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Experimental evidence for nonspherical magnetic form factor in Ru3+
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The Mott insulator α-RuCl3 has generated great interest in the community due to its possible field-induced
Kitaev quantum spin liquid state. Despite enormous effort spent trying to obtain the form of the low-energy
Hamiltonian, there is currently no agreed upon set of parameters which is able to explain all of the data. A key
piece of missing information lies in the determination of the magnetic form factor of Ru3+, particularly for a true
quantitative treatment of inelastic neutron scattering data. Here we present the experimentally derived magnetic
form factor of Ru3+ in the low spin 4d5 state using polarized neutron diffraction within the paramagnetic regime
on high-quality single crystals of α-RuCl3. We observe strong evidence of an anisotropic form factor, expected of
the spin-orbit coupled jeff = 1

2 ground state. We model the static magnetization density in increasing complexity
from simple isotropic cases, to a multipolar expansion, and, finally, ab initio calculations of the generalized
jeff = 1

2 ground state. Comparison of both single ion models and inclusion of Cl− anions support the presence
of hybridization of Ru3+ with the surrounding Cl− ligands.

DOI: 10.1103/PhysRevB.109.104432

I. INTRODUCTION

Kitaev’s exactly solvable model on a honeycomb lattice
with bond-dependent nearest-neighbor interactions has gener-
ated enormous interest due to its quantum spin liquid ground
state, where the excitations of the model can be described
by itinerant Majorana fermions and static Z2 fluxes [1]. An
exciting possible extension of the model that Kitaev realized
was its application as a framework for fault-tolerant quan-
tum computation [1–3], where application of a magnetic field
in the gapless phase generates non-Abelian anyons. Finding
materials which can realize the Kitaev model is therefore of
great interest both in the search for a quantum spin liquid
and as a route to the development of fault tolerant quantum
computation.

The search for Kitaev candidate materials has mostly
centered around 4d5 and 5d5 transition metals after it was
realized that the bond-dependent interactions of the Kitaev
model could be realized through the combination of spin-orbit
coupling (SOC) and edge-sharing octahedral ligand fields
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[4,5]. Among possible materials which exhibit these charac-
teristics, α-RuCl3 is one of the most promising candidates.
Though high-quality crystals show zigzag antiferromagnetic
order below TN = 7 K, it was shown that application of
an external magnetic field within the honeycomb plane (per-
pendicular to a Ru-Ru bond) can destroy magnetic order for
fields above 7.3 T [6]. Signatures of fractionalized excitations
in zero applied field, as well as at intermediate magnetic
fields where magnetic order is suppressed, have been ob-
served in inelastic neutron scattering (INS) [7–9], nuclear
magnetic resonance [10], terahertz spectroscopy [11], spe-
cific heat measurements [12,13], and Raman spectroscopy
[14,15].

Most intriguingly, quantized fractional plateaus in thermal
Hall measurements have been reported [16]. The values of the
plateaus match the expected value for Majorana fermion edge
currents associated with the Kitaev model, lending strong
support to α-RuCl3 being a candidate Kitaev material. How-
ever, the challenging nature of these measurements has led to
much debate regarding the nature of these plateaus, with stud-
ies reporting no observation of fractional quantized plateaus
[17], sample dependence of the thermal conductivity and Hall
plateaus [18,19], and anomalous behavior to the fractional
quantized plateaus [20].
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Despite the enormous effort characterizing α-RuCl3, there
is still no low-energy Hamiltonian which can reproduce all
experimental data. While α-RuCl3 has been found to host
dominant Kitaev exchange, other terms such as isotropic
Heisenberg exchange, off-diagonal exchange, and further
neighbor interactions are needed to stabilize the experi-
mentally observed zigzag antiferromagnetic order at low
temperatures [7,21–23]. One problem preventing further de-
termination of the Hamiltonian lies in accurately describing
the magnetic form factor of Ru3+. Current efforts to include
the magnetic form factor in calculations have relied on sim-
ple approximations, with some papers utilizing Dirac-Slater
calculations [9,24], while others have used the form factor of
Fe3+ [25]. Importantly, the jeff = 1

2 ground state of magnetic
4d5 Ru ions is expected to be highly anisotropic, which may
lead to significant deviations in the form factor from these
simple cases. The true nature of the form factor of Ru3+

can provide insight into the bonding nature between the Ru
and Cl atoms and provide another experimental constraint to
allow for a more accurate determination of the generalized
Kitaev Hamiltonian in α-RuCl3, in particular, by providing
quantitative fits to scattering data.

In this paper, we study the local electronic state of Ru3+ in
the low spin state by directly measuring the magnetic struc-
ture factor of Ru3+ through polarized neutron diffraction. We
attempt to model the magnetic form factor using several sep-
arate models: (i) a spherical single ion form factor similar to
that used in Ref. [9], (ii) a spherical ionic form with moments
allowed on neighboring Cl− ligands, (iii) an anisotropic single
ion multipole expansion, and (iv) ab initio calculations of the
generalized jeff = 1

2 ground state using Wannier functions to
accurately account for d − p orbital mixing with the Cl− ions.
Our results show magnetic form factor of Ru3+ in the low-spin
state in α-RuCl3 is anisotropic.

II. EXPERIMENTAL METHODS

Two large (mass ∼2 g) high-quality single crystals of
α-RuCl3 were grown by sublimating purified powder of
α-RuCl3, following Ref. [26]. Polarized neutron diffraction
was performed at PTAX (HB-1), the Polarized Neutron
Triple-Axis instrument at the High Flux Isotope Reactor in
Oak Ridge National Laboratory. The samples were mounted
in a vertical field asymmetric cryomagnet. All data was col-
lected at 80 K, well into the paramagnetic phase of α-RuCl3,
but below the first-order structural phase transition into the
proposed R3̄ structure. For both samples, a vertical field was
applied out of the nominal scattering plane. Sample A had an
8 T field oriented perpendicular to a Ru-Ru bond such that
the (h 0 l ) plane was contained within the scattering plane.
For sample B, a magnetic field of 6 T was oriented parallel
to a Ru-Ru bond, such that the scattering plane contained
the (h h l ) plane. The instrument was run in a half-polarized
mode for the majority of the data collection, with the incident
beam polarized. Polarized neutrons with incident energies of
Ei = 13.5 meV and Ei = 30.5 meV were selected using a
Heusler alloy monochromator. Pyrolitic graphite (PG) filters
were installed to reduce λ/2 contamination and a PG analyzer
was chosen on the scattered side to minimize background
signals. Open collimation settings of 48-80-60-240 were used

to ensure a full integration of Bragg peaks. Data were col-
lected using three-point scans with flippers on and off, with
typical count times of 10 min per point. To prevent sample
movement due to magnetic torque in-field, the samples were
secured in a large aluminum sample mount, which provided
a nonmagnetic determination of the beam polarization and
flipper efficiencies (Appendix A).

III. RESULTS AND DISCUSSION

Polarized neutron studies have been extensively used to ex-
tract the form factors of many complex magnetic ions [28–34].
In the paramagnetic regime, application of a magnetic field
will partially polarize the sample along the direction of the
field. Neutrons with spins polarized along the field (I+) and
opposite to the field (I−) contribute to the elastic scattered
intensity of a crystalline Bragg peak through both nuclear
and magnetic scattering. By measuring with the system in
a half-polarized geometry[see Fig. 1(a)], where the initial
beam is polarized and the scattered beam is insensitive to the
polarization, one can look at the ratios of these intensities.
The ratio of the spin up (I+) and spin down (I−) intensities
leads to a quantity known as the flipping ratio (R), which for
a centrosymmetric crystal (real-valued structure factors) takes
the form

R = I+
I−

= F 2
N + 2psin2(α)FN FM + sin2(α)F 2

M

F 2
N − 2pεsin2(α)FN FM + sin2(α)F 2

M

, (1)

where FM and FN are the magnetic and nuclear structure
factors, respectively; p is the initial beam polarization ef-
ficiency; ε is the flipper efficiency; and the angle α is the
angle between the scattering plane and static component of the
magnetization.

To determine the magnetic structure factor, FM (from which
one can determine the magnetic form factor), Eq. (1) is explic-
itly dependent on one’s choice of the nuclear unit cell, which
is determined separately and taken to be a known parameter.
For α-RuCl3, this is a particularly important distinction. While
the room-temperature structure has been largely confirmed
by the community to be C2/m, α-RuCl3 has been shown by
multiple groups to host a strongly first-order phase transition
below T ∼ 125 K in many samples [35–37]. The structure of
the low-temperature phase has so far eluded an exact determi-
nation, hindered both by the existence of structural domains
[35] and the material’s sensitivity toward developing stacking
faults upon handling [38,39]. Groups have reported low-
temperature structures such as P3112 [7,40], R3̄ [27,35,41],
and C2/m [11,38]. For all analysis shown in this paper, we
use the recently reported low-temperature structure with the
lowest reported R factor found in Ref. [27], who found the R3̄
structure (a = 5.973 Å, c = 17.0025 Å in hexagonal setting)
shown in Fig. 1(b).

We focus on small |Q| reflections which are most sensitive
to the magnetization, and measured the flipping ratios for 28
unique reflections within the (h 0 l ) plane and 19 unique
reflections within the (h h l ) plane. Along with the standard
obverse setting reflection conditions of R3̄ (−h + l = 3n for
k = 0), in our experiment we observed scattering belonging to
a second domain consistent with a reverse setting (h + l = 3n
for k = 0). This type of twinning is consistent with that found
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FIG. 1. (a) Schematic of half-polarized neutron diffraction. Incoming neutrons are polarized to be parallel to the applied external field
magnetic field at the sample position. A radio frequency (RF) flipper can be used to flip the neutron spin to be oppositely aligned with the
magnetic field. Scattered elastic neutrons are counted in a polarization-insensitive detector. (b) Three-layer stacking R3̄ crystal structure used
for all calculations in the text, from Ref. [27]. (c) Absolute value of magnetic structure factors taken at 80 K in the (h 0 l) plane. Inset shows
field direction of 8 T field applied perpendicular to a Ru-Ru bond. (d) Absolute value of magnetic structure factors taken at 80 K in the (h h l)
plane. Colored dashed lines are guides to the eye showing the three main branches of reflections: red corresponds to (h h l)-type reflections
with both h, l > 0, green corresponds to reflections where either h or l are equal to zero, and blue corresponds to (h h l̄)-type reflections where
both h, l > 0. Inset shows direction of 6 T field applied parallel to a Ru-Ru bond.

by Ref. [35] and can be related to the primary domain via a
c-axis mirror.

For (h 0 l ) measurements, by looking at multiple oppo-
site domain reflections [e.g., (2̄ 0 4) vs (2 0 4)], we find that
both domains were roughly equally populated with similar
intensities and identical flipping ratios within measured un-
certainty. Reflections which are allowed by both domains
[e.g., (3n 0 3n′)] mix equivalent reflections and thus do not
affect determination of Fm (Appendix A). Reflections taken
in the (h h l ) plane, where both h and l are nonzero, mix
nonequivalent reflections, such as (1 1 3) and (1 1 3̄). We can
incorporate the effect on the intensities and flipping ratios for
two domains as the sum of two independent reflections,

Rhhl = apIhhl
+ + (1 − ap)Ĩ hhl

+
apIhhl− + (1 − ap)Ĩ hhl−

, (2)

where ap represents the primary domain population and Ihhl
+,−,

Ĩ hhl
+,− correspond to the intensity from the primary and twinned

domain respectively, according to Eq. (1). Surprisingly, the
best-fit domain population was nearly monodomain, with ap

= 0.95(5) which may be a result of careful annealing protocol
used across the structural transition (Appendix A). Values
of Fm for these reflections were then able to be extracted
for measurements with corresponding paired flipping ratios.
For all data reported in this paper, we report only values
corresponding to the primary structural domain. Values of the
experimentally measured flipping ratios and corresponding
magnetic structure factor extracted using Eqs. (1) and (2) are
presented in Tables I and II. While Eq. (1) gives two roots for
each reflection, we find that only one root remains physical for

each measured reflection. This allowed for an unambiguous
measure of FM . We note that since the extracted magnetic
structure factor is phase sensitive, FM is not a definite posi-
tive value for all Q. Figures 1(c) and 1(d) show the absolute
value of the derived magnetic structure factors as a func-
tion of |Q| for both orientations. While both data sets show
similar overall decreasing trends for increasing momentum
transfer, the (h 0 l) data are mostly constrained to a single
trend while the (h h l) data appear to split into three distinct
branches, highlighted by the different colored dashed lines.
These branches correspond to the following reflection types:
red show (h h l)-type reflections with both h > 0, l > 0;
green show reflections where either h or l are zero; and blue
show (h h l̄)-type reflections with with h and l finite and
opposite in sign.

To obtain the direct-space scalar magnetization density,
m(r), one can simply take a direct Fourier transform of the
measured magnetic structure factors. Since the magnetization
density has the periodicity of the crystal lattice, one can define

p0m(r) = 1

v0

∑
G

FM (G)eiG·r, (3)

where the magnetic scattering length p0 is a well-known
constant ( γ r0

2μB
= 2.695 fm

μB
, with γ the ratio of the neutron

magnetic dipole moment to the nuclear magneton (γ > 0),
and r0 the classical electron radius), v0 is the volume of the
unit cell and the sum runs over the complete set of reciprocal
lattice vectors G. Figure 2(a) shows m(r) produced via a direct
Fourier transform of the data in Tables I and II. A lack of
Fourier components, both from a lack of data perpendicular to
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TABLE I. Experimental data of flipping ratios and corresponding
calculated structure factors for the (h 0 l ) plane in α-RuCl3. All
data is taken at 80 K and with an 8 T applied field along a {1 1̄ 0}
equivalent direction.

(h k l ) R FN [fm] FM [fm]

(3 0 0) 1.008(1) 210.874 0.64(6)
(1 0 1) 1.147(25) 28.109 1.16(5)
(2̄ 0 1) 1.35(15) 5.962 0.54(4)
(4 0 1) 1.016(5) 46.390 0.23(7)
(1̄ 0 2) 1.158(2) –26.012 –1.16(6)
(2 0 2) 1.128(5) –10.707 –0.79(4)
(4̄ 0 2) 1.01(1) –39.280 –0.1(1)
(0 0 3) 1.118(2) –58.511 –2.0(1)
(3 0 3) 1.038(1) –58.189 –0.67(4)
(1 0 4) 1.196(5) –17.498 –0.94(6)
(2̄ 0 4) 1.075(4) –28.607 –0.62(4)
(4 0 4) 1.3(1) –7.693 –0.7(3)
(1̄ 0 5) 1.193(5) 15.004 0.79(4)
(2 0 5) 1.059(2) 34.251 0.59(3)
(4̄ 0 5) 1.9(2) –0.763 –0.15(6)
(0 0 6) 0.972(1) –127.112 1.15(7)
(3 0 6) 0.987(15) –123.480 0.47(65)
(1 0 7) 1.157(6) 13.391 0.59(4)
(4 0 7) 0.95(1) –6.748 0.1(2)
(1̄ 0 8) 1.119(6) –15.015 –0.51(3)
(2 0 8) 1.023(5) –33.967 –0.23(4)
(0 0 9) 0.67(2) 6.226 –0.75(6)
(3 0 9) 0.97(25) 5.216 –0.04(4)
(1 0 10) 1.044(5) –23.2235 –0.30(4)
(0 0 12) 1.018(3) 202.300 1.2(2)
(3 0 12) 1.005(2) 198.860 0.3(15)
(1 0 13) 1.06(2) 29.193 0.6(2)
(0 0 15) 1.003(3) –120.924 –0.1(1)

TABLE II. Experimental data of flipping ratios and correspond-
ing calculated structure factors for the (h h l ) plane in α-RuCl3. All
data is taken at 80 K and with a 6 T applied field along a {1 0 0}
equivalent direction. For all reflections with both h �= 0 and l �=
0, the flipping ratios contain components from two nonequivalent
reflections due to a c-axis twin in the measured crystal. All FM

reported contain only the extracted value pertaining to the primary
domain.

(h k l ) R FN [fm] FM [fm]

(1 1 0) 0.914(2) –43.425 1.18(6)
(2 2 0) 0.952(6) –41.318 0.63(8)
(0 0 3) 1.086(1) –58.511 –1.54(8)
(1 1 3) 1.013(15) –181.607 –1.1(2)
(1 1 3̄) 0.9850(9) 113.467 –0.70(4)
(0 0 6) 0.978(1) –127.112 1.01(8)
(1 1 6) 1.021(25) 154.202 1.2(2)
(1 1 6̄) 1.006(1) 98.295 0.24(5)
(0 0 9) 0.71(2) 6.226 –0.64(4)
(1 1 9) 0.977(3) 76.023 –0.71(9)
(1 1 9̄) 0.999(1) –208.459 0.1(3)
(0 0 12) 1.008(2) 202.300 0.5(1)
(1 1 12) 0.990(4) –92.238 0.3(1)
(1 1 1̄2) 1.01(2) 17.569 0.2(1)
(0 0 15) 1.000(4) –120.924 0.0(15)

the measured scattering planes as well as from finite measured
|Q| within the scattering planes, introduce a large amount of
structured Fourier noise to a direct Fourier transform. Despite
this, two things are clear: (i) the magnetization density shows
an induced moment centered on Ru3+ ions and (ii) no obvious
moment beyond background can be made out on neighbor-
ing Cl− ions which constrain the relative moment on Cl−

to be roughly < 25% the total moment. While the system
shows an apparent broadening along the crystallographic b
axis, we attribute this to an experimental artifact. As Fig. 2(a)
shows, in our convention the b axis is close to (or along)
the field direction in each experiment, meaning we have the
least experimental data in this direction. The lack of data then
produces a broadening effect in a direct Fourier transform.

To more reliably extract an accurate depiction of the mag-
netization density, one can fit the magnetic structure factor
directly using a known model. To separate the normalized
magnetic form factor from the measured magnetic structure
factors, one can often model the magnetization density using
a single ion approach, where the magnetization density is
constrained to only involve the magnetic ion species and all
interactions with surrounding ions are ignored or with a more
inclusive multi-ion model which features the addition of the
surrounding ligand environment beyond the single-ion level.

A. Isotropic models

For an isolated ion in free space, the magnetization density
due to unpaired electrons is spherical and can be defined by a
radial wave function, R(r). The magnetic form factor is then
described by radial integrals 〈 jl (Q)〉 = ∫

R(r)2 jl (Qr)4πdr,
where jl (Qr) are spherical Bessel functions of order l . For
all analysis in this paper, we use radial functions of the form
described in Appendix C. Since the magnetic form factor of
transition metals decay quickly with |Q|, it is often sufficient
to keep only the lowest order terms. When embedded in solids,
the magnetization density can become anisotropic. Despite
this, a large number of spherical form factors remain success-
ful in describing the experimental data. An extensive list of
these form factors have been tabulated by Brown [42], though
we note that Ru3+ is not among those tabulated. To compare
our derived form factor to a simple lowest order spherical
form, we compare Dirac-Slater calculations of the Ru3+ form
factor using the contributions of the unfilled orbitals of the
x-ray form factor, which were produced by Cromer and Waber
in Ref. [24]. When we compare fits to Dirac-Slater calcula-
tions, we find within our experimental limit of |Q| it can be
well reproduced by the lowest order radial integral, 〈 j0〉, with
a radial parameter of ξ = 6.4.

For a single magnetic species, the magnetic structure factor
can be written as

FM (Q) = p0μ f (Q)
∑

j

eiQ·r j e−Wj , (4)

where μ represents the magnetic moment in units of μB (Bohr
magnetons) per ion for a symmetry equivalent atom, f (Q) is
the normalized form factor, e−Wj is the Debye-Waller Factor,
and the sum runs over all magnetic ions in the unit cell.

The measured normalized (single ion) magnetic form fac-
tor taken using Eq. (4) is shown in Fig. 2(b). Here we scaled
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FIG. 2. (a) Direct space magnetization density, m(r), produced directly through Eq. (3) using data from Tables I and II. Brown and green
circles denote Ru and Cl ions, respectively, and B⊥ and B|| show the defined magnetic field directions used for both experiments. The
magnetization shows a weak induced moment centered on Ru ions which form into honeycomb layers. Observation of magnetization near
surrounding Cl ions is hindered by a large amount of Fourier noise. (b) Normalized single-ion Ru3+ form factor data extracted following
Eq. (4). The dashed line shows best-fit lowest order spherical approximation (〈 j0〉). The data was normalized using a best-fit induced moment
of μ = 0.145 μB/Ru such that the presented data is scaled to unity at |Q| = 0. The form factor shows clear signs of anisotropy away from a
simple decreasing trend in |Q| that are clearly not accounted for without angular dependence. (c) Experimentally observed magnetic structure
factor values compared to an ionic spherical model containing contributions from Cl− ions [Eq. (5)] as well as values for the single-ion
spherical model shown in (b).

the experimental data with a best-fit induced moment of μ

= 0.141(5)μB/Ru, such that the magnetic form factor is nor-
malized to be unity at Q = 0. For (h h l ) data taken with an
applied field of 6 T, we compare common (0 0 l ) reflections to
provide a relative induced moment such that we can combine
both data sets (Appendix A). While most of the data show a
similar decreasing trend in |Q|, clear anisotropy is observed
for some directions. Since f (Q) shows clear directional de-
pendence rather than just as a function of |Q|, we have strong
evidence that the form factor contains angular dependence
which can not be explained using spherical models, even
with the inclusion of an orbital moment. While describing
anisotropic data using such a model is prone to error, we find
the best-fit lowest order spherical model described by 〈 j0〉 is
able to describe much of the (h 0 l ) data well. We find fits
of the radial distribution to the data are in good agreement to
that calculated in Ref. [24], indicating that such a model was
able to accurately describe the main radial extent of the form
factor, if not the anisotropy.

Equation (4) explicitly ignores hybridization effects by
constraining the magnetic form factor to only consider mag-
netic Ru3+ ions. A common simple ionic approximation
which can include hybridization effects is to extend Eq. (4)
to include a second sum over surrounding ligand ions. In this
case, we have

FM (Q) = F Ru
M (Q) + F Cl

M (Q), (5)

where F Ru
M (Q) and F Cl

M (Q) correspond to individual ionic
single ion magnetic structure factors for each symmetry equiv-
alent Ru3+ and Cl− ions, respectively. One can then vary the
relative size of the moments on Ru and Cl sites as a free
parameter under the constraint that the overall moment is fixed
[43–45].

The addition of Cl− ions requires two independent form
factors, which can double the parameters required to describe
the data. Because of this, ionic models incorporating ligand
atoms often assume simple spherical form factors for each
atom. While this may not be an accurate model for anisotropic
spin-orbit coupled moments, it can provide some insight into
the bonding nature of α-RuCl3. Figure 2(c) shows best-fit
parameters corresponding to Eq. (5). In each case, only the
lowest order radial integrals (〈 j0〉) were considered. Since
each point in reciprocal space contains phase sensitive con-
tributions from both Ru3+ and Cl− ions, we compare the
full magnetic structure factor rather than the magnetic form
factors. While some of the data are clearly not accounted
for, the addition of Cl tends to fit the data marginally better
than modeling Ru alone, particularly at low |Q|. The best
fit parameters within this model find a sizable portion of the
total induced moment sit on Cl ion (∼18% the total moment).
Best fit parameters corresponding to the two isotropic models
described above can be found in Table III. We can also com-
pare the best fit moments to estimates of the induced moment
calculated from Curie-Weiss fits to the intermediate tempera-
ture susceptibility, just below the structural transition but well
above TN in comparison to bulk magnetization measurements
described in Ref. [46]. This leads to an induced moment of
μ ∼ 0.165(3)µB for 80 K and an applied field of 8 T within the
ab plane, in good agreement with the total induced moment
found with incorporation of the Cl atoms of ∼0.167µB.

B. Multipole models

Next, we turn to a single ion model which is appropriate for
fitting complex systems of arbitrary symmetry. The multipole
expansion has had success in systems with both spin and
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TABLE III. Best-fit parameters using a lowest order single ion
approximation (〈 j0〉) and ionic approximation with moments allowed
on Cl ions. Here ζ is a parameter describing the radial extent of the
wave functions in units of Å−1 (Appendix C) while μ corresponds
to the static induced magnet moment in units of μB such that the
resulting form factor(s) is (are) normalized to unity at |Q|=0. In the
first column, the model is compared to the Dirac Slater calculations
in Ref. [24] while the other two columns are fits to data extracted
from Eqs. (4) and (5), respectively.

Dirac-Slater μRu 〈 j0〉Ru μRu 〈 j0〉Ru + μCl 〈 j0〉Cl

ζRu 6.40(4) 6.45(2) 6.68(1)
ζCl 2.91(2)
μRu 0.145(4) 0.137(8)
μCl 0.03(1)
χ 2 0.17 11.17 10.02

orbital contributions to the magnetization density [34]. For
multipolar expansions, while the sum is infinite in principle
the point group symmetry of the magnetic ion dictates which
terms are non-zero [47]. In this way, fitting a multipolar
expansion can provide a determination of the magnetization
density without any assumptions about the ground state be-
havior. Details of this fit can be found in Appendix C. We
restrict ourselves to only l = even terms due to comparison
with inversion symmetric d-orbitals. In this paper, we con-
sider three different symmetries: (i) An Oh6 symmetry due
to a cubic octahedral arrangement of Cl− ions, (ii) a D3d

trigonal distortion of the surrounding octahedra, and (iii) the
reduced symmetry of the Ru site in the case of a C2 monoclinic
distortion. Best fit multipole parameters are listed in Table IV
for each case.

In the cubic octahedral case, the spin axes naturally lie
perpendicular to octahedra bonding axes (Fig. 4), supporting
isotropic Kitaev interactions. For a small perturbation due to
an applied magnetic field in this case, one then expects the
quantization axis becomes the component closest to the field
direction. With addition of trigonal distortion or monoclinic
distortion the natural sz-axis becomes the direction of the com-
pression or elongation corresponding to the crystallographic

TABLE IV. Best fit parameters of data to a general multipolar
expansion [Eq. (C3)] up to l = 4 for different symmetry conditions.

Oh6 D3d C2

ζ 6.34(5) 6.826(5) 5.51(2)
ã00 0.0384(4) 0.0388(4) 0.041(7)
ã20 0 –0.0012(5) 0.001(9)
ãc

22 0 0 –0.066(5)
ãs

22 0 0 –0.0057(4)
ã40 0.003(1) 0.0104(8) 0.023(4)
ãc

42 0 0 –0.009(4)
ãs

42 0 0 0.029(4)
ãc

43 0 –0.441(7) 0
ãs

43 0 0 0
ãc

44 0.012(1) 0 –0.052(8)
ãs

44 0 0 –0.062(4)
χ 2 10.39 6.20 7.31

c∗ axis. With this in mind, we modeled multipole fits for all
three symmetries under both local conditions and find better
fit for all considered symmetries to the data assuming the
local sz-direction corresponds to the c∗ axis, consistent with
a finite distortion of the Cl octahedral environment. Within
a Kitaev perspective, aside from allowing other terms in the
Hamiltonian, such as the Heisenberg and off-diagonal 
,
′
terms, such a distortion may favor more of an anisotropic
limit, which has so far largely not been considered by the
community.

We find the best fit to the data results from the trigonal
distorted D3d symmetry, shown in Figs. 3(a) and 3(b). Fur-
ther details of best fits to other symmetries can be found in
Appendix C. The model is able to reproduce the observed
splitting at higher momentum transfers in the (h h l ) data, and
reproduces the near isotropic behavior of the data in the (h 0 l)
data. Similar to other fits, we find three data points at relatively
high |Q| in the (h 0 l) plane associated with relatively poor
counting statistics (hence large errors) which cannot be repro-
duced in our model. At low |Q|, the model shows deviations
away from the experimental data, implying that the multipole
model does not accurately capture the physics describing the
form factor at low |Q|. Similar to the spherical case, for a
multipolar expansion at |Q| = 0 only one term (ã00) remains
nonzero, which can be compared to the induced magnetiza-
tion. For all multipole fits, extracted values of ã00 = μ/

√
4π

show a slightly smaller induced moment of μ ∼ 0.138µB/Ru
compared to what was found for either spherical model.

The magnetization density of the model is reproduced in
Figs. 3(c)–3(f). Dominated by a large Z̃c

43 component, the
magnetization density shows a double sixfold lobed structure
with an alternating sign to the magnetization density which is
mirrored across the center of the honeycomb plane. Because
the Z̃c

43 features a node in the optimal honeycomb plane,
the contour plot of the ab plane shows a slight offset above
the plane of δ = 0.05 Å to better show the sixfold character
of the magnetization density in the plane. Although treated
as a single-ion model, the fit shows a fair spatial extent to
the magnetization density, which also support the notion of
hybridization in the data. This is best seen in the out-of-plane
contour plot of the ac plane.

Another method which has been recently used to fit
anisotropic magnetization densities is by including torodial
dipoles as well as conventional axial dipoles, also known as
anapoles [48–51]. In fact, anapoles have recently been dis-
cussed in context of α-RuCl3 [52], although that work used
the monoclinic structure which has been generally associated
with stacking fault-laden samples. Anapoles are expected to
contribute to the elastic scattering intensities for any magnetic
ions not located at inversion centers, such as the case for
α-RuCl3. While our approach does not identify the specific
contribution of anapoles, we go beyond the toroidal dipole ap-
proximation. Instead, we perform ab initio calculations of the
magnetization density using Wannier functions which include
all contributions present.

C. Wannierfunction model

The low-energy Hamiltonian of α-RuCl3 has been
most famously described within the jeff = 1

2 pseudospin
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FIG. 3. (a) Best fit D3d multipole model compared to the unnormalized single ion Ru3+ form factor for data taken in the (h 0 l) plane.
(b) Same best fit D3d multipole model compared to the unnormalized single ion Ru3+ form factor for data taken in the (h h l) plane. Splitting
is largely reproduced. (c) Contour plots of the direct space magnetization density of same D3d multipole model δ = 0.05 Å above and below a
nominal Ru honeycomb plane. (d) Contour plot of two nominal Cl planes above and below the Ru honeycomb layer. Brown and green spheres
show the optimal positions of Ru and Cl respectively. Despite being a single-ion -model to model, the magnetization density shows a sizable
portion out to Cl positions. (e) Density plot of a single octahedra. The magnetization density shows two six-fold lobes with alternating sign
extending above and below the honeycomb layer. (f) Contour plot of the magnetization density showing the out of plane three-layer stacking.

formalism. Figure 4 shows the energy hierarchy for Ru3+

ions in α-RuCl3. The 4d5 orbitals within an octahedral crystal
field of Cl− ions split to form the eg and t2g orbitals. In the

a b

c

SxSz
Sy

Ru
Cl

Δ

Δ

4d5

t2g

eg

Γ8

Γ7

10Dq

3λSOC
2

FIG. 4. Left: Energy diagram for Ru3+ 4d5 ions within the low-
spin configuration of α-RuCl3. The octahedral crystal field leads to
a large splitting between the eg and t2g bands (10Dq ∼ 2.4 eV [54].
Sizeable SOC further splits the t2g into the doublet 
7 and quartet 
8.
Right: A single RuCl6 octahedron, showing the relation of the spin
axes (Sx, Sy, Sz) compared to the crystal coordinate system (a, b, c) in
α-RuCl3. For a perfectly cubic system, the spin axes lie perpendicular
to the Ru-Cl-Ru bonding planes with the unique z axis chosen by
the applied field direction. A trigonal distortion of the octahedra
described by the parameter � is expected to be finite but much
smaller than the strength of the SOC in α-RuCl3 and modifies the
spatial magnetization density away from an ideal cubic case.

low-spin 4d5 state (strong crystal field limit), the eg band
remains unpopulated with a measured gap of ∼2.2 eV in
α-RuCl3 [53,54]. The resulting Hund’s coupled t2g band con-
tains a single hole. Spin-orbit coupling further splits the
Hund’s coupled t2g band. Using the hole representation, this
results in a singly occupied 
7 doublet and unpopulated 
8

quartet. The ground-state doublet was experimentally shown
to be separated from 
8 by roughly 200 meV (∼ 2300 K)
[9,54], meaning, at our measured 80 K, the system is still
expected to be well-approximated by an effective jeff = 1

2
ground state. In a perfectly cubic octahedral field, the ground-
state wave function of the jeff = 1

2 state in terms of the single
hole is an equal superposition of the dxy, dxz, and dyz orbitals
with a complex phase describing the orbital motion [4,34]. Al-
though small, a trigonal distortion (compression) of the RuCl6

octahedra has been reported in α-RuCl3 [54–57], shown in
Fig. 4. This mixes the weights of the dxy, dxz, and dyz orbital
constituents of what we hereafter call the generalized jeff = 1

2
state.

To derive the magnetic form factor of α-RuCl3, from first
principles we use a Wannier function based approach [58–61]
that treats the trigonal crystal field and the hybridization of
the magnetic cations and their surrounding anions. We per-
form DFT calculations within the Perdew-Burke-Ernzerhof
generalized gradient approximation [62] for the exchange-
correlation functional and the linearized augmented plane
wave method as implemented in a modified version [63,64] of
the ELK code [65], using the R3̄ structure of α-RuCl3 reported
in Ref. [27] and a 7 × 7 × 7 k mesh. The RgKmax value is
set to 7.0. The reason we use the all-electron ELK code is
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to ensure we capture the nodal nature of the radial part of
the wave function near the core of the ions. We derive the
Ru t2g Wannier functions and corresponding Hamiltonian of
α-RuCl3 via the projected Wannier function method (as in
Ref. [66] and references therein). Specifically, we project the
Ru t2g orbitals on the low-energy bands in the [−1.5, 0.5] eV
interval (with respect to the Fermi level). We provide a com-
parison between the DFT and Wannier bands in Appendix D.
While the derivation of Wannier function based Hamiltonians
in the presence of SOC is implemented in our modified ver-
sion of ELK, the derivation of the spatial dependence of the
Wannier functions is not. Therefore, we extract the Wannier
functions from a calculation without SOC and the Hamilto-
nian from the calculation with SOC. We note that the SOC
parameter is λSOC = 116.82meV, in close agreement with
experiments [7,54,57], and the trigonal crystal field parameter
is � = −18.47meV. In addition, we extract Ru t2g Wannier
functions from an isolated Ru3+ in a 103 Å3 box to isolate
the effect of the hybridization with the Cl anions. Next, we
produce the generalized jeff = 1

2 state by diagonalizing the
local Hamiltonian in the presence of the Zeeman interaction
with the magnetic fields corresponding to those in the neutron
diffraction experiments. We comment here that the effect of
local electron correlation would drop out in this diagonaliza-
tion since there is a single hole in the d shell. There is also
reason to expect that the effect of SOC on the Wannier func-
tions is minimal, as λSOC is much smaller than the ∼2.5eV
separation between the centers of the Ru-t2g and Ru-eg band
complexes (shown in Appendix D). We then derive the mag-
netic form factors corresponding to the generalized jeff = 1

2
state like in Refs. [58–61], where in addition to the spin mag-
netization density, we also compute the orbital magnetization
density. We note that, in general, the single ion magnetiza-
tion densities in α-RuCl3 are noncollinear [67]. However, in
the limit that the nuclear scattering is much larger than the
magnetic scattering, the magnetic structure factor (and thus
form factor) extracted from Eq. (1) reduces to the projection
of the transverse magnetization density along the direction
of the magnetic field. Our simulations confirm that we are
in this limit. Therefore, to compare against the experiment,
we compute the projection of the transverse magnetization
density along the direction of the magnetic field. Additional
details will be presented in an upcoming work [68].

While our ab initio form factor is parameter-free, we do
need to introduce two parameters to compare to the neutron
scattering experiment, corresponding to the ordered moment
size and the domain population. By fitting these parameters
against the data, we obtain a χ2 of 6.7, which is a clear
improvement compared to the χ2 of 11.1 obtained from the
isotropic Ru3+ model presented in Table III. We also per-
formed the fit using the same model, but with the Ru t2g

Wannier functions replaced with those from the isolated Ru3+

simulation. This yielded a χ2 of 7.9; which indicates that the
hybridization with the Cl− anions does impact the form factor.
Figures 5(a) and 5(b) compare form factors simulated with
the Wannier function based approach against neutron scat-
tering data taken in the (h 0 l) and (h h l) scattering planes,
respectively. The panels include the isotropic form factor ob-
tained from the single ion Ru3+ approximation (μRu〈 j0〉Ru).
In Fig. 5(a), we see that the neutron scattering data,

FIG. 5. Wannier function based model. (a), (b) Comparison be-
tween the Wannier function form factor and the (h 0 l) and (h h l)
experiments, respectively. In (b), the anisotropic splitting between
(h h l) and (h h l̄) directions is apparent. (c), (d) Real space spin
density squared isosurfaces with relevant Q directions noted. The
Cartesian coordinates are the cubic axes of the local octahedron as
employed in Refs. [23,69].

Wannier function based form factor, and isotropic form factor
are all in reasonable agreement, with the exception of the
three experimental outliers in 4–5 Å−1 with form factor values
greater than 0.05. In Fig. 5(b), on the other hand, we see that
the experimental data and the Wannier function based form
factor display a notable splitting between the form factors
along (h h l) and (h h l̄) directions, a marked signature of
anisotropy. The isotropic Ru3+ model is incapable of captur-
ing this splitting, which is the origin of the large χ2 for that
model.

To better understand the nature of the splitting of the form
factor branches in the (h h l) plane and lack thereof in the
(h 0 l) plane, we present in Figs. 5(c) and 5(d) the real-space
spin density squared of the generalized jeff = 1

2 state. This
is not to be compared with Figs. 3(c)–3(f), though, as those
panels were produced under the assumption that the real-space
magnetization density is everywhere collinear. We note that,
in addition to the Ru d-center, the Wannier function based
jeff = 1

2 spin density also incorporates Cl-p tails in the sur-
rounding Cl atoms. We see that the scattering vectors (3 0
3) and (3 0 3̄), for instance, corresponding to the point with
|Q| = 3.81 Å−1 in Fig. 5(a), are along nearly symmetric di-
rections with respect to the spin density, explaining why their
form factors are essentially equal. In Fig. 5(d), we focus on
the scattering vectors (1 1 6) and (1 1 6̄), which correspond to
the widely separated points with |Q| = 3.06 Å−1 in Fig. 5(b).
While (1 1 6) points along a minimum of the spin density in
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real space, (1 1 6̄) points along a maximum. This explains why
in momentum space the form factor along (1 1 6) is larger than
along (1 1 6̄).

IV. CONCLUSIONS

In conclusion, we performed half-polarized neutron
diffraction on single crystals of α-RuCl3 deep within the
paramagnetic regime. By directly measuring flipping ratios of
Bragg reflections within the (h 0 l) and (h h l) planes, we
extract an experimental determination of the magnetization
density and magnetic form factor of Ru3+ in the strong crystal
field limit, such as found in α-RuCl3. Our results show an ob-
servable deviation from a simple isotropic form factor which
has been been widely used in recent efforts to quantitatively
describe INS data of α-RuCl3, particularly within the (h h l)
plane. While for (h 0 l) measurements, the data appear to be
reasonably well described by an isotropic form factor, we ar-
gue that including the full anisotropic form factor may provide
a further constraint which may aid in determination of the
complex low-energy Hamiltonian in α-RuCl3, although more
investigation of the sensitivity of fit exchange parameters to
inelastic neutron scattering data using full anisotropic form
factor is needed.

While we are able to describe the data on an equal footing
through the single-ion multipole model or hybridized Wannier
function, the differences in fits support the importance of
hybridization. The main disagreement in our Wannier cal-
culations arises from an over-representation of the (h h l)
splitting, where the combination of nonequivalent domains
leads to a larger systematic uncertainty in these points (see
Appendix A). This is in contrast to the multipole model
where most of the disagreement was due to the lowest |Q|,
where there are only equivalently mixed (single domain) data.
The large anisotropy in this region cannot be explained with
the multipole and requires additional considerations which
can be naturally explained through hybridization effects. Be-
ing a single ion model, our multipole model would only
accurately describe the local magnetization density around
the Ru3+ ions and would likely miss features at low momen-
tum transfers. Hybridization effects have also been recently
reported in monolayer α-RuCl3 grown under strain on a
graphite substrate [70]. This is suggestive that dealing with
hybridization effects will be important not only in accurately
describing the low-energy Hamiltonian of α-RuCl3, but to-
ward implementation of device construction whether in 2D
heterostructures or bulk device construction.
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APPENDIX A: POLARIZED NEUTRON DIFFRACTION

Polarized neutron diffraction measurements were made at
the polarized neutron triple axis instrument at the High Flux
Isotope Reactor at Oak Ridge National Laboratory. For both
orientations, the samples were loaded into a vertical field
asymmetric cryomagnet reading a temperature of 80 K. All
measurements were taken in a three-axis mode with Ei = E f

using a Heusler monochromator and PG analyzer. The Heusler
alloy monochromator gave polarized neutrons with incident
energies Ei = 13.5meV and Ei = 30.5meV. This gave a com-
bined momentum transfer range of |Q| up to 6 Å−1 at the
elastic line. Aside from providing better optimized signal to
noise, comparison of longer wavelength Ei = 13.5 meV data
allowed for a limit on energy-dependent corrections to intensi-
ties such as from extinction corrections described below. Two
experiments were taken on two separate high-quality single
crystals of α-RuCl3, which measured reflections in the (h 0 l)
and (h h l) scattering planes.

Polarized neutrons scatter through interactions with both
nuclei and local magnetization. For simple colinear magnetic
systems, the total scattering cross section of the neutron is
given by

σ = FN F ∗
N + F⊥

M · F⊥∗
M + P · (FN F⊥∗

M + F⊥
MF ∗

N ), (A1)

where FN is the nuclear structure factor and F⊥
M is known as

the magnetic interaction vector, related to the magnetic struc-
ture factor by F⊥

M = Q̂ × FM × Q̂. Using a half-polarized
setup, the incident neutron is polarized to be along the direc-
tion of an applied magnetic field. The neutron spin state is then
controlled by a polarization flipper to either be directed paral-
lel or antiparallel to the applied field. The resulting scattered
intensities are not sensitive to polarization and contain both
nuclear and magnetic contributions. As Eq. (A1) shows, only
the component of the magnetization density perpendicular to
the scattering plane contributes to the scattering. Therefore,
we are only sensitive to a projection of the magnetic struc-
ture factor and thus a projection of the overall magnetization
density.

To get from Eq. (A1) to Eq. (1) in the main text, we make
two assumptions: (1) the measured magnetization density
is a scalar magnetization density which is oriented orthog-
onal to the scattering plane and (2) the nuclear (and thus
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q = 0 paramagnetic) structure factor is real valued, as re-
quired by centrosymmetry. While our experimental setup and
measurements deep into the paramagnetic regime may justify
the first assumption, the second assumption is less certain
for α-RuCl3. As discussed in the main text, the exact nu-
clear unit cell is not uniquely determined due to domains and
sample dependency. Recently, much debate has been ongo-
ing between samples grown via vapor transport and modified
Bridgeman growth which seem to show strong inconsisten-
cies in their low temperature properties. We note that this
may contribute a larger systematic uncertainty beyond what
is reported in this experiment, where we fixed the nuclear
unitcell as a given parameter. Nevertheless, the best-fit low
temperature R 3̄ structure used in this paper is consistent with
a centrosymmetric unit cell and (2) can be justified. With these
assumptions, M⊥ −→ pFM when the flipper is not used (I+)
and M⊥ −→ εpFM with the flipper (I−). Here p and ε represent
the efficiencies of the polarizer and flipper, respectively.

The flipping ratio technique allows for a systematic elim-
ination of many errors associated with complexities such as
absorption effects and Debye-Waller factors (for measure-
ments taken at the same temperatures). Additionally, when
compared to a full polarization analysis, the half-polarized de-
termination of the flipping ratio helps to minimize errors in the
extracted magnetic structure factor arising from the efficiency
of the polarizer (p). Rather than being sensitive to the flipping
ratio of the polarizer ( 1−p

1+p ), the magnetic structure factor is
only sensitive linearly to p. Despite these features, an accu-
rate determination of the magnetic structure factor requires a
thorough accounting of sources of instrumental uncertainties.
With this in mind, we estimated sources of uncertainty in
our experiment due to the initial beam polarization efficiency
(p), flipper efficiency (ε), extinction, λ/2 contribution, and
multiple scattering effects.

To estimate the efficiency of both the initial beam po-
larization and flipper, we installed a Heusler alloy analyzer
on the scattered side and set it to measure the non-spin-flip
channel. We then took measurements of the flipping ratios
of a nonmagnetic aluminum powder ring coming from our
sample mount. These measurements were taken at both inci-
dent energies, Ei = 13.5meV and Ei = 30.5meV for various
field strengths to maximize the observed flipping ratio. Ver-
tical guide fields are field dependent and were chosen at
measured values which maximized measured flipping ratios
at the aluminum Bragg peak. Since the strength of the mag-
netic scattering from our sample will be determined by the
size of the field-polarized moment (and hence magnetic field
strength), a maximal field of 8 T and 6 T were chosen after
confirming the field did not have a significant effect on the
beam polarization. This resulted in vertical guide fields of
3.0 T and 3.2 T for all flipper measurements in the (h 0 l) plane
(8 T) and (h h l) plane (6 T), respectively. Aluminum peaks
gave the combined product of the initial beam polarization
efficiency and the flipper efficiency. The flipper efficiency
was separately estimated be 0.99(6) for both energies and
insensitive to the field strength, leaving the beam polarization
efficiencies for our experiments as follows:

p = 0.84 ± 0.03 (Ei = 13.5 meV, B = 8 T ),

p = 0.81 ± 0.06 (Ei = 30.5 meV, B = 8 T ),

p = 0.84 ± 0.04 (Ei = 13.5 meV, B = 6 T ),

p = 0.82 ± 0.05 (Ei = 30.5 meV, B = 6 T ). (A2)

To eliminate λ/2 contributions to the scattering, PG fil-
ters were installed for all measurements. Despite this, some
contribution is expected. An estimate of the size of this con-
tribution can be made by looking at a forbidden peak which
corresponds to one of the brightest reflections for λ/2. By
comparing the intensities of (1 1 3) with (0.5 0.5 1.5), we
constrained contributions from λ/2 to be <1%. A limit on
the presence of multiple scattering in the (h 0 l) plane ge-
ometry was estimated by looking at the combination of two
relatively strong reflections (1 0 1) and (3 0 0) as well as the
weak (4 0 1) reflection. By comparing the calculated versus
measured intensities in zero field, we can look for an increase
in the weak (4 0 1) intensity to quantify the contribution
of multiple scattering. We also checked the weak reflection
(1 0 13) compared to the relatively bright (0 0 12) and (1 0 1)
reflections. We find no evidence of a deviation in the inten-
sities beyond measured experimental uncertainties (�2%) for
either Bragg peak and conclude contributions from multiple
scattering in our experiments were not likely to cause large
systematic uncertainties in the extracted magnetic structure
factor for the (h 0 l) reflections. For the (h h l) geometry, such
a contribution was unable to be uniquely estimated due to the
mixture of structural domains. However, we note the between
the combination of multiple very bright Bragg reflections and
the high symmetry leading to many combinations of reflec-
tions within this plane, it is possible multiple scattering is
non-negligible for (h h l) reflections and contribute to a larger
systematic error in our measurements beyond our reported
uncertainty.

Since we investigated relatively large single crystals with
longer wavelength neutrons, a careful treatment of extinction
was necessary. We treated extinction according to a first-
order expansion of spherical domains with a Gaussian angular
mosaic distribution following the formalism of Becker and
Coppens applied to polarized neutron diffraction [31,73].
Under this approximation, the form of the flipping ratio is
modified slightly to

R = F 2
N + 2psin2(α)FN FM + sin2(α)F 2

M + ES+

F 2
N − 2pεsin2(α)FN FM + sin2(α)F 2

M + ES− , (A3)

where the extinction terms ES+ and ES− are given by

ES+ = − 1
2 [( f +2)2(1 + p)ES + ( f −2)2(1 − p)ES],

ES− = − 1
2 [( f +2)2(1 − pε)ES + ( f −2)2(1 + pε)ES], (A4)

with

ES = λ3

v2
0sin(2θ )

(
2τ 2sin(2θ )

3λ
+ T̄√

[λ/τ sin(2θ )]2 + 1/2g2

)
,

(A5)

f +2 = F 2
N + sin2(α)F 2

M + 2sin(α)FN FM ,

f −2 = F 2
N + sin2(α)F 2

M − 2sin(α)FN FM , (A6)

Here τ corresponds to the average size of perfect domains,
T̄ describes the average flight path of a neutron through the
sample, λ is the wavelength of the neutron, and g represents

104432-10



EXPERIMENTAL EVIDENCE FOR NONSPHERICAL … PHYSICAL REVIEW B 109, 104432 (2024)

the intrinsic mosaic distribution of perfect domains. A careful
inspection of Eq. (A3) shows the quadratic dependence of R
on Fm becomes quartic with the addition of extinction, but for
the case where FM � FN , one can approximate Eq. (A3) well
by converting to y = FM/FN and keeping only up to linear
terms in y. For our experiment, we remained heavily in the
FM � FN regime for all measured values, with differences in
extracted values of FM differing less than 2% for all measured
values between linear and full quartic treatments.

While this extinction model may not accurately describe
the type of extinction found in the 2D van der Waals α-RuCl3,
it can provide an estimate of the effect of extinction. For
secondary extinction, values of g were able to be estimated
via direct Bragg peak widths, as both crystals featured mo-
saics well beyond instrument resolution (FWHM ∼ 5◦ for
sample 1 and FWHM ∼ 2◦ for sample 2). Both crystals were
hemispherically shaped and T̄ , the average neutron flight path
through the sample, was estimated as half that of a spherical
sample (T̄sphere = 3R/2). Values of τ , the average size of
perfect spherical grains, were less well constrained. Since
the stacking faults induce a separate magnetic order, a lower
limit of τ was estimated through relative brightness of the
two magnetic order parameters. Inclusion of stacking faults,
which along with the primary magnetic transition at T ∼ 7K
into a q = (1/2 0 1) ordered phase, results in a second mag-
netic transition at T ∼ 14K into a q = (1/2 0 3/2) ordered
phase. For both samples used in this experiment, we tracked
the zero-field order parameter corresponding to these two
magnetic orders. We no find intensity past background at the
(1/2 0 3/2) Bragg peaks above ∼1% the intensity observed at
the corresponding (1/2 0 1) peak. From this, we conclude that
our samples do not have a large volume fraction of stacking
faults, which we used as a lower bound of τ as 100 times
the crystallographic c axis (1700 Å). While we find extinction
corrections to be nonnegligible, the difference in extinction
for each neutron spin state is small for most measured flip-
ping ratio and thus corrections to our flipping ratio values
remain small. This was particularly true for sample A, where
the measured reflections show no dependence on extinction
within experimental error.

The mixed reflections which combine (h h l) and (h h l̄)
with both h and l nonzero can vary strongly with inclusion
of extinction depending on the relative domain populations.
The dependence of these reflections to the unknown extinction
parameter τ are shown in Fig. 6 for a domain population of
95/5 and a fixed secondary extinction parameter g of 24.4.
While we observe a strong deviation in data for any nonzero
estimate of extinction, reasonable ranges of τ � 20 000 Å do
not affect the data strongly. This indicates that extinction for
crystal B is mostly dominated by secondary extinction, where
the relevant parameter g can be safely estimated.

Surprisingly, the data in both experiments show a negative
induced magnetic moment consistent for all measured values
of FM . While our experimental setup has ruled out a simple ex-
planation for this observation, we nevertheless attribute this to
a consequence of our experimental definitions given the large
collective data showing paramagnetic rather than diamagnetic
behavior in α-RuCl3. This experimental detail does not affect
our analysis aside from an overall negative sign, as one can
simply invert the direction of the field (and thus the observed
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FIG. 6. Dependence of (h h l) data to τ , the average size of
perfect domains in extinction corrections. Due to the mixture of two
nonequivalent reflections with different relative extinction correc-
tions, data is sensitive to small extinction corrections. For reasonable
ranges around τ ∼ 103 Å, the values remain fairly stable.

flipping ratios) to recover a positive moment. All data pre-
sented in the main text show the inverted measured flipping
ratios such that the resulting induced moment is paramagnetic.

1. Second structural domain

As mentioned above, during our (h 0 l) experiment below
the first-order structural phase transition, we observed scatter-
ing consistent with a second structural domain. This second
domain followed the reflection conditions h + l = 3n (k = 0)
in the hexagonal R3̄ setting. For many reflections in the (h 0 l)
plane, most measured reflections correspond to forbidden
peaks in one of the two domains, however, reflections of the
type (3n 0 3n′), where n, n′ are integers, are allowed by both.
This means that measured flipping ratios belonging to these
reflections contain contributions from both domains. While
the nuclear structure factor is identical for both domains, the
vector nature of the magnetic structure factor is less clear. In
this case, the global applied magnetic field corresponds to a
different (albeit symmetry related) direction for each domain,
which may induce a different magnetization due to anisotropy
in the material.

By measuring flipping ratios and intensities of multiple re-
flections where only one domain was present, we were able to
check for any evidence of mixing effects in the reflections al-
lowed for both domains. Table V shows comparisons between
the two domains for multiple reflections. We observe similar
scattered intensities, which indicate similar populations of
each domain. We also see no deviation of measured flipping
ratios within our experimental uncertainty. Since the nuclear
contribution is identical by choice of unit cell, this implies that
the magnetic contributions are also identical. This allowed us
to separate the contributions from each and accurately model
our data assuming a single domain approach.
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TABLE V. Table showing extracted normalized intensities and
flipping ratios for several measured reflections belonging to the
primary (p) and secondary (s) domains. Within experimental uncer-
tainty, we see good agreement in intensities and identical flipping
ratios.

Domain
p:(−h + l = 3n)
s:(h + l = 3n) I− I+ R

(1 0 1) p 0.2237(7) 0.2566(7) 1.147(4)
(1 0 1̄) s 0.2502(7) 0.2869(7) 1.147(3)
(2̄ 0 4) p 0.1269(5) 0.1370(5) 1.080(5)
(2 0 4) s 0.1025(4) 0.1098(5) 1.072(6)
(1̄ 0 2) p 0.2106(6) 0.2408(7) 1.161(4)
(1 0 2) s 0.1512(8) 0.1767(8) 1.168(6)
(4 0 1) p 0.0534(3) 0.0547(3) 1.02(1)
(4̄ 0 1) s 0.0535(3) 0.0539(3) 1.00(1)

For measurements in the (h h l) plane, we were unable
to directly observe a secondary structural domain. Because
all measured reflections are allowed by both reflections, each
corresponding flipping ratio contains a contribution from both
domains. As in the case for (h 0 l) measurements, reflections
with either h = 0 or l = 0 mix equivalent reflections and
were used to constrain extinction effects described above.
Although we originally focused first on a nearly equal do-
main population case, when we used this domain population
estimate we found resulting values FM were unphysical (with
close to 50/50 domain populations give μ · F 119

M 5μB). In
fact, the only way to push FM toward reasonable values was
to further increase the domain population close to the mon-
odomain situation. We settled on the final domain population
of 0.95(5)/0.05(5) after finding that all best fits to the data as
a function of domain population show minima in the range
of 95%. A plot of the relative χ2 best-fit values as a function
of domain population is shown in Fig. 7. For each model, a

FIG. 7. Relative best-fit χ 2 as a function of domain populations
for different models. For each model considered in this work, the
lowest best-fit χ 2 is found in the vicinity of 0.95 ± 0.05, indicating
that sample B was nearly monodomain.

shallow minima in the vicinity of 0.95 is observed. While the
flipping ratios eliminate absorption and Debye-Waller factors,
the relative domain populations inferred from 0T integrated
Bragg peak intensities mentioned above do not. This may con-
tribute toward the extreme disagreement in estimated domain
populations between the pair of nuclear Bragg peak intensities
and that found by comparing the magnetic structure factor
to models. The large deviation away from equal populations
may be due to the lack of past thermal cycling in sample B,
combined with a careful slow cooling protocol we used while
crossing the structural transition during the experiment. From
T = 175 K to T = 110 K, we lowered the temperature at
roughly 1 K/min, whereas for sample A the temperature was
lowered without careful treatment of the cooling rate.

2. Sample dependence and combining different orientations

For α-RuCl3, a longstanding complication has been the
sample dependence of material properties. This has been has
been observed in many aspects of α-RuCl3 properties, but the
extent of sample dependence of neutron scattering data has
not been thoroughly investigated. The possibility of sample
dependency means a careful analysis is required to combine
data between two separate samples. The primary cause of
sample dependence has been related to stacking faults. As
mentioned above, for both samples used in this experiment,
we tracked the zero-field order parameter corresponding to
these two magnetic orders to quantify that our samples do not
have a large volume fraction of stacking faults.

To further look at any sample dependence, we look at the
observed flipping ratios and the resulting form factors of the
(0 0 l) reflections, which are observable in both orientations,
and thus both samples. First, we take into account the dif-
ference of magnetic-field orientations with respect to the two
orientations. While there are reports of a strong anisotropic
g tensor for α-RuCl3 [56,74], all groups only report an
anisotropy between in-plane and out-of-plane components,
gab and gc expected for C∗

3 symmetry [75]. While there is
in-plane anisotropy present due the combination of deviations
away from C∗

3 symmetry and anisotropic exchange, small
differences in magnetic fields applied within the honeycomb
plane necessary to disrupt magnetic order (7.3 T vs 7.6 T at
2 K) suggest the anisotropy is small. In particular, since both
measurements were taken at 80 K, deep into the paramagnetic
phase, we do not expect a stark difference in flipping ratios
between the two orientations.

Figure 8 shows the extracted raw form factors of the (0 0 l)
reflections between the two experiments, assuming a local
moment on Ru3+ ions. Since we applied a maximum field of
8 T for all (h 0 l) measurements and a 6 T field for (h h l)
measurements, we expect a different induced moment and can
scale observed Fm between shared (0 0 l) reflections to provide
a direct scaling between measurements made across the two
experiments. We find a best-fit scaling factor of 1.24 ± 0.06,
which is in good agreement for a paramagnetic induced mo-
ment in a 6 T vs 8 T field. When scaled, the out-of-plane
reflections appear consistent within measurement error. We
attribute the disagreement in the reflection (0 0 12) (|Q| ∼
4.4 Å−1) to the low statistics measured in the (h 0 l ) data
reflecting its relatively large statistical uncertainty.
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FIG. 8. Left: Extracted raw form factors (not normalized to be
1 such that they include the induced moment) of shared (0 0 l)
reflections for both experiments, where sample B has been scaled to
match the difference in applied fields between the two experiments.
Inset shows χ 2 of the scaling factor between the two sets of data,
showing a clear minimum around a scale factor value of 1.24. The
data shows good agreement between two samples. We attribute the
disagreement observed in the (0 0 12) reflection (|Q| ∼ 4.4 Å−1) to
low counting statistics measured for this reflection in the (h 0 l)
experiment.

APPENDIX B: COMPARISON OF MODEL FITS

All models were fit using a least squares/maximum likeli-
hood approach using a generalized reduced χ2 function of the
form

χ2 = 1

N − P

N∑
i=1

(
F calc

i − Fi
)2

σ 2
i

, (B1)

where N corresponds to the set of independent extracted mag-
netic structure factors for each measured point in reciprocal
space and P is the number of parameters used in fitting, such
that the function is normalized by the relative degrees of
freedom. This gave us a way to compare fits of models with
differing numbers of parameters.

During our (h h l ) experiment, due to experimental lim-
itations, flipping ratios of four reflections were measured
corresponding to mixtures of primary and twinned reflec-
tions whose opposite flipping ratio could not be measured;
for example, (2 2 3) and (2 2 3̄). For most models, since
we were unable to independently extract the primary and
twinned structure factors, we did not include this data in the
analysis. Calculation of magnetization using Wannier func-
tions, however, were done ab initio and thus did not require
knowledge of each FM . Instead, calculation of the flipping
ratios could be done directly using known domain popula-
tions to compare with these points. The measured flipping
ratios of these reflections are included here for completeness
(see Table VI).

APPENDIX C: MULTIPOLE EXPANSION

In principal, any arbitrary magnetization density can
be constructed using a multipole expansion [47,76]. This

TABLE VI. Experimental data of flipping ratios for the (h h l )
plane in α-RuCl3. Due to lack of information corresponding to the
flipping ratio of the twinned reflection, extraction of FM was not
possible for these data. Instead, comparison of the observed flipping
ratios directly can be used to further constrain fits to Wannier func-
tions. All data is taken at 80 K and with a 6 T applied field along a
{1 0 0} equivalent direction.

(h k l ) R FN [fm]

(2 2 3̄) 1.00(2) −178.789
(2 2 6̄) 0.99(2) 151.561
(2 2 9̄) 1.01(2) 73.705
(1 1 1̄5) 1.011(5) 128.762

provides a useful model one can parametrize to describe
complex magnetization densities, such as systems with strong
spin and orbital magnetization. For a scalar magnetization
due to a single magnetic ion, the expansion can be expressed
as

m(r) =
∑

l

Rl (r)

[
al0Zl0(r̂) +

l∑
m=l

(
ac

lmZc
lm(r̂) + ac

lmZc
lm(r̂)

)]
,

(C1)

where alm are fitting parameters, Rl (r) are functions describ-
ing the radial distribution of the magnetization density, and
the angular components are described in terms of Tesseral

ROh6(r) 
ROh6(r)2r2

RD3d(r) 

RD3d(r)2r2

(b)

(a)

r [A]

r [A]

RRu(r) 
RRu(r)2r2 
RCl(r)

RCl(r)2r2

RC2(r) 

RC2(r)2r2 
 ζC2 = 5.51

 ζD3d = 6.83

 ζOh6 = 6.34

ζRu = 6.68

ζCl = 2.91

FIG. 9. Direct-space radial distributions for simple ionic
isotropic limit best-fit radial integrals presented in the main text.
(b) Direct-space radial distributions for best-fit multipole fits. While
the value of ζ varies slightly, all models show that the radial extent
of the magnetization densities are constrained to be less than ∼2Å.

104432-13



COLIN L. SARKIS et al. PHYSICAL REVIEW B 109, 104432 (2024)

FIG. 10. (a) Best-fit Oh6 multipole model compared to the unnormalized single ion Ru3+ form factor for data taken in the (h 0 l) plane and
(h h l) plane. (b) Direct space scalar magnetization density for best-fit Oh6 multipole model magnetization density centered described in (a) on
a single Ru ion. (c) Contour plots of the the Oh6 magnetization density shown above in the ab plane centered on an optimal Ru honeycomb
layer and ac plane showing out-of-plane extent of the magnetization density. The brown and green spheres show Ru and Cl sites in the unit
cell, respectively. (d) C2 multipole model compared to the unnormalized single ion Ru3+ form factor for data taken in the (h 0 l) plane and
(h h l) plane. (e) Direct space scalar magnetization density of C2 multipole model magnetization density described in (d) for a single Ru ion.
(f) Contour plots of the the C2 magnetization density shown above in the ab plane centered on an optimal Ru honeycomb layer and ac plane
showing out of plane extent of the magnetization density.

Harmonic functions, Zlm. These are real combinations of
spherical harmonic functions Yl,m defined as

Zl0 = Yl,0, (C2a)

Zc
lm = 1√

2
(Yl,−m + (−1)mYl,m), (C2b)

Zs
lm = i√

2
(Yl,−m − (−1)mYl,m). (C2c)

Note that for Tesseral Harmonic functions, m > 0. Expansion
of exp(iQ · r) allows a simple Fourier transform of Eq. (C1).
The resulting magnetic structure factor of a single magnetic

ion is then given by

FM (G) = 4π p0

∑
l

il 〈 jl〉
[

ãl0Zl0 +
l∑

m=1

(
ãc

lmZc
lm + ãs

lmZs
lm

)]
.

(C3)

Here 〈 jl (G)〉 are radial integrals of the radial component of
the magnetization and spherical Bessel functions, jl , given
by 〈 jl〉 = ∫

R(r)2 jl (Gr)r2dr. G correspond to the vector in
reciprocal space such that Ĝ describes the spherical angles
of the Tesseral harmonic functions. For Ru3+ in α-RuCl3,
these directions either naturally correspond to vectors
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perpendicular to Ru-Cl-Ru bonding planes (no trigonal dis-
tortion) or ŝz along the direction of the trigonal distortion
(crystallographic c axis). In the latter case, we define ŝx to
be along the crystallographic a-axis such that ŝx points per-
pendicular to a Ru-Ru bond. We note here that we also tested
our fits with ŝx along the crystallographic a∗ axis (parallel to a
Ru-Ru bond), however, this definition always lead to a worse
relative fit to the data. Extending to multiple magnetic ions
per unit cell, the magnetic structure factor simply becomes
the sum of the single ion magnetic structure factors, taking
into account phase differences:

FM (G) =
∑

j

[FM, je
iG·r j ]. (C4)

For our fits, we assume a multipole expansion centered on
only Ru3+ ions, i.e., we ignore hybridization with Cl− ions.

The radial function was defined following Ref. [34], as a
simple normalized Slater-type function of the form

Rn(r) =
√

(2ζ )2n+1

(2n)!
rn−1e−ζ r, (C5)

with n = 4 for the 4d5 orbitals of Ru3+ and ζ being a fit
parameter describing the radial distribution. To test whether
the radial distribution for the spin and orbital components
differed, we tested fits using two separate ζ parameters against
fits using a single ζ parameter. We compared fits to both our
data and previously used isotropic Dirac-Slater calculations
[24], focusing on the low |Q| data. In the case of the Dirac-
Slater calculations, we model the Ru3+ using the unfilled
d-orbital contributions found in Ref. [24].

When comparing to the Dirac-Slater calculations, we
obtain a marginally better fit to two radial components com-
paring reduced-χ2 statistics. With two parameters, a broad
minimum in χ2 is always with respect to one parameter,
indicating that the fit is mostly sensitive to only one of the
radial parameters. When trying to fit our experimental nor-
malized form factor derived using Eq. (4) in the main text,
the larger spread in values dominated the χ2 statistic. In this
case, a single radial parameter was able to produce a lower
reduced-χ2 than two radial parameters. Along with greatly
simplified calculations, this lead us to restrict our analysis to
a single radial parameter. We find relatively good agreement
in radial parameters across fits both to Hartree-Dirac-Slater
calculations and data using all models. We find best-fit pa-
rameters of ζ range between ζ ∼ 5.5 Å−1 and ζ ∼ 6.8 Å−1.
The direct-space radial distributions are shown in Fig. 9.

While the sum in Eq. (C3) is infinite in principle, the
local symmetry of the magnetic ions dictate which coefficients
are nonzero. Looking at radial integrals of our best-fit radial
function [presented in Fig. 2(b) of the main text], it is clear
that for an achieved range of |Q|, we are only sensitive up to l
= 4 terms of the multipole expansion. Constraining ourselves
strictly to comparisons with the d-orbitals limit the series
to l = even terms due to the local inversion symmetry of
d-orbitals. For α-RuCl3, the large splitting of the t2g and eg

bands should limit the magnetization density to be dominantly
described by combinations of the t2g band orbitals (in the case
of no p hybridization with Cl). In this paper, we considered
four site symmetries: Oh6, D3d , C3, and C2. For comparison to

the overall best-fit D3d model in the main text, we also show
the best-fit models assuming Oh6 and C2 symmetry in Fig. 10.

In the case of a perfect cubic octahedral environment, the
only nonzero terms up to l= 4 are (Z00, Z40, and Zc

44) due to
the high symmetry. As a confirmation that the observed mag-
netic structure factor could not be reproduced solely within a
Oh6 single ion multipole representation, we also included two
additional symmetry allowed terms corresponding to l = 6,
namely, Z60 and Zc

64. Up to l = 6, we found no better fit to
our data, resulting in a worse overall fit due to the reduced
degrees of freedom. The resulting form factor is close in form
to the isotropic single ion 〈 j0〉 described in the main text,
fitting mostly the center of mass of the data. Slight deviations
in the high |Q| due to Zc

44 give a slightly better fit than 〈 j0〉,
but since planar angular anisotropy is forbidden by symmetry
until l = 4, the resulting fit is close to isotropic for small
|Q|. Despite this, the direct space scalar magnetization density
does not look isotropic. Instead, an eightfold symmetry is
apparent within the honeycomb layers alternating between
positive and negative values. Out of plane, two positive lobes
lobed extend above and below the Ru center. This model also
shows paramagnetic links between Ru chains along the a-axis
with diamagnetic links between chains.

In the case of a trigonal compression along a {1 1 1},
the local symmetry changes to 3̄m, which permit four terms:
Z00, Z20, Z40, and Zc

43 [47]. While the best-fit model for this
symmetry is discussed in the main text, we note here that we
also fit slightly reduced 3̄ symmetry, which in addition to the
four terms for 3̄m also allows a fifth term Zs

43. In our case,
attempts to fit C3 symmetry always fit Zs

43 to be approximately
zero within error and the model was reduced to that of 3̄m up
to l = 4. This was robust against initial values of parameters
and the choice of the local z axis and suggests that deviations
from a local ¯3m symmetry are small for α-RuCl3.

FIG. 11. The band structure of the Wannier model (red) versus
the bands calculated in DFT (black points).
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The high-temperature structure of α-RuCl3 is monoclinic,
with the site symmetry of Ru ions being C2. While the exact
form of the low temperature is not as well understood, the
strongly first-order nature of the structural transition can lead
to the coexistence of the low- and high-temperature structures.
For this reason, we also investigated a monoclinic distortion
symmetry. The relatively low symmetry C2 allows nine terms
in the multipole expansion up to l = 4 (Z00, Z20, Zc

22, Zs
22, Z40,

Zc
42, Z2

42, Zc
44, Zs

44). Surprisingly the best-fit monoclinic struc-
ture bears strong resemblance to the D3d best fit model in the
honeycomb planes, with a distorted sixfold structure centered
on the Ru ions observed in the plane. A slight compression of
the lobes along the crystallographic b axis along with a two-
one alternation of the sign of the magnetization density distin-
guish the two. We also see that the monoclinic best-fit multi-
pole model has no change of sign in the magnetization density
mirrored across the honeycomb plane. The C2 model shows an
alternating positive and negative link within Ru chains along
the a axis, with little connection shown between chains.

While the best-fit radial parameter ranges between multi-
pole models, we see the out-of-plane extent is similar in the
direct space scalar magnetization density. Aside from hints

of direct overlap in these single ion calculations, we see that
magnetization density extends relatively far toward Cl anions.
This is also suggestive that hybridization effects are present in
α-RuCl3.

Finally, we note that while both Ru ions sit at identical 6c
Wyckoff positions, small deviations from a perfect octahedral
coordination of the Cl separates the two Ru atoms into distinct
but related sites. In our analysis, we also tried modeling the
data using two separate form factors between the two Ru
ions. Within our experimental data, we find no evidence of
a noticeable difference between the two Ru sites, indicating
that the deviations between the two Ru ions are negligible
compared to our experimental uncertainty. Instead the lowest
relative reduced χ2 is obtained from treating the two with a
single magnetic form factor.

APPENDIX D: WANNIER MODEL BANDS

We present a comparison of the Wannier model band struc-
ture and that from DFT (without SOC) in Fig. 11. The Ru-t2g

bands are well-reproduced and separated below the Ru-eg

bands and above the manifold of Cl-p bands.
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