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Emergence of Larkin-Ovchinnikov-type superconducting state in a voltage-driven superconductor
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We theoretically investigate a voltage-biased normal metal–superconductor–normal metal (NSN) junction.
Using the nonequilibrium Green’s function technique, we derive a quantum kinetic equation to determine the
superconducting order parameter self-consistently. The derived equation is an integral-differential equation with
memory effects. We solve this equation by converting it into a system of ordinary differential equations with
the use of a pole expansion of the Fermi-Dirac function. When the applied voltage exceeds the critical value,
the superconductor switches to the normal state. We find that when the voltage is decreased from the normal
phase, the system relaxes to a Larkin-Ovchinnikov-type (LO) inhomogeneous superconducting state, even in the
absence of a magnetic Zeeman field. We point out that the emergence of the LO-type state can be attributed to
the nonequilibrium energy distribution of electrons due to the bias voltage. We also point out that the system
exhibits bistability, which leads to hysteresis in the voltage-current characteristic of the NSN junction.
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I. INTRODUCTION

In condensed-matter physics, nonequilibrium supercon-
ductivity has attracted much attention both experimentally
and theoretically [1–53]. It can be realized by exposing a
superconductor to external disturbances, such as laser irradia-
tion [6–20], microwave irradiation [21–27], phonon injection
[28–31], as well as quasiparticle injection [32–37]. These
disturbances cause a deviation of the quasiparticle energy dis-
tribution from the equilibrium one, which can be symbolically
written as [4,5]

fneq(ω) = f (ω) + � f (ω). (1)

Here, f (ω) is the Fermi-Dirac function, and � f (ω) represents
the deviation from the equilibrium distribution. The deviation
� f (ω) leads to various interesting phenomena that cannot be
examined as far as we deal with the thermal equilibrium case,
such as charge imbalance [38,39], enhancement of supercon-
ductivity [21–28,40–45], as well as spatially or temporally
inhomogeneous superconducting states [46–53].

In this paper, we revisit nonequilibrium superconductiv-
ity realized in a normal metal–superconductor–normal metal
(NSN) junction [54–62]. When a bias voltage is applied be-
tween the normal-metal leads, the quasiparticles are injected
into and extracted from the superconductor, which brings the
superconductor out of equilibrium. In this sense, a voltage-
biased NSN junction can be viewed as a driven-dissipative
system, where losses of particles and energy in the main
system (superconductor) are compensated by environmental
systems (normal-metal leads).

*tairakawa@keio.jp

In driven-dissipative systems, spatiotemporal pattern for-
mation is commonly found, when the system is driven far from
thermal equilibrium by continuous driving in the presence of
dissipation [63–65]. We can thus expect the emergence of a
spatially or temporally inhomogeneous superconducting state
in a voltage-biased NSN junction. Indeed, a NSN junction
composed of a superconducting wire (the transverse lateral
dimension of which is much less than the superconducting
coherence length ξ ) is known to exhibit a time-periodic su-
perconducting state when a constant bias voltage is applied
between the normal-metal leads [66–73]. The time-periodic
superconducting state is associated with the appearance of
phase-slip centers (PSCs), at which the superconducting order
parameter vanishes.

In this paper, we consider a NSN junction composed of
a thin-film superconductor that is sandwiched by two thick
normal metals, as schematically illustrated in Fig. 1(a). We as-
sume that the superconductor in the in-plane direction is much
wider than the superconducting coherence length (d � ξ ), but
its thickness is small (l � ξ ), and the spatial dependence of
the superconducting order parameter along the z direction is
negligible. In such a NSN junction, the time-periodic state
associated with the appearance of PSCs is not realized because
the cross section (thickness) of the superconductor is too large
(small) for PSCs to appear. However, we cannot rule out
the possibility of a spatially or temporally inhomogeneous
superconducting state induced by other nonequilibrium mech-
anisms than the phase slip.

To explore this possibility, we need to understand the
space-time evolution of the superconducting order parameter
under the bias voltage. For this purpose, the phenomenolog-
ical time-dependent Ginzburg-Landau (TDGL) equation has
been frequently used [69–73]. Although the TDGL theory is
simple and intuitive, it can only be justified in the vicinity
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FIG. 1. (a) The device under consideration. A thin-film (l � ξ

and d � ξ ) superconductor is sandwiched between left (L) and
right (R) normal-metal leads. The superconductor is driven out of
equilibrium by the bias voltage V between the normal-metal leads.
(b) Schematic description of our model. The thin-film supercon-
ductor (main system) is described by the two-dimensional attractive
Hubbard model. The coupling between the superconductor and the
α (=L, R) normal-metal lead is modeled by assuming each site of
the system is connected to an independent free-fermion α reservoir,
which is equilibrated with the chemical potential μα and temperature
Tenv. Electrons are injected into (extracted from) the superconductor
from (to) the reservoirs. Moreover, −tα=L,R

⊥ describes the hopping
amplitude between the superconductor and the α reservoir, which
can be controlled by changing the insulating barrier strength inserted
between the superconductor and the α normal-metal lead.

of the critical temperature [74,75]. Furthermore, the TDGL
theory is not sufficient to fully understand the effects of the
normal-metal leads on superconductivity. Within the TDGL
theory, the effects of the normal-metal leads are often modeled
by imposing plausible boundary conditions on the pair wave
function [69–73]. However, this phenomenological approach
fails to account for the nonequilibrium energy distribution
function fneq(ω) of the electrons in the superconductor. The
electrons in the voltage-driven superconductor in Fig. 1(a)
obey the nonequilibrium energy distribution function (which
will be derived in Sec. II C)

fneq(ω) = γL fL(ω) + γR fR(ω)

γL + γR
, (2)

reflecting the different Fermi-Dirac functions fα (ω) in the left
(α = L) and right (α = R) normal-metal leads due to the bias
voltage [57]. Here, γα=L,R is the coupling strength between
the α normal-metal lead and the superconductor, which will
be defined precisely later on. Although the nonequilibrium
energy distribution function fneq(ω) in Eq. (2) can have a sig-

nificant impact on superconductivity, the TDGL theory cannot
capture this.

In this paper, using the nonequilibrium Green’s function
technique [75–77], we derive a quantum kinetic equation for
nonequilibrium superconductivity in the NSN junction, to
overcome the shortcomings of the above-mentioned TDGL
theory. Solving this equation, we determine the supercon-
ducting order parameter in the voltage-driven nonequilibrium
superconductor. We clarify that the nonequilibrium energy
distribution fneq(ω) induces a steady but spatially inhomo-
geneous nonequilibrium superconductivity. We also show
that the NSN junction system exhibits bistability, leading
to hysteresis in the voltage-current characteristic of the
junction.

We note that the derived quantum kinetic equation is a non-
Markovian integrodifferential equation with memory effects.
Although the numerical solution of such an equation is usu-
ally a computationally very expensive problem, we show that
one can effectively reduce the associated numerical costs by
utilizing the auxiliary-mode expansion technique, originally
developed to study the time-dependent electron transport in a
normal-metal device [78–83].

We comment on the connection between previous work
[55,56,60] and this study: In Refs. [55,60], the possibil-
ity of a spatially inhomogeneous superconducting state in a
voltage-driven superconductor was discussed based on the
quasiclassical Green’s function technique. However, these
papers do not solve the quantum kinetic equation to study
the time evolution of the system. Thus, the possibility of
a temporally inhomogeneous superconducting state is ne-
glected. Besides, the stability of the spatially inhomogeneous
superconducting state and the bistability are not explicitly
discussed. On the other hand, Ref. [56] examines the dy-
namics of the voltage-biased superconductor, to point out the
possibility of a bistability. However, Ref. [56] deals only with
the spatially homogeneous case. Our work complements these
previous studies, to give the complete phase diagram of a
voltage-biased superconductor.

This paper is organized as follows. In Sec. II, we derive the
quantum kinetic equation for nonequilibrium superconductiv-
ity in the NSN junction. By solving this equation, we draw
the nonequilibrium phase diagram of this system in Sec. III.
Throughout this paper, we use units such that h̄ = kB = 1,
and the volumes of the reservoirs are taken to be unity, for
simplicity.

II. FORMALISM

A. Model Hamiltonian

We consider a thin-film superconductor sandwiched be-
tween normal-metal leads, as illustrated in Fig. 1(a). To model
this NSN junction, we consider the Hamiltonian,

H = HSC + Hlead + Hmix. (3)

Here, the superconductor (which is referred to as the
main system in what follows) is described by the two-
dimensional attractive Hubbard model on a square lattice

104502-2



EMERGENCE OF LARKIN-OVCHINNIKOV-TYPE … PHYSICAL REVIEW B 109, 104502 (2024)

of N = Lx×Ly sites with the periodic boundary conditions,
described by

HSC = H0 + Hint, (4)

H0 = −t‖
∑

σ=↑,↓

∑
( j,k)

[c†
j,σ ck,σ + H.c.] − μsys

∑
σ=↑,↓

N∑
j=1

n j,σ ,

(5)

Hint = −U
N∑

j=1

n j,↑n j,↓, (6)

where c j,σ is the annihilation operator of an electron with
spin σ =↑,↓ at the jth lattice site ( j = 1, . . . , N), and n j,σ =
c†

j,σ c j,σ is the number operator. In Eq. (5), −t‖ is the nearest-
neighbor hopping amplitude, μsys is the chemical potential
of the main system, and the summation ( j, k) is taken over
the nearest-neighbor lattice sites. The Hubbard-type onsite
interaction is described by Hint in Eq. (6), where −U (< 0)
is the strength of the attractive pairing interaction.

The left (α = L) and right (α = R) normal-metal leads are
assumed to be free-electron gases in a thermal equilibrium
state, described by Hlead in Eq. (3), having the form

Hlead =
∑

α=L,R

∑
σ=↑,↓

N∑
j=1

∑
p

ξα
p (t )dα†

j,p,σ dα
j,p,σ , (7)

where dα†
j,p,σ creates an electron with the kinetic energy ξα

p =
p2/2m − μα (t ) in the jth α reservoir. We model the coupling
between the main system and the α normal-metal lead by as-
suming each site of the system is connected to an independent
free-fermion reservoir (which we call the α reservoir) [84],
as schematically illustrated in Fig. 1(b). All the α reservoirs
are assumed to be always equilibrated with the chemical po-
tential μα (t ) and the temperature Tenv [85]. The difference
μR(t ) − μL(t ) of the chemical potentials between the left and
right reservoirs equals the applied bias voltage eV (t ) between
the normal-metal leads. As schematically shown in Fig. 2, we
parametrize μα (t ) as

μL(R)(t ) = μenv ∓ e

2
V (t ) = μenv ∓ e

2
[V0 + �V (t )�(t )],

(8)

where μenv is the average chemical potential and �(t ) is the
step function. We assume that the system is in a nonequilib-
rium steady state (NESS) under a constant voltage V0 at t = 0.
(We will verify this assumption later by investigating the time
evolution of the system.) For t > 0, the system is driven by a
time-dependent voltage V0 + �V (t ).

The couplings between the superconductor and the normal-
metal leads are described by

Hmix = −
∑

α=L,R

∑
σ=↑,↓

N∑
j=1

∑
p

[
tα
⊥dα†

j,p,σ c j,σ + H.c.
]
. (9)

Here, −tα
⊥ is the hopping amplitude between the super-

conductor and the α reservoir, which can be tuned by
adjusting the insulating barrier strength inserted between the
α normal-metal lead and the superconductor. In this paper,

FIG. 2. Schematic energy band structure of our model. The en-
ergy is commonly measured from the average of the Fermi energy
levels of the left and right reservoirs. In the left (right) reservoir at
Tenv = 0, the energy band ξL(R)

p (t ) is filled up to ±eV (t )/2, respec-
tively. The chemical potential difference μR(t ) − μL(t ) between the
left and right reservoirs equals the applied bias voltage eV (t ) between
the normal-metal leads.

for simplicity, we consider the symmetric hopping amplitude
tL
⊥ = tR

⊥ ≡ t⊥.

B. Nonequilibrium Nambu Green’s function

To study the superconducting state out of equilibrium,
we conveniently introduce a 2N×2N matrix nonequilibrium
Nambu Green’s functions, given by

Ĝ
x=r,a,<

(t, t ′) =

⎛
⎜⎝Gx

11(t, t ′) · · · Gx
1N (t, t ′)

...
. . .

...

Gx
N1(t, t ′) · · · Gx

NN (t, t ′)

⎞
⎟⎠

2N×2N

,

(10)
where

Gr
jk (t, t ′) = − i�(t − t ′)

×
(〈[c j,↑(t ), c†

k,↑(t ′)]+〉 〈[c j,↑(t ), ck,↓(t ′)]+〉
〈[c†

j,↓(t ), c†
k,↑(t ′)]+〉 〈[c†

j,↓(t ), ck,↓(t ′)]+〉

)

= [
Ga

jk (t ′, t )
]†

, (11)

G<
jk (t, t ′) =

(
i 〈c†

k,↑(t ′)c j,↑(t )〉 i 〈ck,↓(t ′)c j,↑(t )〉
i 〈c†

k,↑(t ′)c†
j,↓(t )〉 i 〈ck,↓(t ′)c†

j,↓(t )〉

)
, (12)

with [A, B]± = AB ± BA. In Eqs. (11) and (12), Gr
jk , Ga

jk , and
G<

jk are, respectively, the retarded, advanced, and lesser 2×2
matrix Green’s functions, whose elements are given by

Gx=r,a,<
jk (t, t ′) =

(
Gx

jk (t, t ′)11 Gx
jk (t, t ′)12

Gx
jk (t, t ′)21 Gx

jk (t, t ′)22

)
. (13)

In the nonequilibrium Green’s function scheme, the effects
of the pairing interaction, as well as the system-lead cou-
plings, can be summarized by the 2N×2N matrix self-energy
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correction

�̂
x=r,a,<

(t, t ′) =

⎛
⎜⎝

�x
11(t, t ′) · · · �x

1N (t, t ′)
...

. . .
...

�x
N1(t, t ′) · · · �x

NN (t, t ′)

⎞
⎟⎠

2N×2N

= �̂
x
int (t, t ′) + �̂

x
lead(t, t ′), (14)

which appears in the Keldysh-Dyson equations [75–77,86]

Ĝ
r(a)

(t, t ′) = Ĝ
r(a)
0 (t, t ′) +

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ĝ

r(a)
0 (t, t1)

× �̂
r(a)

(t1, t2)Ĝ
r(a)

(t2, t ′), (15)

Ĝ
<

(t, t ′) = Ĝ
<

iso(t, t ′) +
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ĝ

r
(t, t1)

× �̂
<

(t1, t2)Ĝ
a
(t2, t ′), (16)

with

Ĝ
<

iso(t, t ′) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

[
δ(t − t1)

+
∫ ∞

−∞
dt3Ĝ

r
(t, t3)�̂

r
(t3, t1)

]
Ĝ

<

0 (t1, t2)

×
[
δ(t2 − t ′) +

∫ ∞

−∞
dt3�̂

a
(t2, t3)Ĝ

a
(t3, t ′)

]
.

(17)

Here, Ĝ
r(a)
0 and Ĝ

<

0 are the Green’s functions of the iso-
lated main system in the thermal equilibrium state before
the system-lead couplings, as well as the pairing interaction,
are switched on. We note that although Ĝ

<

0 depends on the
temperature Tiso in the isolated main system, we will later find
that Ĝ

<

iso in Eq. (17), which involves Ĝ
<

0 , vanishes within our
formalism and the results do not depend on Tiso. (Instead, the
results only depend on the temperature Tenv in the normal-
metal leads.)

In Eq. (14), �̂
x
int and �̂

x
lead describe the effects of the pairing

interaction and the system-lead couplings, respectively. In the
mean-field BCS approximation, �̂

x
int is given by [87–89]

�̂
r
int (t, t ′) = �̂

a
int (t, t ′) = −�̂(t )δ(t − t ′), (18)

�̂
<

int (t, t ′) = 0, (19)

where �̂(t ) denotes the 2N×2N matrix superconducting order
parameter, having the form

�̂(t ) =

⎛
⎜⎝�1(t )

. . .

�N (t )

⎞
⎟⎠

2N×2N

(20)

with

� j (t ) =
(

0 � j (t )
�∗

j (t ) 0

)
. (21)

In Eq. (21),

� j (t ) = −iUG<
j j (t, t )12 (22)

is the local superconducting order parameter of the jth lattice
site.

We deal with the self-energy correction �̂
x
lead within the

second-order Born approximation with respect to the hopping
amplitude t⊥, which gives (for the derivation, see Appendix A)

�̂
r
lead(t, t ′) = [

�̂
a
lead(t ′, t )

]† = −2iγ δ(t − t ′)1̂, (23)

�̂
<

lead(t, t ′) = 2iγ
∑
η=±

exp

(
−iη

∫ t

t ′
dt1

e�V (t1)

2

)

×
∫ ∞

−∞

dω

2π
e−iω(t−t ′ ) f

(
ω − η

eV0

2

)
1̂. (24)

Here, 1̂ is the 2N×2N unit matrix

f (ω) = 1

eω/Tenv + 1
(25)

is the Fermi-Dirac distribution function in the reservoirs, and

γ = πρ|t⊥|2, (26)

with ρα (ω) ≡ ρ being the single-particle density of state in
the α reservoirs. In the following, we use γ as a parameter
to characterize the system-lead coupling strength. We note
that in deriving �̂

x
lead, we assume that ρα (ω) in the α normal-

metal lead are unperturbed by the proximity effect because the
system-lead couplings are sufficiently weak [55,56]. Under
this assumption, we can ignore the ω dependence of ρα (ω)
around the Fermi levels, which is called the wide-band ap-
proximation in the literature [77,84]. We also note that we
have ignored the real part of the self-energy �̂

r(a)
lead in Eq. (23)

because it only gives a constant energy shift, which can be
absorbed into the chemical potential μsys of the main system
[77,84].

Due to the wide-band approximation, the retarded (ad-
vanced) self-energy �̂

r(a)
lead(t, t ′) in Eq. (23) becomes local in

time, that is, it has nonzero contribution only when t = t ′. On
the other hand, the lesser self-energy �̂

<

lead(t, t ′) in Eq. (24)
is nonlocal in time because we do not ignore the ω de-
pendence of the energy distribution function f (ω) in the α

reservoir.
As shown in Appendix B, substituting the self-energy

corrections in Eqs. (18), (19), (23), and (24) into the Keldysh-
Dyson equations (15) and (16), we find Ĝ

<

iso(t, t ′) = 0, which
simplifies Eq. (16) as [86]

Ĝ
<

(t, t ′) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ĝ

r
(t, t1)�̂

<
(t1, t2)Ĝ

a
(t2, t ′).

(27)

We note that the vanishing of Ĝ
<

iso(t, t ′) physically means that
the memory of the thermal equilibrium state in the isolated
main system is wiped out by the couplings with the normal-
metal leads.

C. Nonequilibrium steady state at t = 0

We next explain how to obtain the nonequilibrium super-
conducting steady state at t = 0 under the constant voltage
V0. When the system is in a NESS, the Green’s functions
Ĝ

x=r,a,<
(t, t ′), as well as the self-energy corrections �̂

x
(t, t ′),
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depend only on the relative time t − t ′. This simplifies the
Keldysh-Dyson equations (15) and (27) as

Ĝ
r(a)
NESS(ω) = Ĝ

r(a)
0 (ω) + Ĝ

r(a)
0 (ω)�̂

r(a)
(ω)Ĝ

r(a)
NESS(ω), (28)

Ĝ
<

NESS(ω) = Ĝ
r
NESS(ω)�̂

<
(ω)Ĝ

a
NESS(ω), (29)

where

Ĝ
x
NESS(ω) =

∫ ∞

−∞
d (t − t ′)eiω(t−t ′ )Ĝ

x
NESS(t − t ′), (30)

�̂
x
(ω) =

∫ ∞

−∞
d (t − t ′)eiω(t−t ′ )�̂

x
(t − t ′). (31)

In frequency space, Eqs. (18) and (19) have the forms

�̂
r(a)
int (ω) = −�̂(t = 0), (32)

�̂
<

int (ω) = 0. (33)

In the same manner, the self-energy �̂
x
lead(ω) is given by

�̂
r(a)
lead(ω) = ∓2iγ 1̂, (34)

�̂
<

int (ω) = 2iγ

[
f

(
ω − eV0

2

)
+ f

(
ω + eV0

2

)]
1̂. (35)

Substituting Eqs. (32)–(35) into the Dyson equation (28), we
have

Ĝ
r(a)
NESS(ω) = 1

ω ± 2iγ − ĤBdG
, (36)

where

ĤBdG = Ĥ0 − �̂(0), (37)

with Ĥ0 being the matrix representation of the Hamiltonian
H0 in Eq. (5), given by

H0 = �̂
†Ĥ0�̂. (38)

In Eq. (38),

�̂
† = (c†

1,↑, c1,↓, . . . , c†
N,↑cN,↓) (39)

is the 2N-component Nambu field.
The BCS mean-field Hamiltonian ĤBdG can be diagonal-

ized by the Bogoliubov transformation

Ŵ
†ĤBdGŴ =

⎛
⎜⎝E1

. . .

E2N

⎞
⎟⎠

2N×2N

. (40)

Here, Ŵ is a unitary matrix and Ej=1,...,2N are eigenvalues of
ĤBdG. The retarded (advanced) Green’s function in Eq. (36)
can also be diagonalized by using Ŵ as

Ĝr(a)
NESS(ω) ≡ Ŵ

†
Ĝ

r(a)
NESS(ω)Ŵ =

⎛
⎜⎝[ω ± 2iγ − E1]−1

. . .

[ω ± 2iγ − E2N ]−1

⎞
⎟⎠

2N×2N

. (41)

From Eqs. (29), (33), (35), and (41), we obtain the lesser component Ĝ<

NESS of the Green’s function as

Ĝ<

NESS(ω) ≡ Ŵ
†
Ĝ

<

NESS(ω)Ŵ = 2iγ

⎛
⎜⎜⎝

f (ω−eV0/2)+ f (ω+eV0/2)
[ω−E1]2+4γ 2

. . .
f (ω−eV0/2)+ f (ω+eV0/2)

[ω−E2N ]2+4γ 2

⎞
⎟⎟⎠

2N×2N

. (42)

The local superconducting order parameter � j (0) is self-consistently determined from Eq. (22) as

� j (0) =
∫ ∞

−∞

dω

2π
Ĝ

<

NESS(ω)2 j−1,2 j = [Ŵ �̂Ŵ
†
]2 j−1,2 j, (43)

where

�̂ =
∑
η=±

�̂η =
∫ ∞

−∞

dω

2π
Ĝ<

NESS(ω), (44)

with �̂η = diag(η

1, . . . , 
η

2N ) being a 2N×2N diagonal matrix. In Eq. (44), 
η

j=1,...,2N are given by


η
j = 2iγ

∫ ∞

−∞

dω

2π

f (ω − ηeV0/2)

[ω − Ej]2 + 4γ 2

= i

2

[
1

e(Ej+2iγ−ηeV0 )/2 + 1
+ 1

2π i

[
ψ

(
1

2
− Ej + 2iγ − ηeV0/2

2π iTenv

)
− ψ

(
1

2
− Ej − 2iγ − ηeV0/2

2π iTenv

)]]
. (45)

Here, ψ (z) is a complex digamma function. We solve the gap equation (43) to obtain the superconducting order parameter � j (0)
for a given set (γ ,V0, Tenv) of parameters. For this purpose, we employ the restarted Pulay mixing scheme [90,91], to accelerate
the convergence of this self-consistent calculation.
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We note that substituting Eqs. (33) and (35) into the Dyson
equation (29), we have

Ĝ
<

NESS(ω) = 2iγ

[
f

(
ω − eV0

2

)
+ f

(
ω + eV0

2

)]

× Ĝ
r
NESS(ω)Ĝ

a
NESS(ω)

= −1

2

[
f

(
ω − eV0

2

)
+ f

(
ω + eV0

2

)]

× [
Ĝ

r
NESS(ω) − Ĝ

a
NESS(ω)

]
≡ i fneq(ω)ÂNESS(ω), (46)

with

fneq(ω) = 1

2

[
f

(
ω − eV0

2

)
+ f

(
ω + eV0

2

)]
, (47)

ÂNESS(ω) = i
[
Ĝ

r
NESS(ω) − Ĝ

a
NESS(ω)

]
. (48)

In deriving the second line of Eq. (46), we used [92]

Ĝ
r
NESS(ω) − Ĝ

a
NESS(ω)

= Ĝ
r
NESS(ω)[�̂

r
(ω) − �̂

a
(ω)]Ĝ

a
NESS(ω)

= −4iγ Ĝ
r
NESS(ω)Ĝ

a
NESS(ω). (49)

Comparing Eq. (46) with the thermal equilibrium lesser
Green’s function, we can interpret ÂNESS(ω) and fneq(ω) as
the single-electron excitation spectra and the nonequilibrium
energy distribution, respectively. We note that the nonequilib-
rium energy distribution fneq(ω) in Eq. (47) is given in Eq. (2)
where γL = γR.

Once the nonequilibrium superconducting steady state is
obtained by solving the gap equation (43), we can evaluate
the steady-state charge current I through the NSN junction.
The charge current IL(t ) from the left normal-metal lead to
the superconductor is determined from the rate of change in
the number of electrons in the left reservoirs [86,93]:

IL(t ) = −e
d

dt

∑
σ=↑,↓

N∑
j=1

∑
p

〈
dL†

j,p,σ (t )dL
j,p,σ (t )

〉

= 2e|t⊥|2
N∑

j=1

∑
p

∫ ∞

−∞
dt1Re

[
Gr

j j (t, t1)11D<
L (p, t1, t )11

+ G<
j j (t, t1)11Da

L(p, t1, t )11
]
. (50)

Here, Da(<)
L (p, t, t ′) is the noninteracting advanced (lesser)

Green’s function in the left reservoir, given in Eqs. (A11)
and (A13). From Eq. (50), we obtain the steady-state value
IL(t = 0) as [86,93]

IL = 4iγ e
N∑

j=1

∫ ∞

−∞

dω

2π

[
f

(
ω − eV0

2

)[
Gr

NESS, j j (ω)11

−Ga
NESS, j j (ω)11

] + G<
NESS, j j (ω)11

]
. (51)

The current IR from the right lead to the superconductor is
also given by Eq. (51) where f (ω − eV0/2) is replaced by

f (ω + eV0/2). Since I ≡ IL = −IR in a NESS, we obtain a
symmetrical expression I = [IL − IR]/2 as

I = 2iγ e
N∑

j=1

∫ ∞

−∞

dω

2π

[
f

(
ω − eV0

2

)
− f

(
ω + eV0

2

)]

× [
Gr

NESS, j j (ω)11 − Ga
NESS, j j (ω)11

]
. (52)

The ω integral in Eq. (52) can be performed analytically by
employing the Bogoliubov transformation in Eq. (40). After
carrying out the Bogoliubov transformation, we have

I = 4γ e
N∑

j=1

[Ŵ [�̂+ − �̂−]W †]2 j−1,2 j−1, (53)

where �̂η=± is given in Eq. (45).

D. Quantum kinetic equation for voltage-driven superconductor

To evaluate the time evolution of the superconducting
order parameter � j (t > 0) after the time-dependent voltage
V0 + �V (t ) is applied to the system, we derive the equation of
motion of the equal-time lesser Green’s function Ĝ

<
(t ) ≡

Ĝ
<

(t, t ). [Note that Ĝ
<

(t ) is directly related to the supercon-
ducting order parameter � j (t ) via Eq. (22).] Substituting the
self-energy corrections in Eqs. (18), (19), (23), and (24) to the
Dyson equations (15) and (27), we obtain (for the derivation,
see Appendix C)

i∂t Ĝ
<

(t ) = [ĤBdG(t ), Ĝ
<

(t )]−

− 4iγ Ĝ
<

(t ) − �̂(t ) − �̂
†
(t ), (54)

where

ĤBdG(t ) = Ĥ0 − �̂(t ), (55)

�̂(t ) =
∫ ∞

−∞
dt1Ĝ

r
(t, t1)�̂

<

lead(t1, t ), (56)

and �̂(t ) in Eq. (56) involves the retarded Green’s function
Ĝ

r
(t, t ′), so that the quantum kinetic equation (54) is solved

together with the Dyson equation (15).
We note that the first term on the right-hand side in Eq. (54)

represents the unitary time evolution. When we only retain
this term by setting γ = 0, which physically means cutting
off the couplings between the superconductor and the normal-
metal leads, Eq. (54) is reduced to

i∂t Ĝ
<

(t ) = [ĤBdG(t ), Ĝ
<

(t )]−. (57)

This equation is equivalent to the so-called time-dependent
Bogoliubov–de Gennes (TDBdG) equation [94,95], which is
widely used in studying the dynamics of isolated supercon-
ductors. In this sense, Eq. (54) is an extension of the TDBdG
equation to an open superconductor in the NSN junction.

We also note that Eq. (54) is an integrodifferential equa-
tion that depends on the past information through �̂(t ) in
Eq. (56). This so-called memory effect comes from the
couplings with the non-Markovian reservoirs [96,97]: The
ω dependence of the energy distribution function f (ω) in
the α reservoirs makes the lesser self-energy �̂

<

lead(t, t ′) in
Eq. (24) nonlocal in time, which results in the non-Markovian
term �̂(t ).
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E. Auxiliary-mode expansion

We numerically compute the time evolution of the super-
conducting order parameter � j (t ) under the voltage V (t ) =
V0 + �V (t )�(t ), by solving Eq. (54) together with the Dyson
equation (15). Although similar coupled equations have al-
ready been solved in Refs. [96,97] by carrying out the integral
of �(t ) in Eq. (56) at each time step, these previous papers
deal only with a much simpler spatially homogeneous super-
conducting case at Tenv = 0 and V (t ) = 0. However, in the
present case, the non-Markovian nature of Eq. (54) makes
such a direct computation very challenging.

To circumvent the problem, we extend the auxiliary-
mode expansion technique, developed in the study of the
time-dependent electron transport in a normal-metal device
[78–83], to the present superconducting junction. This tech-
nique allows us to convert the integrodifferential equation (54)
into a system of ordinary differential equations that are suit-
able for numerical calculations.

The main idea of the technique is performing the ω integral
in Eq. (24) by using the residue theorem. To this end, we
expand the Fermi-Dirac function f (ω − ηeV0/2) as

f

(
ω − η

eV0

2

)
� 1

2
− Tenv

NF∑
n=1

[
rn

ω − χη,n
+ rn

ω − χ∗
η,n

]
,

(58)

where the summation is taken over simple poles of

χη,n = η
eV0

2
+ iχn, (59)

with rn being their residues. The choice of (χn, rn) is not
unique. The well-known example is the Matsubara expansion
[98] with the Matsubara frequency χn = [2n + 1]πTenv and
rn = 1. Instead of using this expansion, we use the Padé
expansion [99,100], which converges much faster than the
Matsubara expansion. (We checked that NF = 10 is sufficient
in the case of the Padé expansion.) For details of this expan-
sion, see Appendix D.

Substituting the expanded Fermi-Dirac function in Eq. (58)
into (24) and using the residue theorem, we have

�̂
<

lead(t, t ′) =
∑
η=±

[
iγ δ(t − t ′) +

NF∑
n=1

φη,n(t, t ′)

]
1̂, (60)

with

φη,n(t, t ′) = 2γ Tenvrne−iχη,n (t−t ′ ) exp

(
−iη

∫ t

t ′
dt1

e�V (t1)

2

)
.

(61)

We then substitute the expanded self-energy in Eq. (60) into
�̂(t ) in Eq. (56), which reads as

�̂(t ) = γ 1̂ +
∑
η=±

NF∑
n=1

�̂η,n(t ). (62)

Here, we use Ĝ
r
(t, t ) = −i1̂/2 and introduce

�̂η,n(t ) =
∫ ∞

−∞
dt1Ĝ

r
(t, t1)φη,n(t1, t ), (63)

whose equation of motion is found

i∂t�̂η,n(t ) = 2γ Tenvrn1̂

+
[
ĤBdG(t ) − 2iγ − χη,n − η

e�V (t )

2

]

× �̂η,n(t ). (64)

In deriving Eq. (64), we have used Eq. (C4), which is equiva-
lent to the Dyson equation (15), and

i∂t ′φη,n(t, t ′) = −
[
χη,n + η

e�V (t ′)
2

]
φη,n(t, t ′). (65)

Substituting Eq. (62) into (54), we arrive at

i∂t Ĝ
<

(t ) = [ĤBdG(t ), Ĝ
<

(t )]− − 4iγ Ĝ
<

(t ) − 2γ 1̂

−
∑
η=±

NF∑
n=1

[�̂η,n(t ) + �̂
†
η,n(t )]. (66)

Thus, the original coupled Dyson equation (15) with the (com-
putationally challenging) integrodifferential equation (54) is
now replaced by the set of the ordinary differential equa-
tions given in Eqs. (64) and (66).

We numerically solve Eqs. (64) and (66) by using the
fourth-order Runge-Kutta method with sufficiently small time
steps. At each time step, � j (t ) in ĤBdG(t ) is evaluated from
Ĝ

<
(t ) via Eq. (22) to proceed to the next time step. The initial

condition at t = 0 is given by (see Sec. II C)

Ĝ
<

(t = 0) =
∫ ∞

−∞

dω

2π
Ĝ

<

NESS(ω) = Ŵ �̂Ŵ
†
, (67)

�̂
<

η,n(t = 0) =
∫ ∞

−∞

dω

2π
Ĝ

r
NESS(ω)φη,n(ω) = 2γ TenvrnW

⎛
⎜⎝[χη,n + 2iγ − E1]−1

. . .

[χη,n + 2iγ − E2N ]−1

⎞
⎟⎠W †. (68)

Here, Ŵ and Ej=1,...,2N are introduced in Eq. (40), and �̂ is defined in Eq. (44).

F. Momentum-space formalism

At the end of this section, we map the real-space formalism
explained in Sec. II C onto the momentum-space formalism
for later convenience. In the case of the spatially uniform

superconducting state (� j=1,...,N = �), it is convenient to
Fourier transform the field operator as

ck,σ =
∑

r j

e−ir j ·kcr j ,σ , (69)
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where r j = (x j, y j ) is the position vector of jth lattice site.
As shown in Appendix. E, by evaluating the lesser Green’s
function in momentum space, we obtain the nonequilibrium
BCS gap equation given by [89]

1

U
=

∑
k

∫ ∞

−∞

dω

2π

4γω[1 − f (ω − eV0/2) − f (ω + eV0/2)]

[(ω − Ek)2 + 4γ 2][(ω + Ek)2 + 4γ 2]
.

(70)

Here,

Ek =
√

ε2
k + �2 (71)

is the Bogoliubov excitation energy with

εk = −2t‖[cos(kx ) + cos(ky)] − μsys (72)

being the kinetic energy of an electron (where the lattice
constant is taken to be unity, for simplicity). We solve the
gap equation (70) self-consistently to obtain � for a given
parameter set (γ ,V0, Tenv).

Particularly in the thermal-equilibrium limit (γ → +0 and
V0 = 0), Eq. (70) is reduced to

1

U
=

∑
k

1

2Ek
tanh

(
Ek

2Tenv

)
, (73)

which is just the same form as the ordinary BCS gap equa-
tion [95,101] when one interprets Tenv as the temperature in
the system. In this sense, Eq. (70) may be interpreted as a
nonequilibrium extension of the BCS gap equation.

We can also work in momentum space, when the system
is in the normal state (� j = 0). As shown by Kadanoff and
Martin (KM) [102,103], when the particle-particle scattering
T matrix χ r (q, ν) in the normal phase has a pole at (q, ν) =
(Q, 0), the normal state becomes unstable (Cooper instability)
and the superconducting transition occurs. By extending the
KM theory to the nonequilibrium case, we obtain the T c

env
equation that determines the boundary between the normal
phase and the superconducting phase.

Evaluating the nonequilibrium T matrix χ r (q, ν) by using
the nonequilibrium Green’s function technique, we obtain the
T c

env equation from the KM condition [χ r (q = Q, ν = 0)]−1 =
0 as [104–106]

1

U
=

∑
k

∫ ∞

−∞

dω

2π

4γ
[
ω − εa

k,Q

]
[1 − f (ω − eV0/2) − f (ω + eV0/2)]

[(ω − εk+Q/2)2 + 4γ 2][(ω + ε−k+Q/2)2 + 4γ 2]
, (74)

where

εa
k,Q = 1

2 [εk+Q/2 − ε−k+Q/2]. (75)

We summarize the derivation of Eq. (74) in Appendix F. In
Eq. (74), the momentum Q is determined so as to obtain
the highest T c

env. When Q = 0, the BCS-type uniform super-
conducting state is realized. Indeed, the T c

env equation (74)
with Q = 0 just equals the gap equation (70) with � = 0.
On the other hand, the solution with Q �= 0 describes an in-
homogeneous superconducting state, being characterized by
a spatially oscillating order parameter (symbolically written
as �r j = �eiQ·r j ). This is analogous to the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state in a superconductor under
an external magnetic field [107–109].

III. NONEQUILIBRIUM PHASE DIAGRAM OF
THE VOLTAGE-DRIVEN SUPERCONDUCTOR

We now explore the nonequilibrium phase diagram of the
voltage-driven superconductor. Hereafter, we use the hopping
amplitude t‖ as the energy unit. We also set μsys = 0 and
U/t‖ = 3. We focus on the spatial dependence of the order
parameter � j along the x axis in a two-dimensional square
lattice with Lx×Ly = 101×11 sites.

The main findings are as follows:
(1) When a constant bias voltage is applied, the sys-

tem always relaxes to a certain steady state; that is, the
system never realizes a time-periodic state as seen in a
voltage-driven superconducting wire [66–73]. The phase
diagram in Fig. 3 summarizes the steady states of the
system.

(2) In region II of the phase diagram, a nonuniform super-
conducting state with a spatially oscillating order parameter,
which we call the nonequilibrium Larkin-Ovchinnikov (NLO)
state, is realized. The emergence of NLO is attributed to
the nonequilibrium energy distribution function fneq(ω) in
Eq. (47).

(3) In regions II and III of the phase diagram, the system
exhibits bistability. When the system enters these regions from
region I, a uniform superconducting state, which we call the
nonequilibrium BCS (NBCS) state, is realized in both regions.
On the other hand, when the system enters these regions from
region IV, NLO and the normal state are, respectively, realized
in regions II and III.

Below we discuss these findings in detail.
First, we consider the case when the system is initially

in the thermal equilibrium BCS state (V0 = 0) at t = 0 and
then driven out of equilibrium by the voltage V (t ) = �V �(t ).
Figure 4 summarizes the �V dependence of the time evolu-
tion of the order parameter obtained by solving the coupled
differential equations (64) and (66). In this figure, |�̄(t )| and
�qx,qy are defined by

|�̄(t )| = 1

N

N∑
j=1

|� j (t )|, (76)

�qx,qy (t ) = 1

LxLy

N∑
j=1

� j (t )eir j ·q. (77)

Here, |�̄(t )| is the spatial average of the order-parameter
amplitude and �qx,qy (t ) is the order parameter in momentum
q = (qx, qy) space.
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FIG. 3. (a) Nonequilibrium phase diagram of the voltage-driven
superconductor, when γ /t‖ = 0.01. NBCS and NLO are the nonequi-
librium BCS and Larkin-Ovchinnikov state, respectively. While
NBCS is a uniform superconducting state, NLO is a nonuniform
superconducting state with a spatially oscillating order parameter.
The system exhibits bistability in regions II and III. When the system
enters these regions from region I, NBCS is realized in both the
regions. On the other hand, the system relaxes to NLO (normal
state) in region II (III), when entering from region IV. V0 = VNBCS

(boundaries between regions I and IV, as well as regions III and IV)
and V0 = VNLO (boundary between regions II and III) are, respec-
tively, obtained by solving Eqs. (70) and (74) (see the main text for
details). (b) Effects of the system-lead coupling strength γ on the
phase diagram.

Figure 4 shows that, when the voltage is quenched from
V0 = 0, the system always relaxes to a steady state. When
the system enters regions II and III (e�V/t‖ = 0.8 and
1.2), the system relaxes to a uniform superconducting state
(NBCS), where |�qx,qy | has a peak only at q = 0, as shown
in Figs. 4(b2) and 4(c2). On the other hand, Fig. 4(d) shows
that the superconducting state transitions to the normal state
(|�̄| = 0) when entering region IV (e�V/t‖ = 1.4). To con-
clude, when the voltage is increased from V0 = 0, NBCS is
maintained in regions I–III and the system transitions to the
normal state when entering region IV.

FIG. 4. Time evolution of the order parameter under the voltage
V (t ) = �V �(t ). The initial state at t = 0 is the thermal equilib-
rium BCS state (V0 = 0). We set γ /t‖ = 0.01 and Tenv/t‖ = 0.05.
(a) Schematic diagram of how we quench the voltage. The regions
I–IV are shown in Fig. 3(a). (b)–(d) Show the time evolution of
|�̄(t )| in Eq. (76) and �qx ,qy=0(t ) in Eq. (77) for each voltage quench
depicted in (a). Here, �0 is the order parameter in the case that the
superconductor is isolated from the normal-metal leads and is in the
BCS ground state.

The boundary between regions III and IV can be easily
obtained from the nonequilibrium gap equation (70) [89].
Figure 5 shows the temperature Tenv and the voltage V0

dependence of the solution � of the nonequilibrium gap
equation (70), when γ /t‖ = 0.01. As seen from this figure,
superconducting solutions (� �= 0) vanish in the case when
V0 > VNBCS. Thus, VNBCS is the critical voltage for the uni-
form superconducting state (NBCS), and V0 = VNBCS gives
the boundaries between regions I and IV, as well as regions
III and IV, in the nonequilibrium phase diagram in Fig. 3.

We note that the nonequilibrium gap equation (70) has
two solutions in the low-temperature regime Tenv/t‖ � 0.35,
as shown in Fig. 5 [89]. While the solid line corresponds to
NBCS, the dashed line corresponds to a spatially uniform
gapless superconducting state analogous to the Sarma(-Liu-
Wilczek) state discussed under an external magnetic field
[110,111]. Since this gapless superconducting state is an un-

104502-9



KAWAMURA, OHASHI, AND STOOF PHYSICAL REVIEW B 109, 104502 (2024)

FIG. 5. Self-consistent solutions of the nonequilibrium gap equa-
tion (70), when γ /t‖ = 0.01. V0 = VNBCS gives the boundaries
between regions I and IV, as well as regions III and IV in the
nonequilibrium phase diagram in Fig. 3. While the solid line corre-
sponds to NBCS, the dashed line corresponds to an unstable gapless
superconducting state.

stable steady state [89], the system actually never relaxes to
this state.

Since we find that the system is in the normal steady state in
region IV, we next discuss the time evolution of the order pa-
rameter � j (t ), when the voltage decreases from region IV. (As
a typical example, we set eV0/t‖ = 1.6.) To trigger the super-
conducting phase transition, we give a spatially random small
amplitude |� j (t = 0)|/�0 = 10−5ζ j , as well as random phase
θ j (t = 0) = 2πζ j , (where ζ j is a random number between 0
and 1) for the initial order parameter � j (0) = |� j (0)|eiθ j (0).

As shown in Fig. 6(b1), the order-parameter amplitude |�̄|
does not grow over time, when we decrease the voltage to
enter region III (e�V/t‖ = −0.4), meaning that the system
remains in the normal steady state in region III. On the other
hand, when the system enters regions I and II (e�V/t‖ =
−1.05 and −0.8), |�̄| grows and the system undergoes the
superconducting transition, as shown in Figs. 6(c1) and 6(d1).

The superconducting transition line (the boundary between
regions II and III) shown in Fig. 7(a) is easily obtained from
Eq. (74) [89]. We see in Fig. 7(b) that the poles of the T
matrix χ r (q, 0) appear at q = 0 on the solid line (V0 = VNBCS),
whereas they appear at q = Q( �= 0) on the dashed line (V0 =
VNLO). Thus, the solid (dashed) line represents the phase tran-
sition from the normal state to uniform NBCS (nonuniform
NLO). Hence, V0 = VNLO gives the boundary between regions
II and III in the nonequilibrium phase diagram in Fig. 3.

Figure 6(c2) shows that the system relaxes to the nonuni-
form superconducting state (NLO), where |�qx,qy=0| has two
peaks at qx = ±Q, in region II. The corresponding spatial pro-
file of the order parameter, which can be symbolically written
as �r j = � cos(Qxj ), is shown in Fig. 8(b). The magnitude
of Q depends on the applied voltage. As shown in Fig. 8, the
magnitude of Q increases as the applied voltage increases.

The emergence of the LO-type superconducting state in
region II can be attributed to the nonequilibrium energy distri-
bution function fneq(ω) in Eq. (47) [89,104–106]. Figure 9(a)
shows the nonequilibrium momentum distribution nneq

k in
Eq. (F5). The two-step structure in fneq(ω) is taken over by the

FIG. 6. Same plots as Fig. 4 for the voltage eV (t )/t‖ = 1.6 +
e�V �(t )/t‖. The initial state at t = 0 is the normal steady state
(eV0/t‖ = 1.6).

momentum distribution nneq
k , creating the two Fermi edges, as

shown in Fig. 9(a). These Fermi edges provide two effective
“Fermi surfaces” (FS1 and FS2) of different sizes, which
induce the FFLO-type Cooper pairings with nonzero center-
of-mass momentum. This mechanism is quite analogous to the
ordinary thermal-equilibrium FFLO state induced by the Zee-
man splitting between the spin-↑ and spin-↓ Fermi surfaces
under an external magnetic field [107,108]. However, in the
nonequilibrium case, the spin-↑ and spin-↓ Fermi surfaces are
exactly the same due to the absence of a Zeeman field. Instead,
each spin component has two “Fermi surfaces” of different
sizes.

The voltage dependence of the NLO order parameter
�r j = � cos(Qxj ) shown in Fig. 8 can be understood by us-
ing the effective “Fermi surfaces”: Since the magnitude of
Q physically implies a nonzero center-of-mass momentum
of a Cooper pair, it depends on the difference in the size
of FS1 and FS2. Because the position of FS1 and FS2 in
momentum space is determined by the Fermi levels of left and
right normal-metal leads, the size difference increases as the
voltage increases. Thus, the magnitude of Q also increases as
the voltage increases.

When the system enters region I from region IV (e�V/t‖ =
−1.05), although the NLO-like nonuniform superconduct-
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FIG. 7. (a) Superconducting transition line obtained from
Eq. (74). The system transitions to a uniform NBCS (nonuniform
NLO) on the solid V0 = VNBCS (dashed V0 = VNLO) line. (b) The
intensity of the T matrix χ r (q, 0) at the positions (b1) and (b2) shown
in (a).

ing state temporarily appears, the system eventually relaxes
to the uniform superconducting state (NBCS), as shown in
Fig. 6(d2).

Summarizing the results of Figs. 4 and 6, we arrive at the
nonequilibrium phase diagram in Fig. 3(a). In regions I and
IV, the system always relaxes to the uniform superconducting
state (NBCS) and the normal state, respectively. On the other
hand, the steady state realized in regions II and III depends on

FIG. 8. The voltage dependence of the amplitude |� j | of the
NLO order parameter. The intensity is normalized by �0. We set
γ /t‖ = 0.01 and Tenv/t‖ = 0.05.

FIG. 9. Nonequilibrium momentum distribution nneq
k for different

system-lead coupling strength γ . We set Tenv = 0 and eV0/t‖ = 1 for
both panels. Two Fermi edges (dashed and dotted lines) imprinted on
nneq

k work like two “Fermi surfaces” (FS1 and FS2) of different sizes.

how we tune the voltage: As the voltage is increased from
V0 = 0, NBCS is maintained both in regions II and III, as
shown in Figs. 4(b) and 4(c). As the voltage is decreased from
region IV, on the other hand, the system is in the normal state
in region III and transitions to NLO in region II, as shown
in Figs. 6(b) and 6(c). We briefly note that once the system
reaches the steady state, the phase θ j (t ) of the order parameter
is independent of time, as is the order-parameter amplitude
|�̄(t )|.

As seen from Fig. 3(b), region II (where NLO is realized)
is strongly suppressed as the system-lead coupling strength γ

increases. This is because the two Fermi edges imprinted on
the nonequilibrium momentum distribution nneq

k , which are the
key factors inducing NLO, become obscure as γ increases, as
shown in Fig. 9(b). As γ further increases, the NBCS phase
(region I) in Fig. 3(b2) also disappears and the system does
not show the superconducting transition.

We note that the electron-electron, the electron-phonon,
and the electron-impurity scatterings would also make the two
Fermi edges imprinted on nneq

k obscure and suppress NLO.
Thus, to realize NLO, the applied voltage (which is typically
about the superconducting gap �0) has to be large enough
compared to the linewidth arising from these scattering pro-
cesses, as well as the linewidth γ due to the system-lead
couplings. Since the linewidth due to the electron-electron and
the electron-phonon scattering is much smaller than the su-
perconducting gap in typical BCS superconductors [112], this
condition is satisfied, when γ � �0 and the superconductor
is sufficiently clean (which is also known to be important for
realizing the thermal-equilibrium FFLO state in a supercon-
ductor under an external magnetic field [109]).

The bistability in the small-γ regime leads to hysteresis in
the voltage-current characteristic of the junction. Figure 10
shows the voltage dependence of the steady-state current I
in Eq. (52), when the voltage is adiabatically increased (de-
creased) along path A (path B) in Fig. 3(a). With increasing
the voltage along path A, NBCS is maintained in regions
II and III. In this case, the current I is strongly suppressed
due to the superconducting energy gap [113–115] until the
system enters region IV and transitions to the normal state.
With decreasing the voltage along path B, the current I is
suppressed, when the system enters region II and transi-
tions to NLO. However, since the NLO order parameter has
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FIG. 10. Voltage-current characteristic of the NSN junction. The
solid (dashed) line shows the steady-state current I through the junc-
tion, when we adiabatically vary the voltage along path A (path B)
in Fig. 3(a). The dotted line shows the result when the system is the
normal state (� j = 0). Rn is the normal resistance of the junction.

spatial line nodes (which provide the paths for the single-
electron tunneling), the current I is larger than the NBCS case.
Figure 10 indicates that a voltage-current measurement may
be useful for the observation of the bistability, as well as NLO.

At the end of this section, we briefly discuss how the above
results are affected by the boundary of the present model. So
far, we focused only on the modulation of the order parameter
along the x axis by setting Lx = 101 > Ly = 11. Here we
set Lx = Ly to explore the possibility of a two-dimensional
oscillation of the superconducting order parameter.

Figure 11 shows the time evolution of the order parameter
under the voltage eV (t )/t‖ = 1.6 − 0.8�(t ). The initial state
at t = 0 is the normal steady state [region IV in Fig. 3(a)].
Here we set Lx×Ly = 31×31. As seen from Fig. 11(a), the
order-parameter amplitude grows over time and the system
transitions to a superconducting state. Figure 11(b6) shows
that the system eventually relaxes to NLO, which is the same
as the result obtained in the previous case with Lx×Ly =
101×11 shown in Fig. 6(c). However, as seen in Figs. 11(b1)–
11(b4), the order parameter has a two-dimensional pattern,
which can be symbolically written as �r j = �[cos(Qxj ) +
cos(Qyj )], before the system relaxes to NLO. We will refer to
the transient superconducting state characterized by the order
parameter shown in Figs. 11(b1)–11(b4) as two-dimensional
NLO (2D-NLO).

Figure 11(b) indicates that the 2D-NLO is not a stable
steady state. It should be noted, however, that we cannot rule
out the possibility that the present instability of 2D-NLO is
a finite-size effect. In calculations using a periodic lattice,
the momentum q of the order parameter �q can only take
values commensurate with the system size, which would be
detrimental to 2D-NLO. To check this possibility, we perform
the stability analysis of 2D-NLO for different voltages and
system sizes. This is done by adding small superconducting
fluctuations ξ j to the 2D-NLO order parameter at t = 0 and
investigating the time evolution of the amplitude of the fluctu-

FIG. 11. Time evolution of the order parameter � j (t ) under the
voltage eV (t )/t‖ = 1.6 − 0.8�(t ). We set γ /t‖ = 0.01 and Tenv/t‖ =
0.05, and Lx×Ly = 31×31. At t = 0, the system is in the normal
steady state [region IV in Fig. 3(a)]. (a) The time evolution of |�̄(t )|
in Eq. (76). (b) The spatial profile of the order-parameter amplitude
|� j (t )| at each point shown in (a).

ations, given by

ξ̄ (t ) = 1

N

N∑
j=1

|ξ j (t )|. (78)

We set Reξ j (0)/�0 and Imξ j (0)/�0 as random numbers be-
tween −0.1 and 0.1. If 2D-NLO is (un)stable, ξ̄ (t ) decays
(amplifies) as a function of time t .

Figure 12 summarizes the results of the stability analysis.
Since the frequency of the LO-type order parameter depends
on the applied voltage, for some voltage and system size, the
modulation of the 2D-NLO order parameter is expected to be
almost commensurate with the system size. With this in mind,
we judge from Fig. 12 that 2D-NLO is a metastable (linearly
stable but nonlinearly unstable) state. Thus, when the system
enters region II in Fig. 3(a) from the normal phase, 2D-NLO
initially appears, reflecting the fourfold rotational symmetry
of the lattice potential, but the system would eventually relax
to a more stable NLO, as shown in Fig. 11(b).

We note that the possibility of the two-dimensional LO
(2D-LO) has also been discussed in thermal equilibrium
superconductivity under an external magnetic field [116].
However, it is known that the unidirectional LO (just like
NLO) is always energetically favored compared to 2D-LO

104502-12



EMERGENCE OF LARKIN-OVCHINNIKOV-TYPE … PHYSICAL REVIEW B 109, 104502 (2024)

FIG. 12. Stability analysis of 2D-NLO for various voltages
and system sizes. We set γ /t‖ = 0.01 and Tenv/t‖ = 0.05. We set
(a) Lx×Ly = 31×31, (b) Lx×Ly = 33×33, and (c) Lx×Ly = 35×35.

in the two-dimensional attractive Hubbard model under an
external magnetic field [116].

Before ending this section, we briefly comment on the
overdamped behavior of the order-parameter amplitude |�̄|.
When a system parameter is quenched, the order-parameter
amplitude often oscillates while relaxing to a new steady-state
value. A well-known example is the Higgs oscillation induced
by the pairing interaction U quench [96]. However, when
we quench the voltage V , |�̄| relaxes to a new steady value
without oscillation, as shown in Figs. 4, 6, and 11(a). This is
because unlike in the case of an interaction U quench (where
the system immediately feels the parameter change), the main
system feels the voltage change only by exchanging electrons
with the normal-metal leads [56]. Thus, for the voltage V
quench, |�̄| cannot change to a new steady-state value faster
than the electron exchange rate (∼1/γ ) between the system
and the normal-metal leads. Since this rate is comparable
to the damping rate (∼1/γ ), |�̄(t )| shows an overdamped
behavior for the voltage V quench.

IV. SUMMARY

To summarize, we have studied the nonequilibrium proper-
ties of a normal metal–superconductor–normal metal (NSN)
junction consisting of a thin-film superconductor. When a
bias voltage is applied between the normal-metal leads, the
superconductor is driven out of equilibrium. By using the
nonequilibrium Green’s function technique, we derived a
quantum kinetic equation for the nonequilibrium supercon-
ductor to determine the superconducting order parameter
self-consistently. The derived quantum kinetic equation is an
integrodifferential equation with memory effects. By utilizing
a pole expansion of the Fermi-Dirac function, we converted
the equation into ordinary differential equations, which are
suitable for numerical calculations.

By solving the quantum kinetic equation, we showed that
the voltage-driven superconductor always relaxes to a certain
nonequilibrium steady state. The resulting nonequilibrium
phase diagram is presented in Fig. 3. In this phase diagram, a
nonuniform superconducting state with a spatially oscillating
order parameter �r j = � cos(Qxj ), which is analogous to the
Larkin-Ovchinnikov (LO) state in a superconductor under a
magnetic field, is found in region II. We pointed out that the

nonequilibrium LO (NLO) is induced by the nonequilibrium
energy distribution of electrons in the superconductor, which
has a two-step structure reflecting the different Fermi levels of
the left and right normal-metal leads. We also found that the
system exhibits bistability in regions II and III of the phase
diagram. We showed that the bistability leads to hysteresis in
the voltage-current characteristics of the junction.

We end by listing some future problems. In the thermal-
equilibrium case, the kernel polynomial method is known to
be very useful in studying large-scale inhomogeneous super-
conductors [117–119]. The combination of the method and
our kinetic equation may enable large-scale simulations to
reexamine the stability of the two-dimensional NLO in re-
gion II. Applying our kinetic equation to a voltage-driven
superconducting wire is an interesting future problem. In a
voltage-driven superconducting wire, the time-periodic su-
perconducting state associated with the appearance of the
phase-slip centers is well known [66–73], but our results
suggest that not only temporally but also spatially inho-
mogeneous superconductivity would be realized due to the
nonequilibrium energy distribution function having the two-
step structure. The search for unconventional ordered phases
in nonequilibrium quantum many-body systems is currently a
rapidly evolving field, so that our results would contribute to
the further development of this research field.
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APPENDIX A: DERIVATION OF THE SELF-ENERGY
CORRECTIONS

To derive the self-energy corrections �̂int (t, t ′) and
�̂lead(t, t ′) given in Eqs. (18), (19), (23) and (24), we conve-
niently introduce the 4×4 Nambu-Keldysh Green’s function
[87–89], given by

Ǧ jk (t, t ′) =
(

Gr
jk (t, t ′) Gk

jk (t, t ′)
0 Ga

jk (t, t ′)

)
. (A1)

Here, Gr
jk and Ga

jk are given in Eq. (11) and

Gk
jk (t, t ′) = −i

(
[c j,↑(t ), c†

k,↑(t ′)]− [c j,↓(t ), ck,↑(t ′)]−
[c†

j,↑(t ), c†
k,↓(t ′)]− [c†

j,↓(t ), ck,↓(t ′)]−

)

(A2)

is the Keldysh component. The lesser component in Eq. (12)
is related to Gr,a,k

jk (t, t ′) as

G<
jk (t, t ′) = 1

2

[
Gk

jk − Gr
jk + Ga

jk

]
(t, t ′). (A3)
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1. Interaction effects �̂
r,a,<

int (t, t ′ )

In the mean-field BCS approximation, the 4×4 matrix self-energy �̌int, jk (t, t ′) due to the interaction −U is diagrammatically
drawn as Fig. 13(a), which gives [87–89]

�̌int, jk (t, t ′) =
(

�r
int, jk (t, t ′) �k

int, jk (t, t ′)
0 �a

int, jk (t, t ′)

)
= iU

∑
s=±

∑
ζ=1,2

(τs ⊗ ν+
ζ )TrNTrK[(τ−s ⊗ ν−

ζ )Ǧ(t, t ′)]δ(t − t ′)δ j,k

= iU

2

∑
s=±

(
τsTrN

[
τ−sGk

jk (t, t ′)
]

τsTrN
[
τ−sGr

jk (t, t ′) + τ−sGa
jk (t, t ′)

]
τsTrN

[
τ−sGr

jk (t, t ′) + τ−sGa
jk (t, t ′)

]
τsTrN

[
τ−sGk

jk (t, t ′)
]

)
δ(t − t ′)δ j,k, (A4)

where τ± = [τ1 ± iτ2]/2 and

ν+
ζ = 1√

2
σ2−ζ , ν−

ζ = 1√
2
σζ−1 (A5)

are vertex matrices [89] with σ j=1,2,3 being the Pauli matrices
acting on the Keldysh space. TrN and TrK stand for taking
the trace over the Nambu space and the Keldysh space, re-
spectively. Noting the definition of the superconducting order
parameter

� j (t ) = −iUG<
j j (t, t )12 = − iU

2
Gk

j j (t, t )12, (A6)

we simplify Eq. (A4) as

�̌int, jk (t, t ′) =
(−� j (t ) 0

0 −� j (t )

)
δ(t − t ′)δ j,k . (A7)

Here, � j (t ) is given in Eq. (21). We note that the off-
diagonal components of �̌int, jk (t, t ′) identically vanish be-
cause Gr(a)

j j (t, t )12 = Gr(a)
j j (t, t )21 = 0. From Eqs. (A3) and

(A7), we obtain the 2N×2N matrix self-energy corrections
�̂

r,a,<
int (t, t ′) in Eqs. (18) and (19).

2. System-lead coupling effects �̂
r,a,<

lead (t, t ′ )

In the second-order Born approximation with respect
to the hopping amplitude t⊥, the 4×4 matrix self-energy
�̌lead, jk (t, t ′) describing the couplings with normal-metal

FIG. 13. Diagrammatic representation of the 4×4 Nambu-
Keldysh self-energy corrections. (a) �̌int, jk describes effects of the
onsite pairing interaction −U in the mean-field BCS approximation.
The solid line is the dressed Nambu-Keldysh Green’s function Ǧ jk

given in Eq. (A1). The wavy line is the pairing interaction −U ,
being accompanied by the vertices τs ⊗ ν±

ζ at both ends. (b) �̌lead, jk

describes the effects of the system-lead couplings in the second-order
Born approximation with respect to the hopping amplitude t⊥. The
dashed line denotes the noninteracting Green’s function Ďα=L,R in
the α reservoir given in Eq. (A9). The solid square represents the
hopping amplitude −t⊥ between the system and the α reservoir.

leads is diagrammatically drawn as Fig. 13(b). Evaluating this
diagram, we obtain [87–89]

�̌lead, jk (t, t ′) = |t⊥|2
∑

α=L,R

∑
p

Ďα (p, t, t ′)δ j,k . (A8)

Here,

Ďα=L,R(p, t, t ′) =
(

Dr
α (p, t, t ′) Dk

α (p, t, t ′)
0 Da

α (p, t, t ′)

)
(A9)

is the noninteracting Nambu-Keldysh Green’s function in the
α reservoir. From the Heisenberg equation of the field opera-
tor, one has [86]

Dr
L(R)(p, t, t ′) =

∫ ∞

−∞

dω

2π

1

ω + iδ − [εp − μenv]τ3
e−iω(t−t ′ )

× exp

(
∓i

∫ t

t ′
dt1

eV (t1)

2
τ3

)
, (A10)

Da
L(R)(p, t, t ′) =

∫ ∞

−∞

dω

2π

1

ω − iδ − [εp − μenv]τ3
e−iω(t−t ′ )

× exp

(
∓i

∫ t

t ′
dt1

eV (t1)

2
τ3

)
, (A11)

Dk
L(R)(p, t, t ′) = − 2π i

∫ ∞

−∞

dω

2π
δ(ω − εp + μenv)

× tanh

(
ω

2Tenv

)
e−iω(t−t ′ )

× exp

(
∓i

∫ t

t ′
dt1

eV (t1)

2
τ3

)
, (A12)

D<
L(R)(p, t, t ′) = 2π i

∫ ∞

−∞

dω

2π
δ(ω − εp + μenv) f (ω)e−iω(t−t ′ )

× exp

(
∓i

∫ t

t ′
dt1

eV (t1)

2
τ3

)
, (A13)

where ω± = ω ± iδ, with δ being an infinitesimally small
positive number.

Assuming the constant density of state ρα (ω) ≡ ρ in the
α reservoir and performing the p summation in Eq. (A8), we
have

�
r(a)
lead, jk (t, t ′) = ∓2iγ δ(t − t ′)τ0δ j,k, (A14)

�k
lead, jk (t, t ′) = − 2iγ

∑
η=±

∫ ∞

−∞

dω

2π
e−iω(t−t ′ )
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× tanh

(
ω − ηeV0/2

2Tenv

)
τ0δ j,k

× exp

(
−iη

∫ t

t ′
dt1

e�V (t1)

2

)
. (A15)

Here, γ is given in Eq. (8). In deriving Eq. (A14), we neglect
the real part of the self-energy, which only gives the constant
energy shift. The lesser component �<

lead, jk (t, t ′) is obtained

from �r,a,k
lead, jk (t, t ′) as

�<
lead, jk (t, t ′) = 1

2

[
�k

lead, jk − �r
lead, jk + �a

lead, jk

]
(t, t ′)

= 2iγ
∑
η=±

exp

(
−iη

∫ t

t ′
dt1

e�V (t1)

2

)

×
∫ ∞

−∞

dω

2π
e−iω(t−t ′ ) f

(
ω − η

eV0

2

)
τ0δ j,k .

(A16)

From Eqs. (A14) and (A16), we obtain the 2N×2N matrix
self-energy corrections �̂

r,a,<
lead (t, t ′) in Eqs. (23) and (24).

APPENDIX B: VANISHING OF Ĝ
<

iso(t, t ′ ) IN EQ. (17)

We first introduce the “inverse” Green’s functions
−→̂
G −1

0 (t )

and
←−̂
G −1

0 (t ) that obey
−→̂
G −1

0 (t )Ĝ
r(a)
0 (t, t ′) = δ(t − t ′)1̂, (B1)

Ĝ
r(a)
0 (t, t ′)

←−̂
G −1

0 (t ′) = δ(t − t ′)1̂. (B2)

From the Heisenberg equation of the field operator, these
inverse Green’s functions are found to have the forms

−→̂
G −1

0 (t ) = i
−→
∂ t 1̂ − Ĥ0, (B3)

←−̂
G −1

0 (t ′) = −i
←−
∂ t ′ 1̂ − Ĥ0, (B4)

where Ĥ0 is given in Eq. (38) and the left (right) arrow on
each differential operator means that it acts on the left (right)
side of this operator.

The Dyson equation (15) (which is called the right Dyson
equation) is known to be equivalent to the left Dyson equa-
tion [75], given by

Ĝ
r(a)

(t, t ′) = Ĝ
r(a)
0 (t, t ′) +

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ĝ

r(a)
(t, t1)

× �̂
r(a)

(t1, t2)Ĝ
r(a)
0 (t2, t ′). (B5)

Operating
−→̂
G −1

0 (t ) and
←−̂
G −1

0 (t ′), respectively, to the right and
left Dyson equation, we have

−→̂
G −1

0 (t )Ĝ
a
(t, t ′) = δ(t − t ′)1̂ +

∫ ∞

−∞
dt1�̂

a
(t, t1)Ĝ

a
(t1, t ′),

(B6)

Ĝ
r
(t, t ′)

←−̂
G −1

0 (t ′) = δ(t − t ′)1̂ +
∫ ∞

−∞
dt1Ĝ

r
(t, t1)�̂

r
(t1, t ′).

(B7)

Using Eqs. (B6) and (B7), we can rewrite Ĝ
<

iso(t, t ′) in Eq. (17)
as

Ĝ
<

iso(t, t ′) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ĝ

r
(t, t1)

←−̂
G −1

0 (t1)Ĝ
<

0 (t1, t2)
−→̂
G −1

0 (t2)Ĝ
a
(t2, t ′)

= −i
∫ ∞

−∞
dt2Ĝ

r
(t, t1)Ĝ

<

0 (t1, t2)
−→̂
G −1

0 (t2)Ĝ
a
(t2, t ′)

∣∣∣∣
t1=∞

t1=−∞

+
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ĝ

r
(t, t1)

−→̂
G −1

0 (t1)Ĝ
<

0 (t1, t2)
−→̂
G −1

0 (t2)Ĝ
a
(t2, t ′). (B8)

To obtain the second line, we have integrated by parts with
respect to t1. Since the Dyson equation (15) can be formally
solved as

Gr (t, t ′) = −i�(t − t ′)e−2γ (t−t ′ )

× exp

(
−

∫ t ′

t
dt1ĤBdG(t1)

)
, (B9)

the first term in Eq. (B8) vanishes. [Note that Gr (t,+∞) = 0
due to the step function �(t − t ′), and Gr (t,−∞) = 0 due
to the damping factor e−2γ (t−t ′ ) arising from the system-lead
couplings.] In Eq. (B9), ĤBdG(t ) is given in Eq. (55).

For the second term in Eq. (B8), from the Heisenberg
equation of the field operator, Ĝ

<

0 (t, t ′) is found to have the

form

Ĝ
<

0 (t, t ′) = ie−iĤ0(t−t ′ ) 〈�†�〉H0
. (B10)

Here, �̂ is the 2N-component Nambu field given in Eq. (39)
and 〈. . .〉H0

denotes the expectation value on the thermal equi-
librium state at the temperature Tiso before the system-lead
couplings, as well as the pairing interaction, are switched on.
From Eqs. (B3) and (B10), one has

−→̂
G −1

0 (t )Ĝ
<

0 (t, t ′) = 0, (B11)

and the second term in Eq. (B8) is also found to vanish. Thus,
we find Ĝ

<

iso(t, t ′) = 0.
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APPENDIX C: DERIVATION OF EQ. (54)

Operating the inverse Green’s function
−→̂
G −1

0 (t ) in Eq. (B3)

and
←−̂
G −1

0 (t ′) in Eq. (B4) to the Dyson equation (27) from left
and right, we have

−→̂
G −1

0 (t )Ĝ
<

(t, t ′) = [�̂
< ◦ Ĝ

a + �̂
r ◦ Ĝ

<
](t, t ′), (C1)

Ĝ
<

(t, t ′)
←−̂
G −1

0 (t ′) = [Ĝ
r ◦ �̂

< + Ĝ
< ◦ �̂

a
](t, t ′). (C2)

Here, we introduce the abbreviated notation

[Â ◦ B̂](t, t ′) =
∫ ∞

−∞
dt1Â(t, t1)B̂(t1, t ′). (C3)

In obtaining Eqs. (C1) and (C2), we used
−→̂
G −1

0 (t )Ĝ
r
(t, t ′) = δ(t − t ′)1̂ + [�̂

r ◦ Ĝ
r
](t, t ′), (C4)

Ĝ
a
(t, t ′)

←−̂
G −1

0 (t ′) = δ(t − t ′)1̂ + [Ĝ
a ◦ �̂

a
](t, t ′). (C5)

Subtracting Eq. (C2) from Eq. (C1) and setting t = t ′, we
obtain the equation of motion of the equal-time lesser Green’s
function Ĝ

<
(t ) = Ĝ

<
(t, t ) as

−→̂
G −1

0 (t )Ĝ
<

(t ) − Ĝ
<

(t )
←−̂
G −1

0 (t )

= [�̂
r ◦ Ĝ

< − Ĝ
< ◦ �̂

a + �̂
< ◦ Ĝ

a − Ĝ
r ◦ �̂

<
](t, t )

≡ Î (t ), (C6)

where the collision term Î (t ) = Î int (t ) + Î lead(t ) consists of
the interaction term

Î int (t ) = [
�̂

r
int ◦ Ĝ

<−Ĝ
< ◦ �̂

a
int+�̂

<

int ◦ Ĝ
a−Ĝ

r ◦ �̂
<

int

]
(t, t ′),

(C7)

as well as the system-lead coupling term

Î lead(t ) = [
�̂

r
lead ◦ Ĝ

< − Ĝ
< ◦ �̂

a
lead + �̂

<

lead ◦ Ĝ
a

− Ĝ
r ◦ �̂

<

lead

]
(t, t ′). (C8)

Substituting the self-energy corrections in Eqs. (18), (19),
(23), and (24) to Eqs. (C7) and (C8), one can evaluate each
term as

Î int (t ) = −[�̂(t ), Ĝ
<

(t )]−, (C9)

Î lead(t ) = −4iγ Ĝ
<

(t ) − �̂(t ) − �̂
†
(t ), (C10)

where �̂(t ) is given in Eq. (56). Since the left-hand side of
Eq. (C6) is evaluated as

−→̂
G 0(t )Ĝ

<
(t ) − Ĝ

<
(t )

←−̂
G 0(t ) = i∂t Ĝ

<
(t ) − [Ĥ0, Ĝ

<
(t )]−,

(C11)

we obtain Eq. (54).

APPENDIX D: PADÉ EXPANSION
OF THE FERMI-DIRAC FUNCTION

In the Padé expansion [99,100], the poles χη,n and residues
rn in Eq. (58) are efficiently calculated by solving an eigen-
value problem B |bn〉 = bn |bn〉 of a 2NF×2NF tridiagonal

FIG. 14. Typical NF dependence of
∑N

j=1 |�NF
j − � j |/|� j | for

several steady-state solutions. Here, � j and �
NF
j are, respectively,

obtained with Eqs. (45) and Eq. (D4). We set Lx = Ly = 31, γ /t‖ =
0.01, eV0/t‖ = 1.1, and Tenv/t‖ = 0.05.

matrix B that has nonzero components

Bj, j+1 = Bj+1, j = 1

2
√

[2 j − 1][2 j + 1]
(D1)

for 1 � j � 2NF − 1 [100]. Due to the symmetry of the ma-
trix B, all eigenvalues of B come in pairs (bn,−bn), where
bn=1,...,NF > 0. By using bn and |bn〉, χn and rn are obtained
as

χn = Tenv

bn
, (D2)

rn = |〈1|bn〉|2
4b2

n

, (D3)

where 〈1| = (1, 0, . . . , 0).
The required number NF of poles in Eq. (58) can be esti-

mated from the superconducting order parameter � j (0). As
explained in Sec. II C, � j (0) is self-consistently determined
by solving the gap equation (43) with �̂ in Eq. (44). Although
the elements  j=1,··· ,2N of �̂ are computed exactly as in
Eq. (45), they can also be evaluated from the expansion of the
Fermi-Dirac function in Eq. (58). Substituting Eq. (58) into
the first line in Eq. (45) and using the residue theorem, one
has


NF
j = i

2
− iTenv

2

∑
η=±

NF∑
n=1

[
rn

E j − χη,n − 2iγ

+ rn

E j − χ∗
η,n + 2iγ

]
. (D4)

Here, 
NF
j in Eq. (D4) is reduced to  j in Eq. (45) in the limit

of NF → ∞. Comparing � j (0) obtained with 
NF
j and  j ,

we can estimate the required number NF of poles to obtain the
order parameter � j with sufficient accuracy.

Figure 14 shows the typical NF dependence of

N∑
j=1

∣∣�NF
j − � j

∣∣
|� j | (D5)
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for several steady-state solutions (NBCS, NLO, and 2D-
NLO). For the details of these steady states, see Sec. III. In
Eq. (D5), � j and �

NF
j are, respectively, obtained with  j

in Eq. (45) and 
NF
j in Eq. (D4). As seen from this figure,

the difference between � j and �
NF
j becomes smaller as the

number NF of poles increases. In particular, the difference
between the two is less than 0.005 % for all steady-state

solutions, when NF = 10. Thus, we choose NF = 10 in our
calculations.

APPENDIX E: DERIVATION OF EQ. (70)

In momentum space, the 2×2 matrix Nambu Green’s func-
tions are defined as [89]

Gr (k, t, t ′) = [Ga(k, t ′, t )]† = −i�(t − t ′)

( 〈[ck,↑(t ), c†
k,↑(t ′)]+〉 〈[ck,↑(t ), c−k,↓(t ′)]+〉

〈[c†
−k,↓(t ), c†

k,↑(t ′)]+〉 〈[c†
−k,↓(t ), c−k,↓(t ′)]+〉

)
, (E1)

G<(k, t, t ′) = i

(
〈c†

k,↑(t ′)ck,↑(t )〉 〈c−k,↓(t ′)ck,↑(t )〉
〈c†

k,↑(t ′)c†
−k,↓(t )〉 〈c−k,↓(t ′)c†

−k,↓(t )〉

)
. (E2)

When the system is in a NESS, the Nambu Green’s func-
tions Gx=r,a,<(t, t ′) depend only on the relative time t − t ′.
In frequency space, Gx

NESS(ω) then obey the Keldysh-Dyson
equations

Gr
NESS(k, ω) = Gr

0(k, ω) + Gr
0(k, ω)�r (k, ω)Gr

NESS(k, ω),
(E3)

G<(k, ω) = Gr
NESS(k, ω)�<(k, ω)Ga

NESS(k, ω), (E4)

where

�x=r,a,<(k, ω) = �x
int (k, ω) + �x

lead(k, ω). (E5)

In Eq. (E5), �x
int (k, ω) describes the interaction effects. In the

mean-field BCS approximation, it is given by [89]

�r
int (k, ω) = �a

int (k, ω) = −�τ1, (E6)

�<
int (k, ω) = 0, (E7)

with the Pauli matrices τ j acting on the Nambu space. Here,
we assume a uniform superconducting order parameter (� j =
�), which is related to the off-diagonal component of the
Nambu lesser Green’s function as

� = −iU
∑

k

∫ ∞

−∞

dω

2π
G<

NESS(k, ω)12. (E8)

The system-lead coupling effects are summarized in
�x

lead(k, ω), which are given by [89]

�r
lead(k, ω) = [

�a
lead(k, ω)

]† = −2iγ τ0, (E9)

�<
lead(k, ω) = 2iγ

[
f

(
ω − eV0

2

)
+ f

(
ω + eV0

2

)]
τ0.

(E10)

Substituting the self-energy corrections in Eqs. (E6), (E7),
(E9), and (E10) into the Dyson equations (E3) and (E4), we
have the Nambu Green’s functions as

Gr(a)
NESS(k, ω) =

∑
η=±

1

ω ± 2iγ − Ek



η

k, (E11)

G<
NESS(k, ω) =

∑
η=±

2iγ [ f (ω − eV0/2) + f (ω + eV0/2)]

[ω − ηEk]2 + 4γ 2



η

k.

(E12)

Here, Ek is the Bogoliubov excitation energy given in Eq. (71)
and



η=±
k = 1

2

[
τ0 ± εk

Ek
τ3 ∓ �

Ek
τ1

]
. (E13)

Substituting Eq. (E12) to (E8), one has the nonequilibrium
BCS gap equation (70).

APPENDIX F: DERIVATION OF EQ. (74)

When the system is in the normal state (� j = 0), the
nonequilibrium Green’s functions are given by

Gr
N(k, t, t ′) = [

Ga
N(k, t ′, t )

]∗

= −iθ (t − t ′) 〈[ck,σ (t ), c†
k,σ

(t ′)]+〉 , (F1)

G<
N (k, t, t ′) = i 〈c†

k,σ
(t ′)ck,σ (t )〉 . (F2)

In a NESS, these Green’s functions can easily be obtained
from Eqs. (E11) and (E12) by setting � = 0 and extracting
the (1,1) component, which yields [104,105]

Gr(a)
N,NESS(k, ω) = 1

ω ± 2iγ − εk
, (F3)

G<
N,NESS(k, ω) = −4iγ [1 − f (ω − eV0/2) − f (ω + eV0/2)]

[ω − εk]2 + 4γ 2
.

(F4)

We note that the lesser Green’s function is related to the
nonequilibrium momentum distribution nneq

k as

nneq
k =

∫ ∞

−∞

dω

2π
G<

N,NESS(k, ω). (F5)

Within the mean-field (ladder) approximation, the retarded
particle-particle scattering T matrix χ r (q, ν) can be evaluated
as [104,105]

χ r (q, ν) = −U

1 + Uχ r
0(q, ν)

. (F6)

Here, χ r
0(q, ν) is the lowest-order pairing correlation function,

given by

χ r
0(q, ν) = i

∑
k

∫ ∞

−∞

dω

2π

[
G<

N,NESS(k + q/2, ω + ν)
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× Gr
N,NESS(−k + q/2,−ω)

+ Gr
N,NESS(k + q/2, ω + ν)

× G<
N,NESS(−k + q/2,−ω)

+ Gr
N,NESS(k + q/2, ω + ν)

× Gr
N,NESS(−k + q/2,−ω)

]
. (F7)

Substituting Eqs. (F3) and (F4) into (F7), we have Eq. (74).
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