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We construct domain-wall skyrmion chains and domain-wall bimerons in chiral magnets with an out-of-plane
easy-axis anisotropy and without a Zeeman term coupling to a magnetic field. Domain-wall skyrmions are
skyrmions trapped inside a domain wall, and they are present in the ferromagnetic (FM) phase of a chiral magnet
with an out-of-plane easy-axis anisotropy. In this paper, we explore the stability of domain-wall skyrmions in
the FM phase and in a chiral soliton lattice (CSL) or spiral phase, which is a periodic array of domain walls and
antidomain walls arranged in an alternating manner. In the FM phase, the worldline of a domain-wall skyrmion
is bent to form a cusp at the position of the skyrmion. We describe such a cusp using both an analytic method
and numerical solutions, and find a good agreement between them for small Dzyaloshinskii-Moriya interactions.
We show that the cusp grows toward the phase boundary with the CSL, and eventually diverges at the boundary.
Second, if we put one skyrmion trapped inside a domain wall in a CSL, it decays into a pair of merons by a
reconnection of the domain wall and its adjacent antidomain wall. Third, if we put skyrmions and antiskyrmions
alternately in domain walls and antidomain walls, respectively, such a chain is stable.
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I. INTRODUCTION

Skyrmions are topologically stable field configurations first
introduced by Skyrme as a model of nuclei [1]. They ap-
pear and have been studied in an array of physical models,
including as the baryons in the large Nc limit of quantum
chromodynamics (QCD) [2]. More recently, most research
on skyrmions has focused on magnetic skyrmions [3,4] in
chiral magnetic materials. These are a two-dimensional ana-
log of nuclear skyrmions that are realized in chiral magnets
with a Dzyaloshinskii-Moriya (DM) interaction [5,6]. Mag-
netic skyrmions have been observed in laboratory experiments
[7–9] and are thought to have applications as information car-
riers in magnetic storage devices [10]. The phase diagram of
a chiral magnet has some interesting features. For a particular
region of the parameter space, the energy of single solitons
is negative and a chiral soliton lattice (CSL), also called a
spiral, is the ground state [11–13], since one-dimensional
modulated states have a lower energy than skyrmions. There
is another region where the energy of a single skyrmion is
negative and the ground state becomes a lattice of skyrmions
[14–17] (see also Refs. [7–9]). There is even a solvable point,
where a critically coupled model exists that possesses exact
skyrmion solutions [18]. Finally, there are also ferromagnetic
(FM) regions where the ground state is FM and skyrmions
appear as positive energy solitons. Both isolated skyrmions
[19] and skyrmion tubes [20] have been observed.

Magnetic domain walls are another solitonic object that ap-
pears in chiral magnets with an easy-axis potential. They have
also been a subject of particular study due to their application
to magnetic memories [21,22].

Thus, topological aspects of (chiral) magnets have attracted
much recent attention. For instance, apart from domain walls
and skyrmions, a lot of studies have been devoted to various
topological objects such as monopoles [23,24], Hopfions [25],
and instantons [26] (see Ref. [27] for a review).

Composite objects called domain-wall skyrmions [28],
formed by combining skyrmions with domain walls, have
been studied in quantum field theory [29,30] (see also
Refs. [31,32]) and more recently both theoretically [33–37]
and experimentally [38–40] in chiral magnets (see also
Refs. [41,42]). These are the two-dimensional counterparts
of the three-dimensional domain-wall skyrmions in quantum
field theory [43–48], with recent interests in application to
QCD in a strong magnetic field [49,50] or rapid rotation [51].
The trajectories of skyrmions under an applied current are
bent in the bulk because of the skyrmion Hall effect, yield-
ing difficulty when controlling the motion of skyrmions. In
contrast, skyrmions on a domain wall only move along the
domain wall. Thus, domain-wall skyrmions are expected to
be useful for constructing easily controllable magnetic mem-
ories. Thus far, domain-wall skyrmions have been studied in
the FM phase, but one important direction is to explore these
objects in CSL phases, which is the main target of this paper.

In this paper, we use a mixture of analytic and numerical
techniques to study chiral magnets with an out-of-plane easy-
axis anisotropy term. We construct domain-wall skyrmion
configurations in these systems, compare them to the ear-
lier work on domain-wall skyrmions in chiral magnets, and
study the stability of domain-wall skyrmions in the FM
phase and the CSL (spiral) phase. It was previously found in
Refs. [33,37] that the worldline of a domain-wall skyrmion
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is bent to form a cusp at the position of the skyrmion. First,
we describe such a cusp using both the analytic method
of the moduli approximation, sometimes called the Manton
approximation [52–54] (a double sine-Gordon equation in
Ref. [33]) and a numerical simulation, and find a good match
between them at least when the DM interaction is small. We
also show that the cusp grows toward the phase boundary
with the CSL, and eventually diverges at the phase boundary,
implying the instability of domain-wall skyrmions in the CSL.
Second, we numerically confirm that domain-wall skyrmions
are in fact unstable in the CSL phase: A pair of domain-wall
skyrmions and antidomain walls without a skyrmion decays
into a bimeron through a reconnection process. A bimeron in
a CSL, also known as an H-skyrmion, was previously studied
in Refs. [55,56] for the case of a Zeeman term coupling to a
magnetic field and without easy-axis anisotropy, in which case
a single soliton is cut into two pieces ending on merons. By
contrast, in our case, a pair annihilation of the domain wall and
antidomain wall occurs locally, and they are connected by a U
shape at two positions. Third, we also present a construction
of a chain of domain-wall skyrmions from an analytical ap-
proach making use of the double sine-Gordon equation and its
solutions [57]. More precisely, we find that when skyrmions
and antiskyrmions appear alternately in the CSL, the cusps
of the (anti)domain walls are in the same direction and the
whole configuration is stable, but the (anti)domain walls are
bent logarithmically.

This paper is organized as follows. In Sec. II, we review the
model of a chiral magnet and revise some of its key features
such as the domain wall and CSL. In Sec. III, we present the
effective theory for a domain-wall skyrmion, reviewing the
details of Refs. [33,36,37] and give a comparison between
the theory and the numerics. Section IV studies a composite
object consisting of a domain-wall skyrmion and a domain
wall, and shows that such an object is unstable and decays into
a bimeron. Then, in Sec. V, we construct a chain of domain-
wall skyrmions by considering a CSL with modulations on top
of it. Finally, in Sec. VI, we give a summary and discuss some
open questions.

II. MODEL AND ITS GROUND STATES

In this section, we introduce the Hamiltonian relevant to
the study of chiral magnets, and review the domain wall and
CSL solutions supported by this Hamiltonian. We then briefly
review the ground state of the model and some of the proper-
ties of the CSL that will be important in later sections.

Let n = (nx, ny, nz ) be a unit vector representing a mag-
netization vector. We consider a classical spin system on a
square lattice defined by a Hamiltonian of the form

H =
∑
〈i, j〉

[Jn(�ri ) · n(�r j ) + D(�ri, �r j ) · {n(�ri ) × n(�r j )}]

− μ2

2

∑
i

n2
z (�ri ), (1)

where the first term is the exchange interaction, the second is
the DM interaction, and the third is an out-of-plane easy-axis
anisotropy. We are here considering the exchange interaction

to be FM, i.e., J < 0, and take a DM vector of the form

D(�ri, �ri ± a�ex ) ≡ ±Dx = ∓κ (cos ϑ,− sin ϑ, 0),

D
(
�ri, �ri ± a�ey

) ≡ ±Dy = ∓κ (sin ϑ, cos ϑ, 0), (2)

where a is the lattice constant, and κ and ϑ are constant. In
the continuum limit, this Hamiltonian can be written as H =∫

d2x H + const, with

H = |J|
2

∂kn · ∂kn + a−1Dk · (n × ∂kn) + μ2

2a2

(
1 − n2

z

)
. (3)

The DM term can explicitly be written in the form

Dk · (n × ∂kn) = κ{cos ϑ n · ∇ × n

− sin ϑ n · [(�ez × ∇) × n]}. (4)

The angular parameter ϑ differentiates between different
types of spin-orbit coupling in the underlying lattice spin sys-
tem. The DM term with ϑ = 0 can arise from the Dresselhaus
spin-orbit coupling, and that with ϑ = π/2 corresponds to
the Rashba spin-orbit coupling. Hereafter, we use units where
|J| = a = 1 for simplicity.

In this paper, we focus on the case where domain walls are
placed orthogonal to the x axis. However, the generalization
to the other cases is straightforward, owing to the rotational
symmetry of the Hamiltonian. Under the spatial rotation(

x
y

)
→

(
x̃
ỹ

)
=

(
x cos γ + y sin γ

−x sin γ + y cos γ

)
, (5)

all the terms in the Hamiltonian are invariant, except for the
DM term. The DM vector transforms as

Dx → D̃x = −κ (cos ϑ̃,− sin ϑ̃, 0),

Dy → D̃y = −κ (sin ϑ̃, cos ϑ̃, 0) (6)

with ϑ̃ = ϑ − γ . Therefore, when one wants to consider a
domain wall normal to the x̃ axis, the results can be obtained
by just replacing ϑ in the following formulas with ϑ̃ .

In order to describe domain wall and CSL solutions normal
to the x axis, we parametrize the magnetization vector as

n = (cos φ sin f , sin φ sin f , cos f ), (7)

and employ an ansatz of the form

f = f (x), φ = const. (8)

Substituting the ansatz (8) into the Hamiltonian density (3),
we obtain

H = 1

2
(∂x f )2 + κ sin(ϑ + φ)∂x f + μ2

2
sin2 f + const, (9)

which is the so-called chiral sine-Gordon model. As its name
implies, the Euler-Lagrange equation with respect to f is
given by the sine-Gordon equation

∂2
x f = μ2

2
sin 2 f , (10)

because the second term in the Hamiltonian (9) is a total
derivative term. The single-domain wall solution is given by
the sine-Gordon kink

f = 2 arctan[exp(μx + X )], (11)
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where X is a dimensionless moduli parameter corresponding
to the position of the domain wall. Note that this solution
represents a π -domain wall, which means that | f (+∞) −
f (−∞)| = π . We call the solution with μ > 0 a domain wall
and that with μ < 0 an antidomain wall, when we distinguish
them. In addition to Eq. (11), the sine-Gordon equation pos-
sesses solutions describing a CSL. These are given in terms of
the Jacobi amplitude function as

f = am
(μ

λ
x + X, λ

)
+ π

2
, (12)

where λ ∈ (0, 1] is the elliptic modulus. When λ = 1, this
reduces to the single kink solution (11). On the other hand,
the Euler-Lagrange equation with respect to φ is just cos(ϑ +
φ) = 0. The stable solution, which minimizes the Hamilto-
nian, is given by

φ = −ϑ − sgn(κμ)
π

2
+ 2lπ, (13)

with l ∈ Z, because when μ is positive (negative), Eqs. (11)
and (12) are monotonically increasing (decreasing) functions
of x, i.e., sgn(μ)∂x f > 0. Note that Eqs. (11) and (12) are
solutions of this model for an arbitrary value of φ, because
φ does not appear in the equation of motion for f . However, it
does contribute to the Hamiltonian through the total derivative
term coming from the DM interaction. This means that φ is a
quasimoduli parameter. Note that when there is no DM term,
φ is a true moduli parameter such as in the studies of domain-
wall skyrmions in Refs. [29,30].

We now discuss some properties of the CSL solution. From
the periodicity of the Jacobi amplitude function, one finds that
the period of the CSL is given by

L = 4λ

|μ| K(λ), (14)

where K(λ) is the elliptic integral of the first kind. The energy
per unit length in the y direction,

∫
dx H, takes its minimum

when λ satisfies

E(λ)

λ
=

∣∣∣∣ κ

μ

∣∣∣∣π2 , (15)

where E(λ) is the elliptic integral of the second kind. The
energy of the CSL becomes lower than that of a uniform
vacuum state when 4μ2 < κ2π2. In this parameter region, the
ground state is a CSL phase. On the other hand, in the region
4μ2 > κ2π2, the ground state is a FM phase.

III. SINGLE DOMAIN-WALL SKYRMION

A. Effective theory approach

This section is essentially a review of Ref. [33]. We study
domain-wall skyrmions in the FM phase of the theory us-
ing the moduli approximation (sometimes called the Manton
approximation) [52–54]. For this purpose, we consider the
domain-wall solution and promote the (quasi)moduli parame-
ters {X, φ} to fields depending on y, the coordinate along the
domain wall, namely,

f = 2 arctan{exp [μx + X (y)]}, (16)

φ = ϕ(y) − ϑ. (17)

Substituting these fields into the Hamiltonian density (3), we
get an effective energy on the domain wall of the form

Eeff =
∫

dx H

= |μ|−1{(∂yX )2 + (∂yϕ)2

+ κπ (μ sin ϕ − ∂yX cos ϕ)} + const, (18)

where we have used arctan ξ + arctan ξ−1 = π/2. The Euler-
Lagrange equations associated with this effective energy are
given by [58]

∂2
y ϕ − κ̃{μ cos ϕ + ∂yX sin ϕ} = 0, (19)

∂y[∂yX − κ̃ cos ϕ] = 0, (20)

with κ̃ = κπ/2. It follows from Eq. (20) that ∂yX = κ̃ cos ϕ +
C, for an arbitrary constant C. Plugging it into the effective
energy, one gets

Eeff = 1

|μ| [(∂yϕ)2 + (κ̃ sin ϕ + μ)2 + C2], (21)

where we omitted constant terms not depending on C. Clearly,
C = 0 is energetically preferred. So, we let C = 0 hereafter
since we are interested in the lowest-energy solitonic excita-
tions on the domain wall. Then, the equations we want to solve
read

∂2
y ϕ = κ̃μ cos ϕ + κ̃2

2
sin(2ϕ), (22)

∂yX = κ̃ cos ϕ, (23)

where Eq. (22) is nothing but the double sine-Gordon equa-
tion. Solutions of the double sine-Gordon equation were
studied for chiral magnets in the presence of both
the easy-axis anisotropy and Zeeman magnetic field in
Refs. [59,60].

Since Eq. (22) does not contain X , we can solve the sys-
tem of the equations by first finding a solution to Eq. (22)
and then integrating Eq. (23) using this solution. We con-
sider a single kink solution of Eq. (22) which asymptotically
decays into the lowest-energy vacuum configuration on the
domain wall (13). To simplify the following calculation, we
introduce

ψ = ϕ + sgn(κ̃μ)
π

2
− 2lπ. (24)

To take account of the asymptotic behavior of φ, we impose
boundary conditions for ψ of the form

lim
y→−∞ ∂yψ = 0, lim

y→−∞ cos ψ = 1. (25)

Equation (22) with these boundary conditions implies the
first-order differential equation

∂yψ = ±
√

2|κ̃μ|(1 − cos ψ ) − κ̃2(1 − cos2 ψ ). (26)
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FIG. 1. Single domain-wall skyrmions using the moduli approximation. The top panels represent the profile of the magnetization vector
given with the solutions (28) and (30), and the bottom panels their topological charge density. For those figures, we used κ = 1.0, μ2 = 3,
and ϑ = α = β = 0. The name of the configurations, e.g., DW × Kink, specifies the sign of μ and the sign in Eq. (28), where DW and Kink
denote anti-DW and antikink, respectively.

Note that the right-hand side is real because of the condition for the FM phase, |μ| > |κ̃|. It follows that

y = ±
∫

dψ√
2|κ̃μ|(1 − cos ψ ) − κ̃2(1 − cos2 ψ )

= ∓ 1√|κ̃|(|μ| − |κ̃|) arctanh

√√√√ (|μ| − |κ̃|) cos2 ψ

2

|μ| − |κ̃| cos2 ψ

2

+ α, (27)

where α is a constant. Solving this equation for ψ and using (24), we arrive at

ϕ = ±2 arccos

[ √|μ| sinh[
√|κ̃|(|μ| − |κ̃|)(y − α)]√

|μ| cosh2[
√|κ̃|(|μ| − |κ̃|)(y − α)] − |κ̃|

]
− sgn(κ̃μ)

π

2
+ 2lπ. (28)

The solution with the plus sign stands for an antikink, and the one with the minus sign gives a kink. Substituting this solution
into Eq. (23), one gets

∂yX = ±2 sgn(μ)

√|κ̃μ|√|κ̃|(|μ| − |κ̃|) sinh[
√|κ̃|(|μ| − |κ̃|)(y − α)]

|μ| cosh2[
√|κ̃|(|μ| − |κ̃|)(y − α)] − |κ̃| . (29)

Integrating both sides directly, we obtain

X = ∓2 sgn(μ)

⎡
⎣arctanh

⎛
⎝

√
|μ|
|κ̃| cosh[

√
|κ̃|(|μ| − |κ̃|)(y − α)]

⎞
⎠ + iπ

2

⎤
⎦ + β, (30)

where β is a constant.

We have four types of domain-wall skyrmion correspond-
ing to the combinations of (anti)domain wall and (anti)kink. In
Fig. 1, we show the profile of the magnetization vector and the
topological charge distribution for every type of domain-wall
skyrmion, where the charge is defined as

Q = 1

4π

∫
d2x n · (∂xn × ∂yn). (31)

The topological charge of the solutions is either ±1. Note that
as discussed in Ref. [36], the four solutions are all degenerate
and stable, in contrast to isolated skyrmion and antiskyrmion
configurations above a FM background where only either
skyrmions or antiskyrmions can stably exist depending on the
magnetic material. As can be seen in Fig. 1, the domain wall

bends in a dogleg shape and the topological charge localizes
near the turning point. Therefore, the smooth cusp of the
domain wall can be viewed as the domain-wall skyrmion.

The bending of the domain wall is because of the nontriv-
iality of X . The solution for X also has inversion symmetry
about y = α. Moreover, the quantity |X (y) − X (±∞)| takes
its maximal value at y = α. One can identify |X (α) −
X (±∞)| as the position of the domain-wall skyrmion mea-
sured relative to the domain wall itself, and it has the following
limits,

lim
|μ|
|κ̃| →1

|X (α) − X (±∞)| → ∞,

lim
|μ|
|κ̃| →∞

|X (α) − X (±∞)| → 0. (32)
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FIG. 2. The domain-wall skyrmion position measured from the
domain wall itself as a function of |μ|/|κ̃|.

This indicates that at the transition point between the FM and
CSL phase, i.e., |μ| = |κ̃|, the cusp stretches infinitely far
away from the domain wall itself. We plot |X (α) − X (±∞)|
as a function of |μ|/|κ̃| in Fig. 2.

B. Numerical solutions

We numerically construct single domain-wall skyrmions in
the model described by the Hamiltonian (3) and compare them
with the analytic solutions obtained in the previous section.
As we shall see, the numerical and analytic solutions in the
moduli approximation exhibit good qualitative agreement.

The Euler-Lagrange equation associated with the Hamilto-
nian (3) is given by

∂2
b na + 2κ[cos ϑ εabc∂bnc + sin ϑ (∂anz − δaz∂bnb)]

+ μ2δaznz + �na = 0, (33)

where � is a Lagrange multiplier. We solve the equations of
motion (33) using a nonlinear conjugate gradient method with
a finite-difference approximation of fourth order, where we

run our simulation on a grid with 401 × 401 lattice points and
lattice spacing � = 0.1. The initial input we used is given
by the single domain-wall solution for the easy-axis case in
Eq. (11) with the moduli parameter X = 0 and

φ = 4 arctan ecy − ϑ − sgn(κμ)
π

2
, (34)

with a real parameter c. We impose the Dirichlet boundary
conditions relevant to the domain-wall skyrmions: We assign
either n = (0, 0, 1) or n = (0, 0,−1) to the boundaries in the
x direction, respectively, as they are compatible with the initial
input; for the boundaries in the y direction, the boundary value
is fixed by the lowest-energy domain-wall solution given by
Eqs. (11) and (13).

The numerical solution is shown in Fig. 3. One can observe
that the numerical solution and the analytic solution in the
effective theory are at least qualitatively in good agreement.
Note that when |μ/κ| is smaller, the moduli approximation is
quantitatively more accurate. We compare the analytic solu-
tions for {φ, X } and corresponding numerical data in Fig. 4.
In order to extract data for X , we employ spline interpolation
on the field n. We then identify X/μ with x where nz = 0 is
satisfied. The phase φ in Fig. 4 is given by arctan(ny/nx ) on
the line nz = 0. We observe good agreement for both φ and X
between the numerical and analytic solutions.

IV. INSTABILITY OF DOMAIN-WALL SKYRMIONS
IN THE CHIRAL SOLITON LATTICE PHASE,

AND DOMAIN-WALL MERONS

So far, we have studied single domain-wall skyrmions in
the FM phase. As discussed in Sec. III A, the cusp of the do-
main wall corresponding to a domain-wall skyrmion infinitely
extends from the domain wall itself at the FM-CSL phase
boundary. Then, a natural question arises: Can domain-wall
skyrmions exist in the CSL phase, where domain walls are
periodically arrayed and a cusp cannot extend to infinity? In

FIG. 3. Numerical solution of a domain-wall skyrmion, Q = 1 skyrmion trapped in a domain wall, corresponding to the leftmost
configuration, i.e., DW × Kink in Fig. 1. The left figure shows the topological charge density and the right represents the magnetization
profile. We used for the simulation κ = 1.0, μ = +√

3, and ϑ = 0.
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FIG. 4. Comparison of the numerical solution of the system (3) (orange) and analytic one in the effective theory (blue) for φ and X . The
parameters used are κ = 1.0, μ = +√

3.

this section, we address the (in)stability of single domain-
wall skyrmions in the CSL phase. For simplicity, we restrict
ourselves to the case with μ > 0.

To examine the (in)stability, we numerically solve the
equation of motion (33) with an initial configuration describ-
ing a single domain-wall skyrmion in the CSL phase. We
prepare such a configuration as follows. For the function f ,
we use the CSL solution (12) with X = 0. The domain of the
variable x used for the simulations ranges from 0 to 3L/2.
It follows that the domain walls are placed at x = 0 and
x = L, while antidomain walls are located at x = L/2 and
x = 3L/2. As for the phase φ, we assign the antikink solution
given in Eq. (45) to the domain x = [L/4, 3L/4], and for
the other domain, we employ the vacuum value (13). This
configuration represents a domain-wall skyrmion, a Q = 1
skyrmion trapped in an antidomain wall, in the CSL. The
boundary conditions we impose for x = 0 and x = 3L/2 are
respectively n(0, y) = (0, 1, 0) and n(3L/2, y) = (0,−1, 0).
We also consider a finite domain for y and fix the field value
at the boundary as the stable CSL solution given by Eqs. (12)
and (13).

We apply a nonlinear conjugate gradient method with the
finite-difference approximation for solving the equations of
motion (33). We discretize the system into 400 lattice sites
along the y axis with the lattice spacing �y = 0.1 and 150
sites along the x axis. In Fig. 5, we show the resulting relaxed
state. Note that we only plot the central 200 sites in the
computational domain along the y axis because the config-
uration in the excluded region is just a CSL. In this sense,
the domain is large enough, and a boundary effect should be
almost free for the configuration in Fig. 5. One observes from
the figures that the domain wall trapping a skyrmion and its
neighboring domain wall reconnect and form a bimeron. This
result indicates that single domain-wall skyrmions in the CSL
are unstable.

It is worth noting that a bimeron in a CSL was previously
studied in Refs. [55,56] in the case of a Zeeman term cou-
pling to a magnetic field and without easy-axis anisotropy. In
that case, a CSL consists of sine-Gordon solitons rather than
(anti)domain walls, and a single soliton is cut into two pieces
ending on merons. While the identifications of (anti)domain
walls or solitons are different between the case considered

here and that considered in Refs. [55,56], the spin textures
are topologically identical.

V. DOMAIN-WALL SKYRMION CHAIN

In the previous section, we have shown that single domain-
wall skyrmions are unstable in the CSL phase. However, a
configuration where skyrmions are alternately arrayed with
antiskyrmions, such as DW × Kink and DW × Kink, can be
metastable because the cusps may not crash into a neighboring
wall. We call such a configuration a domain-wall skyrmion
chain. Domain-wall skyrmion chains can be constructed using
the moduli approximation, as we show in this section.

The procedure to construct domain-wall skyrmion chains is
parallel to that used for the single domain-wall skyrmion given
in Sec. III A. The main difference is to utilize the function

f = am
(μ

λ
x + X (y), λ

)
+ π

2
, (35)

which represents a CSL with modulations, instead of Eq. (16).
Note that for the phase φ, we here use Eq. (17), too. The
effective energy of the CSL per unit length can be defined as

Eeff = L−1
∫ L

0
dx H

= 2

L|μ|
[
λ−1{E(λ) − (1 − λ2) K(λ)}(∂yϕ)2

+λ E(λ)

(
∂yX − κ̃

E(λ)
cos ϕ

)2

+ 2κ̃μ sin ϕ − |κ̃μ| cos2 ϕ

]
+ const, (36)

where we used

am[4 K(λ) + X, λ] = am(X, λ) + 2π. (37)

The equations that the lowest-energy excitation should satisfy
are given by

∂2
y ϕ = λ

2

2κ̃μ cos ϕ + |κ̃μ| sin(2ϕ)

E(λ) − (1 − λ2) K(λ)
, (38)

∂yX = κ̃

E(λ)
cos ϕ, (39)
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FIG. 5. A bimeron in the CSL phase. We used the parameters κ = 1.1, μ = 1.0, and ϑ = 0.0 for the numerical simulation. (a) shows the
energy density, (b) the topological charge density, and (c) the magnetization vector with the same color code as Fig. 1. We can recognize two
lumps with a symmetric form in (b). Since the total topological charge is unity, each lump should possess the charge of 1/2.

where Eq. (38) can be obtained from the Euler-Lagrange
equation with respect to ϕ after using Eq. (39).

Since Eq. (38) does not include X , we first derive its
solution and then solve Eq. (39), similar to the approach in
Sec. III A. We introduce ψ through Eq. (24) and then the
equation for ϕ can be cast into the form

∂2
y ψ = A2

(
sin ψ − 1

2
sin(2ψ )

)
, (40)

with

A2 = λ|κ̃μ|
E(λ) − (1 − λ2) K(λ)

> 0. (41)

Note that the double sine-Gordon equation of this type (40)
corresponds to the boundary of phase I and II in Ref. [61]. It
follows from Eq. (40) that

1
2

(
∂yψ

)2 = −A2
(
cos ψ + 1

2 sin2 ψ
) + const. (42)

Imposing the boundary condition Eq. (25), we can write
Eq. (42) as

(∂yψ )2 = A2(1 − cos ψ )2. (43)

Therefore, one obtains

y = ± 1

|A|
∫

dψ

1 − cos ψ
= ∓ 1

|A| cot
ψ

2
+ α, (44)

where α is a moduli parameter. Solving it inversely, we find

ϕ = ±2 arccot [|A|(y − α)] − sgn(κμ)
π

2
+ 2lπ. (45)

Moreover, substituting the solution (45) into Eq. (39), we get

∂yX = ±μ

λ

2|A|(y − α)

1 + A2(y − α)2
. (46)

By integrating the both sides directly, we obtain

X = ±μ

λ

1

|A| log[1 + A2(y − α)2] + β, (47)

where β is a constant.
Figure 6 illustrates the domain-wall skyrmion chain that

is antikinks on each domain wall in a CSL. As one eas-
ily sees from Eq. (47), X logarithmically diverges for large
|y|. Therefore, it is difficult to obtain such a configuration
by numerically solving the equations of motion (33) and to
confirm their stability. However, we believe that domain-wall
skyrmion chains exist as metastable solutions in the system
(3) and are well described by our solution, at least from a
qualitative point of view.

VI. CONCLUSION AND DISCUSSION

In this paper, we have explored the stability of domain-
wall skyrmions in the FM phase and the CSL (spiral) phase
of chiral magnets with an out-of-plane easy-axis potential
and without a Zeeman term. We have studied the shape of
the cusp of a domain-wall skyrmion in the FM phase by
using both an analytic method (in this case the double sine-
Gordon equation) and numerical simulations based on the
relaxation method. There is a good agreement between the
two approaches as shown in Fig. 4. Next, we have shown
that the cusp grows as we approach the boundary with the
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FIG. 6. Quantities of the domain-wall skyrmion lattice solution with ϑ = 0, μ = 1.0, and κ = 1.1. (a) shows the energy density,
(b) topological charge density, and (c) the profile of the magnetization vector with the same color code as Fig. 1.We chose the plus sign
in Eq. (45) and (47), and let α = β = 0.

CSL phase, and eventually diverges at the phase boundary
as shown in Fig. 2, implying the instability of domain-wall
skyrmions in the CSL phase. We have confirmed this in-
stability by numerically showing that a pair of domain-wall
skyrmions and antidomain walls without a skyrmion decays
into a bimeron through a reconnection process and is con-
nected through the U shapes between the two regions as in
Fig. 5. Finally, we found that if skyrmions and antiskyrmions
appear alternately in the CSL phase, the configuration is stable
because the directions of the cusps are the same, as shown
in Fig. 6. The worldline of each (anti)domain wall is loga-
rithmically bent away from the y position of skyrmions as in
Eq. (47).

Before closing this paper, here we address some discus-
sions. In this paper, we have explored fundamental tools to
study domain-wall skyrmions, and established the validity
of analytic methods such as the moduli approximation. The
next step is to apply these methods to construct more realis-
tic magnetic memories. This could be done by carrying out
simulations of racetrack memory for a system of domain-wall
skyrmions.

The logarithmic bending of the shape of (anti)domain walls
in the skyrmion chain could be avoided if we put the op-
posite structure in a different position of the y coordinate.
In this case, there is a pair of kinks and antikinks on each
(anti)domain wall, and so the topological lump charge is zero

on each domain wall. Thus, the worldline of each soliton is
asymptotically flat in the y direction [62].

It is known in field theory that a periodic array of a
skyrmion with a twisted boundary condition reduces to a
meron pair and eventually becomes a domain wall in the small
periodicity limit [53,63,64]. In such a case, each meron is in
fact a (an) (anti)domain wall where the U (1) phase is twisted
half along its worldline. This meron is topologically the same
as the meron with the U shape found in this paper.

Finally, in our previous paper [37], we gave a string theory
realization of chiral magnets, where magnetic domain walls,
skyrmions, and domain-wall skyrmions are represented by D-
branes in string theory. All the configurations discussed in this
paper, such as bimerons and domain-wall skyrmion chains,
can be realized by D-brane configurations. Investigating the
impacts of such configurations on string theory remains a
future problem.

ACKNOWLEDGMENTS

This work is supported in part by JSPS KAKENHI [Grants
No. JP23KJ1881 (Y.A.) and No. JP22H01221 (M.N.)], the
WPI program “Sustainability with Knotted Chiral Meta
Matter (SKCM2)” at Hiroshima University. The numerical
computations in this paper were run on the “GOVORUN”
cluster supported by the LIT, JINR.

[1] T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
[2] E. Witten, Nucl. Phys. B 223, 433 (1983).

[3] A. Bogdanov and D. Yablonskii, Sov. Phys. JETP 68, 101
(1989).

104426-8

https://doi.org/10.1016/0029-5582(62)90775-7
https://doi.org/10.1016/0550-3213(83)90064-0


DOMAIN-WALL SKYRMION CHAIN AND DOMAIN-WALL … PHYSICAL REVIEW B 109, 104426 (2024)

[4] A. Bogdanov, JETP Lett. 62, 247 (1995).
[5] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[6] T. Moriya, Phys. Rev. 120, 91 (1960).
[7] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.

Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009).
[8] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A.

Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, Nat.
Phys. 7, 713 (2011).

[9] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901
(2010).

[10] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899
(2013).

[11] Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J.
Akimitsu, S. Nishihara, K. Inoue, A. S. Ovchinnikov, and J.-I.
Kishine, Phys. Rev. Lett. 108, 107202 (2012).

[12] J. Kishine and A. Ovchinnikov, in Solid State Physics, edited
by R. E. Camley and R. L. Stamps (Academic Press, New York,
2015), Vol. 66, pp. 1–130.

[13] A. A. Tereshchenko, A. S. Ovchinnikov, I. Proskurin, E. V.
Sinitsyn, and J.-I. Kishine, Phys. Rev. B 97, 184303 (2018).

[14] S.-Z. Lin, A. Saxena, and C. D. Batista, Phys. Rev. B 91, 224407
(2015).

[15] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature
(London) 442, 797 (2006).

[16] J. H. Han, J. Zang, Z. Yang, J.-H. Park, and N. Nagaosa, Phys.
Rev. B 82, 094429 (2010).

[17] C. Ross, N. Sakai, and M. Nitta, J. High Energy Phys. 02 (2021)
095.

[18] B. Barton-Singer, C. Ross, and B. J. Schroers, Commun. Math.
Phys. 375, 2259 (2020).

[19] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,
K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[20] D. Wolf, S. Schneider, U. K. Rößler, A. Kovács, M. Schmidt,
R. E. Dunin-Borkowski, B. Büchner, B. Rellinghaus, and A.
Lubk, Nat. Nanotechnol. 17, 250 (2022).

[21] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190
(2008).

[22] D. Kumar, T. Jin, R. Sbiaa, M. Kläui, S. Bedanta, S. Fukami, D.
Ravelosona, S.-H. Yang, X. Liu, and S. Piramanayagam, Phys.
Rep. 958, 1 (2022).

[23] T. Tanigaki, K. Shibata, N. Kanazawa, X. Yu, Y. Onose, H. S.
Park, D. Shindo, and Y. Tokura, Nano Lett. 15, 5438 (2015).

[24] Y. Fujishiro, N. Kanazawa, T. Nakajima, X. Yu, K. Ohishi, Y.
Kawamura, K. Kakurai, T. Arima, H. Mitamura, A. Miyake, K.
Akiba, M. Tokunaga, A. Matsuo, K. Kindo, T. Koretsune, R.
Arita, and Y. Tokura, Nat. Commun. 10, 1059 (2019).

[25] P. Sutcliffe, J. Phys. A: Math. Theor. 51, 375401 (2018).
[26] M. Hongo, T. Fujimori, T. Misumi, M. Nitta, and N. Sakai,

Phys. Rev. B 101, 104417 (2020).
[27] B. Göbel, I. Mertig, and O. A. Tretiakov, Phys. Rep. 895, 1

(2021).
[28] The term “domain-wall skyrmions” was first introduced

in Ref. [65] in which Yang-Mills instantons in the
bulk are three-dimensional skyrmions inside a domain
wall. The terminology of this paper is different from
Ref. [65]; what was studied there should be called domain-wall
instantons in the current terminology.

[29] M. Nitta, Phys. Rev. D 86, 125004 (2012).

[30] M. Kobayashi and M. Nitta, Phys. Rev. D 87, 085003 (2013).
[31] P. Jennings and P. Sutcliffe, J. Phys. A: Math. Theor. 46, 465401

(2013).
[32] V. Bychkov, M. Kreshchuk, and E. Kurianovych, Int. J. Mod.

Phys. A 33, 1850111 (2018).
[33] R. Cheng, M. Li, A. Sapkota, A. Rai, A. Pokhrel, T. Mewes, C.

Mewes, D. Xiao, M. De Graef, and V. Sokalski, Phys. Rev. B
99, 184412 (2019).

[34] S. Lepadatu, Phys. Rev. B 102, 094402 (2020).
[35] V. M. Kuchkin, B. Barton-Singer, F. N. Rybakov, S. Blügel,

B. J. Schroers, and N. S. Kiselev, Phys. Rev. B 102, 144422
(2020).

[36] C. Ross and M. Nitta, Phys. Rev. B 107, 024422 (2023).
[37] Y. Amari and M. Nitta, J. High Energy Phys. 11 (2023) 212.
[38] T. Nagase, Y.-G. So, H. Yasui, T. Ishida, H. K. Yoshida, Y.

Tanaka, K. Saitoh, N. Ikarashi, Y. Kawaguchi, M. Kuwahara,
and M. Nagao, Nat. Commun. 12, 3490 (2021).

[39] M. Li, A. Rai, A. Pokhrel, A. Sapkota, C. Mewes, T. Mewes, D.
Xiao, M. De Graef, and V. Sokalski, J. Appl. Phys. 130, 153903
(2021).

[40] K. Yang, K. Nagase, Y. Hirayama, T. D. Mishima, M. B. Santos,
and H. Liu, Nat. Commun. 12, 6006 (2021).

[41] S. K. Kim and Y. Tserkovnyak, Phys. Rev. Lett. 119, 047202
(2017).

[42] S. Lee, K. Nakata, O. Tchernyshyov, and S. K. Kim, Phys. Rev.
B 107, 184432 (2023).

[43] M. Nitta, Phys. Rev. D 87, 025013 (2013).
[44] M. Nitta, Nucl. Phys. B 872, 62 (2013).
[45] S. B. Gudnason and M. Nitta, Phys. Rev. D 89, 085022

(2014).
[46] S. B. Gudnason and M. Nitta, Phys. Rev. D 90, 085007 (2014).
[47] M. Eto and M. Nitta, Phys. Rev. D 91, 085044 (2015).
[48] M. Nitta, Phys. Rev. D 105, 105006 (2022).
[49] M. Eto, K. Nishimura, and M. Nitta, arXiv:2304.02940.
[50] M. Eto, K. Nishimura, and M. Nitta, J. High Energy Phys. 12

(2023) 032.
[51] M. Eto, K. Nishimura, and M. Nitta, arXiv:2310.17511.
[52] N. S. Manton, Phys. Lett. B 110, 54 (1982).
[53] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, J. Phys.

A: Math. Theor. 39, R315 (2006).
[54] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys.

Rev. D 73, 125008 (2006).
[55] J. Müller, J. Rajeswari, P. Huang, Y. Murooka, H. M. Rønnow,

F. Carbone, and A. Rosch, Phys. Rev. Lett. 119, 137201 (2017).
[56] N. Mukai and A. O. Leonov, Phys. Rev. B 106, 224428 (2022).
[57] A three-dimensional version of a domain-wall skyrmion chain

has been recently found in QCD [50].
[58] In our previous work [36], we assumed X = 0 for simplicity,

but this is only justified when the domain-wall tension is large.
In such an approximation, we do not see the cusp structure
discussed below.

[59] J. Chovan, N. Papanicolaou, and S. Komineas, Phys. Rev. B 65,
064433 (2002).

[60] C. Ross, N. Sakai, and M. Nitta, J. High Energy Phys. 12 (2021)
163.

[61] C. A. Condat, R. A. Guyer, and M. D. Miller, Phys. Rev. B 27,
474 (1983).

[62] This situation is similar to the so-called D-brane solitons in the
O(3) model with easy-plane anisotropy in three-dimensional
space (without the DM interaction) [66–68]. In three

104426-9

https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1103/PhysRevLett.108.107202
https://doi.org/10.1103/PhysRevB.97.184303
https://doi.org/10.1103/PhysRevB.91.224407
https://doi.org/10.1038/nature05056
https://doi.org/10.1103/PhysRevB.82.094429
https://doi.org/10.1007/JHEP02(2021)095
https://doi.org/10.1007/s00220-019-03676-1
https://doi.org/10.1126/science.1240573
https://doi.org/10.1038/s41565-021-01031-x
https://doi.org/10.1126/science.1145799
https://doi.org/10.1016/j.physrep.2022.02.001
https://doi.org/10.1021/acs.nanolett.5b02653
https://doi.org/10.1038/s41467-019-08985-6
https://doi.org/10.1088/1751-8121/aad521
https://doi.org/10.1103/PhysRevB.101.104417
https://doi.org/10.1016/j.physrep.2020.10.001
https://doi.org/10.1103/PhysRevD.86.125004
https://doi.org/10.1103/PhysRevD.87.085003
https://doi.org/10.1088/1751-8113/46/46/465401
https://doi.org/10.1142/S0217751X18501117
https://doi.org/10.1103/PhysRevB.99.184412
https://doi.org/10.1103/PhysRevB.102.094402
https://doi.org/10.1103/PhysRevB.102.144422
https://doi.org/10.1103/PhysRevB.107.024422
https://doi.org/10.1007/JHEP11(2023)212
https://doi.org/10.1038/s41467-021-23845-y
https://doi.org/10.1063/5.0056100
https://doi.org/10.1038/s41467-021-26306-8
https://doi.org/10.1103/PhysRevLett.119.047202
https://doi.org/10.1103/PhysRevB.107.184432
https://doi.org/10.1103/PhysRevD.87.025013
https://doi.org/10.1016/j.nuclphysb.2013.03.003
https://doi.org/10.1103/PhysRevD.89.085022
https://doi.org/10.1103/PhysRevD.90.085007
https://doi.org/10.1103/PhysRevD.91.085044
https://doi.org/10.1103/PhysRevD.105.105006
https://arxiv.org/abs/2304.02940
https://doi.org/10.1007/JHEP12(2023)032
https://arxiv.org/abs/2310.17511
https://doi.org/10.1016/0370-2693(82)90950-9
https://doi.org/10.1088/0305-4470/39/26/R01
https://doi.org/10.1103/PhysRevD.73.125008
https://doi.org/10.1103/PhysRevLett.119.137201
https://doi.org/10.1103/PhysRevB.106.224428
https://doi.org/10.1103/PhysRevB.65.064433
https://doi.org/10.1007/JHEP12(2021)163
https://doi.org/10.1103/PhysRevB.27.474


YUKI AMARI, CALUM ROSS, AND MUNETO NITTA PHYSICAL REVIEW B 109, 104426 (2024)

dimensions, skyrmions are lines (strings) and a domain wall
has a two-dimensional surface. A D-brane soliton consists of
skyrmion lines that end on the domain wall from its both sides.
If the numbers of skyrmions ending on the wall from one side
and those ending on the other side are imbalanced, the domain
wall is bent logarithmically, and if balanced, it is asymptotically
flat. Although the dimensionality differs by one from that con-
sidered here, they may be related by a dimensional reduction.

[63] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys.
Rev. D 72, 025011 (2005).

[64] M. Eto, T. Fujimori, Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta,
and N. Sakai, Phys. Rev. D 73, 085008 (2006).

[65] M. Eto, M. Nitta, K. Ohashi, and D. Tong, Phys. Rev. Lett. 95,
252003 (2005).

[66] J. P. Gauntlett, R. Portugues, D. Tong, and P. K. Townsend,
Phys. Rev. D 63, 085002 (2001).

[67] Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys. Rev. D 71,
065018 (2005).

[68] M. Eto, T. Fujimori, T. Nagashima, M. Nitta, K. Ohashi, and N.
Sakai, Phys. Rev. D 79, 045015 (2009).

104426-10

https://doi.org/10.1103/PhysRevD.72.025011
https://doi.org/10.1103/PhysRevD.73.085008
https://doi.org/10.1103/PhysRevLett.95.252003
https://doi.org/10.1103/PhysRevD.63.085002
https://doi.org/10.1103/PhysRevD.71.065018
https://doi.org/10.1103/PhysRevD.79.045015

