filter spatial variations of the ZBC smaller than the vortex size (unsmoothed data is shown in the SM [21]). The discontinuity [dotted line in
(d)] is due to the vortex lattice motion during the measurement. [(e),(g)] Line profiles of the change in normalized ZBC (�ZBC) taken across
a vortex center along the vectors shown in (a) and (c); solid lines and open circles are smoothed and raw data, respectively. [(f),(h)] Angular
dependence of the average vortex radius 〈ξ〉. Open circles denote the average of 53 (56) vortices measured for sample S-I at 0.15 T (0.2 T); for
sample S-II, the average was from 6 (7) vortices at 0.2 T (0.4 T). The shaded area indicates the standard deviation and the solid-black line is a
fit to the ellipse equation. The polar angle was measured from the horizontal axis, which is parallel to the monoclinic b axis.

calculations, which showed that the vortex anisotropy in a
p-wave superconductor should rotate by 90◦ as a result of im-
purity scattering [20]. On a more disordered surface where the
twofold lattice symmetry is smeared, we found that the vortex
anisotropy axis is rotated by 30◦, pointing to the rotation of
the gap nodes/minima on the surface. Our symmetry analysis
shows that rotation of the gap nodes is indeed possible in
the presence of an emergent symmetry at the surface and,
furthermore, the inversion symmetry breaking at the surface
would lead to lifting of the nodes. The latter conclusion is
consistent with the observed gap spectra. Our paper hence
offers a framework to understand the intricate relation be-
tween crystal symmetry and the gap function in a topological
superconductor.

II. RESULTS

A. Elongated vortices

We examine the SC gap structure on the surface of CPSBS
by applying an out-of-plane magnetic field and imaging the
vortex lattice of CPSBS in the mixed state. Even though a
major portion of the cleaved surface of CPSBS does not show
superconductivity, we were able to observe superconductiv-
ity on the sample surface at roughly 17% of the total scan
area (see the Supplemental Material, SM [21] for details),
which is slightly better than the case of CuxBi2Se3 [16].
Figures 1(a)-1(b) and 1(c)-1(d) show the spatially resolved
normalized zero-bias conductance (ZBC) on the supercon-

ducting surface of CPSBS for two different samples, S-I
and S-II, respectively, in various out-of-plane magnetic fields
whose magnitude is indicated in each panel (additional data
for other fields are shown within the SM [21]). A vortex
lattice is clearly resolved, and the vortex density increases
with increasing field. Importantly, all the observed vortices
are deformed—the vortices in sample S-I are roughly elon-
gated along the horizontal axis, while those in sample S-II are
rotated by about 30◦ in comparison.

Naively, one would expect that elongated vortices reflect an
anisotropy in the Ginzburg-Landau (GL) in-plane coherence
length, which results from the SC gap anisotropy in k space,
with the longest (shortest) coherence length associated with
directions for which the gap value is the smallest (largest)
[16]. However, it was recently pointed by theory that the local
density of states (LDOS) around vortices imaged by STM
experiments can acquire different geometries depending on
the strength of impurity scattering [20]. In particular, it was
shown that for a p-wave superconductor, the LDOS is elon-
gated along the the direction perpendicular to the gap nodes,
in contrast to the naive GL prediction for clean systems. We
will discuss the relation between the vortex elongation and the
gap nodes/minima in Sec. II C.

It is prudent to mention that a vortex-shape anisotropy can
also be caused by a Fermi-velocity anisotropy [22,23]. How-
ever, the ARPES measurements on superconducting CPSBS
[24] found no such anisotropy within the experimental error
of ∼2%. Even if there were some unexpected Fermi-velocity
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FIG. 2. Superconducting gap spectra. Representative high-resolution gap spectra taken in zero field, at the base temperature of 0.35 K and
in the same area as the vortex maps. The spectrum in (a) is a result of averaging 10000 individual spectra covering an area of (500 nm)2,
while the data in (b) is after averaging 5000 individual spectra taken at the same spot to enhance the resolution. The fits of the data to Eq. (1)
assuming two different gap functions [nodal (blue) and node-lifted anisotropic (red) types] are overlayed on the data. In these fits, the effective
temperature was fixed at 0.7 K. The set of parameters (�0, �1, �) obtained from the fits in (a) for sample S-I are (0, 0.26, 0.03) and (0.07,
0.18, 0.05) for the nodal and node-lifted scenarios, respectively, and those for sample S-II in (b) are (0, 0.39, 0) and (0.11, 0.26, 0.01) for the
two scenarios (all in mV unit). Any error of the fitting routine is well below the experimental uncertainty due to the spatial inhomogeneity of
the total gap magnitude, which was about 0.05 meV in each area (see the SM [21]). Stabilization parameters are U = 5 mV, I = 500 pA for
sample S-I (a) and U = 3 mV, I = 50 pA for sample S-II (b).

anisotropy in the region of the vortex lattice, we do not expect
it can lead to an anisotropy of the vortex shape in the present
case, because CPSBS is in the dirty limit (see the SM [21]) and
a vortex-shape anisotropy cannot result purely from a Fermi-
velocity anisotropy in the dirty limit [22]. Also, a vortex can
appear elongated if the magnetic field is not perpendicular to
the sample surface [25]; to dismiss this possibility, we inten-
tionally tilted the applied magnetic field by about 10◦ both
along the short and long vortex axes (see Fig. S9 within the
SM [21]) and observed no significant change in the anisotropy.
Hence, it can be concluded that the elongation of the vortex
stems from the anisotropic gap.

To quantify the vortex elongation, we first determine the
vortex lattice (see the SM [21] for details) and then take line-
cuts of the ZBC at each lattice site corresponding to a vortex
center. Examples of such line-cuts are shown in Figs. 1(e)
and 1(g) for directions crossing the vortex shown in Figs. 1(a)
and 1(c), respectively. We follow Sera et al. [20] to define the
vortex-core radius ξ as the half width at half maximum, and
determined it as a function of the polar angle ϕ. We obtained
this ξ (ϕ) for 53 (56) vortices in sample S-I at 0.15 T (0.2 T)
and for 6 (7) vortices in sample S-II at 0.2 T (0.4 T). Note
that ξ is not necessarily equal to the GL coherence length
due to the scattering-induced LDOS [20]. The ξ (ϕ) data are
averaged over all vortices in each data set to yield 〈ξ (ϕ)〉,
which is plotted for sample S-I in Fig. 1(f) and for sample
S-II in Fig. 1(h). The observed ϕ dependence is reasonably
well fit by the ellipse equation, and the fitting gives the ratio
between the major and minor axes, γ ≡ 〈ξmajor〉/〈ξminor〉, of
∼1.25 (∼1.55) for sample S-I (S-II). The fitting also gives the
rotation angle of ∼30◦ for the vortices in sample S-II.

B. Superconducting gap spectra

As discussed above, our observation of elongated vortices
points to an anisotropic SC gap. To investigate the anisotropy
in the SC gap function, we analyzed the representative dI/dU

spectra (Fig. 2) measured in zero field at the lowest fridge
temperature of 0.35 K for samples S-I and S-II. We fit the
spectra by using a generalization of Dynes formula [26] for
the momentum-resolved superconducting DOS,

Nk(E ) = ∣∣Re
[
(E − i�)

/√
(E − i�)2 − �2

k

]∣∣, (1)

where we assume a circular Fermi surface. � is an effective
broadening parameter due to pair-breaking scattering and �k
is the SC gap that can have a k dependence. We fit a twofold
symmetric gap with �k = �0 + �1| cos θk|. When the gap is
nodal, �0 = 0. The tunneling conductance dI/dU is given by

dI

dU
∝

∫
Nk(E ) f ′(E + eU )dkdE , (2)

where f (E ) is the Fermi-Dirac distribution function at the
effective temperature Teff . The effective temperature of our
STM experiments at the fridge temperature of 0.35 K was
independently determined by a measurement of pure Nb [27]
to be 0.7 K, so we fixed Teff = 0.7 K and used �, �0, and �1

as fitting parameters.
In Fig. 2, we show fits to two different types of gap func-

tion: (i) nodal gap (�0 = 0) and (ii) twofold symmetric gap
with lifted nodes (�0 	= 0). As is described in detail in the
SM [21], the size of the SC gap on the CPSBS surface varies
with location. Thanks to a relatively large local gap, the data
in Fig. 2(b) from sample S-II have a low ZBC, which helps
to infer if the nodes are lifted: The nodal fit of the spectrum
yields a ZBC that is higher than the data even for � = 0,
which is clearly unreasonable given the dirty-limit nature of
CPSBS (see the SM [21]). On the other hand, a reasonable
fit is obtained for the anisotropic gap with lifted nodes, yield-
ing �0 = 0.11 meV and �1 = 0.26 meV with � = 10 µeV.
Hence, the data in Fig. 2(b) strongly suggest that the nodes
are lifted at the surface. Here we should note that the con-
clusion of lifted nodes is based on the fits to the commonly
assumed sinusoidal gap function, and it may not be valid if the
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FIG. 3. Crystal structure and the gap anisotropy. (a) Schematics of the crystal structure of PSBS. (b) Average profile (open circles) and
the fit to the ellipse equation (solid line) of vortices at 0.2 T for sample S-I (red) and S-II (blue) [the same data as in Figs. 1(f) and 1(h)] with
respect to the top Se lattice and the monoclinic a and b axes; the mirror plane is parallel to a. (c) Fourier-filtered image of (d) overlayed with
the monoclinic unit vectors; the stripe periodicity of ∼2.1 nm agrees with the a unit length. (d) Atomically resolved topmost Se layer on the
cleaved surface of PSBS showing 1D stripes running across the whole surface. The stripe pattern is also observed on the nonsuperconducting
areas of the CPSBS surface in sample S-II (e) and the superconducting area of sample S-I (f). Scale bar corresponds to 1 nm. (g) Averaged
STM height profile along the vertical direction in (d) to (f). Scan parameters are U = 900 mV, I = 20 nA for (d); U = 30 mV, I = 500 pA
for (e); and U = 900 mV, I = 200 pA for (f).

anisotropic gap has a non-sinusoidal function with unusually
steep node. The large anisotropy ratio (�0 + �1)/�0 
 3.4
implies a pronounced minima in the gap function, which is
consistent with the finite quasiparticle scattering even in the
absence of vortices. Due to a smaller local gap resulting in a
large ZBC, the data in Fig. 2(a) from sample S-I do not allow
us to distinguish between nodal and the node-lifted scenarios;
nevertheless, the fit with the anisotropic gap function yields
a reasonable result with an anisotropy ratio of ∼3.6. In fact,
the spectra obtained at all the SC regions are consistent with
the anisotropic gap function (see Fig. S11 within the SM
[21]), even though the value of �0 and �1 varies signifi-
cantly. This large variation appears to reflect the fact the the
superconductivity in CPSBS (and in all other Bi2Se3-based
superconductors) is weakened or disappear at a larger part
of the surface, whose origin is a topic of on-going research:
For example, in a recent paper [27] it was proposed that a
strong electric field due to intrinsic surface band bending may
break Cooper pairs near the surface. In the case of CPSBS, the
strength of surface band bending would vary depending on the
density of Cu dopants found on the surface.

To strengthen the conclusion of the anisotropic gap, we
performed additional experiments on sample S-III to measure
the dependence of the SC gap spectra on the direction of
the in-plane magnetic field ϕ (see the SM [21] for details).

The ϕ dependence of the spectra, in particular the conduc-
tance at zero bias, is clearly twofold symmetric (see Fig. S12
within the SM [21]). A similar phenomenon was reported
for CuxBi2Se3 [16] and was taken as additional evidence
for an anisotropic gap. These observations are also in good
agreement with the theoretical prediction by Nagai [28], who
showed that the angular dependence of the zero-energy den-
sity of states has deep minima when the in-plane magnetic
field is aligned with the direction of the nodes in the �4 gap
realized in CuxBi2Se3.

C. Orientation of the gap minima

We now turn to the topographic images of CPSBS and
those of pristine (PbSe)5(Bi2Se3)6 (called PSBS) to identify
the orientation of the gap minima. Figure 3(a) shows the
schematics of the crystal structure of PSBS/CPSBS. Upon
cleaving the PSBS crystal, one usually obtains a surface that
is terminated by a single quintuple layer (QL) of the Bi2Se3

unit on top of the PbSe layer [29]. Figure 3(d) shows a typical
topograph on such a surface, where a clear one-dimensional
(1D) stripe pattern with atomically resolved top Se layer is
observed. Although the lattice in CPSBS is more disordered
due to Cu intercalation, a similar stripe pattern is observed in
atomic-resolution images on a SC area of CPSBS of sample
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S-I [Fig. 3(f)] as well as on a nonsuperconducting (NSC)
area of sample S-II [Fig. 3(e)]. The stripe corrugation is less
pronounced in the SC area of sample S-I [Fig. 3(g)].

The 1D stripe can be understood as a commensuration
effect (similar to a moiré pattern) arising from the stacking of
the square PbSe lattice and the hexagonal Bi2Se3 lattice. One
can see in Fig. 3(a) that the crystal structure repeats every six
Se atoms in the layer 5 and every five Pb atoms in layer 6 along
the a axis, and this repetition defines the unit length along the
a axis. As shown in Fig. 3(c), the stripe periodicity agrees with
the length of the monoclinic a axis, which clearly indicates
that the stripes come from this commensuration of Se and Pb
sublattices. This in turn allows for a unique determination of
the in-plane monoclinic lattice vectors on the hexagonal top
Se layer, i.e., the stripes are running along the b axis. While
we were not able to resolve the crystal lattice in the SC area
of sample S-II where the vortex lattice shown in Figs. 1(c)
and 1(d) was recorded (a similar case was reported by Tao
et al. [16] for CuxBi2Se3), we know from x-ray diffraction
analysis that in our CPSBS sample the orientation of the
monoclinic axes is macroscopically identical. This is further
verified in STM since we only observed one fixed orienta-
tion of the 1D-stripe with respect to our scan coordinates,
globally.

In Fig. 3(b), we replot the anisotropic ξ with respect to the
hexagonal lattice and the monoclinic axes for both samples S-I
and S-II. Focusing first on the data for S-I, it is to be remarked
that the vortex core is elongated roughly along the monoclinic
b axis, whereas the gap nodes in the bulk lie along the a axis
[9]. This fact indicates that the vortex-shape anisotropy is not
dictated by the GL coherence length anisotropy but by the
maxima of the LDOS in the presence of impurity scattering.
A recent theoretical study has reported that the maxima in the
LDOS of a p-wave twofold-symmetric superconductor can be
rotated by 90◦ in the presence of impurity scattering [20].
This result can be understood in terms of the quasiparticle
trajectory picture obtained within the quasiclassical theory of
superconductivity [30–32]. The LDOS at point r and energy
ε for an isotropic two-dimensional Fermi surface can be gen-
erally evaluated as [33]

LDOS(r, ε) = −ν(0)
∫

d
k

4π
Re[tr(ĝR(r, k̃, ε))], (3)

where ν(0) is density of states at the Fermi energy and
ĝR(r, k̃, ε) is the retarded Green’s function obtained from the
quasiclassical Eilenberger equation written as matrices in spin
space, and k̃ = k/kF is the momentum normalized by the
Fermi momentum kF . An analytic form for ĝR(r, k̃, ε) around
a vortex core can be obtained by a convenient parametrization
of the Green’s functions that cast the Eilenberger equation in
terms of matrix Ricatti equations. At low energies and near the
vortex core, one can perform a Kramer-Pesch approximation,
expanding the Green’s function in ε/�∞ and y/ξ0, where �∞
corresponds to the bulk gap, y is the quasiparticle trajectory
impact parameter, ξ0 is the superconducting coherence length
ξ0 = vF /(π�∞), and vF the Fermi velocity. Within this ex-
pansion, the Ricatti equations form a set of inhomogeneous
linear differential equations with closed form solutions, from
which it is possible to identify the condition for the divergence
of the LDOS for an arbitrary anisotropic superconducting gap.

FIG. 4. LDOS from the quasiparticle trajectory picture. The
enveloping curves of the quasiparticle paths at which the LDOS
diverges are shown in white lines. The density plots correspond to the
LDOS obtained by Green’s functions with poles determined by the
enveloping curves smeared by δ/�∞ = 0.05 and with an isotropic
exponential decay characterized by a length scale equal to ξ0/400.
Here �∞ is the gap magnitude in the bulk, ε is the bias energy scale,
and ξ0 the coherence length. The field of view corresponds to 0.2ξ0

along the a and b directions. (a) Clean limit, with ε/�∞ = 10−4.
(b) Dirty limit, with ε/�∞ = 0.02.

This condition is given by a parametric equation in the in-
plane angle θ around the vortex, which defines an enveloping
function for quasiparticle paths given by(

x
ξ0
y
ξ0

)
= ε

�∞λ2(θ )

(
2

λ(θ )
∂λ(θ )
∂θ

cos θ − sin θ

2
λ(θ )

∂λ(θ )
∂θ

sin θ + cos θ

)
, (4)

where λ(k) =
√

1
2 tr[�̂†(k)�̂(k)], with �̂(k) the supercon-

ducting order parameter matrix written in spin space. For a
superconductor having a twofold-symmetric gap, the simplest
form of gap anisotropy is captured by λ(θ ) = λ0| cos θ |, with
the corresponding envelope function and LDOS shown in
Fig. 4. The LDOS is obtained from the poles determined by
the enveloping function smeared by a small factor δ/�∞ as-
sociated with the presence of phonons or impurity scattering.
Note that in the dirty limit the anisotropy of the LDOS is
rotated by 90◦ with respect to the anisotropy in the clean
limit, the latter dictated by the coherence length anisotropy.
For details, see [33]. A similar approach has been useful for
understanding the rotation of vortices as a function of applied
bias [34,35].

It is worthwhile to note that p-wave superconductivity is
commonly known to be fragile against impurity scattering;
however, in CPSBS the generalized Anderson theorem [11]
protects the unconventional pairing even in the dirty limit.
Note also that this impurity effect on the vortex shape was
not considered in the previous study on CuxBi2Se3[16], which
concluded that the gap minima at the surface are 90◦ rotated
compared to the bulk.

Interestingly, the elongation axis of the vortices in sample
S-II shown in Figs. 1(c) and 1(d) is 30◦ rotated from that in
sample S-I. Following the conclusion that the vortex elonga-
tion occurs in the direction of gap maxima in CPSBS, the data
in Figs. 1(c) and 1(d) suggest that on the SC surface of sample
S-II, the gap minima are rotated from the monoclinic a axis by
30◦, which is perpendicular to one of the mirror planes of D3d

symmetry and corresponds to the �4y gap. In correspondence
with this result, the in-plane magnetic-field-direction depen-
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dence of the gap spectra observed on the surface of sample
S-III, which was discussed in Sec. II B, also shows that the gap
minima is rotated from the a axis by ∼20◦ (see the SM [21]
for details). As shown in Fig. S13 within the SM [21], the SC
areas of both samples S-II and S-III are so disordered that the
stripe pattern indicating the twofold symmetry of the lattice is
no longer observed. This implies that the threefold symmetry
of the Bi2Se3 QLs is effectively restored due to disorder in
both samples. In the next section, we argue that the rotation
of the gap minima observed on the SC surface of samples S-II
and S-III can be understood as a consequence of this emergent
symmetry.

III. THEORETICAL ANALYSIS

We now present a symmetry analysis, which provides
a consistent picture for the above observations, under the
assumption that the superconductivity observed on the sur-
face inherits the unconventional pairing from the bulk. We
emphasize that, although the nature of the superconduc-
tivity on the surface is apparently different from that of
the bulk, it must be unconventional itself, because vortices
cannot be anisotropic in the dirty limit of a conventional
superconductor.

We start the discussion from the perspective of the Bi2Se3

QLs with D3d point group symmetry. The minimal model
for the normal state electronic structure that properly cap-
tures the topological properties of the bands is given in terms
of two effective orbitals with opposite parity formed by a
symmetric, labeled as 1, or antisymmetric 2, combination of
pz orbitals within the QLs [36,37]. In the orbital-spin basis
�

†
k = (c†

1↑, c†
1↓, c†

2↑, c†
2↓)k, the normal-state Hamiltonian can

be parametrized as

Ĥ0(k) =
∑
a,b

hab(k)τ̂a ⊗ σ̂b, (5)

where τ̂a=1,2,3 are Pauli matrices encoding the orbital de-
grees of freedom (DOF), σ̂b=1,2,3 are Pauli matrices encoding
the spin DOF, and τ̂0 and σ̂0 are two-dimensional iden-
tity matrices in orbital and spin space, respectively. In
the presence of time-reversal [acting as �̂ = K τ̂0 ⊗ (iσ̂2),
where K stands for complex conjugation] and inversion
(implemented as P̂ = τ̂3 ⊗ σ̂0) symmetries, the only al-
lowed terms in the Hamiltonian have indices (a, b) =
{(0, 0), (2, 0), (3, 0), (1, 1), (1, 2), (1, 3)}. The properties of
the τ̂a ⊗ σ̂b matrices under the point group operations allow
us to associate each of these terms to a given irreducible
representation (irrep) of D3d , therefore constraining the mo-
mentum dependence of the form factors hab(k) by symmetry.
More details on the description of the normal state are given
within the SM [21]. The important features to keep in mind
are the following: (0,0) and (3,0) correspond to intra-orbital
hopping, (2,0) corresponds to interorbital hopping, (1, a),
with a = {1, 2, 3} correspond to spin-orbit coupling terms. In
particular, (1,3) is associated with trigonal warping and is very
small within the parameter range of validity of this effective
model [37].

TABLE I. Classification of superconducting order parameters.
Here we focus on momentum-independent SC order parameters in
the microscopic basis for materials in the family of Bi2Se3. The [a, b]
indexes in the first column correspond to the parametrization of the
SC gap function according to Eq. 6. The second to fifth columns
give the irreducible representation associated with each order param-
eter for the cases of D3d , D1d , C1v , and C3v point group symmetry,
respectively.

[a,b] D3d D1d C1v C3v

[0,0]
A1g A1g A1 A1[3,0]

[2,3] A1u A1u A2 A2

[1,0] A2u A2u A1 A1

[2,1]
Eu

A2u A1 E
[2,2] A1u A2

Following the parametrization of the normal state, the order
parameters can be generally written as

�̂(k) =
∑
a,b

dab(k)τ̂a ⊗ σ̂b(iσ̂2). (6)

Focusing on local pairing mechanisms, the allowed
momentum-independent gap matrices are associated with
antisymmetric matrices τ̂a ⊗ σ̂b(iσ̂2). These can be classified
according to the irreps of the of D3d point group, as displayed
in the second column of Table I [13].

The QLs of Bi2Se3 have D3d symmetry. In CPSBS, the
presence of the PbSe layers reduces the point group symmetry
from D3d to D1d , and the irreps are mapped according to
the third column of Table I. The SC order parameter in the
bulk of CPSBS is believed to be of the form [2,2], given its
twofold symmetry and the presence of nodes along the mirror
plane [9,11]. This is an odd-parity order parameter, which is
interorbital and spin-triplet in nature. Note that, in the case of
D1d symmetry, this order parameter belongs to A1u irrep. This
is a one-dimensional irrep and the notion of nematicity does
not apply as the threefold symmetry is explicitly broken by
the lattice. Note, though, that the order parameter with indices
[2,3] belongs to the same A1u symmetry channel in D1d . This
means that an order parameter in A1u is generally a linear
superposition of [2,2] and [2,3]. Even if pairing is primarily
driven by interactions promoting the order parameter [2,2],
the combination of spin-orbit coupling terms (1,2) and (1,3)
in the normal state Hamiltonian could lead to the development
of SC correlations with [2,3] character. Nevertheless, as the
trigonal warping term (1, 3) is small in the Bi2Se3 family of
compounds [37], the corresponding mixing should also be
small in the bulk of CPSBS, leading to a lifting of nodes
that might be too small to be observed experimentally. This
information is schematically conveyed in the second row of
Fig. 5.

At the surface of CPSBS inversion symmetry is broken and
the point group is reduced to C1v . The irreps associated to the
order parameters with momentum-independent gap matrices
are mapped according to the fourth column of Table I. Now
the order parameter [2,2] belongs to irrep A2, and any order
parameter in this symmetry channel should again be a linear
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FIG. 5. Symmetry analysis of the superconducting order parameter. (Left) Representative objects following the same point group symme-
tries as Bi2Se3 (D3d ), CPSBS (D1d ), and the surface of CPSBS (C1v or C3v , without or with disorder, respectively). The color of the objects
matches the corresponding Bi2Se3 and PbSe blocks in Fig. 3(a). (Right) SC gaps (colored lines) at the Fermi surfaces (black circles) for the
symmetry channels relevant for the discussion in the text. More details on the parameters used to generate the figures for each symmetry
scenario are given in the SM [21].

superposition of [2,2] and [2,3]. Note that due to inversion
symmetry breaking at the surface, the normal-state Hamilto-
nian includes all (a, b) coefficients, allowing for multiple pairs
of terms in the normal state to promote the mixing of the [2,2]
and [2,3] order parameters (see detailed discussion in the SM
[21]). These surface terms in the normal-state Hamiltonian
contribute further to the lifting of gap nodes, as illustrated in
the third row of Fig. 5, so that the node lifting at the surface
would be stronger than that in the bulk. Here it should be
emphasized that, as any gap in C1v should still be symmetric
or antisymmetric under reflections along the kykz plane, the
gap cannot be rotated under these symmetry considerations.
For a rotation of gap nodes or gap minima to take place, a
mixing of order parameters in different symmetry channels of
C1v would be required.

A possible origin of such a mixing is the strong disorder
at the surface. The rotation of the gap minima was detected
only in locations at which no stripe pattern could be observed
by STM (see Fig. S13 within the SM [21]), suggesting that
in these disordered areas the effect of the PbSe layers is
weakened and the threefold rotational symmetry present in
the Bi2Se3 layers is effectively restored. Under these consid-
erations, the point group symmetry at the disordered surface

can be identified as C3v . Interestingly, this point group has
a two-dimensional irrep labeled as E , which would allow
for mixing of gaps [2,2] and [2,1] that are associated with
different irreps in C1v . Under the C3v symmetry, by chang-
ing the mixing of these two order parameters in the absence
of warping, we find that the gap minima can be tuned to
any position along the circular Fermi surface. In particular,
a ratio d21/d22 = 1 generates minima at 30◦ from the bulk
nodes. While the stability of this particular ratio requires an
analysis of the energetics of the system, which is beyond
the scope of this paper, the rotation by 30◦ corresponds to
having the nodes along the a axis of the hexagonal nota-
tion [9] for D3d symmetry. It is plausible that this ratio is
in fact stable, as this is the direction of the nodes realized
in CuxBi2Se3.

The last row of Fig. 5 schematically shows a gap that could
be generated at the surface under these considerations. Here,
it should be remarked that the two-component nature of the
order parameter in the quintuple layers of Bi2Se3-based ma-
terials with D3d symmetry is a necessary condition to explain
the rotation of the gap at the surface of CPSBS. Therefore,
the tunneling spectra and the vortex anisotropy observed in
our experiment provide one more piece of evidence for the
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intrinsically nematic nature of the SC gap in Bi2Se3-based
materials.

IV. DISCUSSIONS AND CONCLUSIONS

We start our discussions by revisiting some of the ex-
perimental findings on CuxBi2Se3 samples. Some of the
discrepancies between the bulk [4] and the surface [16] re-
garding the direction of the gap minima may be resolved
by considering the effect of impurity scattering discussed in
Sec. II C. However, in the literature, even in the bulk mea-
surements on CuxBi2Se3, there are reports, which differ in
the position of the gap minima with respect to the underlying
lattice by 90◦ [3,4]. Recent Knight-shift measurements [17]
ruled out a multidomain effect in the bulk of the sample, which
was previously proposed [4] as the possible reason for the
different orientations of the gap. It was proposed in [17] that
the specific local environment in the sample caused by lattice
distortion or strain from dopant intercalation and/or quench-
ing (which is necessary for obtaining superconductivity) may
be responsible for determining the nematic axis. A high-
resolution x-ray diffraction (XRD) experiment on SrxBi2Se3

reported a tiny (∼0.02%) in-plane lattice distortion [38], while
a multimodal synchrotron XRD experiment with a slightly
lower resolution did not find any distortion [39]. Therefore,
the situation in doped-Bi2Se3 superconductors is complicated
and it is still unclear what dictates the orientation of the gap
minima in them.

In contrast, the orientation of the gap minima in the bulk of
CPSBS is robust due to the reduced symmetry of the crystal
lattice, which has only one mirror plane, and the rotation of
the gap minima observed here is a pronounced manifestation
of the decisive role of crystalline symmetry in determining the
anisotropic axis of the SC gap. The rotation of the gap minima
also signifies the intrinsically nematic nature of the SC order
parameter in Bi2Se3-based materials, which suggests that the
pairing mechanism must be the same for all superconductors
in this family of materials.

It is useful to mention that according to the theoretical cal-
culations reported in [20], the effect of impurity scattering is
different for p-wave and anisotropic s-wave order parameters
even when the angular dependence of the gap magnitude |�k|
is the same; in the latter case, there is no sign change in the
anisotropic SC gap and the vortex shape becomes isotropic in
the presence of strong scattering. Therefore, the observation of
elongated vortices in the dirty limit gives additional evidence
for the topological odd-parity gap function.

Given that the topological odd-parity superconductivity is
realized in this family of superconductors, an important ques-
tion is the observability of gapless Majorana surface states, the
existence of which is guaranteed by topology. In the present
case, the Majorana surface states are expected to comprise
dispersive 2D gapless modes, and time-reversal symmetry
dictates that they have a helical spin-momentum locking [1].
The experimental difficulty in observing such Majorana sur-
face states in this family of materials comes from the quasi-2D
nature of the Fermi surface [1] and the destruction of su-
perconductivity at a major portion of the surface [16,27,40].
The former implies that the Majorana surface states do not
appear on the top surface, and the latter implies that the area

where the superconductivity reaches the surface is surrounded
by nonsuperconducting areas, causing the possible Majorana
states (which may appear at the boundary) to merge with the
surrounding metallic states, such that little spectral feature can
be observed via STM.

In this connection, it is worthwhile to mention that a pe-
culiar zero-bias conductance peak (ZBCP) has been observed
in point-contact spectroscopy on CuxBi2Se3 [41–43] and on
NbxBi2Se3 [44]. While there is an argument [43] that the
ZBCP is simply due to Andreev reflections expected from
the Blonder-Tinkham-Klapwijk (BTK) theory [45] for a high
transparency contact, it was pointed out that the conductance
dip, which is consistently observed at the superconduct-
ing gap energy, is incompatible with the BTK theory and
points to p-wave pairing [44]. It is useful to note that those
point-contact spectroscopy experiments had no problem in
detecting superconductivity at the surface, which suggests
that the mesoscopic metal in contact with the surface plays
a role in locally restoring the superconductivity beneath the
contact (via, e.g., electron transfer). One may further specu-
late that such a mesoscopic metal accesses the boundary of
the locally restored superconductivity. Hence, well-controlled
point-contact spectroscopy experiments might be a viable way
to address the Majorana surface states expected for this family
of superconductors.

The present result of our STM experiments on CPSBS,
taken together with the complications in the orientation of
the gap minima in CuxBi2Se3, clearly shows that the odd-
parity gap function is highly sensitive to crystal symmetry
in the topological superconductors derived from Bi2Se3. The
symmetry-based analysis of the possible superpositions of dif-
ferent gap functions presented here gives a useful framework
to understand odd-parity topological superconductors.

Raw data used in the generation of main and supplemen-
tary figures are available in Zenodo [46].
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APPENDIX

Material . We grew (PbSe)5(Bi2Se3)6 single crystals us-
ing a modified Bridgeman method as described previously
[9,18]. Cu was electrochemically intercalated using the recipe
of Kriener et al. [47] with a nominal x value of 1.36. The
SC shielding fraction of the resulting CPSBS sample was
measured using a Quantum Design superconducting quan-
tum interference device (SQUID) magnetometer (see Fig. S1
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within the SM [21]) and was 59% for sample S-I and 61% for
sample S-II.

STM experiments. STM experiments were carried out un-
der UHV conditions with a commercial system (Unisoku
USM1300) operating at 0.35 K. STM images were recorded
in the constant-current mode at the set current I and sample
bias voltage U . dI/dU curves and dI/dU maps were ob-
tained either using a lock-in amplifier by modulating Ubias

and demodulating I , or by recording a series of I-U curves
followed by numerical differentiation. The dI/dU maps dis-
played in Fig. 1 were smoothed by using a standard Gaussian

filter with the smallest (3 × 3 points) kernel, corresponding to
15 × 15 nm2 (a), 20 × 20 nm2 (b), and 9.35 × 9.35 nm2

(c),(d), with up to three iterations. The dI/dU spectra dis-
played in Fig. 2 were obtained by taking the numerical deriva-
tive of raw I-U data and subsequently applying a simple low-
pass filter (binominal 21 passes). All STM data were analyzed
using Igor Pro 9. We used in-house electrochemically etched
W tips, first prepared on the Cu(111) crystal. Tip forming is
done until a clean signature of the surface state is observed in
spectroscopy. Prior to STM measurements, the crystals were
cleaved under UHV conditions as described in [27].
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